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Using Hamilton-Jacobi theory, we develop a formalism for solving semiclassical cosmological
perturbations which does not require an explicit choice of time hypersurface. The Hamilton-Jacobi
equation for gravity interacting with matter (either a scalar or dust field) is solved by making an
ansatz which includes all terms quadratic in the spatial curvature. Gravitational radiation and scalar
perturbations are treated on an equal footing. Our technique encompasses linear perturbation theory
and it also describes some mild nonlinear effects. As a concrete example of the method, we compute
the galaxy-galaxy correlation function as well as large-angle microwave background fluctuations for
power-law inflation, and we compare with recent observations.
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I. INTRODUCTION

The freedom in choosing a time hypersurface in gen-
eral relativity is sometimes viewed as a curse because it
leads to numerical problems, difficulties in quantization,
etc. However, for semiclassical analyses based on the
Hamilton-Jacobi (HJ) equation, it is actually a blessing.

Even in classical general relativity, the selection of a
useful time foliation is often a difficult task. In solv-
ing Einstein’s equations using the Arnowitt-Deser-Misner
(ADM) form (see, e.g., Ref. [1]), arbitrary choices must
be made for the lapse N and the shift N* functions; these
fields reflect our liberty in choosing the time hypersurface
as well as the spatial coordinates. Hamilton-Jacobi the-
ory provides an elegant method of bypassing these very
difficult decisions.

It is remarkable that the Hamilton-Jacobi (HJ) equa-
tion for general relativity refers neither to the lapse nor
to the shift functions. As a result, a solution for the
generating functional & is valid for all choices of the
temporal and spatial coordinates. The HJ equation is
the natural starting point for a hypersurface and gauge-
invariant analysis — it yields a covariant formulation. It
is analogous to the Tomonaga-Schwinger equation that
was applied successfully to quantum electrodynamics [2].
However, solutions to the HJ equation are difficult to ob-
tain because one must solve for the entire ensemble of
evolving universes that is described by superspace.

In a series of papers [3-5], we have developed a sys-
tematic method of solving the HJ equation by using an
expansion in spatial gradients. Using the first few terms,
one can derive the nonlinear Zel’dovich approximation [6]
and its higher order corrections which describe the forma-
tion of pancake structures in a dust-dominated universe
[7-9]. Causality is maintained in the relativistic theory,
and the final expressions are actually simpler than those
obtained from the Newtonian theory (see, e.g., Moutarde
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et al. [10] and Buchert and Ehlers [11]).

Moreover, Parry, Salopek, and Stewart [5] derived a re-
cursion relation which enables one to compute the higher
order terms for the generating functional from the pre-
vious orders. Two useful techniques were employed: a
conformal transformation of the three-metric as well as
a line integral in superspace. Deforming the contour of
integration corresponds to choosing an alternative time-
integration parameter. If the end points of integration
were fixed, all such contours gave identical results pro-
vided the theory was invariant under reparametrizations
of the spatial coordinates. Time-reparametrization in-
variance was closely related to spatial gauge invariance.

However, in the semiclassical problems of interest to
inflationary cosmology, a finite number of terms is insuf-
ficient. In this paper, we will consider all terms which are
quadratic in the curvature. We will effectively sum an in-
finite number of terms in the spatial gradient expansion.
Our procedure is analogous to that developed by Barvin-
sky and Vilkovisky [12] in a very different context: the
one-loop effective action for gravity interacting with mat-
ter. In this way, we recover the results of linear pertur-
bation theory considered during the 1982 Nuffield work-
shop [13-17], as well as those of Mukhanov, Feldman,
and Brandenberger [18]. Our formalism also describes
some mildly nonlinear effects which we hope to apply to
stochastic inflation [19-24]. Although there have been
some interesting proposals, the choice of time hypersur-
face in stochastic inflation still requires further clarifica-
tion [22]. For example, Linde et al. [24] have pointed out
that eternal inflation may appear differently on various
time-hypersurface slices. A covariant formulation would
be advantageous.

In Sec. II, we set forth the HJ equation and the mo-
mentum constraint equation. We consider two cases of
physical interest: (1) a scalar field in an inflationary uni-
verse and (2) dust in a matter-dominated epoch, with
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or without a cosmological constant. One can factor out
the effects of the long-wavelength background by using a
conformal transformation of the three-metric. We review
the long-wavelength formalism using the concept of field-
space diagrams which provide a simple illustration of the
concept of hypersurface transformation. These diagrams
are similar in spirit to Minkowski diagrams that proved
useful in understanding special relativity.

In Secs. III and IV, we suggest an ansatz which is
second order in the spatial curvature. Arbitrary coeffi-
cients appear that are functions of the matter field and
the spatial Laplacian operator. Substitution into the HJ
equation lead to two linear differential equations, which
describe the evolution of the scalar modes as well as the
tensor modes of the three-metric. For an inflationary cos-
mology, we choose initial conditions that are consistent
with the Bunch-Davies vacuum [25].

There is growing interest in the gravitational waves
produced during inflation because it was pointed out [26]
that they could provide a large part of the signal de-
tected by the DMR (Differential Microwave Radiometer)
experiment on the Cosmic Background Explorer (COBE)
satellite [27], and yet be consistent with structure forma-
tion. In our approach, density perturbations and gravita-
tional waves are treated on an equal footing. In Sec. V,
we compute the galaxy-galaxy correlation function and
large angle microwave background fluctuations for vari-
ous inflationary models, and we compare with COBE’s
|
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two-year data set [28].

The Hamilton-Jacobi equation for general relativity
was first written down by Peres [29] in 1962. For flat
space-time, Kuchai [30] solved for the semiclassical wave
functional describing the ground state. By making ex-
plicit gauge choices, Halliwell and Hawking [31] gave ap-
proximate results for the wave functional during the in-
flationary epoch. Salopek et al. [32] quantized the system
using a Heisenberg formulation, and they computed the
power spectra numerically for numerous models utilizing
either one or two scalar fields. By expanding the action
to second order in perturbations, Mukhanov et al. gave
an alternative prescription for quantizing this system in
arbitrary gauges. Their final results were elegant, but be-
cause they perturbed the lapse and shift functions, their
method was somewhat tedious. Our method removes this
unattractive feature, and it generalizes the method of
Kuchat and Halliwell & Hawking.

(Units are chosen so that ¢ = 87G = 87/m% = h= 1.
The sign conventions of Misner, Thorne, and Wheeler [1]
will be adopted throughout.)

II. THE HAMILTON-JACOBI EQUATION FOR
GENERAL RELATIVITY

For a single scalar field ¢ interacting with gravity, the
HJ equation and the momentum constraint equation are

] [2va (2)vir(x) — vij (@) Vii ()]

1 88 \? 1 1

e Vo2 B 1/2 1 a2 1 1205, o
X (6¢(z>) FrV(e@) + [ 5V PR+ 57 %y ¢,z¢,a] : (2.1a)
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In the ADM formalism, the line element is written as P=| \IJ|2 (2.4)

ds®’= g, dz"dz”
= (=N? + 49 N;N;) dt® + 2N;dt dz* + v;;da* dz? |
(2.2)

where N and N; are the lapse and shift functions, re-
spectively, and +;; is the three-metric. In Eq. (2.1a),
R denotes the Ricci scalar of the three-metric. The
object of chief importance is the generating functional
S = S[vij(x), #(z)]. For each universe with field config-
uration [v;;j(z), ¢(x)], it assigns a number which can be
complex. The generating functional is the “phase” of the
wave functional in the semiclassical approximation:

T ~ €S (2.3)
For the applications that we are considering, the pref-
actor before the exponential is not very important, al-
though it has interesting consequences for quantum cos-
mology (Barvinsky [33,34]). The probability functional

is just the square of the wave functional (see, e.g., Ref.
[35]). It is the focus of attention in cosmology during in-
flation, and even during the matter-dominated era. The
Hamilton-Jacobi equation (2.1a) and the momentum con-
straint (2.1b) follow, respectively, from the G3 and G?
Einstein equations with the canonical momenta replaced
by functional derivatives of S:

88
d¢(x)

and 7® (z) =

i (z) = (2.5)

n( )

Equation (2.1a) is the relativistic generalization of the
Newton-Poisson relation, whereas Eq. (2.1b) demands
that the generating functional be invariant under an ar-
bitrary change of spatial coordinates (see, e.g., Misner et
al. [1], p. 1185). If the generating functional is real, the
evolution of the three-metric for one particular universe
is given by
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(2.6a)

whereas the evolution equation for the scalar field is

17298
5

Here | denotes a covariant derivative with respect to the
three-metric -y;;. The lapse and shift function appear nei-
ther in the HJ equation (2.1a) nor in the momentum con-
straint (2.1b). Hence in HJ theory, all gauge-dependent
quantities appear only in the evolution equations, (2.6a)
and (2.6b), for the metric and scalar field.

HJ methods can also be applied fruitfully to systems
of perfect fluids [3,36]. For example the Hamiltonian and
momentum constraints for collisionless, pressureless dust
are given by

(- Nig:)/N =~ (2.6b)

éS 6S
87i5(z) Sy ()
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A cosmological constant term denoted by Vp has also
been included. The dust field x describes, for example,
cold-dark-matter particles. Its evolution equation is

(x— N'x;) /N = Y1+ xex'*,

whereas that for the metric is given by Eq. (2.6a). The
four-velocity U# of the dust is the four-gradient of the
potential x:

(2.8)

U* =—-g""xu (2.9)

where g*¥ is the inverse of the four-metric.

A. Review of long-wavelength solution
1. Scalar field and gravity

For fields where the wavelength is long compared to
the Hubble radius, one may safely neglect second order
spatial gradients (terms within square brackets) in the
HJ equation (2.1a) for gravity interacting with a scalar
field. The resulting equation has the trivial solution

SO fyi5(z), $(x)] = 2 / Soy P Hp(z)], (210)

provided that the Hubble function H = H(¢), a func-

tion of a single variable, satisfies the separated Hamilton-
Jacobi equation of order zero [4]:

2 (8H\? V(¢)

Equation (2.10) is also a solution of the momentum con-
traint (2.1b) because the volume element d3z+y!/2 is in-
variant under reparametrizations of the spatial coordi-
nates. H = H(¢) corresponds to the Hubble parameter
in the long-wavelength limit. We will examine in detail
the special case of inflation with an exponential potential

37]
V(¢) = Vo exp (— \/gtﬁ) ;

where p is a constant that describes the steepness of the
potential. An exponential potential arises naturally in
the induced gravity model (see, e.g., Ref. [32]) as well
as in extended inflation [38]. For this case, one can find
the exact general solution [4] of Eq. (2.11). In particular,
the separated HJ equation of order zero has the attractor
solution

H(¢) = [ﬁm] " P (_:;5771)

(single scalar field) . (2.12b)

(2.11)

(2.12a)

It describes power-law inflation where the scale factor
evolves as a(t) o tP, with t being a synchronous time
variable. [In order that the scalar field convert its en-
ergy into radiation and matter at the end of inflation,
the scalar field should have a minimum in its potential.
Hence, we interpret Eq. (2.12a) as describing the asymp-
totic branch of the potential as ¢ — —oo; we will as-
sume that microwave background fluctuations as well as
fluctuations for galaxy formation are generated on this
branch.] The separated Hamilton-Jacobi equation has
been widely applied in the reconstruction of the inflaton
potential from cosmological observations [39].

2. Dust field and gravity

For the case of a dust field, the long-wavelength theory
is found by dropping R and x|,~x|i in the HJ equation
(2.7a). One can then attempt a solution analogous to
Eq. (2.10) except now H = H(x) is a function of x
satisfying

208H 1%
2=—§?X—+Hg, where Hg:é’. (2.13)
The general solution is
H(x) = Ho cotanh [:’zﬂ(x - 55)] , (2.14a)

where X is a homogeneous constant [3]. If the vacuum en-
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ergy density Vj is negligible, then one recovers the Hubble
parameter for a matter-dominated universe in the limit
that the cosmological constant vanishes, Ho — 0:

2

rEE (2.14b)

H(x) =

The scale factor /8, defined to be the sixth root of
the determinant of the three-metric,

aH)‘l/3

Y1/ d(z) (a_g (2.15)

can be found by taking the derivative with respect to
the parameter X [3]. Here d(x) is an arbitrary function

of the spatial coordinates. For dust with a cosmological
constant, we see that

3H 2/3
/8  d(z) [sinh (TO(X — i))] , (2.16a)
whereas for pure dust, we recover the result
P/ o d(z) (x - )*/°. (2.16b)

Equation (2.16a) is plotted in Fig. 2.

B. Field-space diagrams

The consequences of the long-wavelength approxima-
tion can be illuminated using field-space diagrams where
one plots the metric variable versus the matter field.

1. Scalar field and gravity

For simplicity, we will assume that the shift function
vanishes. The evolution equations (2.6a) and (2.6b) in
the long-wavelength limit then become

¥ij/N = 2H(#)ij , (2.17a)
/N = «2%% . (2.17b)
These can be simplified by defining the field
a(t,z) = [Invy(¢,x)] /6, (2.18a)
and then letting
vii(t, ) = e2e(t:2) kij(x), (2.18b)

where k;;(x) is independent of time (this is the most in-
teresting case) with det(k)=1. Hence one obtains

&/N = H($), (2.19a)

OH

$/N = 255 - (2.19b)

We can integrate these equations by utilizing our free-
dom in choosing time. If we choose t = ¢ to be the time
variable, the lapse is defined through Eq. (2.19b):

OH
YN = -2 (2.20)
Equation (2.19a) then becomes
da 1 H(¢)
—=—x , (2.21)
d¢ 2 %

which involves only « and the independent variable ¢. It
may be integrated immediately leading to

@ ’
a(d,2) = ao(e) - 5 [ a0 g

8¢t

(2.22)

where ag(z) is an arbitrary function of z. For the ex-
ample of inflation with an exponential potential, Eq.
(2.12b), we obtain the trivial solution

aop,x) = ap(x) + \/g(ﬁ.

In general, the metric variable a is inhomogeneous on a
surface of uniform scalar field. For a single scalar field,
(/3 is defined to be the metric fluctuation on a uniform
¢ slice:

(2.23)

(/3 = Aa(¢) = a(¢,z2) — a(é, 1) = ao(z2) — ao(z1);
(2.24)

it is the difference of a between two spatial points x5 and
z; on a time hypersurface of uniform ¢ [14,32,4]. It is
independent of time. For a single scalar field in the long-
wavelength limit, this is true in general [see Eq. (2.22)],
and not just for the example of an exponential potential.

We plot the solutions Eq. (2.23) in the field-space dia-
gram Fig. 1. Each curve represents the evolution of the
fields (¢, ) for a given spatial point. One may invert Eq.
(2.23) to obtain ¢ as a function of a:

B 2) = —\/gao(w) + \/ga.

We interpret this inversion as choosing a time hypersur-
face where o is uniform. In this situation, the scalar field
is inhomogeneous. The fluctuation in the scalar field be-
tween two spatial points 3 and z; is given by

(2.25)

AG(@) = $la2) — d(a21)= —\/g [eolz) — aro()]

_ _\/g Aa(g).

It is related to the metric fluctuation through the neg-
ative of the slope of the o versus ¢ trajectories. The
transformation from a surface of uniform ¢ to one of uni-
form « is simply visualized in the field-space diagram.

(2.26)
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FIELD-SPACE DIAGRAM: SCALAR FIELD + GRAVITY
5 - -

FIG. 1. In the long-wavelength limit, the evolution of the
scalar field and the metric are shown for inflation with an
exponential potential. For each spatial point corresponds a
trajectory (which is a straight line). Slicing this diagram in
a particular direction would represent making a time hyper-
surface choice. A¢(a) denotes the scalar field fluctuation on
a time hypersurface of uniform a = (In+vy)/6. Aa(¢) refers
to the metric fluctuation on a time hypersurface of uniform
¢. These perturbations are related to each other through the
slope of the a — ¢ trajectories.

2. Dust field and gravity

A similar long-wavelength analysis can be repeated for
the dust field. The evolution equations are

&/N = H(x), (2.27a)

x/N=1. (2.27b)
If x is taken to be the time hypersurface, then N = 1, and
Eq. (2.27a) may be integrated using the same method
that was employed for a scalar field. More simply, one
can just apply Eq. (2.16a):

(2.28)

a(x,z) = ap(z) + glnsinh [3H0X} .

2

We have set ¥ = 0, which may always be arranged by
shifting x. We plot « as a function of x in the field-space
diagram, Fig. 2. Qualitatively it is the same as Fig. 1,
except that here the trajectories are not straight lines.
The HJ formalism is particularly useful for prob-
lems involving several fields. For example, in the long-
wavelength limit, we have shown how to solve exactly
the case of two fluids, a dust field and a field describing
blackbody radiation [36]. This solution describes adia-
batic as well as isothermal perturbations. In this paper,
we will consider only one matter field at a time. For var-

FIELD-SPACE DIAGRAM: DUST FIELD + GRAVITY
3 T T T T T

25 Ir
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FIG. 2. In the long-wavelength limit, the evolution of the
dust field and the metric are shown when a cosmological con-
stant is present. Aa(x) refers to the metric fluctuation on
a time hypersurface of uniform x (comoving, synchronous
gauge). Ax(a) denotes the fluctuation of the dust field on
a time hypersurface of uniform a. The hypersurface transfor-
mation relating the two is more complicated than in Fig. 1
because here the trajectories are curved.

ious perfect fluids, a Taylor series in synchronous time
has been investigated in Ref. [40].

These very simple considerations illustrate the role of
time in general relativity. The HJ formalism appears to
indicate that the most useful choices for the time hy-
persurface will be one of the matter fields or the metric
variable a, or some combination of the two. A hyper-
surface transformation amounts to slicing a field-space
diagram in a particular direction. Such simple behavior
is also manifested in the higher order solutions to the HJ
equation for general relativity that we will consider in
the next section.

III. QUADRATIC CURVATURE
APPROXIMATION FOR GRAVITY PLUS
SCALAR FIELD

A. Factoring out the long-wavelength background

Before we attempt to solve the HJ equation (2.1a), we
subtract out the long-wavelength background from the
generating functional:

S=8O4+F, §O_ _ / By PH($),  (3.1)

where H satisfies the separated Hamilton-Jacobi equa-
tion (2.11). The functional for fluctuations, F, now sat-
isfies
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LOH 5F 5F
2H~,
5 ag 2 ovij
0F  OF
—1/2
57 (@) Sa(e) 27 @5k (2) = 755 (@) vua ()]

l -1/2 o0F 2_1 1/2 _]; /2,45 4 4 . _

37 (&75(3:) gV TRA Sy Y4, =0

(3.2)

Although superficially similar, this step differs in princi-
ple from the usual analysis of perturbations on an homo-
geneous background [31,32,18]. Here a long-wavelength
background is allowed, which is closely related to what
is done in stochastic inflation. The first term S(®) is ex-
plicitly invariant under reparametrizations of the spatial
coordinates — gauge invariance is manifestly maintained.
Moreover, no explicit choice of the time parameter has
been made.

The first line of Eq. (3.2) may be simplified if one
introduces a change of variables (v;;,9) — (fij, u):

d¢ -
u = / ——28——1? s f,] =Q z(u) Yij » (3.3&)
9¢
where the conformal factor Q = Q(u) is defined through
dlnQ OH 0ln Q)
- E —_— —_— = 303b
du ¢ 0¢ ( )

Functional derivatives with respect to the fields trans-
form according to

é )
=02 ,
6'71] ( ) 5fij
) 11 ) é
= | = L 4

In order to simplify the notation, we will henceforth sup-
press the symbols |, and |f,; which denote the variables
that are held constant during differentiation. Utilizing
the conformal three-metric f;; instead of the original
three-metric -;; is analogous to using comoving coordi-
nates rather than physical coordinates in cosmological
systems. At long wavelengths, a surface of uniform u cor-
responds to comoving, synchronous gauge because N = 1
in Eq. (2.19b). Even if ¢ (considered as a function of H)
oscillates, u is monotonic. However, when one considers
short-wavelength terms associated with the functional F
for fluctuations, a surface of uniform u no longer repre-
sents a synchronous gauge.
The HJ equation reduces to

5F 12 8F 6F

‘5—+Q Sw)f~ 5% 5Fu 2fufie — fij fri
Q-3 —1/2
(w)f~Y2 [6F 6F 68
[E — 2H( )f,,] 6f; ] = 5 (3.5)

+2 <6H (u))z

where the functional S(® is given by

8(2)[f,~j(w),u(x)] = /d3:1:f1/2 [j(u)ﬁ-%— k(u)u;iu;i] .
(3.6a)

From now on, a semicolon will denote a covariant deriva-
tive with respect to the conformal three-metric, e.g.,
w' = fYu;. In addition, R is the Ricci scalar of f;;.
The u-dependent coefficients j and k,
Q /
j(u):/ (”)d 'Y F,  k(u)

= H(u) Q(u) ,

(3.6b)

where F' is an arbitrary constant, were first derived in
Refs. [3,5] in order that the spatial gradient terms ap-
pearing in Eq. (3.2),

1 68®@
VR 2
2 ou
may be expressed as a functional derivative with respect
to u(z) holding f;;(z) fixed. The momentum constraint

maintains the same form as before but it is now expressed
in terms of the new variables (f;;,u):

OF 0F
(fzk 8 Fes ) mfkt,i + Sa i T 0.

Yy = (3.7)

Hi(z) =

(3.8)

B. Integral form of HJ equation

It will prove useful to work with an integral form of the
HJ equation. Before proceeding, we pause to consider a
simple illustration from potential theory.

1. Potential theory

The fundamental problem in potential theory is the
following: given a force field g*(uy) which is a function
of n variables ug, what is the potential ® = ®(uz) (if it
exists) whose gradient returns the force field:

o
= ?
aul g ( k) *

(3.9)

Not all force fields are derivable from a potential. Pro-
vided that the force field satisfies the integrability rela-
tion

0=

bg' _ 09’ [6 8]@ (3.10)

Ou; Bu, 811,] Oou;

(i.e., it is curl-free), one may find a solution which is
conveniently expressed using a line integral:

B(ug) = LZdvj gj(vz) .

If the two end points are fixed, all contours return the

(3.11)



51 HYPERSURFACE-INVARIANT APPROACH TO COSMOLOGICAL ...

same answer. In practice, we will employ the simplest
contour that one can imagine: a line connecting the ori-
gin to the observation point u;. Using s, 0 < s < 1,
to parametrize the contour, we define the variable v; =
(4] (3 ) 'U,[),

vy =su with dvy=dsuy;, (3.12)
so the line integral may be rewritten as
= lds .
@(’U,k) = Z/ ?’Uj gJ (vk) . (313)
j=170

Similarly, in solving for the generating functional, we
will employ a line integral in superspace. The integrabil-
ity condition for the HJ equation follows from the Pois-
son brackets of the constraints (Moncrief and Teitelboim

[41)):

Flhs@u@) + [ae [ 2

6F §F
8fij 8 fut

e

In analogy with the example from potential theory, we
replace the index j with the spatial coordinate z and the
finite sum ), with the integral [d%z. The integrating
parameter is again denoted by s, and v(z) = su(z) repre-
sents a straight line in the superspace of the scalar field;
however, at each spatial point, f;;(z) is held fixed in the
line integral. As a result, one may safely add an arbitrary
functional of f;; to the right-hand side. No approxima-
tions have been made thus far; Eq. (3.15) is exact.

vQ—"’('u)f"l/2

C. Ansatz

For a spatial gradient expansion of S we have already
shown how to set up a recursion relation [5] which gives
higher order terms from the previous orders. Explicit so-
lutions were given which were accurate to fourth order
in spatial gradients. However, we now wish to inves-
tigate higher order terms. Finding an explicit and ex-
act expression which is valid to all orders appears to be
extremely difficult. Instead we will examine an infinite
subset consisting of all terms quadratic in the Ricci cur-
vature, but containing any number of spatial gradients.
Halliwell and Hawking [31] used a similar approximation,
although our expansion will manifestly maintain hyper-
surface and gauge invariance. We hence make an ansatz
of the form

F=8@ 49, with (3.16)
0= [ [R S(u, D% R
+R T(u, D) By~ SRT(w, D) B[, (317)

[2f1-lf]k

ds vQ 3 (v) f1/2 1/2 [5.7-'
BH(,U))Z

523

{H(@*), H(z* )} = v (%) H; (z*) + 77 () H; ()]
6‘9153(@- —z*). (3.14)

In fact, each contour of the line integral corresponds to
a particular time-hypersurface choice. Provided that the
generating functional is invariant under reparametriza-
tions of the spatial coordinates [e.g., H; vanishes in Eq.
(3.14)], different time-hypersurface choices will lead to
the same generating functional. Hypersurface invariance
is closely related to gauge invariance.

2. Line integral in superspace

Following Parry, Salopek, and Stewart [5], an integral
form of the HJ Eq. (3.5) may be constructed using a line
integral in superspace:

fij fri]

5o~ 2H(©)f; %] = SO[fi;(z),u(z)]. (3.15)

[

where S(u,D?) and T(u, D?) are differential operators
which are also functions of u. D? is the Laplacian oper-
ator with respect to the conformal three-metric: e.g.,

D*R=D"D,R=R'; = f1/? (fl/zfijﬁ‘j) .

,2

(3.18)

We refer to Q as the quadratic functional. We interpret
the operator S for scalar perturbations to be a Taylor
series of the form

u,D%) =" Sn(u) (D), (3.19)

and similarly for the operator T describing tensor fluc-
tuations. Note that T is sandwiched between two Ricci
tensors, R;;, as well as two Ricci scalars R. The full Rie-
mann tensor ﬁi,-kz does not appear in the ansatz for three
spatial dimensions because it may be written in terms of
the Ricci tensor (see, e.g., [42]). Although the first and
third terms in Eq. (3.17) may be combined into a sin-
gle one, the present form simplifies the final evolution
equations for § and T [see Eqgs. (3.27a,b)].

1. Order of perturbation

‘We now define the rules which determine the order in
perturbation of various terms. By first order, we refer to
terms such as R or D?u, or D2R or D*u, which vanish if
the fields are homogeneous; they may contain any num-
ber of spatial derivatives. Quadratic terms are a product
of two linear terms. Some examples are u;iu;i, D2uD*R.
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It should be clear how to determine other cases. _ _

Other quadratic terms such as (D?u)? and RDZ?u,
could be included in the ansatz (3.17) as well. How-
ever for the case of a single scalar field as well as that
for a single dust field, it may be shown that they actu-
ally vanish. This is one of the advantages of utilizing the
conformal transformation (3.3a,b). (This simplification
does not occur for multiple matter fields, and analogous
terms would have to be included.)

All that is necessary now is to compute some func-
tional derivatives, and substitute into the integrated HJ
equation (3.15). It is useful to note that for a small varia-
tion of the conformal three-metric 4 f;; the corresponding
change in the Ricci tensor is

0R;; = %fk’ [0 frisir + O fijsie — O fijyne — O firij] - (3.20)
In the integral form of the HJ equation, integration by
parts is permitted which simplies the analysis consider-
ably. (However, in its differential form (2.1a) one can-
not simply discard total spatial derivatives.) In addition,
all cubic terms are neglected. For example from Egs.

(3.6a,b) we find that

55 55 9 =
fatyr =1 (3 -Hi) R,

u ~2HFiE (3.21)

Yds Q73(v)f~Y2 [6F §F
B | D=
[oed oy L o]

:/d3xf1/2§/ou dv{sﬂs(v) 1_5(2)))

where a term proportional to u,;u* has been dropped;
otherwise if (3.21) where squared, this term’s contribu-
tion to the integral HJ equation (3.15) would be cubic

and higher which we are not considering here. Other
terms that appear are

§8() §s5(2)
/ &z / S V) S T RS — Fi

d _ ~i~ 3=
= /da:z:/o ?s F220073(v) 5% (v) (R”Rij — §R2> .
(3.22)

The order of some operators may be changed if the com-
mutator is an undesired higher order term, e.g.,

/ FPRPT R = / FPRT DR, (3.23)

Hence, D? effectively commutes with any function of u.
For a s1m11ar reason, one may permute the order of spatial
differentiation with impunity, D D ~ D D .i, because
the additional Riemann tensor term would be of higher
order. As a result, we find

[64112(1;) 52D* + 16 H(v) (@ — H(v) j(v)) SD?

+ (9%’—) - H(v)j(v))2 ] }}”i, (3.24)
and that
/ d*z / 45 p3-123F OF 1o p bk — fisfial = / d*zf1/? {fz"f / * dva? [21‘2 +4j TD? + 2 T°D*| Ry;
8 fij 8 frt 0

_gﬁj;u dvQ3 |25% + 45 TD? + 2 T2D* E} . (3.25)

Collecting terms, the integral form of the HJ equation (3.15) gives
0 /dsmfuz{g S L (9(“) — H)i(v) + 8H(v)S’D2>2 R+
°  8(v) (Ew) N2
i [:F+ [ v gy ) + fﬁz)z] Ry~ 3R [f + [ dvgars i) + TEZV] ﬁ} : (3.26)
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Each coefficient must vanish separately, leading to a pair
of uncoupled integral equations. Taking the derivative
with respect to u for each, one obtains the differential
equations

~ 2
=2, 1 (2 _piisn3p?) , (3.27a)
ou Q3 (8H 2
s0° (8%)

orT 2 /. &=2\?
0= 5+ 55 (i +TD%) . (3.27b)
Since one may add an arbitrary functional of f;; to the
integral HJ Eq. (3.15), these first order, ordinary dif-
ferential equations are equivalent to the pair of integral
equations arising from Eq. (3.26). These nonlinear differ-
ential equations are of the Riccati type. They represent a
tremendous simplification over the original HJ equation

(2.1a).

D. Solving Riccati equations

As is well known, the Riccati equations, (3.27a) and
(3.27b), may be reduced to linear ordinary differential
equations. To this aim, we define the Riccati transfor-
mation

w = w(u,D?), y=y(u,D?), (3.28)
through
3 ( 8H 2
~ @ (a—¢) 18w  2Hj—Q
S=-—2271 20 (3.29)
8H2D* wOu  16HD?
~ Q% 18y =~
T == - - 24 .
2554 3 Bu D~?%j, (3.30)

which lead to the desired result

8%w o 1 0H Sw

-0 %(u)D?w, (scalar perturbations) (3.31)
0%y Oy _ -2, 752
0—W+3H(u)-az—ﬂ (u)D?y

(tensor perturbations). (3.32)

Equation (3.31) describes the evolution of scalar pertur-
bations (density perturbations) of the metric, whereas
Eq. (3.32) describes tensor perturbations (gravitational
waves). We emphasize that no time choice has been made
in deriving these basic equations, although the scalar field
parametrizes the evolution because u = u(¢) is the inde-
pendent variable. These are the fundamental equations
of cosmological perturbations that we will utilize in this
paper.
If we set

z, (3.33a)

we obtain the equation for scalar perturbations that was
derived by Mukhanov et al. [18]:

02 o ~
= 505 +3HW) 5 + (mlg — Q72D%)z,

du
where the effective mass meg is given by

1 8H+262¢ (Hc‘)qﬁ)] .

0 (3.33b)

meﬂ=—+2

g2 ou |° H? u ' “8u? u

(3.33c)

2 o*v B_H [3

In deriving these equations, it is useful to note several
relationships between the scalar field ¢ and the new vari-
able u which follow from Egs. (3.3a, b) and (2.11):

dé OH
d¢ _ _,0H 3.34
Tu 25 3 (3-34a)
d2¢ dp 8V

_ g9 9V 34b
du? du 0O¢° (3.34b)
&3¢ /dp  dH 8%V d2¢ /dé
d/ du~ du o5z Hgz/) g (33%)

Equation (3.34b) is the well-known evolution equation for
a long-wavelength scalar field. It is identical to the evo-
lution equation in synchronous gauge (N = 1) describing
a homogeneous Friedmann universe.

1. Ezact solution

Many exact solutions have been found for power-law
inflation [see, e.g., Eq. (2.12b)]. Abbott and Wise [43]
have shown that the evolution equation (3.32) for tensor
perturbations can be solved exactly. In addition, Lyth
and Stewart [44] have shown that the same solution may
be applied to the scalar perturbation Eq. (3.33b). For
example, if we use H(¢) defined in Eq. (2.12b), we find
that

10H 1

Hdp  /2p
is a constant, and the equation for scalar perturbations
Eq. (3.31) becomes

(3.35)

Fw  3pdw

_2p 2
= —u “PD*w.
Ou? u Ou

0 (scalar perturbations)

(3.36)

Here we have also used the fact that for power-law in-
flation, the Hubble parameter and € are given by Egs.
(3.3a,b)

H(u) = P and Qu) = uP. (3.37)

u

Equation (3.36) is identical to that describing a massless
scalar field in a Friedmann universe. This is quite sur-
prising since one would have naively expected that the

mass term 82V/9¢? in Eq. (3.33c) would lead to damp-
ing of the fluctuations with wavelengths larger than the
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Hubble radius, but evidently the additional terms cancel
this effect. In fact, Eq. (3.36) for scalar perturbations is
identical to the tensor evolution Eq. (3.32). The solution
for both of these equations can be expressed in terms of
a Hankel function of the first kind:

D?) = z(u, D?) = gw'u.~2
y(u, D) = 2(u, B?) \/;(,D)
Hél)[___v‘ﬁzulﬂ’],

7wu(l—3p)
4lp — 1 (1-p)
Bp-1)

2(p-1)°

The normalization of this solution is irrelevant since a
logarithmic derivative enters in the Riccati transforma-
tion (3.29) and (3.30). However, in order to agree with
the conventions of Birrell and Davies [45] we have as-
sumed that

Oy oy 0z 9z*
3 9y~ — 03 oz
Q3 (u) ( Pu D0 ) 1= Q°(u) (z 9 ou

(3.39)

with v = (3.38)

Note that the argument for the Hankel function is nega-
tive, and it increases to zero as u varies from 0 to co. For
an inflationary epoch where p > 1, it describes a positive
frequency solution as u — 0, e.g., when the wavelength
of a particular mode is far within the Hubble radius:

e 1/4
y=z~(m)7(__ ep(\/»-/ﬂ(u)) (u — 0).
(3.40)

As a result, Eq. (3.38) corresponds to the ground state
wave functional at wavelengths shorter than the Hubble
radius (i.e., the Bunch-Davies vacuum [25]; see also Ref.
[32]). However, when the wavelength exceeds the Hubble
radius, the state is no longer in the ground state. [There
is also an analogous solution to Eq. (3.36) which involves
a Hankel function of the second kind but it describes a
negative frequency solution at short wavelengths — it
does not describe a system which is initially in the ground
state.]

IV. QUADRATIC CURVATURE
APPROXIMATION FOR GRAVITY PLUS DUST
FIELD

The quadratic curvature approximation used in Sec.
III may be applied to any field that is derived from an
action principle. We derive the scalar and tensor equa-
tions corresponding to a dust field. Unfortunately, one
cannot define a ground state for the dust field as was the
case for a scalar field. Hence the conditions at the begin-
ning of the dust-dominated era were generated at earlier
times, such as during the scalar-field-dominated epoch of
inflation.

We follow the treatment given for a scalar field. In
analogy to Eq. (3.1), we express the generating func-
tional 8 = S[v;;(z), x(z)] for dust and gravity as the sum
of a long-wavelength part S(® and a fluctuation part F.
Here, however, the Hubble function H = H(x) is given
by Eq. (2.13). The HJ equation (2.7a) for dust then
becomes

5F 5F
By FRH g
_ o0F oF
e )[ Yt (2) ik (®) — vi5 () vre ()]

87i () Svri(z
L 1+l 8F ., 1/20H
27 R+( 14+ x x|,—1)(ax 2y Bx
(4.1)

Since we cannot solve this equation exactly, we will retain
only those terms which are at most quadratic in pertur-
bation:

§F oH
(,/1 + xlix); — 1) (6x 2y'/? 3x)

1 0F OH
~ —yliy: 1/2
2X X|i (5X 2y BX)

1/2 |2

~ =y (4.2)

3H
We will also employ a conformal transformation of the
three-metric v;; — fi;:

fii = Q72 (x) s » (4.3)
where Q = Q(x) is defined through
dlnQ
= H(x). .
&= H (4.4)

[For example, if the vacuum energy density V; vanishes
in Eq. (2.13), the Hubble function H and the conformal
factor can be written as

H=2, Q=3 (withg=0)] (4.5)
3x
Hence, the HJ equation for dust becomes
oF _3 172 OF O0F 6F
5X " + Q7 ( )f (Sf 5f [2lef]k fszkl]
§S(2)
ox f”, (4.6)

where the functional S is given by

SAfy()x@) = [ E2f [J00R + k00X x]
(4.7a)

once again, a covariant derivative with respect to f;; is
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denoted using a semicolon. The y-dependent coefficients
j and k are [3,5],

0= [ B ax 8 k0 = HHR00,

(4.7b)
where F' is a constant, so that
1 1/2 1/2 OH | 68(2)
s R —_— i = 4.8
g7 TR o X = . (4.8)

may be expressed as a functional derivative with respect
to x(z) holding f;; fixed. Using a line integral in super-
space, we can construct the integral form of this equation
analogous to Eq. (3.15):

1/29F OF
8fij 6fm

x [2fafik — fij ] = SP[fij(2), x(x)], (4.9)

where v(x) = sx(z) represents a straight line in super-
space. This equation has a similar but simpler form
than the case of a scalar field. We make the analogous
quadratic ansatz as in Eq. (3.17), and we find that the
evolution equations for the scalar and tensor operators,

S= S(x, 52) and T = f(x, 52), are

1
Flfs@ @]+ [ @ [ 5 o)

a5
0= a 3 (4.10&)
T 2 (. = =0\ 2
0= 5}2 + W (J (x)+TD ) . (4.10b)

The solution to the scalar perturbation equation (4.10a)
is trivial:

§ = 5(D?) (scalar perturbations) (4.11)
is an arbitrary functional of the conformal Laplacian op-
erator. It is independent of the dust field x. Since dust
never oscillates like a scalar field, one cannot identify a
ground state for the dust field. The tensor perturbation
equation (4.10b) may be solved using the same technique
that was employed for a scalar field. We first define v,

Q2 108y

f = =, T a3 ﬁ_zj(X) I (4'12)

which leads to a linear equation

321! Oy -2 52
0= ] +3H(X)a - Q7 %(x)D?%y

(tensor perturbations) (4.13)

describing the evolution of the graviton in a universe with
dust.

If the cosmological constant vanishes, we obtain the
exact solution

y= Ax"l/zJ% [3 —ﬁle/a]
-1/2 _D2.,1/3
+Bx J_% [3\/ D2y :' .

The choice of the coefficients A and B will be given in
the next section. In fact, the forms for S and T at the
beginning of the matter-dominated epoch are determined
by a preceding period of inflation with a scalar field.

(4.14)

V. LARGE ANGLE MICROWAVE
BACKGROUND FLUCTUATIONS AND
GALAXY CORRELATIONS

We first show how to compute large angle microwave
background anisotropies arising from both the scalar and
tensor fluctuations of inflation. In principle this is not dif-
ficult since it essentially amounts to expanding in spher-
ical harmonics. We first interpret the semiclassical wave
functional that was computed in the previous sections.

By maintaining gauge and hypersurface invariance in
the dynamical analysis, we have not made any extraneous
assumption which would typically complicate the results.
Consequently, the final equations for a scalar field, (3.31)
and (3.32) and for a dust field, (4.10a) and (4.13) are of
a very simple form. However, many measurement pro-
cesses actually choose a specific time hypersurface. A
simple example arises in special relativity: when measur-
ing the lifetime of a particle, one typically chooses the
rest frame of that particle. In an application of high
interest to cosmology, Sachs and Wolfe [46] derived the
large angle microwave background anisotropy by utilizing
comoving, synchronous gauge (uniform x slice).

A. Interpretation of semiclassical wave functional

In earlier papers [7-9], it was shown that the gradi-
ent expansion could be used to compute nonlinear ef-
fects in cosmology. In particular, we computed higher
order corrections to the Zel’dovich approximation. How-
ever in computing microwave background anisotropies, it
is sufficient to consider a linear approximation; we will
now consider only a small deviation h;; of the conformal
three-metric f;; from flat space §;;, where the probability
functional, Eq. (2.4), reaches its maximum:

fij(u, ) = 65 + hij(u,x)

with

6 3 .
hij(u, z) = 2:,1 / (;,r’)cg, e * ha(u, k) ES) (k). (5.1)

We have expressed h;; as a sum of plane waves with co-
moving wavenumber k. Furthermore, we also expanded it
in a complete basis of six symmetric, polarization matri-
ces El(; )(k). For example, if the comoving wave number
is aligned with the z axis, we choose them to be



528 D. S. SALOPEK AND J. M. STEWART 51

E(l) Diag[1,—1,0] (tensor), (5.2a)
Eg) = Eg) = 1 (all other components vanish) (5.2b)
(tensor),
3 .

E{Y = Diag[1,1,0] (scalar), (5.2¢)
E{ = Diag[0,0,v2] (gauge), (5.2d)

B = B =1= B = B}
(all other components vanish) (gauge). (5.2e)

The first two are traceless and divergenceless; they corre-
spond to tensor perturbations. The third describes scalar
perturbations, whereas the remainder are gauge modes.
The matrices have been normalized so that
=9 5ab

b
ESED (5.3)

In addition, one must respect the reality condition:
hqo(k) = h2(—k). (5.4)
To linear order, the Ricci tensor for the conformal metric

may be computed using Eq. (3.20) with f;; = 6;; and
5f,;j = h,;]' to give

.1
Rij = (g’ + g = haje! —hgj)

The probability functional arising from inflation is then
given by the square of the wave functional, Eq. (2.4):

(5.5)

d3k

|‘I’| [1i5(2), d(z)] = exp( (27r)3

x [|B1(K)|* + 1B2(K)|* + |ﬁs(k)|2]) ;

(5.6a)
where
ha(k) = ﬁm(m ,
1
ha(k) = Wﬁb(k) )
1
hs(k) = T6k2S; (u, )53( )- (5.6b)

~

Here D? has been replaced by —k2. In Fourier space, S

and T are complex numbers which we expand into real
and imaginary parts:

S(u, —k?) = Sr(u, —k?) + iSr(u, —k?),

and T = Tr(u, —k?) + iTr(u, —k?), (5.7)

with

2
8H
1 (W) 1
—k2) = _
SI(“’? ) 16k4 H2 |Z|2 )
gy L1
Ti(w,~K) = g o (5.8)

which follows from the Riccati transformation equations
(3.29) and (3.30) and the normalization conditions (3.39);
(we have assumed that v is uniform (see below) and j(u)
is real). Because the wave functional is invariant under
reparametrizations of the spatial coordinates, the gauge
modes hy(k), hs(k), and hg(k) are absent in Eq. (5.6a).
Hence they are unrestricted, and they may assume arbi-
trary values consistent with the reality condition (5.4).
The three 3’s are Gaussian random fields which satisfy

(Ba(k) B§ (k) = (27)% 6% (k — k') ap,
Br(k) = BX(-k), a,b=1,2,3.

The polarization matrices have been chosen so that the
probability functional (5.6a) is diagonal in hq(k), ha(k),
and h3(k). (Using a canonical transformation in conjunc-
tion with HJ theory, Langlois [47] has derived a reduced
phase space Hamiltonian; our approach differs from his
in that we perform a phase space reduction after finding
an approximate solution to the HJ equation.)

(5.9)

1. Long-wavelength fields from power-law inflation

Long-wavelength fields are measurable and their evolu-
tion was discussed in Sec. II A. Recall that we defined
¢/3 to be the fluctuation in a = (In+y)/6 on a comoving
slice, Eq. (2.24). By choosing u = u(¢) to be uniform
in Eq. (5.6a), we see that for small deviations from flat
space that ( is related to hz(k) through

3 a3k
(@) = 2 (27)3

e** hy(k). (5.10)

Since the gauge modes are arbitrary, we have chosen hy =

h3/v/2 in order that
ha(u, k) B (k) + ha(u, k) B (k) = ha(u, k)d;; (5.11)

is proportional to the identity matrix. It has become
conventional to define the power spectrum through

Pe(k) = o / Bz e X C(@)C(0),  (5.12)
which leads to
k3 9H? k3
Pek)= o 2 p=E o (513)
272 2 22
+(%)

Loosely speaking, [k3|w|?/(272)]'/2 can be interpreted as
the metric fluctuation, Aa(¢$) = {/3, on a uniform ¢ slice
[see Eq. (2.24)], whereas [k3|z]2/(272)]*/? is the fluctu-
ation in the scalar field, A¢(a), on a uniform o (uni-
form curvature) slice [see Eq. (2.26)]. They are related
through the hypersurface transformation Eq. (3.33a); see
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Sec. IIB and Fig. 1. [In fact, Hwang [48] has used uni-
form curvature slices to provide an elegant derivation of
the scalar perturbation equation (3.33b).] In de Sitter
space where the scale factor varies exponentially in syn-
chronous time, Q(u) = eff*, where H is a constant, it is
useful to note that, at long wavelengths,

k3 ) 1/2 ka ) 1/2 H
e R e =
is given exactly by the Hawking temperature [25,32].
If inflation is not exactly de Sitter type, this is ap-
proximately true in which case it is useful to interpret
H = H(k) as the Hubble parameter at the time that
the comoving scale k~! crossed the Hubble radius during
inflation, k/(HQ) ~ 1, and

9 OH\?

For power-law inflation, we will compute this quantity
exactly.

For the tensor modes, we define hy(z) and hy(z) as
well as their corresponding power spectra, e.g.,

(5.14)

(5.15)

d*k
(2m)3

hi(z) = e**h,(k), (5.16)

with

— ks 3 —ik-x k? 2
(5.17)

Using the exact solution Eq. (3.38) in the long-
wavelength limit, u — 0o, we find for power-law inflation
that y and 2z are independent of time u:

™
™

-1 D(v)

== 5 (55)

(u = ) .
(5.18)

The long-wavelength power spectra for power-law in-
flation are power laws which are related to each other
through the steepness parameter p, Eq. (2.12a):

n,—1
Pe(k) = Pe (ko) (E’%) (long wavelength),

(5.19a)

P (k) = Paa k) = o Pelho) (i)

(long wavelength), (5.19b)

where, in the case of power-law inflation, the spectral
indices n,, n;, for scalar and tensor fluctuations actually
coincide:

2

e (5.20)

ng=ns =1

P¢ (ko) is the value of the power spectrum in zeta at some
fiducial wave number scale ko which we will choose later.
(It has been pointed out that inflation with a cosine po-
tential can also yield a power-law fluctuation spectrum
for scalar perturbations [49].)

2. Heating of the Universe

At the end of inflation, the scalar field typically rolls
to the minimum of its potential where it oscillates and
converts its energy into a thermal bath consisting of ra-
diation and matter. Because the coupling of the scalar
field to matter is not well understood, several possibili-
ties can arise yielding either a low or high value of Ty,.«,
which we define to be the maximum temperature reached
immediately after inflation. (Many models utilizing su-
persymmetry [50] give values, Tiax ~ 10% GeV, whereas
the Variable Planck Mass model [32] is rather special in
giving a very high result, Tyax ~ 10'° GeV.) Fortunately,
the amplitude of the metric at large wavelengths is indif-
ferent to the uncertainty in Ty,... (However, the present
physical length of a comoving scale is indeed sensitive to
the value of the maximum temperature). Numerical cal-
culations for a simple phenomenological model describing
coupling of a single scalar field to radiation and matter
demonstrate that the amplitude of the metric fluctuation
¢ on a comoving slice remains constant [32]. Essentially
a result of momentum conservation, the rest frame of the
single scalar field (uniform ¢) slice is coincident with the
rest frame of radiation which is identical to the rest frame
of the matter (uniform yx slice) at wavelengths larger than
the Hubble radius. Hence the fluctuations for structure
formation arising from inflation are typically adiabatic.
(If there are two scalar fields which are important during
inflation, one may also produce isocurvature perturba-
tions which we will not consider here; see, e.g., Sasaki
and Yokoyama [51].) Moreover, the function y describ-
ing the tensor fluctuations in Egs. (3.30) and (4.12) is
continuous during the heating process.

If we are only interested in large angle microwave back-
ground fluctuations produced in the cold-dark-matter
model, we may thus equate the probability functionals
on comoving time slices before and after heating of the
Universe:

P[’Yijlu = uheat] = P['Yijlx = Xheat = 0] . (521)

Hence for long-wavelength fields in the radiation and
matter dominated eras, the power spectra for ¢ as well as
that for tensor perturbations are identical to those arising
from inflation, Egs. (5.19a) and (5.19b). In other words,
the scalar and tensor operators, S and T are continuous
on a comoving time slice.

B. Application of Sachs-Wolfe formula

It remains useful to continue employing comoving slices
of uniform x since the phase transition where radiation
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becomes uncoupled from matter occurs on a slice where
the temperature is uniform, 7' = 4000 K, which for adi-
abatic fluctuations coincides with a uniform x slice at
large wavelengths (see, e.g., Ref. [36]). Hence by observ-
ing the phase transition, one has effectively chosen a very
special time hypersurface. The Sachs-Wolfe [46] formula
yields the large angle temperature anisotropy from a line
integral over the perturbation in the three-metric h;;
computed in uniform x gauge (comoving, synchronous

gauge):

" Doz(x)).  (5.22)

t2
AT(z)/T = —leke’/ dy 2t
2 4 7]

The line integral traces the path z(x) of a photon path
from the surface of last scattering to the present epoch;
e’ is a unit vector giving the direction of the photon’s
velocity. For angles of interest to COBE (o > 7°), we
are concerned with those comoving scales that reenter
the Hubble radius during the matter-dominated era.

1. Scalar perturbations

In comoving synchronous gauge, the scalar part of the
metric evolves according to
R (r,2) =

—C(w)5u+ 7 (@)

(with N = 1,N* = 0). (5.23)
(This may be derived most simply by using Ref. [3], or
by applying Sec. IV.) Here we have defined conformal
time 7 = 7(x) to be

X dX 2 x 1/3
T = N = 7 - ’
/0 a(x) Ho (Xo)
a( )_ l 2/3 3 2
X) = Xo ’ X0 = 3H0 )

where Hj is the present value of the Hubble parameter
which we assume to be 50 kms~! Mpc~?! which is consis-
tent with measurements of the Sunyaev-Zel’dovich effect
by Birkinshaw et al. [52] (see also Lasenby [53]). In or-
der to agree with our present units of measurement, we
have normalized the scale factor a(x) < Q(x) to unity
at the present epoch xo. Integrating Eq. (5.22) twice
by parts and retaining only those boundary terms which
are important for o > 2%, one finds that the large-angle
temperature anisotropy,

(5.24)

AT (x)/T = —((z)/15, (5.25)
in a flat, matter-dominated universe is proportional to
the value of {(z) on the surface of last scattering which
is a sphere of radius R = |z| = 11700 Mpc. In this way,
temperature fluctuations are a probe of scalar fluctua-
tions from inflation.

Since we are concerned with temperature anisotropies
measured on the celestial sphere, it is natural to employ

a spherical harmonic expansion. A plane wave can be de-
composed into orthogonal spherical harmonic functions,
Y¢m, and spherical Bessel functions, j¢, through (see, e.g.,
Ref. [54])

co m=¢

=4y > iGe(kr) Y () Yem () -

£=0 m=—¢

(5.26)

If § denotes the angle between k and x, then the ad-
dition theorem relates the spherical harmonics with the
Legendre polynomial P;(cosd):

m=£

el 3 @) Yim(5).

Py(cosd) = )

(5.27)

Hence, the plane wave expansion

a3k g, (277 1/2

(@ = [ G5 ( l (k)) Ba(k)  (5.28)
(which follows from the expression for the scalar power
spectrum Eq. (5.12) of a Gaussian random field) implies
that the scalar contribution to the angular correlation
function C,(a) can be expressed as a sum over the Leg-

endre polynomials Py(cosa) [26,55]:

= Z (AT?),Py(cosa),

£=0

C,(a) = (AT (z)AT(z')),

(5.29)

@rp). = () eern [~ nmsen),

(5.30a)

_ 42 (26+1) DL+ (n, — 1)/2) T((9 —n.)/2)

5 T+ (5-n,)/2) T((8+mn,)/2)’
(5.30b)

2 _ m2 1-n, T on,—4 I'(3—mn,)
A =T Pe(ko)(koR) yTs 2 (3 —n,/2) )
L((n. +3)/2)

T((9—n.)/2)’
(5.30c¢)
where a is the angle between the two points, z and z’,
on the surface of last scattering; T, = 2.736 &+ 0.017 K
is the mean background temperature [56]. P(ko) was
defined in Eq. (5.19a), and we will assume that the fidu-
cial wavenumber scale is kg = 10™* Mpc. (Integrals of

various combinations of Bessel functions may be found
in Gradshteyn and Ryzhik [57].)

2. Tensor perturbations

The derivation of microwave anisotropies from tensor
perturbations is similar in principle to the scalar case.
However, it is technically more complicated because the
angular correlation function obtains contributions from
points within the surface of last scattering.

For primordial gravitational waves described by Eq.
(5.19b), the metric for the tensor modes evolves accord-
ing to
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Bk . (27 2 34 (kT)
Gy (FPmm) ey

during the matter-dominated era. By applying a continuity argument after the exit of inflation to the radiation- and
matter-dominated eras, we have determined the coefficient A and we have set B = 0 in Eq. (4.14); we have also
chosen to rewrite Eq. (4.14) in terms of a spherical Bessel function j;(k7) of order 1. Using the Sachs-Wolfe formula

Z Ba(k) B (k). (5.31)

(t) (X’ z) =

Eq. (5.22), we find that the temperature anisotropy is

AT/T = — L etel / / (;i:;s (2” Ph (k))l/2 kex(r) & (3”(116(1’_”)) Z Ba(k) ES (k

and the resulting two-point correlation function is

(5.32)

! 3
<AT(1}) AT(:I? )> — C 6] Ipelq/ dr / / ((21 ];3 2]:; Phl (k) ezk x(7)—ik-x' (')
t

T T

X% (Sj(lk(f;)) ar'

: 2 ; ; 2 i
mz(E—*r)e’, mh_(FO_T>e,,

where

describes the paths of the photons, with e! = z‘/|z|,
e'* =z /|z'|. The values of conformal time at the present
epoch and at the time of decoupling, (1 + a)~! ~ 1300,
are, respectively, 72 = 2/Hy and 7 = 2/(Hy+/1300).
This expression may be simplified by noting that
2 ~ ~ ~ ~ ~ ~

Z Ez(:)(k) Ez(r:)(k) = [‘sip‘sjq + 8igdjp — ‘Sij‘qu] ’

a=1
8ij = &ij

where — kik;/k*, (5.35)

so that

eted "’e’qZE(a)(k

a=1

(“)(k)

(1 - (:0529) (1 — coszﬂ') .
(5.36)

= 2 (cosa — cosfcosd’)? —

371(k7") (a) (@
(545) £ romsen

(5.33)

(5.34)

[

Here 0 denotes the angle between k and x, and analo-
gously for ', and once again, « is the angle between z
and z’. The various factors of cosf (and cosf’) may be
removed by several applications of the identity

(£+1)

cosf Pg(COSg) = m

P4+1 (COSg)

¢

+mP¢_1(COSG) y

(5.37)

in conjunction with the plane wave decomposition into
Legendre polynomials, Egs. (5.26) and (5.27). The an-
gular integrations in Eq. (5.33) may be performed, and
once again the angular correlation function can be writ-
ten in a series of Legendre polynomials:

Ci(a) = (AT(z)AT(z")); = g (AT?)Py(cosa), (5.38)

(AT?), = g-Tf (£ —1)e(e+1)(£+2)(2¢ +1) (5.39)
x /0 el o P, (H;“’) { [) T (5.40)
et sttt sttt oo

[(2z ffﬁz)(é’é’ )+ 3 T2 2 t1()u();z? T3t (2ei:12)((1;; L 1)] }2 (5-42)
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which was derived by Abbott and Wise [43] (see also
Starobinsky [58]). kmax = 10~2 Mpc™' corresponds to
the Hubble radius at matter-radiation equality. For an-
gular scales that are measured by COBE (a > 7°), the
precise value of kpax is not that important, since the
spherical Bessel functions j;(wv) provide a cutoff.

Since the scalar and tensor contributions are indepen-
dent Gaussian random fields, they add, in quadrature,

(AT?) = (AT?). + (ATY)e . (5.43)

In Fig. 3, we have computed the relative contribution
of the tensor component (AT?):/((AT?)s + (AT?):) for
various values of the spectral index n =n, =n; =1 —
2/(p — 1). For smaller values of n,, it increases quite
dramatically.

C. Recent observations

The COBE DMR team has recently analyzed their
two-year data set [28]. At the 68% confidence level, they
find that the spectral index for scalar perturbations is
ns = 1.17 £ 0.31, which is consistent with the simplest
models of inflation models which yield n, < 1. They
also determine that the root-mean-square temperature
anisotropy with dipole removed is o4y (10°) = 30.5 + 2.7
u K at the same level of confidence. The latter quantity,

02y (10°) = ST(AT?) exp [-1(1 + 1)/13.57] ,
=2

Osky(10°) = 30.5 + 2.7 pK

INFLATION WITH AN EXPONENTIAL POTENTIAL
T T T T T

< AT >7 [ [ < AT? >5 + < AT} >7]

0.8 4
3 .c-oooo-oooo-.oooon:c:(.]"t.
888283300000000000000000000 09
. 0.5
0.6’— ®eec0c000r00000000000000000 ¢
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FIG. 3. The gravity wave contribution to large angle AT /T
can be dominant for power-law inflation which employs an

%qﬁ]. As a func-

tion of the spherical harmonic index £, the relative contri-
bution of the gravity waves (AT}): to the total contribution
(AT?). + (AT?), is plotted for various potential parameters
ns =1—2/(p—1). If one normalizes to COBE, then n, > 0.8
is required to give fluctuations large enough to produce galax-
ies.

exponential potential, V(¢) = Voexp[—

is computed using the sum of the scalar and tensor fluc-
tuations Eq. (5.43). It determines the arbitrary normal-
ization factor appearing in long-wavelength power spec-
tra, Eqs. (5.19a,b). The exponential factor corresponds
to a Gaussian window function with a full width at half
maximum of 10°.

However, COBE by itself cannot discriminate between
tensor and scalar fluctuations. One needs an additional
experiment to measure the scalar perturbations. Two
proposals have been suggested using either (1) galaxy
clustering data [26] or (2) intermediate microwave back-
ground experiments 1° < o < 2° [59]. We shall discuss
only the first proposal here since there are large varia-
tions in the intermediate angle observations [60-63].

In Fig. 4, we have computed the power-spectra for ¢
that arises from the various power-law inflation models,
assuming that they account for COBE’s measurement of
Osky(10°). In the limit that n, — 1 (p — oo) gravita-
tional waves do not contribute to COBE’s signal, and
the power spectrum for ¢ is the flat, Zel’dovich spec-
trum. As n, decreases, gravitational waves are signifi-
cant, leaving a smaller contribution for the scalar pertur-
bation to o4y (10°). Hence at the fiducial wave number
ko = 10~* Mpc™" (scales probed by COBE), P¢ (ko) de-
creases as n, decreases. Moreover, the slope of the power
spectrum becomes more negative as n, decreases.

In comoving synchronous gauge (uniform x), py/? is
independent of time and the linear density perturbation
at early times is

,,.2
5(r,2) = (0~ ) /p =~ 35 CH(@) (early times) (5.44)

which may be derived from the expression for the metric
Eq. (5.23). In Fourier space this yields

k272
S(rk) = “ L ¢(k). (5.45)
30
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T T T T T
-7.6 log1o| P((k) ] e 1.00 T
-7T8 F B
R e

9.4 | L .

M 1 1 1 1 1

-4 -3 -2 -1 L 0 1 2
logio[ k (Mpc™") ]

FIG. 4. Primordial scalar perturbations of the metric are
described by the function {. The fluctuation spectra for ¢ are
shown for various choices of the the spectral index n, arising
from power-law inflation. They have been normalized using
COBE'’s two-year data set.
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During the radiation-dominated era, density perturba-
tions oscillate, and they damp because of the Hubble
expansion. This effect is described by the transfer func-
tion T'(k), so that in the matter-dominated era the linear
density perturbation is given by
k2,r2
&(r, k) = =30 T (k) ¢(k). (5.46)

This requires an assumption for the dark matter, and we
have adopted the cold-dark-matter transfer function [55]
with Q25 = 0.03.

In Fig. 5, we show power spectra for the density per-
turbation,

3
Ps(r, k) = Ll

2m2 d3z e~ **(§(1,2)8(r,0)),

(5.47)
arising from power-law inflation. The bold line depicts
the power-spectrum
2
P (k) = = sin (?) [(2—7) (kro)”  (5.48)
™
for the well-known correlation function of optical galax-
ies £gg(r) = (r/ro)”" where ro = 10 Mpc, v = 1.8, and
I' is the gamma function. The corresponding biasing pa-

rameter b, is found by computing the mass fluctuation
on a scale of 16 Mpc:

<<AAJJM(T = 16Mpc))2> =1/b3.

For n, =1, 0.95, 0.9, 0.85, 0.8, 0.7, 0.5, we compute the

(5.49)

POWER SPECTRA FOR DENSITY PERTURBATION
T T T

0 logio] Ps(k)]

2+ .
3+ E
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4 1 1
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-1 N 0
logio[ k (Mpc™) |

FIG. 5. For the present epoch, the power spectra for the
linear density perturbation § in comoving synchronous gauge
are shown. The dark line depicts the observed two-point cor-
relation function describing galaxy clustering. n, = 0.9 gives
a good fit to the data near k = 10~* Mpc~!. In order that
there be enough fluctuations to seed galaxies, one requires
that the biasing parameter b, be less than 2 which implies that
0.8 < my < 1. As a result, for power-law inflation, at most
50% of COBE’s signal may arise from gravitational waves.

biasing parameter to be b, = 0.82, 1.06, 1.34, 1.65, 2.0,
2.88, 5.6. In order to be consistent with biased galaxy
formation, we insist that b, < 2 and 0.8 < n, < 1; other-
wise, there are not enough fluctuations to seed galaxies.
As a result, for power-law inflation no more than 50% of
COBE’s signal can arise from gravitational waves.

Previously, it had been suggested that power-law infla-
tion with n, = 0.5 [64] could account for the APM (au-
tomatic plate machine) survey [65] which demonstrated
more power than predicted by the standard cold-dark-
matter model. However, Salopek [26] pointed out that
the production of gravitational radiation, which was ne-
glected in the previous calculation, could be quite signifi-
cant for power-law inflation. He was able to rule out this
promising model for large scale power since it is essen-
tial that n, > 0.8. (For a careful discussion of statistical
limits on the spectral index n, using only COBE data,
consult Ref. [66]. A more careful treatment of galaxy
data will be given in future work.)

VI. CONCLUSIONS

Hamilton-Jacobi methods are a cornerstone of mod-
ern theoretical physics, and they may be profitably ap-
plied to numerous problems in cosmology. For exam-
ple, they have been successfully employed in deriving the
Zel’dovich approximation and its higher generalizations
from general relativity [7-9]. Various researchers have
employed HJ methods in an attempt to recover the infla-
ton potential from cosmological observations [39]. More-
over, they can be used to construct inflationary mod-
els that yield non-Gaussian primordial fluctuations [4];
such models could possibly resolve the problem of large
scale structure [67]. Here we have given a careful and de-
tailed computation of the galaxy-galaxy correlation func-
tion and large-angle microwave background fluctuations
arising from power-law inflation, which is the most inter-
esting model involving gravitational radiation. We find
that the resulting spectral index for scalar perturbations
must satisfy n, > 0.8, otherwise the production of gravi-
tational radiation is excessive, and there are not enough
fluctuations to seed galaxies.

Our analysis is greatly facilitated by the fact that a
choice of the time hypersurface is not required in the
computation of the probability functional during the in-
flationary epoch. Field-space diagrams are useful in vi-
sualizing a hypersurface transformation. However, in the
end when one compares with observations one typically
assumes a particular choice of gauge. For large-angle
microwave background fluctuations which are computed
using the Sachs-Wolfe formula, comoving synchronous
gauge is preferred.

Our line integral formulation of the HJ equation (3.15)
goes a long way in illuminating the role of time in semi-
classical general relativity. Different time hypersurface
choices correspond to different choices of contours in su-
perspace. Provided spatial gauge invariance is main-
tained, they all yield the same result for the generating
functional.

A complete quantum formulation of the gravitational
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field is still lacking. String theory is a possible candidate,
and its applications to cosmology are currently being in-
vestigated [68,69]. Our aim is more modest in that we
have restricted ourselves to the semiclassical theory of
Einstein gravity which is nonetheless adequate in describ-
ing various quantum gravitational phenomena including
graviton fluctuations beginning initially in the ground
state [26]. We hence follow in spirit the historical de-
velopment of the theory of atomic spectra. Before the
development of the quantum theory in 1926, the semi-

classical theory of Bohr and Sommerfeld provided a use-
ful although imperfect description of various atoms.
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