
Unity Manual

Welcome to Unity.

Unity is made to empower you to create the best interactive entertainment or multimedia experience that you can. This manual

is designed to help you learn how to use Unity, from basic to advanced techniques. It can be read from start to finish or used

as a reference.

The manual is divided into different sections. The first section, User Guide, is an introduction to Unity's interface, asset

workflow, and the basics of building a game. If you are new to Unity, you should start by reading the Unity Basics subsection.

The iOS Guide addresses iOS specific topics such as iOS-specific scripting API, optimizations, and general platform

development questions.

The Android Guide addresses Android specific topics such as setting up the Android SDK and general development questions.

The next section, FAQ, is a collection of frequently asked questions about performing common tasks that require a few steps.

The last section, Advanced, addresses topics such as game optimization, shaders, file sizes, and deployment.

When you've finished reading, take a look at the Reference Manual and the Scripting Reference for further details about the

different possibilities of constructing your games with Unity.

If you find that any question you have is not answered in this manual please ask on Unity Answers or Unity Forums. You will be

able to find your answer there.

Happy reading,
The Unity team

The Unity Manual Guide contains some sections that apply only to certain platforms. Please select which platforms you want

to see. Platform-specific information can always be seen by clicking on the disclosure triangles on each page.

Table of Contents
User Guide

Unity Basics

Learning the Interface

Project Browser

Hierarchy

Toolbar

Scene View

Game View

Inspector

Other Views

Customizing Your Workspace

Asset Workflow

Creating Scenes

Publishing Builds

Tutorials

Unity Hotkeys

Preferences

Building Scenes

GameObjects

The GameObject-Component Relationship

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1 of 1131 12/16/2012 10:12 PM

Using Components

The Component-Script Relationship

Deactivating GameObjects

Using the Inspector

Editing Value Properties

Assigning References

Multi-Object Editing

Inspector Options

Using the Scene View

Scene View Navigation

Positioning GameObjects

View Modes

Gizmo and Icon Display Controls

Searching

Prefabs

Lights

Cameras

Terrain Engine Guide

Asset Import and Creation

Importing Assets

Meshes

3D formats

Legacy animation system

Materials and Shaders

Texture 2D

Procedural Materials

Movie Texture

Audio Files

Tracker Modules

Using Scripts

Asset Store

Asset Server (Pro Only)

Cache Server (Team license only)

Cache Server FAQ

Behind the Scenes

Creating Gameplay

Instantiating Prefabs at runtime

Input

Transforms

Physics

Adding Random Gameplay Elements

Particle Systems

Particle System Curve Editor

Colors and Gradients in the Particle System (Shuriken)

Gradient Editor

Particle System Inspector

Introduction to Particle System Modules (Shuriken)

Particle System Modules (Shuriken)

Particle Effects (Shuriken)

Mecanim Animation System

A Glossary of Animation and Mecanim terms

Asset Preparation and Import

Preparing your own character

Importing Animations

Splitting Animations

Working with humanoid animations

Creating the Avatar

Configuring the Avatar

Muscle setup

Avatar Body Mask

Retargeting of Humanoid animations

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

2 of 1131 12/16/2012 10:12 PM

Inverse Kinematics (Pro only)

Generic Animations in Mecanim

Bringing Characters to Life

Looping animation clips

Animator Component and Animator Controller

Animation State Machines

Animation States

Animation Transitions

Animation Parameters

Blend Trees

Mecanim Advanced topics

Working with Animation Curves in Mecanim (Pro only)

Sub-State Machines

Animation Layers

Animation State Machine Preview (solo and mute)

Target Matching

Root Motion - how it works

Tutorial: Scripting Root Motion for "in-place" humanoid animations

Legacy animation system

Animation View Guide (Legacy)

Animation Scripting (Legacy)

Navmesh and Pathfinding (Pro only)

Navmesh Baking

Sound

Game Interface Elements

Networked Multiplayer

Getting Started with iOS Development

Unity iOS Basics

Unity Remote

iOS Scripting

Input

Mobile Keyboard

Advanced Unity Mobile Scripting

Using .NET API 2.0 compatibility level

iOS Hardware Guide

Optimizing Performance in iOS.

iOS Specific Optimizations

Measuring Performance with the Built-in Profiler

Optimizing the Size of the Built iOS Player

Account Setup

Features currently not supported by Unity iOS

Building Plugins for iOS

Preparing your application for "In App Purchases"

Customizing the Splash screen of Your Mobile Application

Trouble Shooting

Reporting crash bugs on iOS

Getting Started with Android Development

Android SDK Setup

Android Remote

Trouble Shooting

Reporting crash bugs under Android

Features currently not supported by Unity Android

android-OBBsupport

Player Settings

Android Scripting

Input

Mobile Keyboard

Advanced Unity Mobile Scripting

Using .NET API 2.0 compatibility level

Building Plugins for Android

Customizing the Splash screen of Your Mobile Application

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

3 of 1131 12/16/2012 10:12 PM

Getting Started with Native Client Development

Getting Started with Flash Development

Flash: Setup

Flash: Building & Running

Flash: Debugging

Flash: What is and is not supported

Flash: Embedding Unity Generated Flash Content in Larger Flash Projects

Flash: Adobe Premium Features License

Example: Supplying Data from Flash to Unity

Example: Calling ActionScript Functions from Unity

Example: Browser JavaScript Communication

Example: Accessing the Stage

FAQ

Upgrade Guide from Unity 3.5 to 4.0

Unity 3.5 upgrade guide

Upgrading your Unity Projects from 2.x to 3.x

Physics upgrade details

Mono Upgrade Details

Rendering upgrade details

Unity 3.x Shader Conversion Guide

Unity 4.0 Activation - Overview

Managing your Unity 4.x license

Step-by-Step Guide to Online Activation of Unity 4.0

Step-by-Step Guide to Manual Activation of Unity 4.0

Game Code Questions

How to make a simple first person walkthrough

Graphics Questions

How do I Import Alpha Textures?

How do I Use Normal Maps?

How do I use Detail Textures?

How do I Make a Cubemap Texture?

How do I Make a Skybox?

How do I make a Mesh Particle Emitter? (Legacy Particle System)

How do I make a Splash Screen?

How do I make a Spot Light Cookie?

How do I fix the rotation of an imported model?

How do I use Water?

FBX export guide

Art Asset Best-Practice Guide

How do I import objects from my 3D app?

Importing Objects From Maya

Importing Objects From Cinema 4D

Importing Objects From 3D Studio Max

Importing Objects From Cheetah3D

Importing Objects From Modo

Importing Objects From Lightwave

Importing Objects From Blender

Workflow Questions

Getting started with Mono Develop

How do I reuse assets between projects?

How do I install or upgrade Standard Assets?

Porting a Project Between Platforms

Mobile Developer Checklist

Crashes

Profiling

Optimizations

Advanced

Vector Cookbook

Understanding Vector Arithmetic

Direction and Distance from One Object to Another

Computing a Normal/Perpendicular vector

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

4 of 1131 12/16/2012 10:12 PM

The Amount of One Vector's Magnitude that Lies in Another Vector's Direction

AssetBundles (Pro only)

AssetBundles FAQ

Building AssetBundles

Downloading AssetBundles

Loading resources from AssetBundles

Keeping track of loaded AssetBundles

Storing and loading binary data in an AssetBundle

Protecting Content

Managing asset dependencies

Including scripts in AssetBundles

Graphics Features

HDR (High Dynamic Range) Rendering in Unity

Rendering Paths

Linear Lighting (Pro Only)

Level of Detail (Pro Only)

Shaders

Shaders: ShaderLab & Fixed Function shaders

Shaders: Vertex and Fragment Programs

Using DirectX 11 in Unity 4

Compute Shaders

Graphics Emulation

AssetDatabase

Build Player Pipeline

Profiler (Pro only)

Lightmapping Quickstart

Lightmapping In-Depth

Custom Beast Settings

Lightmapping UVs

Light Probes

Occlusion Culling (Pro only)

Camera Tricks

UnderstandingFrustum

The Size of the Frustum at a Given Distance from the Camera

Dolly Zoom (AKA the "Trombone" Effect)

Rays from the Camera

Using an Oblique Frustum

Creating an Impression of Large or Small Size

Loading Resources at Runtime

Modifying Source Assets Through Scripting

Generating Mesh Geometry Procedurally

Anatomy of a Mesh

Using the Mesh Class

Example - Creating a Billboard Plane

Rich Text

Using Mono DLLs in a Unity Project

Execution Order of Event Functions

Practical Guide to Optimization for Mobiles

Practical Guide to Optimization for Mobiles - Future & High End Devices

Practical Guide to Optimization for Mobiles - Graphics Methods

Practical Guide to Optimization for Mobiles - Scripting and Gameplay Methods

Practical Guide to Optimization for Mobiles - Rendering Optimizations

Practical Guide to Optimization for Mobiles - Optimizing Scripts

Optimizing Graphics Performance

Draw Call Batching

Modeling Characters for Optimal Performance

Rendering Statistics Window

Reducing File Size

Understanding Automatic Memory Management

Platform Dependent Compilation

Generic Functions

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

5 of 1131 12/16/2012 10:12 PM

Debugging

Console

Debugger

Log Files

Accessing hidden folders

Plugins (Pro/Mobile-Only Feature)

Building Plugins for Desktop Platforms

Building Plugins for iOS

Building Plugins for Android

Low-level Native Plugin Interface

Textual Scene File Format (Pro-only Feature)

Description of the Format

YAMLSceneExample

YAML Class ID Reference

Streaming Assets

Command line arguments

Running Editor Script Code on Launch

Network Emulation

Security Sandbox of the Webplayer

Overview of available .NET Class Libraries

Visual Studio C# Integration

Using External Version Control Systems with Unity

Analytics

Check For Updates

Installing Multiple Versions of Unity

Trouble Shooting

Shadows in Unity

Directional Shadow Details

Troubleshooting Shadows

Shadow Size Computation

IME in Unity

Optimizing for integrated graphics cards

Web Player Deployment

HTML code to load Unity content

Working with UnityObject2

Customizing the Unity Web Player loading screen

Customizing the Unity Web Player's Behavior

Unity Web Player and browser communication

Using web player templates

Web Player Streaming

Webplayer Release Channels
Page last updated: 2012-11-14

User Guide

This section of the Manual is focused on the features and functions of Unity. It discusses the interface, core Unity building

blocks, asset workflow, and basic gameplay creation. By the time you are done reading the user guide, you will have a solid

understanding of how to use Unity to put together an interactive scene and publish it.

We recommend that new users begin by reading the Unity Basics section.

Unity Basics

Learning the Interface

Project Browser

Hierarchy

Toolbar

Scene View

Game View

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

6 of 1131 12/16/2012 10:12 PM

Inspector

Other Views

Customizing Your Workspace

Asset Workflow

Creating Scenes

Publishing Builds

Tutorials

Unity Hotkeys

Preferences

Building Scenes

GameObjects

The GameObject-Component Relationship

Using Components

The Component-Script Relationship

Deactivating GameObjects

Using the Inspector

Editing Value Properties

Assigning References

Multi-Object Editing

Inspector Options

Using the Scene View

Scene View Navigation

Positioning GameObjects

View Modes

Gizmo and Icon Display Controls

Searching

Prefabs

Lights

Cameras

Terrain Engine Guide

Asset Import and Creation

Importing Assets

Meshes

3D formats

Legacy animation system

Materials and Shaders

Texture 2D

Procedural Materials

Movie Texture

Audio Files

Tracker Modules

Using Scripts

Asset Store

Asset Server (Pro Only)

Cache Server (Team license only)

Cache Server FAQ

Behind the Scenes

Creating Gameplay

Instantiating Prefabs at runtime

Input

Transforms

Physics

Adding Random Gameplay Elements

Particle Systems

Particle System Curve Editor

Colors and Gradients in the Particle System (Shuriken)

Gradient Editor

Particle System Inspector

Introduction to Particle System Modules (Shuriken)

Particle System Modules (Shuriken)

Particle Effects (Shuriken)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

7 of 1131 12/16/2012 10:12 PM

Mecanim Animation System

A Glossary of Animation and Mecanim terms

Asset Preparation and Import

Preparing your own character

Importing Animations

Splitting Animations

Working with humanoid animations

Creating the Avatar

Configuring the Avatar

Muscle setup

Avatar Body Mask

Retargeting of Humanoid animations

Inverse Kinematics (Pro only)

Generic Animations in Mecanim

Bringing Characters to Life

Looping animation clips

Animator Component and Animator Controller

Animation State Machines

Animation States

Animation Transitions

Animation Parameters

Blend Trees

Mecanim Advanced topics

Working with Animation Curves in Mecanim (Pro only)

Sub-State Machines

Animation Layers

Animation State Machine Preview (solo and mute)

Target Matching

Root Motion - how it works

Tutorial: Scripting Root Motion for "in-place" humanoid animations

Legacy animation system

Animation View Guide (Legacy)

Animation Scripting (Legacy)

Navmesh and Pathfinding (Pro only)

Navmesh Baking

Sound

Game Interface Elements

Networked Multiplayer
Page last updated: 2010-09-09

Unity Basics

This section is your key to getting started with Unity. It will explain the Unity interface, menu items, using assets, creating

scenes, and publishing builds.

When you are finished reading this section, you will understand how Unity works, how to use it effectively, and the steps to put

a basic game together.

 Learning the Interface

There is a lot to learn, so take the

time you need to observe and

understand the interface. We will

walk through each interface element

together.

 Asset Workflow

 Publishing Builds

At any time while you are creating

your game, you might want to see

how it looks when you build and run

it outside of the editor as a

standalone or web player. This

section will explain how to access

the Build Settings and how to create

different builds of your games.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

8 of 1131 12/16/2012 10:12 PM

Here we'll explain the steps to use a

single asset with Unity. These steps

are general and are meant only as

an overview for basic actions.

 Creating Scenes

Scenes contain the objects of your

game. In each Scene, you will place

your environments, obstacles, and

decorations, designing and building

your game in pieces.

 Tutorials

These online tutorials will let you

work with Unity while you follow

along, providing hands-on

experience with building real

projects.

Page last updated: 2010-09-10

Learning the Interface

Take your time to look over the Unity Editor interface and familiarize yourself with it. The Main Editor Window is made up of

several Tabbed Windows, called Views. There are several types of Views in Unity - they all have specific purposes which

are described in the subsections below.

Project Browser

Hierarchy

Toolbar

Scene View

Game View

Inspector

Other Views
Page last updated: 2012-10-17

ProjectView40

In this view, you can access and manage the assets that belong to your project.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

9 of 1131 12/16/2012 10:12 PM

The left panel of the browser shows the folder structure of the project as a hierarchical list. When a folder is selected from the

list by clicking, its contents will be shown in the panel to the right. The individual assets are shown as icons that indicate their

type (script, material, sub-folder, etc). The icons can be resized using the slider at the bottom of the panel; they will be

replaced by a hierarchical list view if the slider is moved to the extreme left. The space to the left of the slider shows the

currently selected item, including a full path to the item if a search is being performed.

Above the project structure list is a Favorites section where you can keep frequently-used items for easy access. You can

drag items from the project structure list to the Favourites and also save search queries there (see Searching below).

Just above the panel is a "breadcrumb trail" that shows the path to the folder currently being viewed. The separate elements of

the trail can be clicked for easy navigation around the folder hierarchy. When searching, this bar changes to show the area

being searched (the root Assets folder, the selected folder or the Asset Store) along with a count of free and paid assets

available in the store, separated by a slash. There is an option in the General section of Unity's Preferences window to disable

the display of Asset Store hit counts if they are not required.

Along the top edge of the window is the browser's toolbar.

Located at the left side of the toolbar, the Create menu lets you add new assets and sub-folders to the current folder. To its

right are a set of tools to allow you to search the assets in your project.

The Window menu provides the option of switching to a one-column version of the project view, essentially just the hierarchical

structure list without the icon view. The lock icon next to the menu enables you to "freeze" the current contents of the view (ie,

stop them being changed by events elsewhere) in a similar manner to the inspector lock.

Searching
The browser has a powerful search facility that is especially useful for locating assets in large or unfamiliar projects. The basic

search will filter assets according to the text typed in the search box

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

10 of 1131 12/16/2012 10:12 PM

If you type more than one search term then the search is narrowed, so if you type coastal scene it will only find assets with

both "coastal" and "scene" in the name (ie, terms are ANDed together).

To the right of the search bar are three buttons. The first allows you to further filter the assets found by the search according to

their type.

Continuing to the right, the next button filters assets according to their Label (labels can be set for an asset in the Inspector).

Since the number of labels can potentially be very large, the label menu has its own mini-search filter box.

Note that the filters work by adding an extra term in the search text. A term beginning with "t:" filters by the specified asset type,

while "l:" filters by label. You can type these terms directly into the search box rather than use the menu if you know what you

are looking for. You can search for more than one type or label at once. Adding several types will expand the search to include

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

11 of 1131 12/16/2012 10:12 PM

all specified types (ie, types will be ORed together). Adding multiple labels will narrow the search to items that have all the

specified labels (ie, labels are ANDed).

The rightmost button saves the search by adding an item to the Favourites section of the asset list.

Searching the Asset Store

The Project Browser's search can also be applied to assets available from the Unity Asset Store. If you choose Asset Store

from the menu in the breadcrumb bar, all free and paid items from the store that match your query will be displayed. Searching

by type and label works the same as for a Unity project. The search query words will be checked against the asset name first

and then the package name, package label and package description in that order (so an item whose name contains the search

terms will be ranked higher than one with the same terms in its package description).

If you select an item from the list, its details will be displayed in the inspector along with the option to purchase and/or

download it. Some asset types have previews available in this section so you can, for example, play an audio clip or rotate a

3D model before buying. The inspector also gives the option of viewing the asset in the usual Asset Store window to see

additional details.

Shortcuts
The following keyboard shortcuts are available when the browser view has focus. Note that some of them only work when the

view is using the two-column layout (you can switch between the one- and two-column layouts using the panel menu in the

very top right corner).

F Frame selection

Tab Shift focus between first column and second column (Two columns)

Ctrl/Cmd + F Focus search field

Ctrl/Cmd + A Select all visible items in list

Ctrl/Cmd + D Duplicate selected assets

Delete Delete with dialog

Delete + Shift Delete without dialog

Backspace + CmdDelete without dialogs (OSX)

Enter Begin rename selected (OSX)

Cmd + down

arrow

Open selected assets (OSX)

Cmd + up arrow Jump to parent folder (OSX, Two columns)

F2 Begin rename selected (Win)

Enter Open selected assets (Win)

Backspace Jump to parent folder (Win, Two columns)

Right arrow Expand selected item (tree views and search results). If the item is already expanded, this will select its

first child item.

Left arrow Collapse selected item (tree views and search results). If the item is already collapsed, this will select its

parent item.

Alt + right arrow Expand item when showing assets as previews

Alt + left arrow Collapse item when showing assets as previews

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

12 of 1131 12/16/2012 10:12 PM

Page last updated: 2012-11-15

Hierarchy

The Hierarchy contains every GameObject in the current Scene. Some of these are direct instances of asset files like 3D

models, and others are instances of Prefabs, custom objects that will make up much of your game. You can select objects in

the Hierarchy and drag one object onto another to make use of Parenting (see below). As objects are added and removed in

the scene, they will appear and disappear from the Hierarchy as well.

Parenting
Unity uses a concept called Parenting. To make any GameObject the child of another, drag the desired child onto the desired

parent in the Hierarchy. A child will inherit the movement and rotation of its parent. You can use a parent object's foldout arrow

to show or hide its children as necessary.

Two unparented objects

One object parented to another

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

13 of 1131 12/16/2012 10:12 PM

To learn more about Parenting, please review the Parenting section of the Transform Component page.

Page last updated: 2012-10-18

Toolbar

The Toolbar consists of five basic controls. Each relate to different parts of the Editor.

 Transform Tools -- used with the Scene View

 Transform Gizmo Toggles -- affect the Scene View display

 Play/Pause/Step Buttons -- used with the Game View

 Layers Drop-down -- controls which objects are displayed in Scene View

 Layout Drop-down -- controls arrangement of all Views
Page last updated: 2012-10-17

SceneView40

The Scene View

The Scene View is your interactive sandbox. You will use the Scene View to select and position environments, the player, the

camera, enemies, and all other GameObjects. Maneuvering and manipulating objects within the Scene View are some of the

most important functions in Unity, so it's important to be able to do them quickly. To this end, Unity provides keystrokes for the

most common operations.

Scene View Navigation
See Scene View Navigation for full details on navigating the scene view. Here's a brief overview of the essentials:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

14 of 1131 12/16/2012 10:12 PM

Hold the right mouse button to enter Flythrough mode. This turns your mouse and WASD keys (plus Q and E for up and

down) into quick first-person view navigation.

Select any GameObject and press the F key. This will center the Scene View and pivot point on the selection.

Use the arrow keys to move around on the X/Z plane.

Hold Alt and click-drag to orbit the camera around the current pivot point.

Hold Alt and middle click-drag to drag the Scene View camera around.

Hold Alt and right click-drag to zoom the Scene View. This is the same as scrolling with your mouse wheel.

You might also find use in the Hand Tool (shortcut: Q), especially if you are using a one-button mouse. With the Hand tool is

selected,

 Click-drag to drag the camera around.

 Hold Alt and click-drag to orbit the camera around the current pivot point.

 Hold Control (Command on Mac) and click-drag to zoom the camera.

In the upper-right corner of the Scene View is the Scene Gizmo. This displays the Scene Camera's current orientation, and

allows you to quickly modify the viewing angle.

Each of the coloured "arms" of the gizmo represents a geometric axis. You can click on any of the arms to set the camera to an

orthographic (i.e., perspective-free) view looking along the corresponding axis. You can click on the text underneath the gizmo

to switch between the normal perspective view and an isometric view. While in isometric mode, you can right-click drag to orbit,

and Alt-click drag to pan.

Positioning GameObjects
See Positioning GameObjects for full details on positioning GameObjects in the scene. Here's a brief overview of the

essentials:

When building your games, you'll place lots of different objects in your game world. To do this use the Transform Tools in the

Toolbar to Translate, Rotate, and Scale individual GameObjects. Each has a corresponding Gizmo that appears around the

selected GameObject in the Scene View. You can use the mouse and manipulate any Gizmo axis to alter the Transform

Component of the GameObject, or you can type values directly into the number fields of the Transform Component in the

Inspector.

Scene View Control Bar

The Scene View control bar lets you see the scene in various view modes - Textured, Wireframe, RGB, Overdraw, and many

others. It will also enable you to see (and hear) in-game lighting, game elements, and sound in the Scene View. See View

Modes for all the details.

Page last updated: 2012-10-19

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

15 of 1131 12/16/2012 10:12 PM

GameView40

The Game View is rendered from the Camera(s) in your game. It is representative of your final, published game. You will need

to use one or more Cameras to control what the player actually sees when they are playing your game. For more information

about Cameras, please view the Camera Component page.

Play Mode

Use the buttons in the Toolbar to control the Editor Play Mode and see how your published game will play. While in Play

mode, any changes you make are temporary, and will be reset when you exit Play mode. The Editor UI will darken to remind

you of this.

Game View Control Bar

The first drop-down on the Game View control bar is the Aspect Drop-down. Here, you can force the aspect ratio of the

Game View window to different values. It can be used to test how your game will look on monitors with different aspect ratios.

Further to the right is the Maximize on Play toggle. While enabled, the Game View will maximize itself to 100% of your Editor

Window for a nice full-screen preview when you enter Play mode.

Continuing to the right is the Stats button. This shows Rendering Statistics window that is very useful for monitoring the

graphics performance of your game (see Optimizing Graphics Performance for further details).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

16 of 1131 12/16/2012 10:12 PM

The last button is the Gizmos toggle. While enabled, all Gizmos that appear in Scene View will also be drawn in Game View.

This includes Gizmos drawn using any of the Gizmos class functions. The Gizmos button also has a popup menu showing the

various different types of Components used in the game.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

17 of 1131 12/16/2012 10:12 PM

Next to each Component's name are the settings for the icon and gizmos associated with it. The Icon setting reveals another

popup menu which lets you choose from a selection of preset icons or a custom icon defined by a texture.

The Gizmo setting enables you to selectively disable Gizmo drawing for specific components.

The 3D Gizmos setting at the top of the menu refers to the Gizmo icons. With the setting enabled, the icons will show the

perspective of the camera (ie, icons for nearby objects will be larger than those for distant objects), otherwise they will be the

same size regardless of distance. The slider next to the checkbox allows you to vary the size of the icons, which can be useful

for reducing clutter when there are a lot of gizmos visible.

Page last updated: 2012-10-19

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

18 of 1131 12/16/2012 10:12 PM

Inspector

Games in Unity are made up of multiple GameObjects that contain meshes, scripts, sounds, or other graphical elements like

Lights. The Inspector displays detailed information about your currently selected GameObject, including all attached

Components and their properties. Here, you modify the functionality of GameObjects in your scene. You can read more about

the GameObject-Component relationship, as it is very important to understand.

Any property that is displayed in the Inspector can be directly modified. Even script variables can be changed without

modifying the script itself. You can use the Inspector to change variables at runtime to experiment and find the magic gameplay

for your game. In a script, if you define a public variable of an object type (like GameObject or Transform), you can drag and

drop a GameObject or Prefab into the Inspector to make the assignment.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

19 of 1131 12/16/2012 10:12 PM

Click the question mark beside any Component name in the Inspector to load its Component Reference page. Please view the

Component Reference for a complete and detailed guide to all of Unity's Components.

Add Components from the Component menu

You can click the tiny gear icon (or right-click the Component name) to bring up a context menu for the specific Component.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

20 of 1131 12/16/2012 10:12 PM

The Inspector will also show any Import Settings for a selected asset file.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

21 of 1131 12/16/2012 10:12 PM

Click Apply to reimport your asset.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

22 of 1131 12/16/2012 10:12 PM

Use the Layer drop-down to assign a rendering Layer to the GameObject. Use the Tag drop-down to assign a Tag to this

GameObject.

Prefabs
If you have a Prefab selected, some additional buttons will be available in the Inspector. For more information about Prefabs,

please view the Prefab manual page.

Labels
Unity allows assets to be marked with Labels to make them easier to locate and categorise. The bottom item on the inspector

is the Asset Labels panel.

At the bottom right of this panel is a button titled with an ellipsis ("...") character. Clicking this button will bring up a menu of

available labels

You can select one or more items from the labels menu to mark the asset with those labels (they will also appear in the Labels

panel). If you click a second time on one of the active labels, it will be removed from the asset.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

23 of 1131 12/16/2012 10:12 PM

The menu also has a text box that you can use to specify a search filter for the labels in the menu. If you type a label name that

does not yet exist and press return/enter, the new label will be added to the list and applied to the selected asset. If you

remove a custom label from all assets in the project, it will disappear from the list.

Once you have applied labels to your assets, you can use them to refine searches in the Project Browser (see this page for

further details). You can also access an asset's labels from an editor script using the AssetDatabase class.

Page last updated: 2012-11-15

Other Views

The Views described on this page covers the basics of the interface in Unity. The other Views in Unity are described

elsewhere on separate pages:

The Console shows logs of messages, warnings, and errors.

The Animation View can be used to animate objects in the scene.

The Profiler can be used to investigate and find the performance bottle-necks in your game.

The Asset Server View can be used to manage version control of the project using Unity's Asset Server.

The Lightmapping View can be used to manage lightmaps using Unity's built-in lightmapping.

The Occlusion Culling View can be used to manage Occlusion Culling for improved performance.
Page last updated: 2012-11-26

Customizing Your Workspace

Customizing Your Workspace
You can customize your Layout of Views by click-dragging the Tab of any View to one of several locations. Dropping a Tab in

the Tab Area of an existing window will add the Tab beside any existing Tabs. Alternatively, dropping a Tab in any Dock Zone

will add the View in a new window.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

24 of 1131 12/16/2012 10:12 PM

Views can be docked to the sides or bottom of any existing window

Tabs can also be detached from the Main Editor Window and arranged into their own floating Editor Windows. Floating

Windows can contain arrangements of Views and Tabs just like the Main Editor Window.

Floating Editor Windows are the same as the Main Editor Window, except there is no Toolbar

When you've created a Layout of Editor Windows, you can Save the layout and restore it any time. You do this by expanding

the Layout drop-down (found on the Toolbar) and choosing Save Layout.... Name your new layout and save it, then restore it

by simply choosing it from the Layout drop-down.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

25 of 1131 12/16/2012 10:12 PM

A completely custom Layout

At any time, you can right-click the tab of any view to view additional options like Maximize or add a new tab to the same

window.

Page last updated: 2010-09-07

Asset Workflow

Here we'll explain the steps to use a single asset with Unity. These steps are general and are meant only as an overview for

basic actions. For the example, we'll talk about using a 3D mesh.

Create Rough Asset
Use any supported 3D modeling package to create a rough version of your asset. Our example will use Maya. Work with the

asset until you are ready to save. For a list of applications that are supported by Unity, please see this page.

Import
When you save your asset initially, you should save it normally to the Assets folder in your Project folder. When you open the

Unity project, the asset will be detected and imported into the project. When you look in the Project View, you'll see the asset

located there, right where you saved it. Please note that Unity uses the FBX exporter provided by your modeling package to

convert your models to the FBX file format. You will need to have the FBX exporter of your modeling package available for

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

26 of 1131 12/16/2012 10:12 PM

Unity to use. Alternatively, you can directly export as FBX from your application and save in the Projects folder. For a list of

applications that are supported by Unity, please see this page.

Import Settings
If you select the asset in the Project View the import settings for this asset will appear in the Inspector. The options that are

displayed will change based on the type of asset that is selected.

Adding Asset to the Scene
Simply click and drag the mesh from the Project View to the Hierarchy or Scene View to add it to the Scene. When you drag

a mesh to the scene, you are creating a GameObject that has a Mesh Renderer Component. If you are working with a

texture or a sound file, you will have to add it to a GameObject that already exists in the Scene or Project.

Putting Different Assets Together
Here is a brief description of the relationships between the most common assets

A Texture is applied to a Material

A Material is applied to a GameObject (with a Mesh Renderer Component)

An Animation is applied to a GameObject (with an Animation Component)

A sound file is applied to a GameObject (with an Audio Source Component)

Creating a Prefab
Prefabs are a collection of GameObjects & Components that can be re-used in your scenes. Several identical objects can be

created from a single Prefab, called instancing. Take trees for example. Creating a tree Prefab will allow you to instance

several identical trees and place them in your scene. Because the trees are all linked to the Prefab, any changes that are

made to the Prefab will automatically be applied to all tree instances. So if you want to change the mesh, material, or anything

else, you just make the change once in the Prefab and all the other trees inherit the change. You can also make changes to an

instance, and choose GameObject->Apply Changes to Prefab from the main menu. This can save you lots of time during

setup and updating of assets.

When you have a GameObject that contains multiple Components and a hierarchy of child GameObjects, you can make a

Prefab of the top-level GameObject (or root), and re-use the entire collection of GameObjects.

Think of a Prefab as a blueprint for a structure of GameObjects. All the Prefab clones are identical to the blueprint. Therefore,

if the blueprint is updated, so are all the clones. There are different ways you can update the Prefab itself by changing one of

its clones and applying those changes to the blueprint. To read more about using and updating Prefabs, please view the

Prefabs page.

To actually create a Prefab from a GameObject in your scene, simply drag the GameObject from the scene into the project,

and you should see the Game Object's name text turn blue. Name the new Prefab whatever you like. You have now created a

re-usable prefab.

Updating Assets
You have imported, instantiated, and linked your asset to a Prefab. Now when you want to edit your source asset, just

double-click it from the Project View. The appropriate application will launch, and you can make any changes you want. When

you're done updating it, just Save it. Then, when you switch back to Unity, the update will be detected, and the asset will be

re-imported. The asset's link to the Prefab will also be maintained. So the effect you will see is that your Prefab will update.

That's all you have to know to update assets. Just open it and save!

Optional - Adding Labels to the Assets.
Is always a good idea to add labels to your assets if you want to keep organized all your assets, with this you can search for

the labels associated to each asset in the search field in the project view or in the object selector.

Steps for adding a label to an asset:

Select the asset you want to add the label to (From the project view).

In the inspector click on the "Add Label" icon () if you dont have any Labels associated to that asset.

If you have a label associated to an asset then just click where the labels are.

Start writing your labels.

Notes:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

27 of 1131 12/16/2012 10:12 PM

You can have more than one label for any asset.

To separate/create labels, just press space or enter when writing asset label names.
Page last updated: 2012-09-14

Creating Scenes

Scenes contain the objects of your game. They can be used to create a main menu, individual levels, and anything else.

Think of each unique Scene file as a unique level. In each Scene, you will place your environments, obstacles, and

decorations, essentially designing and building your game in pieces.

Instancing Prefabs
Use the method described in the last section to create a Prefab. You can also read more details about Prefabs here. Once

you've created a Prefab, you can quickly and easily make copies of the Prefab, called an Instance. To create an instance of

any Prefab, drag the Prefab from the Project View to the Hierarchy or Scene View. Now you have a unique instance of

your Prefab to position and tweak as you like.

Adding Component & Scripts
When you have a Prefab or any GameObject highlighted, you can add additional functionality to it by using Components.

Please view the Component Reference for details about all the different Components. Scripts are a type of Component. To

add a Component, just highlight your GameObject and select a Component from the Component menu. You will then see the

Component appear in the Inspector of the GameObject. Scripts are also contained in the Component menu by default.

If adding a Component breaks the GameObject's connection to its Prefab, you can always use GameObject->Apply

Changes to Prefab from the menu to re-establish the link.

Placing GameObjects
Once your GameObject is in the scene, you can use the Transform Tools to position it wherever you like. Additionally, you

can use the Transform values in the Inspector to fine-tune placement and rotation. Please view the Transform Component

page for more information about positioning and rotating GameObjects.

Working with Cameras
Cameras are the eyes of your game. Everything the player will see when playing is through one or more cameras. You can

position, rotate, and parent cameras just like any other GameObject. A camera is just a GameObject with a Camera

Component attached to it. Therefore it can do anything a regular GameObject can do, and then some camera-specific

functions too. There are also some helpful Camera scripts that are installed with the standard assets package when you

create a new project. You can find them in Components->Camera-Control from the menu. There are some additional

aspects to cameras which will be good to understand. To read about cameras, view the Camera component page.

Lights
Except for some very few cases, you will always need to add Lights to your scene. There are three different types of lights,

and all of them behave a little differently from each other. The important thing is that they add atmosphere and ambience to

your game. Different lighting can completely change the mood of your game, and using lights effectively will be an important

subject to learn. To read about the different lights, please view the Light component page.

Page last updated: 2009-02-16

Publishing Builds

At any time while you are creating your game, you might want to see how it looks when you build and run it outside of the

editor as a standalone or web player. This section will explain how to access the Build Settings and how to create different

builds of your games.

File->Build Settings... is the menu item to access the Build Settings window. It pops up an editable list of the scenes that will

be included when you build your game.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

28 of 1131 12/16/2012 10:12 PM

The Build Settings window

The first time you view this window in a project, it will appear blank. If you build your game while this list is blank, only the

currently open scene will be included in the build. If you want to quickly build a test player with only one scene file, just build a

player with a blank scene list.

It is easy to add scene files to the list for multi-scene builds. There are two ways to add them. The first way is to click the Add

Current button. You will see the currently open scene appear in the list. The second way to add scene files is to drag them

from the Project View to the list.

At this point, notice that each of your scenes has a different index value. Scene 0 is the first scene that will be loaded when

you build the game. When you want to load a new scene, use Application.LoadLevel() inside your scripts.

If you've added more than one scene file and want to rearrange them, simply click and drag the scenes on the list above or

below others until you have them in the desired order.

If you want to remove a scene from the list, click to highlight the scene and press Command-Delete. The scene will

disappear from the list and will not be included in the build.

When you are ready to publish your build, select a Platform and make sure that the Unity logo is next to the platform; if its not

then click in the Switch Platform button to let Unity know which platform you want to build for. Finally press the Build button.

You will be able to select a name and location for the game using a standard Save dialog. When you click Save, Unity builds

your game pronto. It's that simple. If you are unsure where to save your built game to, consider saving it into the projects root

folder. You cannot save the build into the Assets folder.

Enabling the Development Build checkbox on a player will enable Profiler functionality and also make the Autoconnect

Profiler and Script Debugging options available.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

29 of 1131 12/16/2012 10:12 PM

 Desktop

Web Player Streaming
Streaming Web Players allow your Web Player games to begin playing as soon as Scene 0 is finished loading. If you have a

game with 10 levels, it doesn't make much sense to force the player to wait and download all assets for levels 2-10 before they

can start playing level 1. When you publish a Streaming Web Player, the assets that must be downloaded will be sequenced in

the order of the Scene file they appear in. As soon as all assets contained in Scene 0 are finished downloading, the Web

Player will begin playing.

Put simply, Streaming Web Players will get players playing your game faster than ever.

The only thing you need to worry about is checking to make sure that the next level you want to load is finished streaming

before you load it.

Normally, in a non-streamed player, you use the following code to load a level:

Application.LoadLevel("levelName");

In a Streaming Web Player, you must first check that the level is finished streaming. This is done through the

CanStreamedLevelBeLoaded() function. This is how it works:

var levelToLoad = 1;

function LoadNewLevel () {
if (Application.CanStreamedLevelBeLoaded (levelToLoad)) {

Application.LoadLevel (levelToLoad);
}

}

If you would like to display the level streaming progress to the player, for a loading bar or other representation, you can read

the progress by accessing GetStreamProgressForLevel().

Offline webplayer deployment
If the Offline Deployment option is enabled for a webplayer then the UnityObject.js file (used to interface the player with the

host page) will be placed alongside the player during the build. This enables the player to work with the local script file even

when there is no network connection; normally, UnityObject.js is downloaded from Unity's webserver so as to make use of the

latest version.

Building standalone players
With Unity you can build standalone applications for Windows and Mac (Intel, PowerPC or Universal, which runs on both

architectures). It's simply a matter of choosing the build target in the build settings dialog, and hitting the 'Build' button. When

building standalone players, the resulting files will vary depending on the build target. On Windows an executable file (.exe)

will be built, along with a Data folder which contains all the resources for your application. On Mac an app bundle will be built,

containing the file needed to run the application, as well as the resources.

Distributing your standalone on Mac is just to provide the app bundle (everything is packed in there). On Windows you need to

provide both the .exe file and the Data folder for others to run it. Think of it like this: Other people must have the same files on

their computer, as the resulting files that Unity builds for you, in order to run your game.

Inside the build process
The building process will place a blank copy of the built game application wherever you specify. Then it will work through the

scene list in the build settings, open them in the editor one at a time, optimize them, and integrate them into the application

package. It will also calculate all the assets that are required by the included scenes and store that data in a separate file

within the application package.

Any GameObject in a scene that is tagged with 'EditorOnly' will be not be included in the published build. This is useful for

debugging scripts that don't need to be included in the final game.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

30 of 1131 12/16/2012 10:12 PM

When a new level loads, all the objects in the previous level are destroyed. To prevent this, use DontDestroyOnLoad() on

any objects you don't want destroyed. This is most commonly used for keeping music playing while loading a level, or for

game controller scripts which keep game state and progress.

After the loading of a new level is finished, the message: OnLevelWasLoaded() will be sent to all active game objects.

For more information on how to best create a game with multiple scenes, for instance a main menu, a high-score screen,

and actual game levels, see the Scripting Tutorial.pdf

 iOS

Inside the iOS build process
The iPhone/iPad application build process is a two step process:

XCode project is generated with all the required libraries, precompiled .NET code and serialized assets.1.

XCode project is built and deployed on the actual device.2.

When "Build" is hit on "Build settings" dialog only the first step is accomplished. Hitting "Build and Run" performs both steps. If

in the project save dialog the user selects an already existing folder an alert is displayed. Currently there are two XCode

project generation modes to select:

replace - all the files from target folder are removed and the new content is generated

append - the "Data", "Libraries" and project root folder are cleaned and filled with newly generated content. The XCode

project file is updated according to the latest Unity project changes. XCode project "Classes" subfolder could be

considered as safe place to place custom native code, but making regular backups is recommended. Append mode is

supported only for the existing XCode projects generated with the same Unity iOS version.

If Cmd+B is hit then the automatic build and run process is invoked and the latest used folder is assumed as the build target. In

this case append mode is assumed as default.

 Android

The Android application build process is performed in two steps:

Application package (.apk file) is generated with all the required libraries and serialized assets.1.

Application package is deployed on the actual device.2.

When "Build" is hit on "Build settings" dialog only the first step is accomplished. Hitting "Build and Run" performs both steps. If

Cmd+B is hit then the automatic build and run process is invoked and the latest used file is assumed as the build target.

Upon the first attempt to build an Android project, Unity would ask you to locate the Android SDK, that is required to build and

install your Android application on the device. You can change this setting later in Preferences.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

31 of 1131 12/16/2012 10:12 PM

When building the app to the Android, be sure that the device has the "USB Debugging" and the "Allow mock locations"

checkboxes checked in the device settings.

You can ensure that the operating system sees your device by running adb devices command found in your Android

SDK/platform-tools folder. This should work both for Mac and Windows.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

32 of 1131 12/16/2012 10:12 PM

Unity builds an application archive (.apk file) for you and installs it on the connected device. In some cases your application

cannot autostart like on iPhone, so you need to unlock the screen, and in some rare cases find the newly installed application

in the menu.

Texture Compression
Under Build Settings you'll also find the Texture Compression option. By default, Unity uses ETC1/RGBA16 texture format

for textures that don't have individual texture format overrides (see Texture 2D / Per-Platform Overrides).

If you want to build an application archive (.apk file) targeting a specific hardware architecture, you can use the Texture

Compression option to override this default behavior. Any texture that is set to not be compressed will be left alone; only

textures using a compressed texture format will use the format selected in the Texture Compression option.

To make sure the application is only deployed on devices which support the selected texture compression, Unity will edit the

AndroidManifest to include tags matching the particular format selected. This will enable the Android Market filtering

mechanism to only serve the application to devices with the appropriate graphics hardware.

Preloading
Published builds automatically preload all assets in a scene when the scene loads. The exception to this rule is scene 0. This

is because the first scene is usually a splashscreen, which you want to display as quickly as possible.

To make sure all your content is preloaded, you can create an empty scene which calls Application.LoadLevel(1). In the

build settings make this empty scene's index 0. All subsequent levels will be preloaded.

You're ready to build games
By now, you have learned how to use Unity's interface, how to use assets, how to create scenes, and how to publish your

builds. There is nothing stopping you from creating the game of your dreams. You'll certainly learn much more along the way,

and we're here to help.

To learn more details about using Unity itself, you can continue reading the manual or follow the Tutorials.

To learn more about Components, the nuts & bolts of game behaviors, please read the Component Reference.

To learn more about Scripting, please read the Scripting Reference.

To learn more about creating Art assets, please read the Assets section of the manual.

To interact with the community of Unity users and developers, visit the Unity Forums. You can ask questions, share projects,

build a team, anything you want to do. Definitely visit the forums at least once, because we want to see the amazing games

that you make.

Page last updated: 2011-10-31

Tutorials

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

33 of 1131 12/16/2012 10:12 PM

These tutorials will let you work with Unity while you follow along. They will give you hands-on experience with building real

projects. For new users, it is recommended that you follow the GUI Essentials and Scripting Essentials tutorials first. After that,

you can follow any of them. They are all in PDF format, so you can print them out and follow along or read them alongside

Unity.

Note: These Tutorials are intended for use with the Desktop version of Unity, these will not work with Android or iOS devices

(iPhone/iPad).

Also if you are searching for other resources like presentations, articles, assets or extensions for Unity, then you can find them

here.

You can also check the latest additions about tutorials just by checking our Unity3D Tutorial's Home Page.

Page last updated: 2010-09-10

Unity Hotkeys

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

34 of 1131 12/16/2012 10:12 PM

This page gives an overview of the default Unity Hotkeys. You can also download a PDF of the table for Windows and

MacOSX. Where a command has CTRL/CMD as part of the keystroke, this indicates that the Control key should be used on

Windows and the Command key on MacOSX.

Tools
Keystroke Command

Q Pan

W Move

E Rotate

R Scale

Z Pivot Mode

toggle

X Pivot

Rotation

Toggle

V Vertex Snap

CTRL/CMD+LMB Snap

GameObject

CTRL/CMD+SHIFT+N New game

object

CTRL/CMD+ALT+F Move to view

CTRL/CMD+SHIFT+F Align with

view

Window

CTRL/CMD+1 Scene

CTRL/CMD+2 Game

CTRL/CMD+3 Inspector

CTRL/CMD+4 Hierarchy

CTRL/CMD+5 Project

CTRL/CMD+6 Animation

CTRL/CMD+7 Profiler

CTRL/CMD+9 Asset store

CTRL/CMD+0 Animation

CTRL/CMD+SHIFT+C Console

Edit

CTRL/CMD+Z Undo

CTRL+Y (Windows

only)

Redo

CMD+SHIFT+Z (Mac

only)

Redo

CTRL/CMD+X Cut

CTRL/CMD+C Copy

CTRL/CMD+V Paste

CTRL/CMD+D Duplicate

SHIFT+Del Delete

F Frame

(centre)

selection

CTRL/CMD+F Find

CTRL/CMD+A Select All

Selection

CTRL/CMD+SHIFT+1 Load

Selection 1

CTRL/CMD+SHIFT+2 Load

Selection 2

CTRL/CMD+SHIFT+3 Load

Selection 3

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

35 of 1131 12/16/2012 10:12 PM

CTRL/CMD+SHIFT+4 Load

Selection 4

CTRL/CMD+SHIFT+5 Load

Selection 5

CTRL/CMD+SHIFT+6 Load

Selection 6

CTRL/CMD+SHIFT+7 Load

Selection 7

CTRL/CMD+SHIFT+8 Load

Selection 8

CTRL/CMD+SHIFT+9 Load

Selection 9

CTRL/CMD+ALT+1 Save

Selection 1

CTRL/CMD+ALT+2 Save

Selection 2

CTRL/CMD+ALT+3 Save

Selection 3

CTRL/CMD+ALT+4 Save

Selection 4

CTRL/CMD+ALT+5 Save

Selection 5

CTRL/CMD+ALT+6 Save

Selection 6

CTRL/CMD+ALT+7 Save

Selection 7

CTRL/CMD+ALT+8 Save

Selection 8

CTRL/CMD+ALT+9 Save

Selection 9

Assets

CTRL/CMD+R Refresh
Page last updated: 2012-09-12

Preferences

Unity provides a number of preference panels to allow you to customise the behaviour of the editor.

General

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

36 of 1131 12/16/2012 10:12 PM

Auto Refresh Should the editor update assets automatically as they change?

Always Show Project

Wizard

Should the project wizard be shown at startup? (By default, it is shown only when the alt key is held

down during launch)

Compress Assets On

Import

Should assets be compressed automatically during import?

OSX Color Picker Should the native OSX color picker be used instead of Unity's own?

Editor Analytics Can the editor send information back to Unity automatically?

Show Asset Store

search hits

Should the number of free/paid assets from the store be shown in the Project Browser?

Verify Saving Assets Should Unity verify which assets to save individually on quitting?

Skin (Pro Only) Which color scheme should Unity use for the editor? Pro users have the option of dark grey in

addition to the default light grey.

Graphics Device This is set to Automatic on the Mac but has options for Direct3D 9, Direct3D 11 and OpenGL on

Windows.

External Tools

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

37 of 1131 12/16/2012 10:12 PM

External Script Editor Which application should Unity use to open script files?

Editor Attaching Should Unity allow debugging to be controlled from the external script editor?

Image Application Which application should Unity use to open image files?

Asset Server Diff Tool Which application should Unity use to resolve file differences with the asset server?

Android SDK Location Where in the filesystem is the Android SDK folder located?

iOS Xcode 4.x support Should support for Xcode 4.x be enabled for iOS build targets?

Colors

This panel allows you to choose the colors that Unity uses when displaying various user interface elements.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

38 of 1131 12/16/2012 10:12 PM

Keys

This panel allows you to set the keystrokes that activate the various commands in Unity.

Cache Server

Use Cache Server Should the cache server be enabled?

IP Address IP address of the cache server, if enabled
Page last updated: 2012-10-26

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

39 of 1131 12/16/2012 10:12 PM

Building Scenes

This section will explain the core elements you will work with to build scenes for complete games.

GameObjects

The GameObject-Component Relationship

Using Components

The Component-Script Relationship

Deactivating GameObjects

Using the Inspector

Editing Value Properties

Assigning References

Multi-Object Editing

Inspector Options

Using the Scene View

Scene View Navigation

Positioning GameObjects

View Modes

Gizmo and Icon Display Controls

Searching

Prefabs

Lights

Cameras

Terrain Engine Guide
Page last updated: 2007-11-16

GameObjects

GameObjects are the most important objects in Unity. It is very important to understand what a GameObject is, and how it can

be used. This page will explain all that for you.

What are GameObjects?
Every object in your game is a GameObject. However, GameObjects don't do anything on their own. They need special

properties before they can become a character, an environment, or a special effect. But every one of these objects does so

many different things. If every object is a GameObject, how do we differentiate an interactive power-up object from a static

room? What makes these GameObjects different from each other?

The answer to this question is that GameObjects are containers. They are empty boxes which can hold the different pieces

that make up a lightmapped island or a physics-driven car. So to really understand GameObjects, you have to understand

these pieces; they are called Components. Depending on what kind of object you want to create, you will add different

combinations of Components to the GameObject. Think of a GameObject as an empty cooking pot, and Components as

different ingredients that make up your recipe of gameplay. You can also make your own Components using Scripts.

You can read more about GameObjects, Components, and Script Components on the pages in this section:

The GameObject-Component Relationship

Using Components

The Component-Script Relationship

Deactivating GameObjects
Page last updated: 2010-09-14

The GameObject-Component Relationship

As described previously in GameObjects, a GameObject contains Components. We'll explore this relationship by discussing a

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

40 of 1131 12/16/2012 10:12 PM

GameObject and its most common Component -- the Transform Component. With any Unity Scene open, create a new

GameObject (using Shift-Control-N on Windows or Shift-Command-N on Mac), select it and take a look at the Inspector.

The Inspector of an Empty GameObject

Notice that an empty GameObject still contains a Name, a Tag, and a Layer. Every GameObject also contains a Transform

Component.

The Transform Component
It is impossible to create a GameObject in Unity without a Transform Component. The Transform Component is one of the

most important Components, since all of the GameObject's Transform properties are enabled by its use of this Component. It

defines the GameObject's position, rotation, and scale in the game world/Scene View. If a GameObject did not have a

Transform Component, it would be nothing more than some information in the computer's memory. It effectively would not exist

in the world.

The Transform Component also enables a concept called Parenting, which is utilized through the Unity Editor and is a

critical part of working with GameObjects. To learn more about the Transform Component and Parenting, read the Transform

Component Reference page.

Other Components
The Transform Component is critical to all GameObjects, so each GameObject has one. But GameObjects can contain other

Components as well.

The Main Camera, added to each scene by default

Looking at the Main Camera GameObject, you can see that it contains a different collection of Components. Specifically, a

Camera Component, a GUILayer, a Flare Layer, and an Audio Listener. All of these Components provide additional

functionality to the GameObject. Without them, there would be nothing rendering the graphics of the game for the person

playing! Rigidbodies, Colliders, Particles, and Audio are all different Components (or combinations of Components) that can be

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

41 of 1131 12/16/2012 10:12 PM

added to any given GameObject.

Page last updated: 2012-08-13

Using Components40

Components are the nuts & bolts of objects and behaviors in a game. They are the functional pieces of every GameObject.

If you don't yet understand the relationship between Components and GameObjects, read the GameObjects page before going

any further.

A GameObject is a container for many different Components. By default, all GameObjects automatically have a Transform

Component. This is because the Transform dictates where the GameObject is located, and how it is rotated and scaled.

Without a Transform Component, the GameObject wouldn't have a location in the world. Try creating an empty GameObject

now as an example. Click the GameObject->Create Empty menu item. Select the new GameObject, and look at the

Inspector.

Even empty GameObjects have a Transform Component

Remember that you can always use the Inspector to see which Components are attached to the selected GameObject. As

Components are added and removed, the Inspector will always show you which ones are currently attached. You will use the

Inspector to change all the properties of any Component (including scripts)

Adding Components
You can add Components to the selected GameObject through the Components menu. We'll try this now by adding a

Rigidbody to the empty GameObject we just created. Select it and choose Component->Physics->Rigidbody from the

menu. When you do, you will see the Rigidbody's properties appear in the Inspector. If you press Play while the empty

GameObject is still selected, you might get a little surprise. Try it and notice how the Rigidbody has added functionality to the

otherwise empty GameObject. (The y-component of the GameObject starts to decrease. This is because the physics engine in

Unity is causing the GameObject to fall under gravity.)

An empty GameObject with a Rigidbody Component attached

Another option is to use the Component Browser, which can be activated with the Add Component button in the object's

inspector.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

42 of 1131 12/16/2012 10:12 PM

The browser lets you navigate the components conveniently by category and also has a search box that you can use to locate

components by name.

You can attach any number or combination of Components to a single GameObject. Some Components work best in

combination with others. For example, the Rigidbody works with any Collider. The Rigidbody controls the Transform through

the NVIDIA PhysX physics engine, and the Collider allows the Rigidbody to collide and interact with other Colliders.

If you want to know more about using a particular Component, you can read about any of them in the Component Reference.

You can also access the reference page for a Component from Unity by clicking on the small ? on the Component's header in

the Inspector.

Editing Components
One of the great aspects of Components is flexibility. When you attach a Component to a GameObject, there are different

values or Properties in the Component that can be adjusted in the editor while building a game, or by scripts when running

the game. There are two main types of Properties: Values and References.

Look at the image below. It is an empty GameObject with an Audio Source Component. All the values of the Audio Source in

the Inspector are the default values.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

43 of 1131 12/16/2012 10:12 PM

This Component contains a single Reference property, and seven Value properties. Audio Clip is the Reference property.

When this Audio Source begins playing, it will attempt to play the audio file that is referenced in the Audio Clip property. If no

reference is made, an error will occur because there is no audio to be played. You must reference the file within the Inspector.

This is as easy as dragging an audio file from the Project View onto the Reference Property or using the Object Selector.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

44 of 1131 12/16/2012 10:12 PM

Now a sound effect file is referenced in the Audio Clip property

Components can include references to any other type of Component, GameObjects, or Assets. You can read more about

assigning references on the Assigning References page.

The remaining properties on the Audio Clip are all Value properties. These can be adjusted directly in the Inspector. The Value

properties on the Audio Clip are all toggles, numeric values, drop-down fields, but value properties can also be text strings,

colors, curves, and other types. You can read more about these and about editing value properties on the Editing Value

Properties page.

Copying and pasting Component settings
The context menu for a Component has items for copying and pasting its settings.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

45 of 1131 12/16/2012 10:12 PM

The copied values can be pasted to an existing component using the Paste Component Values menu item. Alternatively, you

can use Paste Component As New to create a new Component with those values.

Testing out Properties
While your game is in Play Mode, you are free to change properties in any GameObject's Inspector. For example, you might

want to experiment with different heights of jumping. If you create a Jump Height property in a script, you can enter Play

Mode, change the value, and press the jump button to see what happens. Then without exiting Play Mode you can change it

again and see the results within seconds. When you exit Play Mode, your properties will revert to their pre-Play Mode values,

so you don't lose any work. This workflow gives you incredible power to experiment, adjust, and refine your gameplay without

investing a lot of time in iteration cycles. Try it out with any property in Play Mode. We think you'll be impressed.

Changing the order of Components
The order in which components are listed in the Inspector doesn't matter in most cases. However, there are some

Components, such as Image Effects where the ordering is significant. The context menu has Move Up and Move Down

commands to let you reorder Components as necessary.

Removing Components
If you want to remove a Component, option- or right-click on its header in the Inspector, and choose Remove Component. Or

you can left-click the options icon next to the ? on the Component header. All the property values will be lost and this cannot

be undone, so be completely sure you want to remove the Component before you do.

Page last updated: 2012-09-11

The Component-Script Relationship

When you create a script and and attach it to a GameObject, the script appears in the GameObject's Inspector just like a

Component. This is because scripts become Components when they are saved - a script is just a specific type of Component.

In technical terms, a script compiles as a type of Component, and is treated like any other Component by the Unity engine. So

basically, a script is a Component that you are creating yourself. You will define its members to be exposed in the Inspector,

and it will execute whatever functionality you've written.

Read more about creating and using scripts on the Scripting page.

Page last updated: 2010-09-14

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

46 of 1131 12/16/2012 10:12 PM

DeactivatingGameObjects

A GameObject can be temporarily removed from the scene by marking it as inactive. This can be done using its activeSelf

property from a script or with the activation checkbox in the inspector

A GameObject's activation checkbox

Effect of deactivating a parent GameObject
When a parent object is deactivated, the deactivation also overrides the activeSelf setting on all its child objects, so the whole

hierarchy from the parent down is made inactive. Note that this does not change the value of the activeSelf property on the

child objects, so they will return to their original state once the parent is reactivated. This means that you can't determine

whether or not a child object is currently active in the scene by reading its activeSelf property. Instead, you should use the

activeInHierarchy property, which takes the overriding effect of the parent into account.

This overriding behaviour was introduced in Unity 4.0. In earlier versions, there was a function called SetActiveRecursively

which could be used to activate or deactivate the children of a given parent object. However, this function worked differently in

that the activation setting of each child object was changed - the whole hierarchy could be switched off and on but the child

objects had no way to "remember" the state they were originally in. To avoid breaking legacy code, SetActiveRecursively

has been kept in the API for 4.0 but its use is not recommended and it may be removed in the future. In the unusual case

where you actually want the children's activeSelf settings to be changed, you can use code like the following:-

// JavaScript
function DeactivateChildren(g: GameObject, a: boolean) {

g.activeSelf = a;

for (var child: Transform in g.transform) {
DeactivateChildren(child.gameObject, a);

}
}

// C#
void DeactivateChildren(GameObject g, bool a) {

g.activeSelf = a;

foreach (Transform child in g.transform) {
DeactivateChildren(child.gameObject, a);

}
}

Page last updated: 2012-10-05

Using The Inspector

The Inspector is used to view and edit Properties of many different types.

Games in Unity are made up of multiple GameObjects that contain meshes, scripts, sounds, or other graphical elements like

Lights. When you select a GameObject in the Hierarchy or Scene View, the Inspector will show and let you modify the

Properties of that GameObject and all the Components and Materials on it. The same will happen if you select a Prefab in

the Project View. This way you modify the functionality of GameObjects in your game. You can read more about the

GameObject-Component relationship, as it is very important to understand.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

47 of 1131 12/16/2012 10:12 PM

Inspector shows the properties of a GameObject and the Components and Materials on it.

When you create a script yourself, which works as a custom Component type, the member variables of that script are also

exposed as Properties that can be edited directly in the Inspector when that script component has been added to a

GameObject. This way script variables can be changed without modifying the script itself.

Furthermore, the Inspector is used for showing import options of assets such as textures, 3D models, and fonts when selected.

Some scene and project-wide settings are also viewed in the Inspector, such as all the Settings Managers.

Any property that is displayed in the Inspector can be directly modified. There are two main types of Properties: Values and

References.

Editing Value Properties

Assigning References

Multi-Object Editing

Inspector Options
Page last updated: 2010-09-13

Editing Value Properties40

Value properties do not reference anything and they can be edited right on the spot. Typical value properties are numbers,

toggles, strings, and selection popups, but they can also be colors, vectors, curves, and other types.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

48 of 1131 12/16/2012 10:12 PM

Value properties on the inspector can be numbers, checkboxes, strings...

Many value properties have a text field and can be adjusted simply by clicking on them, entering a value using the keyboard,

and pressing Enter to save the value.

You can also put your mouse next to a numeric property, left-click and drag it to scroll values quickly

Some numeric properties also have a slider that can be used to visually tweak the value.

Some Value Properties open up a small popup dialog that can be used to edit the value.

Color Picker
Properties of the Color type will open up the Color Picker. (On Mac OS X this color picker can be changed to the native OS

color picker by enabling Use OS X Color Picker under Unity->Preferences.)

The Color Picker reference in the inspector is represented by:

Color Picker reference in the inspector.

And opens the Color Picker just by clicking on it:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

49 of 1131 12/16/2012 10:12 PM

Color Picker descriptions.

Use the Eyedropper Tool when you want to find a value just by putting your mouse over the color you want to grab.

RGB / HSV Selector lets you switch your values from Red, Green, Blue to Hue, Saturation and Value (Strength) of your color.

Finally, the transparency of the Color selected can be controlled by the Alpha Channel value.

Curve Editor
Properties of the AnimationCurve type will open up the Curve Editor. The Curve Editor lets you edit a curve or choose from

one of the presets. For more information on editing curves, see the guide on Editing Curves.

The type is called AnimationCurve for legacy reasons, but it can be used to define any custom curve function. The function

can then be evaluated at runtime from a script.

An AnimationCurve property is shown in the inspector as a small preview:

A preview of an AnimationCurve in the Inspector.

Clicking on it opens the Curve Editor:

The Curve Editor is for editing AnimationCurves.

Wrapping Mode Lets you select between Ping Pong, Clamp and Loop for the Control Keys in your curve.

The Presets lets you modify your curve to default outlines the curves can have.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

50 of 1131 12/16/2012 10:12 PM

Gradient editor
In graphics and animation, it is often useful to be able to blend one colour gradually into another, over space or time. A

gradient is a visual representation of a colour progression, which simply shows the main colours (which are called stops) and

all the intermediate shades between them. In Unity, gradients have their own special value editor, shown below.

The upward-pointing arrows along the bottom of the gradient bar denote the stops. You can select a stop by clicking on it; its

value will be shown in the Color box which will open the standard colour picker when clicked. A new stop can be created by

clicking just underneath the gradient bar. The position of any of the stops can be changed simply by clicking and dragging and

a stop can be removed with ctrl/cmd + delete.

The downward-pointing arrows above the gradient bar are also stops but they correspond to the alpha (transparency) of the

gradient at that point. By default, there are two stops set to 100% alpha (ie, fully opaque) but any number of stops can be

added and edited in much the same way as the colour stops.

Page last updated: 2012-08-13

Editing Reference Properties

Reference properties are properties that reference other objects such as GameObjects, Components, or Assets. The

reference slot will show what kind of objects can be used for this reference.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

51 of 1131 12/16/2012 10:12 PM

The Audio Clip property slot shows that it accept references to objects of type Audio Clip

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

52 of 1131 12/16/2012 10:12 PM

Now an Audio Clip file is referenced in the Audio Clip property.

This type of referencing is very quick and powerful, especially when using scripting. To learn more about using scripts and

properties, see the Scripting Tutorial on the Tutorials page.

Object references can be assigned to a reference property either by drag and drop or by using the Object Picker.

Drag and Drop
You can use drag and drop simply by selecting the desired object in the Scene View, Hierarchy, or Project View and dragging it

into the slot of the reference property.

If a reference property accepts a specific Component type (for example a Transform) then dragging a GameObject or a Prefab

onto the reference property will work fine provided that the GameObject or Prefab contains a component of the correct type.

The property will then reference the component in question, even though it was a GameObject or Prefab you dragged onto it.

If you drag an object onto an reference property, and the object is not of the correct type, or does not contain the right

component, then you won't be able to assign the object to the reference property.

The Object Picker

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

53 of 1131 12/16/2012 10:12 PM

You can click on the small target icon next to a reference slot to open the Object Picker.

References to the Object Picker from the Editor.

The Object Picker is a simple window for assigning objects in the inspector after allowing you to preview and search those

available.

Although the Object Picker is really easy to use, there are a few things you should be aware of. These are described below.

Anatomy of the Object Picker.

Search: When there are lots of objects in the picker, you can use the Search field to filter them. This search field can

also search objects using their Labels.

1.

View Selector: Switches the base of the search between objects in the scene and assets.2.

Preview Size: This horizontal scroll bar lets you increase/decrease the size of your preview objects in the preview

window. With this you can see more or fewer objects in the preview window at any moment.

3.

Preview Window: Here are all the objects that reside in your Scene/Assets folder filtered by the Search field.4.

Object Info: Displays information about the currently selected object. The content of this field depends on the type of

object being viewed, so if for example you pick a mesh, it will tell you the number of vertices and triangles, and whether

or not it has UVs and is skinned. However, if you pick an audio file it will give you information such as the bit rate of the

audio, the length, etc.

5.

Object Preview: This also depends on the type of object you are viewing. If you select a mesh, it will display you how

the mesh looks, but if you select a script file, it will just display an icon of the file.

6.

The Object Picker works on any asset you have in your project, which can be a video, a song, a terrain, a GUI skin, a scripting

file, or a mesh; it is a tool you will use often.

Hints

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

54 of 1131 12/16/2012 10:12 PM

Use Labels on your Assets and you will be able to find them more easily by searching for them using the search field of the

Object Picker.

If you dont want to see the descriptions of the objects you can move the slider in the bottom middle of the preview window

downward.

If you want to see a detailed preview of the object, you can enlarge the object preview by dragging the slider in the bottom

middle of the preview window.
Page last updated: 2012-08-13

Multi-Object Editing

Starting in Unity 3.5 you can select multiple objects of the same type and edit them simultaneously in the Inspector. Any

changed properties will be applied to all of the selected objects. This is a big time saver if you want to make the same change

to many objects.

When selecting multiple objects, a component is only shown in the Inspector if that component exists on all the selected

objects. If it only exists on some of them, a small note will appear at the bottom of the Inspector saying that components that

are only on some of the selected objects cannot be multi-edited.

Property Values

When multiple objects are selected, each property shown in the Inspector represents that property on each of the selected

objects. If the value of the property is the same for all the objects, the value will be shown as normal, just like when editing a

single object. If the value of the property is not the same for all the selected objects, no value is shown and a dash or similar is

shown instead, indicating that the values are different.

Multi-edit of two objects

Regardless of whether a value is shown or a dash, the property value can be edited as usual and the changed value is applied

to all the selected objects. If the values are different and a dash is thus shown, it's also possible to right-click on the label of

the property. This brings up a menu that lets you choose from which of the objects to inherit the value.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

55 of 1131 12/16/2012 10:12 PM

Selecting which object to get the value from

Multi-Editing Prefab or Model Instances
Prefabs can be multi-edited just like Game Objects in the scene. Instances of prefabs or of models can also be multi-edited;

however certain restrictions apply: When editing a single prefab or model instance, any property that is different from the

prefab or model will appear in bold, and when right clicking there's an option to revert the property to the value it has in the

prefab or model. Furthermore, the Game Object has options to apply or revert all changes. None of these things are available

when multi-object editing. Properties cannot be reverted or applied; nor will they appear in bold if different from the prefab or

model. To remind you of this, the Inspector will show a note with Instance Management Disabled where the Select, Revert,

and Apply buttons would normally appear.

Instance Managment Disabled for multi-edit of prefabs

Non-Supported Objects
A few object types do not support multi-object editing. When you select multiple objects simultaneously, these objects will show

a small note saying "Multi-object editing not supported".

If you have made a custom editor for one of your own scripts, it will also show this message if it doesn't support multi-object

editing. See the script reference for the Editor class to learn how to implement support for multi-object editing for your own

custom editors.

Page last updated: 2012-01-23

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

56 of 1131 12/16/2012 10:12 PM

Inspector Options

The Inspector Lock and the Inspector Debug Mode are two useful options that can help you in your workflow.

Lock
The Lock lets you maintain focus on a specific GameObject in the Inspector while selecting other GameObjects. To toggle the

lock of an Inspector click on the lock/unlock () icon above the Inspector or open the tab menu and select Lock.

Locking the Inspector from the tab menu.

Note that you can have more than one Inspector open, and that you can for example lock one of them to a specific

GameObject while keeping the other one unlocked to show whichever GameObject is selected.

Debug
The Debug Mode lets you inspect private variables of components in the Inspector, which are normally not shown. To change

to Debug Mode, open the tab menu and select Debug.

In Debug Mode, all components are shown using a default interface, rather than the custom interfaces that some components

use in the Normal Mode. For example, the Transform component will in Debug Mode show the raw Quaternion values of the

rotation rather than the Euler angles shown in the Normal Mode. You can also use the Debug Mode to inspect the values of

private variables in your own script components.

Debug Mode in the Inspector lets you inspect private variables in your scripts and in other components.

The Debug mode is per Inspector and you can have one Inspector in Debug Mode while another one is not.

Page last updated: 2010-09-09

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

57 of 1131 12/16/2012 10:12 PM

Using The Scene View

The Scene View is your interactive sandbox. You will use the Scene View to select and position environments, the player, the

camera, enemies, and all other GameObjects. Maneuvering and manipulating objects within the Scene View are some of the

most important functions in Unity, so it's important to be able to do them quickly.

Scene View Navigation

Positioning GameObjects

View Modes

Gizmo and Icon Display Controls
Page last updated: 2010-09-06

Scene View Navigation

The Scene View has a set of navigation controls to help you move around quickly and efficiently.

Arrow Movement
You can use the Arrow Keys to move around the scene as though "walking" through it. The up and down arrows move the

camera forward and backward in the direction it is facing. The left and right arrows pan the view sideways. Hold down the

Shift key with an arrow to move faster.

Focusing
If you select a GameObject in the hierarchy, then move the mouse over the scene view and press the F key, the view will move

so as to center on the object. This feature is referred to as frame selection.

Move, Orbit and Zoom
Moving, orbiting and zooming are key operations in Scene View navigation, so Unity provides several alternative ways to

perform them for maximum convenience.

Using the Hand Tool

When the hand tool is selected (shortcut: Q), the following mouse controls are available:

 Move: Click-drag to drag the camera around.

 Orbit: Hold Alt and click-drag to orbit the camera around the current pivot point.

 Zoom: Hold Control (Command on Mac) and click-drag to zoom the camera.

Holding down Shift will increase the rate of movement and zooming.

Shortcuts Without Using the Hand Tool

For extra efficiency, all of these controls can also be used regardless of which transform tool is selected. The most convenient

controls depend on which mouse or track-pad you are using:

Action 3-button mouse 2-button mouse or
track-pad

Mac with only one mouse button
or track-pad

Move Hold Alt and middle click-drag. Hold Alt-Control and

click-drag.

Hold Alt-Command and click-drag.

Orbit Hold Alt and click-drag. Hold Alt and click-drag. Hold Alt and click-drag.

Zoom Hold Alt and right click-drag or use

scroll-wheel.

Hold Alt and right click-drag. Hold Alt-Control and click-drag or use

two-finger swipe.

Flythrough Mode
The Flythrough mode lets you navigate the Scene View by flying around in first person similar to how you would navigate in

many games.

Click and hold the right mouse button.

Now you can move the view around using the mouse and use the WASD keys to move left/right forward/backward and the

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

58 of 1131 12/16/2012 10:12 PM

Q and E keys to move up and down.

Holding down Shift will make you move faster.

Flythrough mode is designed for Perspective Mode. In Isometric Mode, holding down the right mouse button and moving

the mouse will orbit the camera instead.

Scene Gizmo
In the upper-right corner of the Scene View is the Scene Gizmo. This displays the Scene View Camera's current orientation,

and allows you to quickly modify the viewing angle.

You can click on any of the arms to snap the Scene View Camera to that direction. Click the middle of the Scene Gizmo, or the

text below it, to toggle between Isometric Mode and Perspective Mode. You can also always shift-click the middle of the

Scene Gizmo to get a "nice" perspective view with an angle that is looking at the scene from the side and slightly from above.

Perspective mode.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

59 of 1131 12/16/2012 10:12 PM

Isometric mode. Objects do not get smaller with distance here!

Mac Trackpad Gestures

On a Mac with a trackpad, you can drag with two fingers to zoom the view.

You can also use three fingers to simulate the effect of clicking the arms of the Scene Gizmo: drag up, left, right or down to

snap the Scene View Camera to the corresponding direction. In OS X 10.7 "Lion" you may have to change your trackpad

settings in order to enable this feature:

Open System Preferences and then Trackpad (or type trackpad into Spotlight).

Click into the "More Gestures" option.

Click the first option labelled "Swipe between pages" and then either set it to "Swipe left or right with three fingers" or

"Swipe with two or three fingers".
Page last updated: 2012-11-16

Positioning GameObjects

When building your games, you'll place lots of different objects in your game world.

Focusing
It can be useful to focus the Scene View Camera on an object before manipulating it. Select any GameObject and press the F

key. This will center the Scene View and pivot point on the selection. This is also known as Frame Selection.

Translate, Rotate, and Scale
Use the Transform Tools in the Toolbar to Translate, Rotate, and Scale individual GameObjects. Each has a corresponding

Gizmo that appears around the selected GameObject in the Scene View. You can use the mouse and manipulate any Gizmo

axis to alter the Transform Component of the GameObject, or you can type values directly into the number fields of the

Transform Component in the Inspector. Each of the three transform modes can be selected with a hotkey - W for Translate, E

for Rotate and R for Scale.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

60 of 1131 12/16/2012 10:12 PM

Click and drag in the center of the Gizmo to manipulate the object on all axes at once.

At the center of the Translate gizmo, there are three small squares that can be used to drag the object within a single plane

(ie, two axes can be moved at once while the third is kept still).

If you have a three button mouse, you can click the middle button to adjust the last-adjusted axis (which turns yellow)

without clicking directly on it.

Be careful when using the scaling tool, as non-uniform scales (e.g. 1,2,1) can cause unusual scaling of child objects.

For more information on transforming GameObjects, please view the Transform Component page.

Gizmo Display Toggles
The Gizmo Display Toggles are used to define the location of any Transform Gizmo.

Gizmo Display Toggles

Position:

Center will position the Gizmo at the center of the object's rendered bounds.

Pivot will position the Gizmo at the actual pivot point of a Mesh.

Rotation:

Local will keep the Gizmo's rotation relative to the object's.

Global will clamp the Gizmo to world space orientation.

Unit Snapping
While dragging any Gizmo Axis using the Translate Tool, you can hold the Control key (Command on Mac) to snap to

increments defined in the Snap Settings.

You can change the unit distance that is used for the unit snapping using the menu Edit->Snap Settings...

Scene View Unit Snapping settings.

Surface Snapping
While dragging in the center using the Translate Tool, you can hold Shift and Control (Command on Mac) to snap the object

to the intersection of any Collider. This makes precise positioning of objects incredibly fast.

Look-At Rotation
While using the Rotate Tool, you can hold Shift and Control (Command on Mac) to rotate the object towards a point on the

surface of any Collider. This makes orientation of objects relative to one another simple.

Vertex Snapping
You can assemble your worlds more easily with a feature called Vertex Snapping. This feature is a really simple but powerful

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

61 of 1131 12/16/2012 10:12 PM

tool in Unity. It lets you take any vertex from a given mesh and with your mouse place that vertex in the same position as any

vertex from any other mesh you choose.

With this you can assemble your worlds really fast. For example, you can place roads in a racing game with high precision and

add power up items on the vertices of a mesh.

Assembling roads with Vertex Snapping.

Using vertex snapping in Unity is simple. Just follow these steps:

Select the mesh you want to manipulate and make sure the Transform Tool is active.

Press and hold the V key to activate the vertex snapping mode.

Move your cursor over the vertex on your mesh that you want to use as the pivot point.

Hold down the left button once your cursor is over the desired vertex and drag your mesh next to any other vertex on

another mesh.

Release your mouse button and the V key when you are happy with the results.

Shift-V acts as a toggle of this functionality.

You can snap vertex to vertex, vertex to surface and pivot to vertex.

A video on how to use vertex snapping can be found here.

Page last updated: 2011-10-26

View Modes

The Scene View control bar lets you choose various options for viewing the scene and also control whether lighting and audio

are enabled. These controls only affect the scene view during development and have no effect on the built game.

Draw Mode
The first drop-down menu selects which Draw Mode will be used to depict the scene.

Draw Mode drop-down

Textured: show surfaces with their textures visible.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

62 of 1131 12/16/2012 10:12 PM

Wireframe: draw meshes with a wireframe representation.

Tex-Wire: show meshes textured and with wireframes overlaid.

Render Paths: show the rendering path for each object using a color code: Green indicates deferred lighting, yellow

indicates forward rendering and red indicates vertex lit.

Lightmap Resolution: overlay a checkered grid on the scene to show the resolution of the lightmaps.

Render Mode
The next drop-down along selects which of four Render Modes will be used to render the scene.

Render Mode drop-down

RGB: render the scene with objects normally colored.

Alpha: render colors with alpha.

Overdraw: render objects as transparent "silhouettes". The transparent colors accumulate, making it easy to spot places

where one object is drawn over another.

Mipmaps: show ideal texture sizes using a color code: red indicates that the texture is larger than necessary (at the

current distance and resolution); blue indicates that the texture could be larger. Naturally, ideal texture sizes depend on the

resolution at which the game will run and how close the camera can get to particular surfaces.

Scene Lighting, Game Overlay, and Audition Mode
To the right of the dropdown menus are three buttons which control other aspects of the scene representation.

The first button determines whether the view will be lit using a default scheme or with the lights that have actually been added

to the scene. The default scheme is used initially but this will change automatically when the first light is added. The second

button controls whether skyboxes and GUI elements will be rendered in the scene view and also shows and hides the

placement grid. The third button switches audio sources in the scene on and off.

Page last updated: 2011-11-10

Gizmo and Icon Visibility

Gizmos and icons have a few display options which can be used to reduce clutter and improve the visual clarity of the scene

during development.

The Icon Selector
Using the Icon Selector, you can easily set custom icons for GameObjects and scripts that will be used both in the Scene

View and the Inspector. To change the icon for a GameObject, simply click on its icon in the Inspector. The icons of script

assets can be changed in a similar way. In the Icon Selector is a special kind of icon called a Label Icon. This type of icon will

show up in the Scene View as a text label using the name of the GameObject. Icons for built-in Components cannot be

changed.

Note: When an asset's icon is changed, the asset will be marked as modified and therefore picked up by Revision Control

Systems.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

63 of 1131 12/16/2012 10:12 PM

Selecting an icon for a GameObject

Selecting an icon for a script

Showing and Hiding Icons and Gizmos
The visibility of an individual component's gizmos depends on whether the component is expanded or collapsed in the

inspector (ie, collapsed components are invisible). However, you can use the Gizmos dropdown to expand or collapse every

component of a given type at once. This is a useful way to reduce visual clutter when there are a large number of gizmos and

icons in the scene.

To show the state of the current gizmo and icon, click on Gizmos in the control bar of the Scene or Game View. The toggles

here are used to set which icons and gizmos are visible.

Note that the scripts that show up in the Scripts section are those that either have a custom icon or have an OnDrawGizmos

() or OnDrawGizmosSelected () function implemented.

The Gizmos dropdown, displaying the visibility state of icons and gizmos

The Icon Scaling slider can be used to adjust the size used for icon display in the scene. If the slider is placed at the extreme

right, the icon will always be drawn at its natural size. Otherwise, the icon will be scaled according to its distance from the

scene view camera (although there is an upper limit on the display size in order that screen clutter be avoided).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

64 of 1131 12/16/2012 10:12 PM

Page last updated: 2011-11-09

Searching

When working with large complex scenes it can be useful to search for specific objects. By using the Search feature in Unity,

you can filter out only the object or group of objects that you want to see. You can search assets by their name, by Component

type, and in some cases by asset Labels. You can specify the search mode by choosing from the Search drop-down menu.

Scene Search
When a scene is loaded in the Editor, you can see the objects in both the Scene View and the Hierarchy. The specific assets

are shared in both places, so if you type in a search term (eg, "elevator"), you'll see the the filter applied both visually in the

Scene View and a more typical manner in the Hierarchy. There is also no difference between typing the search term into the

search field in the Scene View or the Hierachy -- the filter takes effect in both views in either case.

Scene View and Hierarchy with no search applied.

Scene View and Hierarchy with active filtering of search term.

When a search term filter is active, the Hierarchy doesn't show hierarchical relationships between GameObjects, but you can

select any GameObject, and it's hierarchical path in the scene will be shown at the bottom of the Hierarchy.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

65 of 1131 12/16/2012 10:12 PM

Click on a GameObject in the filtered list to see its hierarchical path.

When you want to clear the search filter, just click the small cross in the search field.

In the Scene search you can search either by Name or by Type. Click on the small magnifying glass in the search field to open

the search drop-down menu and choose the search mode.

Search by Name, Type, or All.

Project Search
The same fundamentals apply to searching of assets in the Project View -- just type in your search term and you'll see all the

relevant assets appear in the filter.

In the Project search you can search by Name or by Type as in the Scene search, and additionally you can search by Label.

Click on the small magnifying glass in the search field to open the search drop-down menu and choose the search mode.

Search by Name, Type, Label, or All.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

66 of 1131 12/16/2012 10:12 PM

Object Picker Search
When assigning an object via the Object Picker, you can also enter a search term search to filter the objects you want to see.

Page last updated: 2011-11-10

Prefabs

A Prefab is a type of asset -- a reusable GameObject stored in Project View. Prefabs can be inserted into any number of

scenes, multiple times per scene. When you add a Prefab to a scene, you create an instance of it. All Prefab instances are

linked to the original Prefab and are essentially clones of it. No matter how many instances exist in your project, when you

make any changes to the Prefab you will see the change applied to all instances.

Creating Prefabs
In order to create a Prefab, simply drag a GameObject that you've created in the scene into the Project View. The

GameObject's name will turn blue to show that it is a Prefab. You can rename your new Prefab.

After you have performed these steps, the GameObject and all its children have been copied into the Prefab data. The Prefab

can now be re-used in multiple instances. The original GameObject in the Hierarchy has now become an instance of the

Prefab.

Prefab Instances
To create a Prefab instance in the current scene, drag the Prefab from the Project View into the Scene or Hierarchy View. This

instance is linked to the Prefab, as displayed by the blue text used for their name in the Hierarchy View.

Three of these GameObjects are linked to Prefabs. One of them is not.

If you have selected a Prefab instance, and want to make a change that affects all instances, you can click the Select

button in the Inspector to select the source Prefab.

Information about instantiating prefabs from scripts is in the Instantiating Prefabs page.

Inheritance

Inheritance means that whenever the source Prefab changes, those changes are applied to all linked GameObjects. For

example, if you add a new script to a Prefab, all of the linked GameObjects will instantly contain the script as well. However, it

is possible to change the properties of a single instance while keeping the link intact. Simply change any property of a prefab

instance, and watch as the variable name becomes bold. The variable is now overridden. All overridden properties will not be

affected by changes in the source Prefab.

This allows you to modify Prefab instances to make them unique from their source Prefabs without breaking the Prefab link.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

67 of 1131 12/16/2012 10:12 PM

A linked GameObject with no overrides enabled.

A linked GameObject with several (bold) overrides enabled.

If you want to update the source Prefab and all instances with the new overridden values, you can click the Apply button

in the Inspector.

Note that the root's position and rotation will not be applied, as that affects the instances absolute position and would

put all instances in the same place. However position and rotation from any children or ancestors of the root will be

applied as they are computed relative to the root's transform.

If you want to discard all overrides on a particular instance, you can click the Revert button.

Imported Prefabs
When you place a mesh asset into your Assets folder, Unity automatically imports the file and generates something that looks

similar to a Prefab out of the mesh. This is not actually a Prefab, it is simply the asset file itself. Instancing and working with

assets introduces some limitations that are not present when working with normal Prefabs.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

68 of 1131 12/16/2012 10:12 PM

Notice the asset icon is a bit different from the Prefab icons

The asset is instantiated in the scene as a GameObject, linked to the source asset instead of a normal Prefab. Components

can be added and removed from this GameObject as normal. However, you cannot apply any changes to the asset itself since

this would add data to the asset file itself! If you're creating something you want to re-use, you should make the asset instance

into a Prefab following the steps listed above under "Creating Prefabs".

When you have selected an instance of an asset, the Apply button in the Inspector is replaced with an Edit button.

Clicking this button will launch the editing application for your asset (e.g. Maya or Max).
Page last updated: 2012-09-14

Lights

Lights are an essential part of every scene. While meshes and textures define the shape and look of a scene, lights define the

color and mood of your 3D environment. You'll likely work with more than one light in each scene. Making them work together

requires a little practice but the results can be quite amazing.

A simple, two-light setup

Lights can be added to your scene from the GameObject->Create Other menu. Once a light has been added, you can

manipulate it like any other GameObject. Additionally, you can add a Light Component to any selected GameObject by using

Component->Rendering->Light.

There are many different options within the Light Component in the Inspector.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

69 of 1131 12/16/2012 10:12 PM

Light Component properties in the Inspector

By simply changing the Color of a light, you can give a whole different mood to the scene.

Bright, sunny lights

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

70 of 1131 12/16/2012 10:12 PM

Dark, medieval lights

Spooky night lights

The lights you create this way are realtime lights - their lighting is calculated each frame while the game is running. If you

know the light will not change, you can make your game faster and look much better by using Lightmapping.

Rendering paths
Unity supports different Rendering Paths, these paths affect mainly Lights and Shadows, so choosing the correct rendering

path depending on your game requirements can improve your project's performance. For more info about rendering paths you

can visit the Rendering paths section.

More information
For more information about using Lights, check the Lights page in the Reference Manual.

Page last updated: 2011-10-24

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

71 of 1131 12/16/2012 10:12 PM

Cameras

Just as cameras are used in films to display the story to the audience, Cameras in Unity are used to display the game world to

the player. You will always have at least one camera in a scene, but you can have more than one. Multiple cameras can give

you a two-player splitscreen or create advanced custom effects. You can animate cameras, or control them with physics.

Practically anything you can imagine is possible with cameras, and you can use typical or unique cameras to fit your game's

style.

The remaining text is from the Camera Component reference page.

Camera

Cameras are the devices that capture and display the world to the player. By customizing and manipulating cameras, you can

make the presentation of your game truly unique. You can have an unlimited number of cameras in a scene. They can be set

to render in any order, at any place on the screen, or only certain parts of the screen.

Unity's flexible Camera object

Properties
Clear Flags Determines which parts of the screen will be cleared. This is handy when using multiple Cameras to

draw different game elements.

Background Color applied to the remaining screen after all elements in view have been drawn and there is no

skybox.

Culling Mask Include or omit layers of objects to be rendered by the Camera. Assign layers to your objects in the

Inspector.

Projection Toggles the camera's capability to simulate perspective.

Perspective Camera will render objects with perspective intact.

Orthographic Camera will render objects uniformly, with no sense of perspective.

Size (when Orthographic

is selected)

The viewport size of the Camera when set to Orthographic.

Field of view Width of the Camera's view angle, measured in degrees along the local Y axis.

Clipping Planes Distances from the camera to start and stop rendering.

Near The closest point relative to the camera that drawing will occur.

Far The furthest point relative to the camera that drawing will occur.

Normalized View Port

Rect

Four values that indicate where on the screen this camera view will be drawn, in Screen Coordinates

(values 0-1).

X The beginning horizontal position that the camera view will be drawn.

Y The beginning vertical position that the camera view will be drawn.

W (Width) Width of the camera output on the screen.

H (Height) Height of the camera output on the screen.

Depth The camera's position in the draw order. Cameras with a larger value will be drawn on top of cameras

with a smaller value.

Rendering Path Options for defining what rendering methods will be used by the camera.

Use Player SettingsThis camera will use whichever Rendering Path is set in the Player Settings.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

72 of 1131 12/16/2012 10:12 PM

Vertex Lit All objects rendered by this camera will be rendered as Vertex-Lit objects.

Forward All objects will be rendered with one pass per material, as was standard in Unity 2.x.

Deferred Lighting

(Unity Pro only)

All objects will be drawn once without lighting, then lighting of all objects will be rendered together at

the end of the render queue.

Target Texture (Unity

Pro/Advanced only)

Reference to a Render Texture that will contain the output of the Camera view. Making this reference

will disable this Camera's capability to render to the screen.

HDR Enables High Dynamic Range rendering for this camera.

Details
Cameras are essential for displaying your game to the player. They can be customized, scripted, or parented to achieve just

about any kind of effect imaginable. For a puzzle game, you might keep the Camera static for a full view of the puzzle. For a

first-person shooter, you would parent the Camera to the player character, and place it at the character's eye level. For a

racing game, you'd likely want to have the Camera follow your player's vehicle.

You can create multiple Cameras and assign each one to a different Depth. Cameras are drawn from low Depth to high

Depth. In other words, a Camera with a Depth of 2 will be drawn on top of a Camera with a depth of 1. You can adjust the

values of the Normalized View Port Rectangle property to resize and position the Camera's view onscreen. This can create

multiple mini-views like missile cams, map views, rear-view mirrors, etc.

Render Path

Unity supports different Rendering Paths. You should choose which one you use depending on your game content and target

platform / hardware. Different rendering paths have different features and performance characteristics that mostly affect Lights

and Shadows.

The rendering Path used by your project is chosen in Player Settings. Additionally, you can override it for each Camera.

For more info on rendering paths, check the rendering paths page.

Clear Flags

Each Camera stores color and depth information when it renders its view. The portions of the screen that are not drawn in are

empty, and will display the skybox by default. When you are using multiple Cameras, each one stores its own color and depth

information in buffers, accumulating more data as each Camera renders. As any particular Camera in your scene renders its

view, you can set the Clear Flags to clear different collections of the buffer information. This is done by choosing one of the

four options:

Skybox

This is the default setting. Any empty portions of the screen will display the current Camera's skybox. If the current Camera has

no skybox set, it will default to the skybox chosen in the Render Settings (found in Edit->Render Settings). It will then fall

back to the Background Color. Alternatively a Skybox component can be added to the camera. If you want to create a new

Skybox, you can use this guide.

Solid Color

Any empty portions of the screen will display the current Camera's Background Color.

Depth Only

If you wanted to draw a player's gun without letting it get clipped inside the environment, you would set one Camera at Depth

0 to draw the environment, and another Camera at Depth 1 to draw the weapon alone. The weapon Camera's Clear Flags

should be set to to depth only. This will keep the graphical display of the environment on the screen, but discard all

information about where each object exists in 3-D space. When the gun is drawn, the opaque parts will completely cover

anything drawn, regardless of how close the gun is to the wall.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

73 of 1131 12/16/2012 10:12 PM

The gun is drawn last, after clearing the depth buffer of the cameras before it

Don't Clear

This mode does not clear either the color or the depth buffer. The result is that each frame is drawn over the next, resulting in

a smear-looking effect. This isn't typically used in games, and would likely be best used with a custom shader.

Clip Planes

The Near and Far Clip Plane properties determine where the Camera's view begins and ends. The planes are laid out

perpendicular to the Camera's direction and are measured from the its position. The Near plane is the closest location that will

be rendered, and the Far plane is the furthest.

The clipping planes also determine how depth buffer precision is distributed over the scene. In general, to get better precision

you should move the Near plane as far as possible.

Note that the near and far clip planes together with the planes defined by the field of view of the camera describe what is

popularly known as the camera frustum. Unity ensures that when rendering your objects those which are completely outside of

this frustum are not displayed. This is called Frustum Culling. Frustum Culling happens irrespective of whether you use

Occlusion Culling in your game.

For performance reasons, you might want to cull small objects earlier. For example, small rocks and debris could be made

invisible at much smaller distance than large buildings. To do that, put small objects into a separate layer and setup per-layer

cull distances using Camera.layerCullDistances script function.

Culling Mask

The Culling Mask is used for selectively rendering groups of objects using Layers. More information on using layers can be

found here.

Commonly, it is good practice to put your User Interface on a different layer, then render it by itself with a separate Camera set

to render the UI layer by itself.

In order for the UI to display on top of the other Camera views, you'll also need to set the Clear Flags to Depth only and

make sure that the UI Camera's Depth is higher than the other Cameras.

Normalized Viewport Rectangle

Normalized Viewport Rectangles are specifically for defining a certain portion of the screen that the current camera view

will be drawn upon. You can put a map view in the lower-right hand corner of the screen, or a missile-tip view in the upper-left

corner. With a bit of design work, you can use Viewport Rectangle to create some unique behaviors.

It's easy to create a two-player split screen effect using Normalized Viewport Rectangle. After you have created your two

cameras, change both camera H value to be 0.5 then set player one's Y value to 0.5, and player two's Y value to 0. This will

make player one's camera display from halfway up the screen to the top, and player two's camera will start at the bottom and

stop halfway up the screen.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

74 of 1131 12/16/2012 10:12 PM

Two-player display created with Normalized Viewport Rectangle

Orthographic

Marking a Camera as Orthographic removes all perspective from the Camera's view. This is mostly useful for making

isometric or 2D games.

Note that fog is rendered uniformly in orthographic camera mode and may therefore not appear as expected. Read more about

why in the component reference on Render Settings.

Perspective camera.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

75 of 1131 12/16/2012 10:12 PM

Orthographic camera. Objects do not get smaller with distance here!

Render Texture

This feature is only available for Unity Advanced licenses . It will place the camera's view onto a Texture that can then be

applied to another object. This makes it easy to create sports arena video monitors, surveillance cameras, reflections etc.

A Render Texture used to create a live arena-cam

Hints
Cameras can be instantiated, parented, and scripted just like any other GameObject.

To increase the sense of speed in a racing game, use a high Field of View.

Cameras can be used in physics simulation if you add a Rigidbody Component.

There is no limit to the number of Cameras you can have in your scenes.

Orthographic cameras are great for making 3D user interfaces

If you are experiencing depth artifacts (surfaces close to each other flickering), try setting Near Plane to as large as

possible.

Cameras cannot render to the Game Screen and a Render Texture at the same time, only one or the other.

Pro license holders have the option of rendering a Camera's view to a texture, called Render-to-Texture, for even more

unique effects.

Unity comes with pre-installed Camera scripts, found in Components->Camera Control. Experiment with them to get a

taste of what's possible.
Page last updated: 2007-11-16

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

76 of 1131 12/16/2012 10:12 PM

Terrains

This section will explain how to use the Terrain Engine. It will cover creation, technical details, and other considerations. It is

broken into the following sections:

Using Terrains
This section covers the most basic information about using Terrains. This includes creating Terrains and how to use the new

Terrain tools & brushes.

Height
This section explains how to use the different tools and brushes that alter the Height of the Terrain.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

77 of 1131 12/16/2012 10:12 PM

Terrain Textures
This section explains how to add, paint and blend Terrain Textures using different brushes.

Trees
This section contains important information for creating your own tree assets. It also covers adding and painting trees on your

Terrain.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

78 of 1131 12/16/2012 10:12 PM

Grass
This section explains how grass works, and how to use it.

Detail Meshes
This section explains practical usage for detail meshes like rocks, haystacks, vegetation, etc.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

79 of 1131 12/16/2012 10:12 PM

Lightmaps
You can lightmap terrains just like any other objects using Unity's built-in lightmapper. See Lightmapping Quickstart for help.

Other Settings
This section covers all the other settings associated with Terrains.

Mobile performance note
Rendering terrain is quite expensive, so terrain engine is not very practical on lower-end mobile devices.

Page last updated: 2010-06-03

Asset Import and Creation

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

80 of 1131 12/16/2012 10:12 PM

A large part of making a game is utilizing your asset source files in your GameObjects. This goes for textures, models, sound

effects and behaviour scripts. Using the Project View inside Unity, you have quick access to all the files that make up your

game:

The Project View displays all source files and created Prefabs

This view shows the organization of files in your project's Assets folder. Whenever you update one of your asset files, the

changes are immediately reflected in your game!

To import an asset file into your project, move the file into (your Project folder)->Assets in the Finder, and it will

automatically be imported into Unity. To apply your assets, simply drag the asset file from the Project View window into the

Hierarchy or Scene View. If the asset is meant to be applied to another object, drag the asset over the object.

Hints
It is always a good idea to add labels to your assets when you are working with big projects or when you want to keep

organized all your assets, with this you can search for the labels associated to each asset in the search field in the project

view.

When backing up a project folder always back up Assets, ProjectSettings and Library folders. The Library folder contains

all meta data and all the connections between objects, thus if the Library folder gets lost, you will lose references from

scenes to assets. Easiest is just to back up the whole project folder containing the Assets, ProjectSettings and Library

folders.

Rename and move files to your heart's content inside Project View; nothing will break.

Never rename or move anything from the Finder or another program; everything will break. In short, Unity stores lots of

metadata for each asset (things like import settings, cached versions of compressed textures, etc.) and if you move a file

externally, Unity can no longer associate metadata with the moved file.

Continue reading for more information:

Importing Assets

Meshes

3D formats

Legacy animation system

Materials and Shaders

Texture 2D

Procedural Materials

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

81 of 1131 12/16/2012 10:12 PM

Movie Texture

Audio Files

Tracker Modules

Using Scripts

Asset Store

Asset Server (Pro Only)

Cache Server (Team license only)

Cache Server FAQ

Behind the Scenes
Page last updated: 2012-01-08

Importing Assets

Unity will automatically detect files as they are added to your Project folder's Assets folder. When you put any asset into your

Assets folder, you will see the asset appear in your Project View.

The Project View is your window into the Assets folder, normally accessible from the file manager

When you are organizing your Project View, there is one very important thing to remember:

Never move any assets or organize this folder from the Explorer (Windows) or Finder (OS X). Always use the

Project View!

There is a lot of meta data stored about relationships between asset files within Unity. This data is all dependent on where

Unity expects to find these assets. If you move an asset from within the Project View, these relationships are maintained. If you

move them outside of Unity, these relationships are broken. You'll then have to manually re-link lots of dependencies, which is

something you probably don't want to do.

So just remember to only save assets to the Assets folder from other applications, and never rename or move files outside of

Unity. Always use Project View. You can safely open files for editing from anywhere, of course.

Creating and Updating Assets
When you are building a game and you want to add a new asset of any type, all you have to do is create the asset and save it

somewhere in the Assets folder. When you return to Unity or launch it, the added file(s) will be detected and imported.

Additionally, as you update and save your assets, the changes will be detected and the asset will be re-imported in Unity. This

allows you to focus on refining your assets without struggling to make them compatible with Unity. Updating and saving your

assets normally from its native application provides optimum, hassle-free workflow that feels natural.

Asset Types
There are a handful of basic asset types that will go into your game. The types are:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

82 of 1131 12/16/2012 10:12 PM

Mesh Files & Animations

Texture Files

Sound Files

We'll discuss the details of importing each of these file types and how they are used.

Meshes & Animations

Whichever 3D package you are using, Unity will import the meshes and animations from each file. For a list of applications that

are supported by Unity, please see this page.

Your mesh file does not need to have an animation to be imported. If you do use animations, you have your choice of importing

all animations from a single file, or importing separate files, each with one animation. For more information about importing

animations, please see page about Animation Import .

Once your mesh is imported into Unity, you can drag it to the Scene or Hierarchy to create an instance of it. You can also add

Components to the instance, which will not be attached to mesh file itself.

Meshes will be imported with UVs and a number of default Materials (one material per UV). You can then assign the

appropriate texture files to the materials and complete the look of your mesh in Unity's game engine.

Textures

Unity supports all image formats. Even when working with layered Photoshop files, they are imported without disturbing the

Photoshop format. This allows you to work with a single texture file for a very care-free and streamlined experience.

You should make your textures in dimensions that are to the power of two (e.g. 32x32, 64x64, 128x128, 256x256, etc.) Simply

placing them in your project's Assets folder is sufficient, and they will appear in the Project View.

Once your texture has been imported, you should assign it to a Material. The material can then be applied to a mesh, Particle

System, or GUI Texture. Using the Import Settings, it can also be converted to a Cubemap or Normalmap for different

types of applications in the game. For more information about importing textures, please read the Texture Component page.

Sounds

 Desktop

Unity features support for two types of audio: Uncompressed Audio or Ogg Vorbis. Any type of audio file you import into

your project will be converted to one of these formats.

File Type Conversion

.AIFF Converted to uncompressed audio on import, best for short sound effects.

.WAV Converted to uncompressed audio on import, best for short sound effects.

.MP3 Converted to Ogg Vorbis on import, best for longer music tracks.

.OGG Compressed audio format, best for longer music tracks.

Import Settings

If you are importing a file that is not already compressed as Ogg Vorbis, you have a number of options in the Import Settings

of the Audio Clip. Select the Audio Clip in the Project View and edit the options in the Audio Importer section of the

Inspector. Here, you can compress the Clip into Ogg Vorbis format, force it into Mono or Stereo playback, and tweak other

options. There are positives and negatives for both Ogg Vorbis and uncompressed audio. Each has its own ideal usage

scenarios, and you generally should not use either one exclusively.

Read more about using Ogg Vorbis or Uncompressed audio on the Audio Clip Component Reference page.

 iOS

Unity features support for two types of audio: Uncompressed Audio or MP3 Compressed audio. Any type of audio file you

import into your project will be converted to one of these formats.

File Type Conversion

.AIFF Imports as uncompressed audio for short sound effects. Can be compressed in Editor on demand.

.WAV Imports as uncompressed audio for short sound effects. Can be compressed in Editor on demand.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

83 of 1131 12/16/2012 10:12 PM

.MP3 Imports as Apple Native compressed format for longer music tracks. Can be played on device hardware.

.OGGOGG compressed audio format, incompatible with the iPhone device. Please use MP3 compressed sounds on the

iPhone.

Import Settings

When you are importing an audio file, you can select its final format and choose to force it to stereo or mono channels. To

access the Import Settings, select the Audio Clip in the Project View and find the Audio Importer in the Inspector. Here,

you can compress the Clip into Ogg Vorbis format, force it into Mono or Stereo playback, and tweak other options, such as the

very important Decompress On Load setting.

Read more about using MP3 Compressed or Uncompressed audio on the Audio Clip Component Reference page.

 Android

Unity features support for two types of audio: Uncompressed Audio or MP3 Compressed audio. Any type of audio file you

import into your project will be converted to one of these formats.

File Type Conversion

.AIFF Imports as uncompressed audio for short sound effects. Can be compressed in Editor on demand.

.WAV Imports as uncompressed audio for short sound effects. Can be compressed in Editor on demand.

.MP3 Imports as MP3 compressed format for longer music tracks.

.OGGNote: the OGG compressed audio format is incompatible with some Android devices, so Unity does not support it for

the Android platform. Please use MP3 compressed sounds instead.

Import Settings

When you are importing an audio file, you can select its final format and choose to force it to stereo or mono channels. To

access the Import Settings, select the Audio Clip in the Project View and find the Audio Importer in the Inspector. Here,

you can compress the Clip into Ogg Vorbis format, force it into Mono or Stereo playback, and tweak other options, such as the

very important Decompress On Load setting.

Read more about using MP3 Compressed or Uncompressed audio on the Audio Clip Component Reference page.

Once sound files are imported, they can be attached to any GameObject. The Audio file will create an Audio Source

Component automatically when you drag it onto a GameObject.

Page last updated: 2012-10-26

Meshes

When a 3D model is imported, Unity represents it internally as a Mesh. A Mesh must be attached to a GameObject using a

Mesh Filter component. For the mesh to be visible, the GameObject must also have a Mesh Renderer or other suitable

rendering component attached. With these components in place, the mesh will be visible at the GameObject's position with its

exact appearance dependent on the Material used by the renderer.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

84 of 1131 12/16/2012 10:12 PM

A Mesh Filter together with Mesh Renderer makes the model appear on screen.

Unity's mesh importer provides many options for controlling the generation of the mesh and associating it with its textures and

materials. These options are covered by the following pages:-

3D formats
Page last updated: 2012-01-19

3D-formats

Importing meshes into Unity can be achieved from two main types of files:

Exported 3D file formats, such as .FBX or .OBJ1.

Proprietary 3D application files, such as .Max and .Blend file formats from 3D Studio Max or Blender for example.2.

Either should enable you to get your meshes into Unity, but there are considerations as to which type you choose:

Exported 3D files
Unity can read .FBX, .dae (Collada), .3DS, .dxf and .obj files, FBX exporters can be found here and obj or Collada exporters

can also be found for many applications

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

85 of 1131 12/16/2012 10:12 PM

Advantages:

Only export the data you need

Verifiable data (re-import into 3D package before Unity)

Generally smaller files

Encourages modular approach - e.g different components for collision types or interactivity

Supports other 3D packages whose Proprietary formats we don't have direct support for

Disadvantages:

Can be a slower pipeline for prototyping and iterations

Easier to lose track of versions between source(working file) and game data (exported FBX for example)

Proprietary 3D application files
Unity can also import, through conversion: Max, Maya, Blender, Cinema4D, Modo, Lightwave & Cheetah3D files, e.g.

.MAX, .MB, .MA etc.

Advantages:

Quick iteration process (save the source file and Unity reimports)

Simple initially

Disadvantages:

A licensed copy of that software must be installed on all machines using the Unity project

Files can become bloated with unnecessary data

Big files can slow Unity updates

Less validation � harder to troubleshoot problems
Page last updated: 2012-10-24

Animations (Legacy)

Prior to the introduction of Mecanim, Unity used its own animation system and for backward compatiblity, this system is still

available. The main reason for using legacy animation is to continue working with an old project without the work of updating it

for Mecanim. However, it is not recommended that you use the legacy system for new projects.

Working with legacy animations
To import a legacy animation, you first need to mark it as such in the Mesh importer's Rig tab:-

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

86 of 1131 12/16/2012 10:12 PM

The Animation tab on the importer will then look something like this:-

Import Animation Selects whether or not animation should be imported at all.

Wrap Mode The method of handling what happens when the animation comes to an end:-

Default Uses whatever setting is specified in the animation clip.

Once Play the clip to the end and then finish.

Loop Play to the end, then immediately restart from the beginning.

PingPong Play to the end, then play from the end in reverse, and so on.

Forever Play to the end, then loop the last frame indefinitely.

Anim Compression Settings to attempt to remove redundant information from clips:-

Off No compression.

Keyframe reduction Attempt to remove keyframes where differences are too small to be seen

Keyframe reduction and

compression

As for Keyframe reduction, but clip data is also compressed.

Rotation error Minimum difference in rotation values (in degrees), below which two keyframes are

counted as equal.

Position error Minimum difference in position (as a percentage of coordinate values), below which two

keyframes are counted as equal.

Rotation error Minimum difference in scale (as a percentage of coordinate values), below which two

keyframes are counted as equal.

Below the properties in the inspector is a list of animation clips. When you click on a clip in the list, an additional panel will

appear below it in the inspector:-

The Start and End values can be changed to allow you to use just a part of the original clip (see the page on |splitting

animations for further details). The Add Loop Frame option adds an extra keyframe to the end of the animation that is exactly

the same as the keyframe at the start. This enables the animation to loop smoothly even when the last frame doesn't exactly

match up with the first. The Wrap Mode setting is identical to the master setting in the main animation properties but applies

only to that specific clip.

Page last updated: 2012-11-09

Materials

There is a close relationship between Materials and Shaders in Unity. Shaders contain code that defines what kind of

properties and assets to use. Materials allow you to adjust properties and assign assets.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

87 of 1131 12/16/2012 10:12 PM

A Shader is implemented through a Material

To create a new Material, use Assets->Create->Material from the main menu or the Project View context menu. Once the

Material has been created, you can apply it to an object and tweak all of its properties in the Inspector. To apply it to an

object, just drag it from the Project View to any object in the Scene or Hierarchy.

Setting Material Properties
You can select which Shader you want any particular Material to use. Simply expand the Shader drop-down in the Inspector,

and choose your new Shader. The Shader you choose will dictate the available properties to change. The properties can be

colors, sliders, textures, numbers, or vectors. If you have applied the Material to an active object in the Scene, you will see

your property changes applied to the object in real-time.

There are two ways to apply a Texture to a property.

Drag it from the Project View on top of the Texture square1.

Click the Select button, and choose the texture from the drop-down list that appears2.

Two placement options are available for each Texture:

Tiling Scales the texture along the different.

Offset Slides the texture around.

Built-in Shaders
There is a library of built-in Shaders that come standard with every installation of Unity. There are over 30 of these built-in

Shaders, and six basic families.

Normal: For opaque textured objects.

Transparent: For partly transparent objects. The texture's alpha channel defines the level of transparency.

TransparentCutOut: For objects that have only fully opaque and fully transparent areas, like fences.

Self-Illuminated: For objects that have light emitting parts.

Reflective: For opaque textured objects that reflect an environment Cubemap.

In each group, built-in shaders range by complexity, from the simple VertexLit to the complex Parallax Bumped with

Specular. For more information about performance of Shaders, please read the built-in Shader performance page

This grid displays a thumbnail of all built-in Shaders:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

88 of 1131 12/16/2012 10:12 PM

The builtin Unity shaders matrix

Shader technical details
Unity has an extensive Shader system, allowing you to tweak the look of all in-game graphics. It works like this:

A Shader basically defines a formula for how the in-game shading should look. Within any given Shader is a number of

properties (typically textures). Shaders are implemented through Materials, which are attached directly to individual

GameObjects. Within a Material, you will choose a Shader, then define the properties (usually textures and colors, but

properties can vary) that are used by the Shader.

This is rather complex, so let's look at a workflow diagram:

On the left side of the graph is the Carbody Shader. 2 different Materials are created from this: Blue car Material and Red

car Material. Each of these Materials have 2 textures assigned; the Car Texture defines the main texture of the car, and a

Color FX texture. These properties are used by the shader to make the car finish look like 2-tone paint. This can be seen on

the front of the red car: it is yellow where it faces the camera and then fades towards purple as the angle increases. The car

materials are attached to the 2 cars. The car wheels, lights and windows don't have the color change effect, and must hence

use a different Material. At the bottom of the graph there is a Simple Metal Shader. The Wheel Material is using this Shader.

Note that even though the same Car Texture is reused here, the end result is quite different from the car body, as the Shader

used in the Material is different.

To be more specific, a Shader defines:

The method to render an object. This includes using different methods depending on the graphics card of the end user.

Any vertex and fragment programs used to render.

Some texture properties that are assignable within Materials.

Color and number settings that are assignable within Materials.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

89 of 1131 12/16/2012 10:12 PM

A Material defines:

Which textures to use for rendering.

Which colors to use for rendering.

Any other assets, such as a Cubemap that is required by the shader for rendering.

Shaders are meant to be written by graphics programmers. They are created using the ShaderLab language, which is quite

simple. However, getting a shader to work well on a variety graphics cards is an involved job and requires a fairly

comprehensive knowledge of how graphics cards work.

A number of shaders are built into Unity directly, and some more come in the Standard Assets Library. If you like, there is

plenty more shader information in the Built-in Shader Guide.

Page last updated: 2010-09-16

Textures

Textures bring your Meshes, Particles, and interfaces to life! They are image or movie files that you lay over or wrap around

your objects. As they are so important, they have a lot of properties. If you are reading this for the first time, jump down to

Details, and return to the actual settings when you need a reference.

The shaders you use for your objects put specific requirements on which textures you need, but the basic principle is that you

can put any image file inside your project. If it meets the size requirements (specified below), it will get imported and optimized

for game use. This extends to multi-layer Photoshop or TIFF files - they are flattened on import, so there is no size penalty for

your game.

Properties
The Texture Inspector looks a bit different from most others:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

90 of 1131 12/16/2012 10:12 PM

The inspector is split into two sections, the Texture Importer and the texture preview.

Texture Importer
Textures all come from image files in your Project Folder. How they are imported is specified by the Texture Importer. You

change these by selecting the file texture in the Project View and modifying the Texture Importer in the Inspector.

The topmost item in the inspector is the Texture Type menu that allows you to select the type of texture you want to create

from the source image file.

Texture Type Select this to set basic parameters depending on the purpose of your texture.

Texture This is the most common setting used for all the textures in general.

Normal Map Select this to turn the color channels into a format suitable for real-time normal mapping. For more

info, see Normal Maps

GUI Use this if your texture is going to be used on any HUD/GUI Controls.

Reflection Also known as Cube Maps, used to create reflections on textures. check Cubemap Textures for more

info.

Cookie This sets up your texture with the basic parameters used for the Cookies of your lights

Advanced Select this when you want to have specific parameters on your texture and you want to have total

control over your texture.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

91 of 1131 12/16/2012 10:12 PM

Basic Texture Settings Selected

Alpha From

Grayscale

If enabled, an alpha transparency channel will be generated by the image's existing values of light &

dark.

Wrap Mode Selects how the Texture behaves when tiled:

Repeat The Texture repeats (tiles) itself

Clamp The Texture's edges get stretched

Filter Mode Selects how the Texture is filtered when it gets stretched by 3D transformations:

Point The Texture becomes blocky up close

Bilinear The Texture becomes blurry up close

Trilinear Like Bilinear, but the Texture also blurs between the different mip levels

Aniso Level Increases texture quality when viewing the texture at a steep angle. Good for floor and ground textures,

see below.

Normal Map Settings in the Texture Importer

Create from

Greyscale

If this is enabled then Bumpiness and Filtering options will be shown.

Bumpiness Control the amount of bumpiness.

Filtering Determine how the bumpiness is calculated:

Smooth This generates normal maps that are quite smooth.

Sharp Also known as a Sobel filter. this generates normal maps that are sharper than Standard.

Wrap Mode Selects how the Texture behaves when tiled:

Repeat The Texture repeats (tiles) itself

Clamp The Texture's edges get stretched

Filter Mode Selects how the Texture is filtered when it gets stretched by 3D transformations:

Point The Texture becomes blocky up close

Bilinear The Texture becomes blurry up close

Trilinear Like Bilinear, but the Texture also blurs between the different mip levels

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

92 of 1131 12/16/2012 10:12 PM

Aniso Level Increases texture quality when viewing the texture at a steep angle. Good for floor and ground textures,

see below.

GUI Settings for the Texture Importer

Filter Mode Selects how the Texture is filtered when it gets stretched by 3D transformations:

Point The Texture becomes blocky up close

Bilinear The Texture becomes blurry up close

Trilinear Like Bilinear, but the Texture also blurs between the different mip levels

Cursor settings for the Texture Importer

Wrap Mode Selects how the Texture behaves when tiled:

Repeat The Texture repeats (tiles) itself

Clamp The Texture's edges get stretched

Filter Mode Selects how the Texture is filtered when it gets stretched by 3D transformations:

Point The Texture becomes blocky up close

Bilinear The Texture becomes blurry up close

Trilinear Like Bilinear, but the Texture also blurs between the different mip levels

Reflection Settings in the Texture Importer

Mapping This determines how the texture will be mapped to a cubemap.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

93 of 1131 12/16/2012 10:12 PM

Sphere

Mapped

Maps the texture to a "sphere like" cubemap.

Cylindrical Maps the texture to a cylinder, use this when you want to use reflections on objects that are like cylinders.

Simple

Sphere

Maps the texture to a simple sphere, deforming the reflection when you rotate it.

Nice Sphere Maps the texture to a sphere, deforming it when you rotate but you still can see the texture's wrap

6 Frames

Layout

The texture contains six images arranged in one of the standard cubemap layouts, cross or sequence (+x -x

+y -y +z -z) and the images can be in either horizontal or vertical orientation.

Fixup edge

seams

Removes visual artifacts at the joined edges of the map image(s), which will be visible with glossy

reflections.

Filter Mode Selects how the Texture is filtered when it gets stretched by 3D transformations:

Point The Texture becomes blocky up close

Bilinear The Texture becomes blurry up close

Trilinear Like Bilinear, but the Texture also blurs between the different mip levels

Aniso Level Increases texture quality when viewing the texture at a steep angle. Good for floor and ground textures, see

below.

An interesting way to add a lot of visual detail to your scenes is to use Cookies - greyscale textures you use to control the

precise look of in-game lighting. This is fantastic for making moving clouds and giving an impression of dense foliage. The

Light page has more info on all this, but the main thing is that for textures to be usable for cookies you just need to set the

Texture Type to Cookie.

Cookie Settings in the Texture Importer

Light Type Type of light that the texture will be applied to. (This can be Spotlight, Point or Directional lights). For

Directional Lights this texture will tile, so in the texture inspector, you must set the Edge Mode to Repeat; for

SpotLights You should keep the edges of your cookie texture solid black in order to get the proper effect. In

the Texture Inspector, set the Edge Mode to Clamp.

Mapping (Point light only) Options for mapping the texture onto the spherical cast of the point light.

Sphere

Mapped

Maps the texture to a "sphere like" cubemap.

Cylindrical Maps the texture to a cylinder, use this when you want to use reflections on objects that are like cylinders.

Simple

Sphere

Maps the texture to a simple sphere, deforming the reflection when you rotate it.

Nice Sphere Maps the texture to a sphere, deforming it when you rotate but you still can see the texture's wrap

6 Frames

Layout

The texture contains six images arranged in one of the standard cubemap layouts, cross or sequence (+x -x

+y -y +z -z) and the images can be in either horizontal or vertical orientation.

Fixup edge

seams

(Point light only) Removes visual artifacts at the joined edges of the map image(s).

Alpha from

Greyscale

If enabled, an alpha transparency channel will be generated by the image's existing values of light & dark.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

94 of 1131 12/16/2012 10:12 PM

Lightmap settings in the Texture Importer

Filter Mode Selects how the Texture is filtered when it gets stretched by 3D transformations:

Point The Texture becomes blocky up close

Bilinear The Texture becomes blurry up close

Trilinear Like Bilinear, but the Texture also blurs between the different mip levels

Aniso

Level

Increases texture quality when viewing the texture at a steep angle. Good for floor and ground textures, see

below.

The Advanced Texture Importer Settings dialog

Non Power of 2 If texture has non-power-of-two size, this will define a scaling behavior at import time (for more info see

the Texture Sizes section below):

None Texture will be padded to the next larger power-of-two size for use with GUITexture component.

To nearest Texture will be scaled to the nearest power-of-two size at import time. For instance 257x511 texture will

become 256x512. Note that PVRTC formats require textures to be square (width equal to height),

therefore final size will be upscaled to 512x512.

To larger Texture will be scaled to the next larger power-of-two size at import time. For instance 257x511 texture

will become 512x512.

To smaller Texture will be scaled to the next smaller power-of-two size at import time. For instance 257x511

texture will become 256x256.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

95 of 1131 12/16/2012 10:12 PM

Generate Cube Map Generates a cubemap from the texture using different generation methods.

Spheremap Maps the texture to a "sphere like" cubemap.

Cylindrical Maps the texture to a cylinder, use this when you want to use reflections on objects that are like

cylinders.

SimpleSpheremap Maps the texture to a simple sphere, deforming the reflection when you rotate it.

NiceSpheremap Maps the texture to a sphere, deforming it when you rotate but you still can see the texture's wrap

FacesVertical The texture contains the six faces of the cube arranged in a vertical strip in the order +x -x +y -y +z -z.

FacesHorizontal The texture contains the six faces of the cube arranged in a horizontal strip in the order +x -x +y -y +z

-z.

CrossVertical The texture contains the six faces of the cube arranged in a vertically oriented cross.

CrossHorizontal The texture contains the six faces of the cube arranged in a horizontally oriented cross.

Read/Write Enabled Select this to enable access to the texture data from scripts (GetPixels, SetPixels and other Texture2D

functions). Note however that a copy of the texture data will be made, doubling the amount of memory

required for texture asset. Use only if absolutely necessary. This is only valid for uncompressed and

DTX compressed textures, other types of compressed textures cannot be read from. Disabled by

default.

Import Type The way the image data is interpreted.

Default Standard texture.

Normal Map Texture is treated as a normal map (enables other options)

Lightmap Texture is treated as a lightmap (disables other options)

Alpha from grayscale (Default mode only) Generates the alpha channel from the luminance information in the image

Create from

grayscale

(Normal map mode only) Creates the map from the luminance information in the image

Bypass sRGB

sampling

(Default mode only) Use the exact colour values from the image rather than compensating for gamma

(useful when the texture is for GUI or used as a way to encode non-image data)

Generate Mip Maps Select this to enable mip-map generation. Mip maps are smaller versions of the texture that get used

when the texture is very small on screen. For more info, see Mip Maps below.

In Linear Space Generate mipmaps in linear colour space.

Border Mip Maps Select this to avoid colors seeping out to the edge of the lower Mip levels. Used for light cookies (see

below).

Mip Map Filtering Two ways of mip map filtering are available to optimize image quality:

Box The simplest way to fade out the mipmaps - the mip levels become smoother and smoother as they go

down in size.

Kaiser A sharpening Kaiser algorithm is run on the mip maps as they go down in size. If your textures are too

blurry in the distance, try this option.

Fade Out Mipmaps Enable this to make the mipmaps fade to gray as the mip levels progress. This is used for detail maps.

The left most scroll is the first mip level to begin fading out at. The rightmost scroll defines the mip

level where the texture is completely grayed out

Wrap Mode Selects how the Texture behaves when tiled:

Repeat The Texture repeats (tiles) itself

Clamp The Texture's edges get stretched

Filter Mode Selects how the Texture is filtered when it gets stretched by 3D transformations:

Point The Texture becomes blocky up close

Bilinear The Texture becomes blurry up close

Trilinear Like Bilinear, but the Texture also blurs between the different mip levels

Aniso Level Increases texture quality when viewing the texture at a steep angle. Good for floor and ground

textures, see below.

Per-Platform Overrides
When you are building for different platforms, you have to think about the resolution of your textures for the target platform, the

size and the quality. You can set default options and then override the defaults for a specific platform.

Default settings for all platforms.

Max Texture

Size

The maximum imported texture size. Artists often prefer to work with huge textures - scale the texture down

to a suitable size with this.

Texture Format What internal representation is used for the texture. This is a tradeoff between size and quality. In the

examples below we show the final size of a in-game texture of 256 by 256 pixels:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

96 of 1131 12/16/2012 10:12 PM

Compressed Compressed RGB texture. This is the most common format for diffuse textures. 4 bits per pixel (32 KB for a

256x256 texture).

16 bit Low-quality truecolor. Has 16 levels of red, green, blue and alpha.

Truecolor Truecolor, this is the highest quality. At 256 KB for a 256x256 texture.

If you have set the Texture Type to Advanced then the Texture Format has different values.

 Desktop

Texture Format What internal representation is used for the texture. This is a tradeoff between size and quality. In the

examples below we show the final size of an in-game texture of 256 by 256 pixels:

RGB

Compressed

DXT1

Compressed RGB texture. This is the most common format for diffuse textures. 4 bits per pixel (32 KB for a

256x256 texture).

RGBA

Compressed

DXT5

Compressed RGBA texture. This is the main format used for diffuse & specular control textures. 1

byte/pixel (64 KB for a 256x256 texture).

RGB 16 bit 65 thousand colors with no alpha. Compressed DXT formats use less memory and usually look better. 128

KB for a 256x256 texture.

RGB 24 bit Truecolor but without alpha. 192 KB for a 256x256 texture.

Alpha 8 bit High quality alpha channel but without any color. 64 KB for a 256x256 texture.

RGBA 16 bit Low-quality truecolor. Has 16 levels of red, green, blue and alpha. Compressed DXT5 format uses less

memory and usually looks better. 128 KB for a 256x256 texture.

RGBA 32 bit Truecolor with alpha - this is the highest quality. At 256 KB for a 256x256 texture, this one is expensive.

Most of the time, DXT5 offers sufficient quality at a much smaller size. The main way this is used is for

normal maps, as DXT compression there often carries a visible quality loss.

 iOS

Texture Format What internal representation is used for the texture. This is a tradeoff between size and quality. In

the examples below we show the final size of a in-game texture of 256 by 256 pixels:

RGB Compressed

PVRTC 4 bits

Compressed RGB texture. This is the most common format for diffuse textures. 4 bits per pixel (32

KB for a 256x256 texture)

RGBA Compressed

PVRTC 4 bits

Compressed RGBA texture. This is the main format used for diffuse & specular control textures or

diffuse textures with transparency. 4 bits per pixel (32 KB for a 256x256 texture)

RGB Compressed

PVRTC 2 bits

Compressed RGB texture. Lower quality format suitable for diffuse textures. 2 bits per pixel (16 KB

for a 256x256 texture)

RGBA Compressed

PVRTC 2 bits

Compressed RGBA texture. Lower quality format suitable for diffuse & specular control textures. 2

bits per pixel (16 KB for a 256x256 texture)

RGB Compressed

DXT1

Compressed RGB texture. This format is not supported on iOS, but kept for backwards compatibility

with desktop projects.

RGBA Compressed

DXT5

Compressed RGBA texture. This format is not supported on iOS, but kept for backwards

compatibility with desktop projects.

RGB 16 bit 65 thousand colors with no alpha. Uses more memory than PVRTC formats, but could be more

suitable for UI or crisp textures without gradients. 128 KB for a 256x256 texture.

RGB 24 bit Truecolor but without alpha. 192 KB for a 256x256 texture.

Alpha 8 bit High quality alpha channel but without any color. 64 KB for a 256x256 texture.

RGBA 16 bit Low-quality truecolor. Has 16 levels of red, green, blue and alpha. Uses more memory than PVRTC

formats, but can be handy if you need exact alpha channel. 128 KB for a 256x256 texture.

RGBA 32 bit Truecolor with alpha - this is the highest quality. At 256 KB for a 256x256 texture, this one is

expensive. Most of the time, PVRTC formats offers sufficient quality at a much smaller size.

Compression quality Choose Fast for quickest performance, Best for the best image quality and Normal for a balance

between the two.

 Android

Texture Format What internal representation is used for the texture. This is a tradeoff between size and quality. In the

examples below we show the final size of a in-game texture of 256 by 256 pixels:

RGB Compressed

DXT1

Compressed RGB texture. Supported by Nvidia Tegra. 4 bits per pixel (32 KB for a 256x256 texture).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

97 of 1131 12/16/2012 10:12 PM

RGBA Compressed

DXT5

Compressed RGBA texture. Supported by Nvidia Tegra. 6 bits per pixel (64 KB for a 256x256 texture).

RGB Compressed

ETC 4 bits

Compressed RGB texture. This is the default texture format for Android projects. ETC1 is part of

OpenGL ES 2.0 and is supported by all OpenGL ES 2.0 GPUs. It does not support alpha. 4 bits per

pixel (32 KB for a 256x256 texture)

RGB Compressed

PVRTC 2 bits

Compressed RGB texture. Supported by Imagination PowerVR GPUs. 2 bits per pixel (16 KB for a

256x256 texture)

RGBA Compressed

PVRTC 2 bits

Compressed RGBA texture. Supported by Imagination PowerVR GPUs. 2 bits per pixel (16 KB for a

256x256 texture)

RGB Compressed

PVRTC 4 bits

Compressed RGB texture. Supported by Imagination PowerVR GPUs. 4 bits per pixel (32 KB for a

256x256 texture)

RGBA Compressed

PVRTC 4 bits

Compressed RGBA texture. Supported by Imagination PowerVR GPUs. 4 bits per pixel (32 KB for a

256x256 texture)

RGB Compressed

ATC 4 bits

Compressed RGB texture. Supported by Qualcomm Snapdragon. 4 bits per pixel (32 KB for a

256x256 texture).

RGBA Compressed

ATC 8 bits

Compressed RGBA texture. Supported by Qualcomm Snapdragon. 6 bits per pixel (64 KB for a

256x256 texture).

RGB 16 bit 65 thousand colors with no alpha. Uses more memory than the compressed formats, but could be

more suitable for UI or crisp textures without gradients. 128 KB for a 256x256 texture.

RGB 24 bit Truecolor but without alpha. 192 KB for a 256x256 texture.

Alpha 8 bit High quality alpha channel but without any color. 64 KB for a 256x256 texture.

RGBA 16 bit Low-quality truecolor. The default compression for the textures with alpha channel. 128 KB for a

256x256 texture.

RGBA 32 bit Truecolor with alpha - this is the highest quality compression for the textures with alpha. 256 KB for a

256x256 texture.

Compression quality Choose Fast for quickest performance, Best for the best image quality and Normal for a balance

between the two.

Unless you're targeting a specific hardware, like Tegra, we'd recommend using ETC1 compression. If needed you could store

an external alpha channel and still benefit from lower texture footprint. If you absolutely want to store an alpha channel in a

texture, RGBA16 bit is the compression supported by all hardware vendors.

Textures can be imported from DDS files but only DXT or uncompressed pixel formats are currently supported.

If your app utilizes an unsupported texture compression, the textures will be uncompressed to RGBA 32 and stored in memory

along with the compressed ones. So in this case you lose time decompressing textures and lose memory storing them twice. It

may also have a very negative impact on rendering performance.

Flash

Format Image format

RGB JPG Compressed RGB image data compressed in JPG format

RGBA JPG Compressed RGBA image data (ie, with alpha) compressed in JPG format

RGB 24-bit Uncompressed RGB image data, 8 bits per channel

RGBA 32-bit Uncompressed RGBA image data, 8 bits per channel

Details

Supported Formats

Unity can read the following file formats: PSD, TIFF, JPG, TGA, PNG, GIF, BMP, IFF, PICT. It should be noted that Unity can

import multi-layer PSD & TIFF files just fine. They are flattened automatically on import but the layers are maintained in the

assets themselves, so you don't lose any of your work when using these file types natively. This is important as it allows you to

just have one copy of your textures that you can use from Photoshop, through your 3D modelling app and into Unity.

Texture Sizes

Ideally texture sizes should be powers of two on the sides. These sizes are as follows: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

or 2048 pixels. The textures do not have to be square, i.e. width can be different from height.

It is possible to use other (non power of two) texture sizes with Unity. Non power of two texture sizes work best when used on

GUI Textures, however if used on anything else they will be converted to an uncompressed RGBA 32 bit format. That means

they will take up more video memory (compared to PVRT(iOS)/DXT(Desktop) compressed textures), will be slower to load and

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

98 of 1131 12/16/2012 10:12 PM

slower to render (if you are on iOS mode). In general you'll use non power of two sizes only for GUI purposes.

Non power of two texture assets can be scaled up at import time using the Non Power of 2 option in the advanced texture

type in the import settings. Unity will scale texture contents as requested, and in the game they will behave just like any other

texture, so they can still be compressed and very fast to load.

One potential problem with using non power of two textures this is that Unity will convert these textures internally to power of

two, and this stretching process can introduce minor visual artefacts.

UV Mapping

When mapping a 2D texture onto a 3D model, some sort of wrapping is done. This is called UV mapping and is done in your

3D modelling app. Inside Unity, you can scale and move the texture using Materials. Scaling normal & detail maps is especially

useful.

Mip Maps

Mip Maps are a list of progressively smaller versions of an image, used to optimise performance on real-time 3D engines.

Objects that are far away from the camera use the smaller texture versions. Using mip maps uses 33% more memory, but not

using them can be a huge performance loss. You should always use mipmaps for in-game textures; the only exceptions are

textures that will never be minified (e.g. GUI textures).

Normal Maps

Normal maps are used by normal map shaders to make low-polygon models look as if they contain more detail. Unity uses

normal maps encoded as RGB images. You also have the option to generate a normal map from a grayscale height map

image.

Detail Maps

If you want to make a terrain, you normally use your main texture to show where there are areas of grass, rocks sand, etc... If

your terrain has a decent size, it will end up very blurry. Detail textures hide this fact by fading in small details as your main

texture gets up close.

When drawing detail textures, a neutral gray is invisible, white makes the main texture twice as bright and black makes the

main texture completely black.

Reflections (Cube Maps)

If you want to use texture for reflection maps (e.g. use the Reflective builtin shaders), you need to use Cubemap Textures.

Anisotropic filtering

Anisotropic filtering increases texture quality when viewed from a grazing angle, at some expense of rendering cost (the cost is

entirely on the graphics card). Increasing anisotropy level is usually a good idea for ground and floor textures. In Quality

Settings anisotropic filtering can be forced for all textures or disabled completely.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

99 of 1131 12/16/2012 10:12 PM

No anisotropy (left) / Maximum anisotropy (right) used on the ground texture
Page last updated: 2007-11-16

Procedural Materials

Unity incorporates a new asset type known as Procedural Materials. These are essentially the same as standard Materials

except that the textures they use can be generated at runtime rather than being predefined and stored.

The script code that generates a texture procedurally will typically take up much less space in storage and transmission than a

bitmap image and so Procedural Materials can help reduce download times. Additionally, the generation script can be

equipped with parameters that can be changed in order to vary the visual properties of the material at runtime. These

properties can be anything from color variations to the size of bricks in a wall. Not only does this mean that many variations

can be generated from a single Procedural Material but also that the material can be animated on a frame-by-frame basis.

Many interesting visual effects are possible - imagine a character gradually turning to stone or acid damaging a surface as it

touches.

Unity's Procedural Material system is based around an industry standard product called Substance, developed by

Allegorithmic

Supported Platforms
In Unity, Procedural Materials are fully supported for standalone and webplayer build targets only (Windows and Mac OS X).

For all other platforms, Unity will pre-render or bake them into ordinary Materials during the build. Although this clearly negates

the runtime benefits of procedural generation, it is still useful to be able to create variations on a basic material in the editor.

Adding Procedural Materials to a Project
A Procedural Material is supplied as a Substance Archive file (SBSAR) which you can import like any other asset (drag and

drop directly onto the Assets folder or use Assets->Import New Asset...). A Substance Archive asset contains one or more

Procedural Materials and contains all the scripts and images required by these. Uncompiled SBS files are not supported.

Although they are implemented differently, Unity handles a Procedural Material just like any other Material. To assign a

Procedural Material to a mesh, for example, you just drag and drop it onto the mesh exactly as you would with any other

Material.

Procedural Properties
Each Procedural Material is a custom script which generates a particular type of material. These scripts are similar to Unity

scripts in that they can have variables exposed for assignment in the inspector. For example, a "Brick Wall" Procedural Material

could expose properties that let you set the number of courses of bricks, the colors of the bricks and the color of the mortar.

This potentially offers infinite material variations from a single asset. These properties can also be set from a script at runtime

in much the same way as the public variables of a MonoBehaviour script.

Procedural Materials can also incorporate complex texture animation. For example, you could animate the hands of the clock

or cockroaches running across a floor.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

100 of 1131 12/16/2012 10:12 PM

Creating Procedural Materials From Scratch
Procedural Materials can work with any combination of procedurally generated textures and stored bitmaps. Additionally,

included bitmap images can be filtered and modified before use. Unlike a standard Material, a Procedural Material can use

vector images in the form of SVG files which allows for resolution-independent textures.

The design tools available for creating Procedural Materials from scratch use visual, node-based editing similar to the kind

found in artistic tools. This makes creation accessible to artists who may have little or no coding experience. As an example,

here is a screenshot from Allegorithmic's Substance Designer which shows a "brick wall" Procedural Material under

construction:

Obtaining Procedural Materials
Since Unity's Procedural Materials are based on the industry standard Substance product, Procedural Material assets are

readily available from internet sources, including Unity's own Asset Store. Allegorithmic's Substance Designer can be used to

create Procedural Materials, but there are other applications (3D modelling apps, for example) that incorporate the Substance

technology and work just as well with Unity.

Performance and Optimization
Procedural Materials inherently tend to use less storage than bitmap images. However, the trade-off is that they are based

around scripts and running those scripts to generate materials requires some CPU and GPU resources. The more complex

your Procedural Materials are, the greater their runtime overhead.

Procedural Materials support a form of caching whereby the material is only updated if its parameters have changed since it

was last generated. Further to this, some materials may have many properties that could theoretically be changed and yet only

a few will ever need to change at runtime. In such cases, you can inform Unity about the variables that will not change to help

it cache as much data as possible from the previous generation of the material. This will often improve performance

significantly.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

101 of 1131 12/16/2012 10:12 PM

Procedural Materials can refer to hidden, system-wide, variables, such as elapsed time or number of Procedural Material

instances (this data can be useful for animations). Changes in the values of these variables can still force a Procedural

Material to update even if none of the explicitly defined parameters change.

Procedural Materials can also be used purely as a convenience in the editor (ie, you can generate a standard Material by

setting the parameters of a Procedural Material and then "baking" it). This will remove the runtime overhead of material

generation but naturally, the baked materials can't be changed or animated during gameplay.

Using the Substance Player to Analyze Performance
Since the complexity of a Procedural Material can affect runtime performance, Allegorithmic incorporates profiling features in

its Substance Player tool. This tool is available to download for free from Allegorithmic's website.

Substance Player uses the same optimized rendering engine as the one integrated into Unity, so its rendering measurement is

more representative of performance in Unity than that of Substance Designer.

Page last updated: 2012-10-12

Video Files

Note: This is a Pro/Advanced feature only.

 Desktop

Movie Textures are animated Textures that are created from a video file. By placing a video file in your project's Assets

Folder, you can import the video to be used exactly as you would use a regular Texture.

Video files are imported via Apple QuickTime. Supported file types are what your QuickTime installation can play (usually

.mov, .mpg, .mpeg, .mp4, .avi, .asf). On Windows movie importing requires Quicktime to be installed (download here).

Properties
The Movie Texture Inspector is very similar to the regular Texture Inspector.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

102 of 1131 12/16/2012 10:12 PM

Video files are Movie Textures in Unity

Aniso Level Increases Texture quality when viewing the texture at a steep angle. Good for floor and ground

textures

Filtering Mode Selects how the Texture is filtered when it gets stretched by 3D transformations

Loop If enabled, the movie will loop when it finishes playing

Quality Compression of the Ogg Theora video file. A higher value means higher quality, but larger file size

Details
When a video file is added to your Project, it will automatically be imported and converted to Ogg Theora format. Once your

Movie Texture has been imported, you can attach it to any GameObject or Material, just like a regular Texture.

Playing the Movie

Your Movie Texture will not play automatically when the game begins running. You must use a short script to tell it when to

play.

// this line of code will make the Movie Texture begin playing
renderer.material.mainTexture.Play();

Attach the following script to toggle Movie playback when the space bar is pressed:

function Update () {
if (Input.GetButtonDown ("Jump")) {

if (renderer.material.mainTexture.isPlaying) {
renderer.material.mainTexture.Pause();

}
else {

renderer.material.mainTexture.Play();
}

}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

103 of 1131 12/16/2012 10:12 PM

}

For more information about playing Movie Textures, see the Movie Texture Script Reference page

Movie Audio

When a Movie Texture is imported, the audio track accompanying the visuals are imported as well. This audio appears as an

AudioClip child of the Movie Texture.

The video's audio track appears as a child of the Movie Texture in the Project View

To play this audio, the Audio Clip must be attached to a GameObject, like any other Audio Clip. Drag the Audio Clip from the

Project View onto any GameObject in the Scene or Hierarchy View. Usually, this will be the same GameObject that is showing

the Movie. Then use audio.Play() to make the the movie's audio track play along with its video.

 iOS

Movie Textures are not supported on iOS. Instead, full-screen streaming playback is provided using

Handheld.PlayFullScreenMovie.

You need to keep your videos inside the StreamingAssets folder located in your Project directory.

Unity iOS supports any movie file types that play correctly on an iOS device, implying files with the extensions .mov, .mp4,

.mpv, and .3gp and using one of the following compression standards:

H.264 Baseline Profile Level 3.0 video

MPEG-4 Part 2 video

For more information about supported compression standards, consult the iPhone SDK MPMoviePlayerController Class

Reference.

As soon as you call iPhoneUtils.PlayMovie or iPhoneUtils.PlayMovieURL, the screen will fade from your current content to the

designated background color. It might take some time before the movie is ready to play but in the meantime, the player will

continue displaying the background color and may also display a progress indicator to let the user know the movie is loading.

When playback finishes, the screen will fade back to your content.

The video player does not respect switching to mute while playing videos

As written above, video files are played using Apple's embedded player (as of SDK 3.2 and iPhone OS 3.1.2 and earlier). This

contains a bug that prevents Unity switching to mute.

The video player does not respect the device's orientation

The Apple video player and iPhone SDK do not provide a way to adjust the orientation of the video. A common approach is to

manually create two copies of each movie in landscape and portrait orientations. Then, the orientation of the device can be

determined before playback so the right version of the movie can be chosen.

 Android

Movie Textures are not supported on Android. Instead, full-screen streaming playback is provided using

Handheld.PlayFullScreenMovie.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

104 of 1131 12/16/2012 10:12 PM

You need to keep your videos inside of the StreamingAssets folder located in your Project directory.

Unity Android supports any movie file type supported by Android, (ie, files with the extensions .mp4 and .3gp) and using one

of the following compression standards:

H.263

H.264 AVC

MPEG-4 SP

However, device vendors are keen on expanding this list, so some Android devices are able to play formats other than those

listed, such as HD videos.

For more information about the supported compression standards, consult the Android SDK Core Media Formats

documentation.

As soon as you call iPhoneUtils.PlayMovie or iPhoneUtils.PlayMovieURL, the screen will fade from your current content to the

designated background color. It might take some time before the movie is ready to play. In the meantime, the player will

continue displaying the background color and may also display a progress indicator to let the user know the movie is loading.

When playback finishes, the screen will fade back to your content.

Page last updated: 2007-11-16

Audio Files

As with Meshes or Textures, the workflow for Audio File assets is designed to be smooth and trouble free. Unity can import

almost every common file format but there are a few details that are useful to be aware of when working with Audio Files.

Audio in Unity is either Native or Compressed. Unity supports most common formats (see the list below) and will import an

audio file when it is added to the project. The default mode is Native, where the audio data from the original file is imported

unchanged. However, Unity can also compress the audio data on import, simply by enabling the Compressed option in the

importer. (iOS projects can make use of the hardware decoder - see the iOS documentation for further details). The difference

between Native and Compressed modes are as follows:-

Native: Use Native (WAV, AIFF) audio for short sound effects. The audio data will be larger but sounds won't need to be

decoded at runtime.

Compressed: The audio data will be small but will need to be decompressed at runtime, which entails a processing

overhead. Depending on the target, Unity will encode the audio to either Ogg Vorbis(Mac/PC/Consoles) or MP3 (Mobile

platforms). For the best sound quality, supply the audio in an uncompressed format such as WAV or AIFF (containing PCM

data) and let Unity do the encoding. If you are targeting Mac and PC platforms only (including both standalones and

webplayers) then importing an Ogg Vorbis file will not degrade the quality. However, on mobile platforms, Ogg Vorbis and

MP3 files will be re-encoded to MP3 on import, which will introduce a slight quality degradation.

Any Audio File imported into Unity is available from scripts as an Audio Clip instance, which is effectively just a container for

the audio data. The clips must be used in conjunction with Audio Sources and an Audio Listener in order to actually

generate sound. When you attach your clip to an object in the game, it adds an Audio Source component to the object, which

has Volume, Pitch and a numerous other properties. While a Source is playing, an Audio Listener can "hear" all sources

within range, and the combination of those sources gives the sound that will actually be heard through the speakers. There

can be only one Audio Listener in your scene, and this is usually attached to the Main Camera.

Supported Formats
Format Compressed as (Mac/PC) Compressed as (Mobile)
MPEG(1/2/3) Ogg Vorbis MP3

Ogg Vorbis Ogg Vorbis MP3

WAV Ogg Vorbis MP3

AIFF Ogg Vorbis MP3

MOD - -

IT - -

S3M - -

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

105 of 1131 12/16/2012 10:12 PM

XM - -

See the Sound chapter in the Creating Gameplay section of this manual for more information on using sound in Unity.

Audio Clip

Audio Clips contain the audio data used by Audio Sources. Unity supports mono, stereo and multichannel audio assets (up to

eight channels). The audio file formats that Unity can import are .aif, .wav, .mp3, and .ogg. Unity can also import tracker

modules in the .xm, .mod, .it, and .s3m formats. The tracker module assets behave the same way as any other audio assets

in Unity although no waveform preview is available in the asset import inspector.

The Audio Clip Inspector

Properties
Audio Format The specific format that will be used for the sound at runtime.

Native This option offers higher quality at the expense of larger file size and is best for very short sound

effects.

Compressed The compression results in smaller files but with somewhat lower quality compared to native audio.

This format is best for medium length sound effects and music.

3D Sound If enabled, the sound will play back in 3D space. Both Mono and Stereo sounds can be played in 3D.

Force to mono If enabled, the audio clip will be down-mixed to a single channel sound.

Load Type The method Unity uses to load audio assets at runtime.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

106 of 1131 12/16/2012 10:12 PM

Decompress on

load

Audio files will be decompressed as soon as they are loaded. Use this option for smaller compressed

sounds to avoid the performance overhead of decompressing on the fly. Be aware that

decompressing sounds on load will use about ten times more memory than keeping them

compressed, so don't use this option for large files.

Compressed in

memory

Keep sounds compressed in memory and decompress while playing. This option has a slight

performance overhead (especially for Ogg/Vorbis compressed files) so only use it for bigger files

where decompression on load would use a prohibitive amount of memory. Note that, due to technical

limitations, this option will silently switch to Stream From Disc (see below) for Ogg Vorbis assets on

platforms that use FMOD audio.

Stream from disc Stream audio data directly from disc. The memory used by this option is typically a small fraction of

the file size, so it is very useful for music or other very long tracks. For performance reasons, it is

usually advisable to stream only one or two files from disc at a time but the of streams that can

comfortably be handled depends on the hardware.

Compression Amount of Compression to be applied to a Compressed clip. Statistics about the file size can be

seen under the slider. A good approach to tuning this value is to drag the slider to a place that leaves

the playback "good enough" while keeping the file small enough for your distribution requirements.

Hardware

Decoding

(iOS only) On iOS devices, Apple's hardware decoder can be used resulting in lower CPU overhead during

decompression. Check out platform specific details for more info.

Gapless

looping

(Android/iOS only) Use this when compressing a seamless looping audio source file (in a non-compressed PCM

format) to ensure perfect continuity is preserved at the seam. Standard MPEG encoders introduce a short silence

at the loop point, which will be audible as a brief "click" or "pop".

Importing Audio Assets
Unity supports both Compressed and Native Audio. Any type of file (except MP3/Ogg Vorbis) will be initially imported as

Native. Compressed audio files must be decompressed by the CPU while the game is running, but have smaller file size. If

Stream is checked the audio is decompressed on the fly, otherwise it is decompressed completely as soon as it loads. Native

PCM formats (WAV, AIFF) have the benefit of giving higher fidelity without increasing the CPU overhead, but files in these

formats are typically much larger than compressed files. Module files (.mod,.it,.s3m..xm) can deliver very high quality with an

extremely low footprint.

As a general rule of thumb, Compressed audio (or modules) are best for long files like background music or dialog, while

Native is better for short sound effects. You should tweak the amount of Compression using the compression slider. Start with

high compression and gradually reduce the setting to the point where the loss of sound quality is perceptible. Then, increase it

again slightly until the perceived loss of quality disappears.

Using 3D Audio
If an audio clip is marked as a 3D Sound then it will be played back so as to simulate its position in the game world's 3D

space. 3D sounds emulate the distance and location of sounds by attenuating volume and panning across speakers. Both

mono and multiple channel sounds can be positioned in 3D. For multiple channel audio, use the spread option on the Audio

Source to spread and split out the discrete channels in speaker space. Unity offers a variety of options to control and fine-tune

the audio behavior in 3D space - see the Audio Source component reference for further details.

Platform specific details

 iOS

On mobile platforms compressed audio is encoded as MP3 to take advantage of hardware decompression.

To improve performance, audio clips can be played back using the Apple hardware codec. To enable this option, check the

"Hardware Decoding" checkbox in the Audio Importer. Note that only one hardware audio stream can be decompressed at a

time, including the background iPod audio.

If the hardware decoder is not available, the decompression will fall back on the software decoder (on iPhone 3GS or later,

Apple's software decoder is used in preference to Unity's own decoder (FMOD)).

 Android

On mobile platforms compressed audio is encoded as MP3 to take advantage of hardware decompression.

Page last updated: 2012-08-03

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

107 of 1131 12/16/2012 10:12 PM

TrackerModules

Tracker Modules are essentially just packages of audio samples that have been modeled, arranged and sequenced

programatically. The concept was introduced in the 1980's (mainly in conjunction with the Amiga computer) and has been

popular since the early days of game development and demo culture.

Tracker Module files are similar to MIDI files in many ways. The tracks are scores that contain information about when to play

the instruments, and at what pitch and volume and from this, the melody and rhythm of the original tune can be recreated.

However, MIDI has a disadvantage in that the sounds are dependent on the sound bank available in the audio hardware, so

MIDI music can sound different on different computers. In contrast, tracker modules include high quality PCM samples that

ensure a similar experience regardless of the audio hardware in use.

Supported formats
Unity supports the four most common module file formats, namely Impulse Tracker (.it), Scream Tracker (.s3m), Extended

Module File Format (.xm), and the original Module File Format (.mod).

Benefits of Using Tracker Modules
Tracker module files differ from mainstream PCM formats (.aif, .wav, .mp3, and .ogg) in that they can be very small without a

corresponding loss of sound quality. A single sound sample can be modified in pitch and volume (and can have other effects

applied), so it essentially acts as an "instrument" which can play a tune without the overhead of recording the whole tune as a

sample. As a result, tracker modules lend themselves to games, where music is required but where a large file download would

be a problem.

Third Party Tools and Further References
Currently, the most popular tools to create and edit Tracker Modules are MilkyTracker for OSX and OpenMPT for Windows.

For more information and discussion, please see the blog post .mod in Unity from June 2010.

Page last updated: 2011-11-15

Scripting

This brief introduction explains how to create and use scripts in a project. For detailed information about the Scripting API,

please view the Scripting Reference. For detailed information about creating game play through scripting, please view the

Creating Gameplay page of this manual.

Behaviour scripts in Unity can be written in JavaScript, C#, or Boo. It is possible to use any combination of the three

languages in a single project, although there are certain restrictions in cases where one script incorporates classes defined in

another script.

Creating New Scripts
Unlike other assets like Meshes or Textures, Script files can be created from within Unity. To create a new script, open the

Assets->Create->JavaScript (or Assets->Create->C Sharp Script or Assets->Create->Boo Script) from the main menu.

This will create a new script called NewBehaviourScript and place it in the selected folder in Project View. If no folder is

selected in Project View, the script will be created at the root level.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

108 of 1131 12/16/2012 10:12 PM

You can edit the script by double-clicking on it in the Project View. This will launch your default text editor as specified in

Unity's preferences. To set the default script editor, change the drop-down item in Unity->Preferences->External Script

editor.

These are the contents of a new, empty behaviour script:

function Update () {
}

A new, empty script does not do a lot on its own, so let's add some functionality. Change the script to read the following:

function Update () {
 print("Hello World");
}

When executed, this code will print "Hello World" to the console. But there is nothing that causes the code to be executed yet.

We have to attach the script to an active GameObject in the Scene before it will be executed.

Attaching scripts to objects
Save the above script and create a new object in the Scene by selecting GameObject->Create Other->Cube. This will

create a new GameObject called "Cube" in the current Scene.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

109 of 1131 12/16/2012 10:12 PM

Now drag the script from the Project View to the Cube (in the Scene or Hierarchy View, it doesn't matter). You can also select

the Cube and choose Component->Scripts->New Behaviour Script. Either of these methods will attach the script to the

Cube. Every script you create will appear in the Component->Scripts menu.

If you select the Cube and look at the Inspector, you will see that the script is now visible. This means it has been attached.

Press Play to test your creation. You should see the text "Hello World" appear beside the Play/Pause/Step buttons. Exit play

mode when you see it.

Manipulating the GameObject
A print() statement can be very handy when debugging your script, but it does not manipulate the GameObject it is attached

to. Let's change the script to add some functionality:

function Update () {
 transform.Rotate(0, 5*Time.deltaTime, 0);
}

If you're new to scripting, it's okay if this looks confusing. These are the important concepts to understand:

function Update () {} is a container for code that Unity executes multiple times per second (once per frame).1.

transform is a reference to the GameObject's Transform Component.2.

Rotate() is a function contained in the Transform Component.3.

The numbers in-between the commas represent the degrees of rotation around each axis of 3D space: X, Y, and Z.4.

Time.deltaTime is a member of the Time class that evens out movement over one second, so the cube will rotate at

the same speed no matter how many frames per second your machine is rendering. Therefore, 5 * Time.deltaTime

means 5 degrees per second.

5.

With all this in mind, we can read this code as "every frame, rotate this GameObject's Transform component a small amount so

that it will equal five degrees around the Y axis each second."

You can access lots of different Components the same way as we accessed transform already. You have to add Components

to the GameObject using the Component menu. All the Components you can access directly are listed under Variables on

the GameObject Scripting Reference Page.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

110 of 1131 12/16/2012 10:12 PM

For more information about the relationship between GameObjects, Scripts, and Components, please jump ahead to the

GameObjects page or Using Components page of this manual.

The Power of Variables
Our script so far will always rotate the Cube 5 degrees each second. We might want it to rotate a different number of degrees

per second. We could change the number and save, but then we have to wait for the script to be recompiled and we have to

enter Play mode before we see the results. There is a much faster way to do it. We can experiment with the speed of rotation

in real-time during Play mode, and it's easy to do.

Instead of typing 5 into the Rotate() function, we will declare a speed variable and use that in the function. Change the script

to the following code and save it:

var speed = 5.0;

function Update () {
 transform.Rotate(0, speed*Time.deltaTime, 0);
}

Now, select the Cube and look at the Inspector. Notice how our speed variable appears.

This variable can now be modified directly in the Inspector. Select it, press Return and change the value. You can also right-

or option-click on the value and drag the mouse up or down. You can change the variable at any time, even while the game is

running.

Hit Play and try modifying the speed value. The Cube's rotation speed will change instantly. When you exit Play mode, you'll

see that your changes are reverted back to their value before entering Play mode. This way you can play, adjust, and

experiment to find the best value, then apply that value permanently.

The technique of changing a variable's value in the Inspector makes it easy to reuse one script on many objects, each with a

different variable value. If you attach the script to multiple Cubes, and change the speed of each cube, they will all rotate at

different speeds even though they use the same script.

Accessing Other Components
When writing a script Component, you can access other components on the GameObject from within that script.

Using the GameObject members

You can directly access any member of the GameObject class. You can see a list of all the GameObject class members

here. If any of the indicated classes are attached to the GameObject as a Component, you can access that Component directly

through the script by simply typing the member name. For example, typing transform is equivalent to

gameObject.transform. The gameObject is assumed by the compiler, unless you specifically reference a different

GameObject.

Typing this will be accessing the script Component that you are writing. Typing this.gameObject is referring to the

GameObject that the script is attached to. You can access the same GameObject by simply typing gameObject. Logically,

typing this.transform is the same as typing transform. If you want to access a Component that is not included as a

GameObject member, you have to use gameObject.GetComponent() which is explained on the next page.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

111 of 1131 12/16/2012 10:12 PM

There are many Components that can be directly accessed in any script. For example, if you want to access the Translate

function of the Transform component, you can just write transform.Translate() or gameObject.transform.Translate(). This

works because all scripts are attached to a GameObject. So when you write transform you are implicitly accessing the

Transform Component of the GameObject that is being scripted. To be explicit, you write gameObject.transform. There is no

advantage in one method over the other, it's all a matter of preference for the scripter.

To see a list of all the Components you can access implicitly, take a look at the GameObject page in the Scripting Reference.

Using GetComponent()

There are many Components which are not referenced directly as members of the GameObject class. So you cannot access

them implicitly, you have to access them explicitly. You do this by calling the GetComponent("component name") and

storing a reference to the result. This is most common when you want to make a reference to another script attached to the

GameObject.

Pretend you are writing Script B and you want to make a reference to Script A, which is attached to the same GameObject.

You would have to use GetComponent() to make this reference. In Script B, you would simply write:

scriptA = GetComponent("ScriptA");

For more help with using GetComponent(), take a look at the GetComponent() Script Reference page.

Accessing variables in other script Components
All scripts attached to your GameObjects are Components. Therefore to get access to a public variable (and methods) in a

script you make use of the GetComponent method. For example:

function Start () {
 // Print the position of the transform component, for the gameObject this script is attached to
 Debug.Log(gameObject.GetComponent<Transform>.().position);
}

In the previous example the GetComponent<T>. function is used to access the position property of the Transform component.

The same technique can be used to access a variable in a custom script Component:

(MyClass.js)
public var speed : float = 3.14159;

(MyOtherClass.js)
function Start () {
 // Print the speed variable from the MyClass script Component attached to the gameObject
 Debug.Log(gameObject.GetComponent<MyClass>.().speed);
}

Accessing a variable defined in C# from Javascript

To access variables defined in C# scripts the compiled Assembly containing the C# code must exist when the Javascript code

is compiled. Unity performs the compilation in different stages as described in the Script Compilation section in the Scripting

Reference. If you want to create a Javascript that uses classes or variables from a C# script just place the C# script in the

"Standard Assets", "Pro Standard Assets" or "Plugins" folder and the Javascript outside of these folders. The code inside the

"Standard Assets", "Pro Standard Assets" or "Plugins" is compiled first and the code outside is compiled in a later step making

the Types defined in the compilation step (your C# script) available to later compilation steps (your Javascript script).

In general the code inside the "Standard Assets", "Pro Standard Assets" or "Plugins" folders, regardless of the language (C#,

Javascript or Boo), will be compiled first and available to scripts in subsequent compilation steps.

Optimizing variable access

In some circumstances you may be using GetComponent multiple times in your code, or multiple times per frame. Every call to

GetComponent does a few extra steps internally to get the reference to the component you require. A more efficient approach

is to store the reference to the component for example in your Start() function. As you will be storing the reference and not

retrieving directly it is always good practice to check for null references:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

112 of 1131 12/16/2012 10:12 PM

(MyClass.js)
public var speed : float = 3.14159;

(MyOtherClass.js)
private var myClass : MyClass;
function Start () {
 // Get a reference to the MyClass script Component attached to the gameObject
 myClass = gameObject.GetComponent<MyClass>.();
}
function Update () {
 // Verify that the reference is still valid and print the speed variable
 if(myClass != null)
 Debug.Log (myClass.speed);
}

Static Variables

It is also possible to declare variables in your classes as static. There will exist one and only one instance of a static variable

for a specific class and it can be modified without the need of an instance of a class object:

(MyClass.js)
static public var speed : float = 3.14159;

(MyOtherClass.js)
function Start () {
 Debug.Log (MyClass.speed);
}

It is recommended to not use static variables for object references to make sure unused objects are removed from memory.

Where to go from here
This was just a short introduction on how to use scripts inside the Editor. For more examples, check out the Unity tutorials,

available for free on our Asset Store. You should also read through the Scripting Overview in the Script Reference, which

contains a more thorough introduction into scripting with Unity along with pointers to more in-depth information. If you're really

stuck, be sure to visit the Unity Answers or Unity Forums and ask questions there. Someone is always willing to help.

Page last updated: 2012-06-28

Asset Store

Unity's Asset Store is home to a growing library of free and commercial assets created both by Unity Technologies and also

members of the community. A wide variety of assets is available, covering everything from textures, models and animations to

whole project examples, tutorials and Editor extensions. The assets are accessed from a simple interface built into the Unity

Editor and are downloaded and imported directly into your project.

Access and Navigation
You can open the Asset Store window by selecting Window->AssetStore from the main menu. On your first visit, you will be

prompted to create a free user account which you will use to access the Store subsequently.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

113 of 1131 12/16/2012 10:12 PM

The Asset Store front page.

The Store provides a browser-like interface which allows you to navigate either by free text search or by browsing packages

and categories. To the left of the main tool bar are the familiar browsing buttons for navigating through the history of viewed

items:-

To the right of these are buttons for viewing the Download Manager and for viewing the current contents of your shopping cart.

The Download Manager allows you to view the packages you have already bought and also to find and install any updates.

Additionally, the standard packages supplied with Unity can be viewed and added to your project with the same interface.

The Download Manager.

Location of Downloaded Asset Files
You will rarely, if ever, need to access the files downloaded from the Asset Store directly. However, if you do need to, you can

find them in

 ~/Library/Unity/Asset Store

...on the Mac and in

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

114 of 1131 12/16/2012 10:12 PM

 C:\Users\accountName\AppData\Roaming\Unity\Asset Store

...on Windows. These folders contain subfolders that correspond to particular Asset Store vendors - the actual asset files are

contained in the appropriate subfolders.

Page last updated: 2011-12-09

Asset Server

Unity Asset Server Overview
The Unity Asset Server is an asset and version control system with a graphical user interface integrated into Unity. It is

meant to be used by team members working together on a project on different computers either in-person or remotely. The

Asset Server is highly optimized for handling large binary assets in order to cope with large multi gigabyte project folders.

When uploading assets, Import Settings and other meta data about each asset is uploaded to the asset server as well.

Renaming and moving files is at the core of the system and well supported.

It is available only for Unity Pro, and is an additional license per client. To purchase an Asset Server Client License, please

visit the Unity store at http://unity3d.com/store

New to Source Control?
If you have never used Source Control before, it can be a little unfriendly to get started with any versioning system. Source

Control works by storing an entire collection of all your assets - meshes, textures, materials, scripts, and everything else - in a

database on some kind of server. That server might be your home computer, the same one that you use to run Unity. It might

be a different computer in your local network. It might be a remote machine colocated in a different part of the world. It could

even be a virtual machine. There are a lot of options, but the location of the server doesn't matter at all. The important thing is

that you can access it somehow over your network, and that it stores your game data.

In a way, the Asset Server functions as a backup of your Project Folder. You do not directly manipulate the contents of the

Asset Server while you are developing. You make changes to your Project locally, then when you are done, you Commit

Changes to the Project on the Server. This makes your local Project and the Asset Server Project identical.

Now, when your fellow developers make a change, the Asset Server is identical to their Project, but not yours. To synchronize

your local Project, you request to Update from Server. Now, whatever changes your team members have made will be

downloaded from the server to your local Project.

This is the basic workflow for using the Asset Server. In addition to this basic functionality, the Asset Server allows for rollback

to previous versions of assets, detailed file comparison, merging two different scripts, resolving conflicts, and recovering

deleted assets.

Setting up the Asset Server
The Asset Server requires a one time server setup and a client configuration for each user. You can read about how to do that

in the Asset Server Setup page .

The rest of this guide explains how to deploy, administrate, and regularly use the Asset Server.

Daily use of the Asset Server

This section explains the common tasks, workflow and best practices for using the Asset Server on a day-to-day basis.

Getting Started
If you are joining a team that has a lot of work stored on the Asset Server already, this is the quickest way to get up and

running correctly. If you are starting your own project from scratch, you can skip down to the Workflow Fundamentals section.

Create a new empty Project with no packages imported1.

Go to Edit->Project Settings->Editor and select Asset Server as the version control mode2.

From the menubar, select Window->Version3.

Click the Connection button4.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

115 of 1131 12/16/2012 10:12 PM

Enter your user name and password (provided by your Asset Server administrator)5.

Click Show Projects and select the desired project6.

Click Connect7.

Click the Update tab8.

Click the Update button9.

If a conflict occurs, discard all local versions10.

Wait for the update to complete11.

You are ready to go12.

Continue reading for detailed information on how to use the Asset Server effectively every day.

Workflow Fundamentals
When using the Asset Server with a multi-person team, it is generally good practice to Update all changed assets from the

server when you begin working, and Commit your changes at the end of the day, or whenever you're done working. You

should also commit changes when you have made significant progress on something, even if it is in the middle of the day.

Committing your changes regularly and frequently is recommended.

Understanding the Server View
The Server View is your window into the Asset Server you're connected to. You can open the Server View by selecting

Window->Version Control.

The Overview tab

The Server View is broken into tabs: Overview Update, and Commit. Overview will show you any differences between your

local project and the latest version on the server with options to quickly commit local changes or download the latest updates.

Update will show you the latest remote changes on the server and allow you to download them to your local project. Commit

allows you to create a Changeset and commit it to the server for others to download.

Connecting to the server

Before you can use the asset server, you must connect to it. To do this you click the Connection button, which takes you to

the connection screen:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

116 of 1131 12/16/2012 10:12 PM

The Asset Server connection screen

Here you need to fill in:

Server address1.

Username2.

Password3.

By clicking Show projects you can now see the available projects on the asset server, and choose which one to connect to

by clicking Connect. Note that the username and password you use can be obtain from your system administrator. Your

system administrator created accounts when they installed Asset Server.

Updating from the Server

To download all updates from the server, select the Update tab from the Overview tab and you will see a list of the latest

committed Changesets. By selecting one of these you can see what was changed in the project as well as the provided

commit message. Click Update and you will begin downloading all Changeset updates.

The Update Tab

Committing Changes to the Server

When you have made a change to your local project and you want to store those changes on the server, you use the top

Commit tab.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

117 of 1131 12/16/2012 10:12 PM

The Commit tab

Now you will be able to see all the local changes made to the project since your last update, and will be able to select which

changes you wish to upload to the server. You can add changes to the changeset either by manually dragging them into the

changeset field, or by using the buttons placed below the commit message field. Remember to type in a commit message

which will help you when you compare versions or revert to an earlier version later on, both of which are discussed below.

Resolving conflicts

With multiple people working on the same collection of data, conflicts will inevitably arise. Remember, there is no need to

panic! If a conflict exists, you will be presented with the Conflict Resolution dialog when updating your project.

The Conflict Resolution screen

Here, you will be informed of each individual conflict, and be presented with different options to resolve each individual conflict.

For any single conflict, you can select Skip Asset (which will not download that asset from the server), Discard My Changes

(which will completely overwrite your local version of the asset) or Ignore Server Changes (which will ignore the changes

others made to the asset and after this update you will be able to commit your local changes over server ones) for each

individual conflict. Additionally, you can select Merge for text assets like scripts to merge the server version with the local

version.

Note: If you choose to discard your changes, the asset will be updated to the latest version from the server (i.e., it will

incorporate other users' changes that have been made while you were working). If you want to get the asset back as it was

when you started working, you should revert to the specific version that you checked out. (See Browsing revision history and

reverting assets below.)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

118 of 1131 12/16/2012 10:12 PM

If you run into a conflict while you are committing your local changes, Unity will refuse to commit your changes and inform you

that a conflict exists. To resolve the conflicts, select Update. Your local changes will not automatically be overwritten. At this

point you will see the Conflict Resolution dialog, and can follow the instructions in the above paragraph.

Browsing revision history and reverting assets

The Asset Server retains all uploaded versions of an asset in its database, so you can revert your local version to an earlier

version at any time. You can either select to restore the entire project or single files. To revert to an older version of an asset or

a project, select the Overview tab then click Show History listed under Asset Server Actions. You will now see a list of all

commits and be able to select and restore any file or all project to an older version.

The History dialog

Here, you can see the version number and added comments with each version of the asset or project. This is one reason why

descriptive comments are helpful. Select any asset to see its history or Entire Project for all changes made in project. Find

revision you need. You can either select whole revision or particular asset in revision. Then click Download Selected File to

get your local asset replaced with a copy of the selected revision. Revert All Project will revert entire project to selected

revision.

Prior to reverting, if there are any differences between your local version and the selected server version, those changes will

be lost when the local version is reverted.

If you only want to abandon the changes made to the local copy, you don't have to revert. You can discard those local

modifications by selecting Discard Changes in the main asset server window. This will immediately download the current

version of the project from the server to your local Project.

Comparing asset versions

If you're curious to see the differences between two particular versions you can explicitly compare them. To do this, open

History window, select revision and asset you want to compare and press Compare to Local Version. If you need to

compare two different revisions of an asset - right click on it, in the context menu select Compare to Another Revision then

find revision you want to compare to and select it.

Note: this feature requires that you have one of supported file diff/merge tools installed. Supported tools are:

On Windows:

TortoiseMerge: part of TortoiseSVN or a separate download from the project site.

WinMerge.

SourceGear Diff/Merge.

Perforce Merge (p4merge): part of Perforce's visual client suite (P4V).

TkDiff.

On Mac OS X:

SourceGear Diff/Merge.

FileMerge: part of Apple's XCode development tools.

TkDiff.

Perforce Merge (p4merge): part of Perforce's visual client suite (P4V).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

119 of 1131 12/16/2012 10:12 PM

Recovering deleted assets

Deleting a local asset and committing the delete to the server will in fact not delete an asset permanently. Just as any previous

version of an asset can be restored through History window from the Overview tab.

The History dialog

Expand Deleted Assets item, find and select assets from the list and hit Recover, the selected assets will be downloaded

and re-added to the local project. If the folder that the asset was located in before the deletion still exists, the asset will be

restored to the original location, otherwise it will be added to the root of the Assets folder in the local project.

Best Practices & Common Issues

This is a compilation of best practices and solutions to problems which will help you when using the Asset Server:

Backup, Backup, Backup

Maintain a backup of your database. It is very important to do this. In the unfortunate case that you have a

hardware problem, a virus, a user error, etc you may loose all of your work. Therefore make sure you have a

backup system in place. You can find lots of resources online for setting up backup systems.

1.

Stop the server before shutting the machine down

This can prevent "fast shutdowns" from being generated in the PostgreSQL (Asset Server) log. If this occurs the

Asset Server has to do a recovery due to an improper shut down. This can take a very long time if you have a large

project with many commits.

2.

Resetting you password from Console

You can reset your password directly from a shell, console or command line using the following command:

psql -U unitysrv -d template1 -c"alter role admin with password 'MYPASSWORD'"

3.

Can't connect to Asset Server

The password may have expired. Try resetting your password.

Also the username is case sensitive: "Admin" != "admin". Make sure you are using the correct case.

Make sure the server is actually running:

On OS X or Linux you can type on the terminal: ps -aux

On Windows you can use the Task Manager.

Verify that the Asset Server is not running on more than one computer in your Network. You could be connecting to

the wrong one.

4.

The Asset Server doesn't work in 64-bit Linux

The asset server can run OK on 64-bit Linux machines if you install 32-bit versions of the required packages. You

can use "dpkg -i --force-architecture" to do this.

5.

Use the Asset Server logs to get more information

Windows:

\Unity\AssetServer\log

OS X:

/Library/UnityAssetServer/log

6.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

120 of 1131 12/16/2012 10:12 PM

Asset Server training complete
You should now be equipped with the knowledge you need to start using the Asset Server effectively. Get to it, and don't forget

the good workflow fundamentals. Commit changes often, and don't be afraid of losing anything.

Page last updated: 2011-10-31

Asset Cache Server

Unity has a completely automatic asset pipeline. Whenever a source asset like a .psd or an .fbx file is modified, Unity will

detect the change and automatically reimport it. The imported data from the file is subsequently stored by Unity in its own

internal format. The best parts about the asset pipeline are the "hot reloading" functionality and the guarantee that all your

source assets are always in sync with what you see. This feature also comes at a cost. Any asset that is modified has to be

reimported right away. When working in large teams, after getting latest from Source Control, you often have to wait for a long

time to re-import all the assets modified or created by other team members. Also, switching your project platform back and forth

between desktop and mobile will trigger a re-import of most assets.

The time it takes to import assets can be drastically reduced by caching the imported asset data on the Cache Server.

Each asset import is cached based on

The asset file itself

The import settings

Asset importer version

The current platform.

If any of the above change, the asset gets reimported, otherwise it gets downloaded from the Cache Server.

When you enable the cache server in the preferences, you can even share asset imports across multiple projects.

Note that once the cache server is set up, this process is completely automatic, which means there are no additional workflow

requirements. It will simply reduce the time it takes to import projects without getting in your way.

How to set up a Cache Server (user)
Setting up the Cache Server couldn't be easier. All you need to do is click Use Cache Server in the preferences and tell the

local machine's Unity Editor where the Cache Server is.

This can be found in Unity->Preferences on the Mac or Edit->Preferences on the PC.

If you are hosting the Cache Server on your local machine, specify localhost for the server address. However, due to hard

drive size limitations, it is recommended you host the Cache Server on separate machine.

How to set up a Cache Server (admin)
Admins need to set up the Cache Server machine that will host the cached assets.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

121 of 1131 12/16/2012 10:12 PM

You need to:

Download the Cache Server here

Unzip the file, after which you should see something like this:

Depending on your operating system, run the appropriate command script.

You will see a terminal window, indicating that the Cache Server is running in the background

The Cache Server needs to be on a reliable machine with very large storage (much larger than the size of the project itself,

as there will likely be multiple versions of imported resources stored). If the hard disk becomes full the Cache Server could

perform slowly.

Installing the Cache Server as a service
The provided .sh and .cmd scripts should be set-up as a service on the server. The cache server can be safely killed and

restarted at any time, since it uses atomic file operations.

Cache Server Configuration
If you simply start the Cache Server by double clicking the script, it will create a "cache" directory next to the script, and keep

its data in there. The cache directory is allowed to grow to up to 50 GB. You can configure the size and the location of the data

using command line options, like this:

./RunOSX.command --path ~/mycachePath --size 2000000000

--path lets you specify a cache location, and --size lets you specify the maximum cache size in bytes.

Recommendations for the machine hosting the Cache Server
We recommend equipping the machine with a lot of RAM. For best performance there is enough RAM to hold an entire

imported project folder. In addition, it is best to have a machine with a fast hard drive and fast Ethernet connection. The hard

drive should also have sufficient free space. On the other hand, the Cache Server has very low CPU usage.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

122 of 1131 12/16/2012 10:12 PM

One of the main distinctions between the Cache Server and version control is that its cached data can always be rebuilt

locally. It is simply a tool for improving performance. For this reason it doesn't make sense to use a Cache Server over the

Internet. If you have a distributed team, we recommend that you place a separate cache server in each location.

We recommend that you run the cache server on a Linux or Mac OS X machine. The Windows file system is not particularly

well optimized for how the Asset Cache Server stores data and problems with file locking on Windows can cause issues that

don't occur on Linux or Mac OS X.

Page last updated: 2012-10-26

Cache Server FAQ

Will the size of my Cache Server database grow indefinitely as more and more resources get imported and stored?

The Cache Server removes assets that have not been used for a period of time automatically (of course if those assets are

needed again, they will be re-created during next usage).

Does the cache server work only with the asset server?

The cache server is designed to be transparent to source/version control systems and so you are not restricted to using

Unity's asset server.

What changes will cause the imported file to get regenerated?

When Unity is about to import an asset, it generates an MD5 hash of all source data.

For a texture this consists of:

The source asset: "myTexture.psd" file

The meta file: "myTexture.psd.meta" (Stores all importer settings)

The internal version number of the texture importer

A hash of version numbers of all AssetPostprocessors

If that hash is different from what is stored on the Cache Server, the asset will be reimported, otherwise the cached version will

be downloaded. The client Unity editor will only pull assets from the server as they are needed - assets don't get pushed to

each project as they change.

How do I work with Asset dependencies?

The Cache Server does not handle dependencies. Unity's asset pipeline does not deal with the concept of dependencies. It is

built in such a way as to avoid dependencies between assets. AssetPostprocessors are a common technique used to

customize the Asset importer to fit your needs. For example, you might want to add MeshColliders to some GameObjects in an

fbx file based on their name or tag.

It is also easy to use AssetPostprocessors to introduce dependencies. For example you might use data from a text file next

to the asset to add additional components to the imported game objects. This is not supported in the Cache Server. If you want

to use the Cache Server, you will have to remove dependency on other assets in the project folder. Since the Cache Server

doesn't know anything about the dependency in your postprocessor, it will not know that anything has changed thus use an old

cached version of the asset.

In practice there are plenty of ways you can do asset postprocessing to work well with the cache server. You can use:

The Path of the imported asset

Any import settings of the asset

The source asset itself or any data generated from it passed to you in the asset postprocessor.

Are there any issues when working with materials?

Modifying materials that already exist might cause trouble. When using the Cache Server, Unity validates that the references

to materials are maintained. But since no postprocessing calls will be invoked, the contents of the material can not be changed

when a model is imported through the Cache Server. Thus you might get different results when importing with or without

Cache Server. It is best to never modify materials that already exist on disk.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

123 of 1131 12/16/2012 10:12 PM

Are there any asset types which will not be cached by the server?

There are a few kinds of asset data which the server doesn't cache. There isn't really anything to be gained by caching script

files and so the server will ignore them. Also, native files used by 3D modelling software (Maya, 3D Max, etc) are converted to

FBX using the application itself. Currently, the asset server caches neither the native file nor the intermediate FBX file

generated in the import process. However, it is possible to benefit from the server by exporting files as FBX from the modelling

software and adding those to the Unity project.

Page last updated: 2012-09-04

Behind the Scenes

Unity automatically imports assets and manages various kinds of additional data about them for you. Below is a description of

how this process works.

When you place an Asset such as a texture in the Assets folder, Unity will first detect that a new file has been added (the editor

frequently checks the contents of the Assets folder against the list of assets it already knows about). Once a unique ID value

has been assigned to the asset to enable it to be accessed internally, it will be imported and processed. The asset that you

actually see in the Project panel is the result of that processing and its data contents will typically be different to those of the

original asset. For example, a texture may be present in the Assets folder as a PNG file but will be converted to an internal

format after import and processing.

Using an internal format for assets allows Unity to keep additional data known as metadata which enables the asset data to be

handled in a much more flexible way. For example, the Photoshop file format is convenient to work with, but you wouldn't

expect it to support game engine features such as mip maps. Unity's internal format, however, can add extra functionality like

this to any asset type. All metadata for assets is stored in the Library folder. As as user, you should never have to alter the

Library folder manually and attempting to do so may corrupt the project.

Unity allows you to create folders in the Project view to help you organize assets, and those folders will be mirrored in the

actual filesystem. However, you must move the files within Unity by dragging and dropping in the Project view. If you attempt

to use the filesystem/desktop to move the files then Unity will misinterpret the change (it will appear that the old asset has

been deleted and a new one created in its place). This will lose information, such as links between assets and scripts in the

project.

When backing up a project, you should always back up the main Unity project folder, containing both the Assets and Library

folders. All the information in the subfolders is crucial to the way Unity works.

Page last updated: 2011-11-15

Creating Gameplay

Unity empowers game designers to make games. What's really special about Unity is that you don't need years of experience

with code or a degree in art to make fun games. There are a handful of basic workflow concepts needed to learn Unity. Once

understood, you will find yourself making games in no time. With the time you will save getting your games up and running, you

will have that much more time to refine, balance, and tweak your game to perfection.

This section will explain the core concepts you need to know for creating unique, amazing, and fun gameplay. The majority of

these concepts require you to write Scripts. For an overview of creating and working with Scripts, please read the Scripting

page.

Instantiating Prefabs at runtime

Input

Transforms

Physics

Adding Random Gameplay Elements

Particle Systems

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

124 of 1131 12/16/2012 10:12 PM

Particle System Curve Editor

Colors and Gradients in the Particle System (Shuriken)

Gradient Editor

Particle System Inspector

Introduction to Particle System Modules (Shuriken)

Particle System Modules (Shuriken)

Particle Effects (Shuriken)

Mecanim Animation System

A Glossary of Animation and Mecanim terms

Asset Preparation and Import

Preparing your own character

Importing Animations

Splitting Animations

Working with humanoid animations

Creating the Avatar

Configuring the Avatar

Muscle setup

Avatar Body Mask

Retargeting of Humanoid animations

Inverse Kinematics (Pro only)

Generic Animations in Mecanim

Bringing Characters to Life

Looping animation clips

Animator Component and Animator Controller

Animation State Machines

Animation States

Animation Transitions

Animation Parameters

Blend Trees

Mecanim Advanced topics

Working with Animation Curves in Mecanim (Pro only)

Sub-State Machines

Animation Layers

Animation State Machine Preview (solo and mute)

Target Matching

Root Motion - how it works

Tutorial: Scripting Root Motion for "in-place" humanoid animations

Legacy animation system

Animation View Guide (Legacy)

Animation Scripting (Legacy)

Navmesh and Pathfinding (Pro only)

Navmesh Baking

Sound

Game Interface Elements

Networked Multiplayer
Page last updated: 2010-06-30

Instantiating Prefabs

By this point you should understand the concept of Prefabs at a fundamental level. They are a collection of predefined

GameObjects & Components that are re-usable throughout your game. If you don't know what a Prefab is, we recommend

you read the Prefabs page for a more basic introduction.

Prefabs come in very handy when you want to instantiate complicated GameObjects at runtime. The alternative to instantiating

Prefabs is to create GameObjects from scratch using code. Instantiating Prefabs has many advantages over the alternative

approach:

You can instantiate a Prefab from one line of code, with complete functionality. Creating equivalent GameObjects from

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

125 of 1131 12/16/2012 10:12 PM

code takes an average of five lines of code, but likely more.

You can set up, test, and modify the Prefab quickly and easily in the Scene and Inspector.

You can change the Prefab being instanced without changing the code that instantiates it. A simple rocket might be altered

into a super-charged rocket, and no code changes are required.

Common Scenarios
To illustrate the strength of Prefabs, let's consider some basic situations where they would come in handy:

Building a wall out of a single "brick" Prefab by creating it several times in different positions.1.

A rocket launcher instantiates a flying rocket Prefab when fired. The Prefab contains a Mesh, Rigidbody, Collider,

and a child GameObject with its own trail Particle System.

2.

A robot exploding to many pieces. The complete, operational robot is destroyed and replaced with a wrecked robot

Prefab. This Prefab would consist of the robot split into many parts, all set up with Rigidbodies and Particle Systems of

their own. This technique allows you to blow up a robot into many pieces, with just one line of code, replacing one

object with a Prefab.

3.

Building a wall

This explanation will illustrate the advantages of using a Prefab vs creating objects from code.

First, lets build a brick wall from code:

// JavaScript
function Start () {
 for (var y = 0; y < 5; y++) {
 for (var x = 0; x < 5; x++) {
 var cube = GameObject.CreatePrimitive(PrimitiveType.Cube);
 cube.AddComponent(Rigidbody);
 cube.transform.position = Vector3 (x, y, 0);
 }
 }
}

// C#
public class Instantiation : MonoBehaviour {

void Start() {
for (int y = 0; y < 5; y++) {

for (int x = 0; x < 5; x++) {
GameObject cube = GameObject.CreatePrimitive(PrimitiveType.Cube);
cube.AddComponent<Rigidbody>();
cube.transform.position = new Vector3(x, y, 0);

}
}

}
}

To use the above script we simply save the script and drag it onto an empty GameObject.

Create an empty GameObject with GameObject->Create Empty.

If you execute that code, you will see an entire brick wall is created when you enter Play Mode. There are two lines relevant

to the functionality of each individual brick: the CreatePrimitive() line, and the AddComponent() line. Not so bad right now,

but each of our bricks is un-textured. Every additional action to want to perform on the brick, like changing the texture, the

friction, or the Rigidbody mass, is an extra line.

If you create a Prefab and perform all your setup before-hand, you use one line of code to perform the creation and setup of

each brick. This relieves you from maintaining and changing a lot of code when you decide you want to make changes. With a

Prefab, you just make your changes and Play. No code alterations required.

If you're using a Prefab for each individual brick, this is the code you need to create the wall.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

126 of 1131 12/16/2012 10:12 PM

// JavaScript

var brick : Transform;
function Start () {
 for (var y = 0; y < 5; y++) {
 for (var x = 0; x < 5; x++) {
 Instantiate(brick, Vector3 (x, y, 0), Quaternion.identity);
 }
 }
}

// C#
public Transform brick;

void Start() {
for (int y = 0; y < 5; y++) {

for (int x = 0; x < 5; x++) {
Instantiate(brick, new Vector3(x, y, 0), Quaternion.identity);

}
}

}

This is not only very clean but also very reusable. There is nothing saying we are instantiating a cube or that it must contain a

rigidbody. All of this is defined in the Prefab and can be quickly created in the Editor.

Now we only need to create the Prefab, which we do in the Editor. Here's how:

Choose GameObject->Create Other->Cube1.

Choose Component->Physics->Rigidbody2.

Choose Assets->Create->Prefab3.

In the Project View, change the name of your new Prefab to "Brick"4.

Drag the cube you created in the Hierarchy onto the "Brick" Prefab in the Project View5.

With the Prefab created, you can safely delete the Cube from the Hierarchy (Delete on Windows, Command-

Backspace on Mac)

6.

We've created our Brick Prefab, so now we have to attach it to the brick variable in our script. Select the empty GameObject

that contains the script. Notice that a new variable has appeared in the Inspector, called "brick".

This variable can accept any GameObject or Prefab

Now drag the "Brick" Prefab from the Project View onto the brick variable in the Inspector. Press Play and you'll see the wall

built using the Prefab.

This is a workflow pattern that can be used over and over again in Unity. In the beginning you might wonder why this is so

much better, because the script creating the cube from code is only 2 lines longer.

But because you are using a Prefab now, you can adjust the Prefab in seconds. Want to change the mass of all those

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

127 of 1131 12/16/2012 10:12 PM

instances? Adjust the Rigidbody in the Prefab only once. Want to use a different Material for all the instances? Drag the

Material onto the Prefab only once. Want to change friction? Use a different Physic Material in the Prefab's collider. Want to

add a Particle System to all those boxes? Add a child to the Prefab only once.

Instantiating rockets & explosions

Here's how Prefabs fit into this scenario:

A rocket launcher instantiates a rocket Prefab when the user presses fire. The Prefab contains a mesh, Rigidbody,

Collider, and a child GameObject that contains a trail particle system.

1.

The rocket impacts and instantiates an explosion Prefab. The explosion Prefab contains a Particle System, a light that

fades out over time, and a script that applies damage to surrounding GameObjects.

2.

While it would be possible to build a rocket GameObject completely from code, adding Components manually and setting

properties, it is far easier to instantiate a Prefab. You can instantiate the rocket in just one line of code, no matter how complex

the rocket's Prefab is. After instantiating the Prefab you can also modify any properties of the instantiated object (e.g. you can

set the velocity of the rocket's Rigidbody).

Aside from being easier to use, you can update the prefab later on. So if you are building a rocket, you don't immediately have

to add a Particle trail to it. You can do that later. As soon as you add the trail as a child GameObject to the Prefab, all your

instantiated rockets will have particle trails. And lastly, you can quickly tweak the properties of the rocket Prefab in the

Inspector, making it far easier to fine-tune your game.

This script shows how to launch a rocket using the Instantiate() function.

// JavaScript

// Require the rocket to be a rigidbody.
// This way we the user can not assign a prefab without rigidbody
var rocket : Rigidbody;
var speed = 10.0;

function FireRocket () {
 var rocketClone : Rigidbody = Instantiate(rocket, transform.position, transform.rotation);
 rocketClone.velocity = transform.forward * speed;
 // You can also acccess other components / scripts of the clone
 rocketClone.GetComponent(MyRocketScript).DoSomething();
}

// Calls the fire method when holding down ctrl or mouse
function Update () {
 if (Input.GetButtonDown("Fire1")) {
 FireRocket();
 }
}

// C#

// Require the rocket to be a rigidbody.
// This way we the user can not assign a prefab without rigidbody
public Rigidbody rocket;
public float speed = 10f;

void FireRocket () {
Rigidbody rocketClone = (Rigidbody) Instantiate(rocket, transform.position, transform.rotation);
rocketClone.velocity = transform.forward * speed;

// You can also acccess other components / scripts of the clone
rocketClone.GetComponent<MyRocketScript>().DoSomething();

}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

128 of 1131 12/16/2012 10:12 PM

// Calls the fire method when holding down ctrl or mouse
void Update () {

if (Input.GetButtonDown("Fire1")) {
FireRocket();

}
}

Replacing a character with a ragdoll or wreck

Let's say you have a fully rigged enemy character and he dies. You could simply play a death animation on the character and

disable all scripts that usually handle the enemy logic. You probably have to take care of removing several scripts, adding

some custom logic to make sure that no one will continue attacking the dead enemy anymore, and other cleanup tasks.

A far better approach is to immediately delete the entire character and replace it with an instantiated wrecked prefab. This

gives you a lot of flexibility. You could use a different material for the dead character, attach completely different scripts, spawn

a Prefab containing the object broken into many pieces to simulate a shattered enemy, or simply instantiate a Prefab

containing a version of the character.

Any of these options can be achieved with a single call to Instantiate(), you just have to hook it up to the right prefab and

you're set!

The important part to remember is that the wreck which you Instantiate() can be made of completely different objects than the

original. For example, if you have an airplane, you would model two versions. One where the plane consists of a single

GameObject with Mesh Renderer and scripts for airplane physics. By keeping the model in just one GameObject, your game

will run faster since you will be able to make the model with less triangles and since it consists of fewer objects it will render

faster than using many small parts. Also while your plane is happily flying around there is no reason to have it in separate

parts.

To build a wrecked airplane Prefab, the typical steps are:

Model your airplane with lots of different parts in your favorite modeler1.

Create an empty Scene2.

Drag the model into the empty Scene3.

Add Rigidbodies to all parts, by selecting all the parts and choosing Component->Physics->Rigidbody4.

Add Box Colliders to all parts by selecting all the parts and choosing Component->Physics->Box Collider5.

For an extra special effect, add a smoke-like Particle System as a child GameObject to each of the parts6.

Now you have an airplane with multiple exploded parts, they fall to the ground by physics and will create a Particle trail

due to the attached particle system. Hit Play to preview how your model reacts and do any necessary tweaks.

7.

Choose Assets->Create Prefab8.

Drag the root GameObject containing all the airplane parts into the Prefab9.

// JavaScript

var wreck : GameObject;

// As an example, we turn the game object into a wreck after 3 seconds automatically
function Start () {
 yield WaitForSeconds(3);
 KillSelf();
}

// Calls the fire method when holding down ctrl or mouse
function KillSelf () {
 // Instantiate the wreck game object at the same position we are at
 var wreckClone = Instantiate(wreck, transform.position, transform.rotation);

 // Sometimes we need to carry over some variables from this object
 // to the wreck
 wreckClone.GetComponent(MyScript).someVariable = GetComponent(MyScript).someVariable;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

129 of 1131 12/16/2012 10:12 PM

 // Kill ourselves
 Destroy(gameObject);

// C#

public GameObject wreck;

// As an example, we turn the game object into a wreck after 3 seconds automatically
IEnumerator Start() {

yield return new WaitForSeconds(3);
KillSelf();

}

// Calls the fire method when holding down ctrl or mouse
void KillSelf () {

// Instantiate the wreck game object at the same position we are at
GameObject wreckClone = (GameObject) Instantiate(wreck, transform.position, transform.rotation);

// Sometimes we need to carry over some variables from this object
// to the wreck
wreckClone.GetComponent<MyScript>().someVariable = GetComponent<MyScript>().someVariable;

// Kill ourselves
Destroy(gameObject);

}

}

The First Person Shooter tutorial explains how to replace a character with a ragdoll version and also synchronize limbs with

the last state of the animation. You can find that tutorial on the Tutorials page.

Placing a bunch of objects in a specific pattern

Lets say you want to place a bunch of objects in a grid or circle pattern. Traditionally this would be done by either:

Building an object completely from code. This is tedious! Entering values from a script is both slow, unintuitive and not

worth the hassle.

1.

Make the fully rigged object, duplicate it and place it multiple times in the scene. This is tedious, and placing objects

accurately in a grid is hard.

2.

So use Instantiate() with a Prefab instead! We think you get the idea of why Prefabs are so useful in these scenarios. Here's

the code necessary for these scenarios:

// JavaScript

// Instantiates a prefab in a circle

var prefab : GameObject;
var numberOfObjects = 20;
var radius = 5;

function Start () {
 for (var i = 0; i < numberOfObjects; i++) {
 var angle = i * Mathf.PI * 2 / numberOfObjects;
 var pos = Vector3 (Mathf.Cos(angle), 0, Mathf.Sin(angle)) * radius;
 Instantiate(prefab, pos, Quaternion.identity);
 }
}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

130 of 1131 12/16/2012 10:12 PM

// C#
// Instantiates a prefab in a circle

public GameObject prefab;
public int numberOfObjects = 20;
public float radius = 5f;

void Start() {
for (int i = 0; i < numberOfObjects; i++) {

float angle = i * Mathf.PI * 2 / numberOfObjects;
Vector3 pos = new Vector3(Mathf.Cos(angle), 0, Mathf.Sin(angle)) * radius;
Instantiate(prefab, pos, Quaternion.identity);

}
}

// JavaScript

// Instantiates a prefab in a grid

var prefab : GameObject;
var gridX = 5;
var gridY = 5;
var spacing = 2.0;

function Start () {
 for (var y = 0; y < gridY; y++) {
 for (var x=0;x<gridX;x++) {
 var pos = Vector3 (x, 0, y) * spacing;
 Instantiate(prefab, pos, Quaternion.identity);
 }
 }
}

// C#

// Instantiates a prefab in a grid

public GameObject prefab;
public float gridX = 5f;
public float gridY = 5f;
public float spacing = 2f;

void Start() {
for (int y = 0; y < gridY; y++) {

for (int x = 0; x < gridX; x++) {
Vector3 pos = new Vector3(x, 0, y) * spacing;
Instantiate(prefab, pos, Quaternion.identity);

}
}

}

Page last updated: 2012-10-09

Input

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

131 of 1131 12/16/2012 10:12 PM

 Desktop

Note: Keyboard, joystick and gamepad input work on the desktop versions of Unity (including webplayer and Flash) but not on

mobiles.

Unity supports keyboard, joystick and gamepad input.

Virtual axes and buttons can be created in the Input Manager, and end users can configure Keyboard input in a nice screen

configuration dialog.

You can setup joysticks, gamepads, keyboard, and mouse, then access them all through one simple scripting interface.

From scripts, all virtual axes are accessed by their name.

Every project has the following default input axes when it's created:

Horizontal and Vertical are mapped to w, a, s, d and the arrow keys.

Fire1, Fire2, Fire3 are mapped to Control, Option (Alt), and Command, respectively.

Mouse X and Mouse Y are mapped to the delta of mouse movement.

Window Shake X and Window Shake Y is mapped to the movement of the window.

Adding new Input Axes

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

132 of 1131 12/16/2012 10:12 PM

If you want to add new virtual axes go to the Edit->Project Settings->Input menu. Here you can also change the settings of

each axis.

You map each axis to two buttons on a joystick, mouse, or keyboard keys.

Name The name of the string used to check this axis from a script.

Descriptive Name Positive value name displayed in the input tab of the Configuration dialog for standalone builds.

Descriptive Negative

Name

Negative value name displayed in the Input tab of the Configuration dialog for standalone builds.

Negative Button The button used to push the axis in the negative direction.

Positive Button The button used to push the axis in the positive direction.

Alt Negative Button Alternative button used to push the axis in the negative direction.

Alt Positive Button Alternative button used to push the axis in the positive direction.

Gravity Speed in units per second that the axis falls toward neutral when no buttons are pressed.

Dead Size of the analog dead zone. All analog device values within this range result map to neutral.

Sensitivity Speed in units per second that the the axis will move toward the target value. This is for digital

devices only.

Snap If enabled, the axis value will reset to zero when pressing a button of the opposite direction.

Invert If enabled, the Negative Buttons provide a positive value, and vice-versa.

Type The type of inputs that will control this axis.

Axis The axis of a connected device that will control this axis.

Joy Num The connected Joystick that will control this axis.

Use these settings to fine tune the look and feel of input. They are all documented with tooltips in the Editor as well.

Using Input Axes from Scripts

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

133 of 1131 12/16/2012 10:12 PM

You can query the current state from a script like this:

value = Input.GetAxis ("Horizontal");

An axis has a value between -1 and 1. The neutral position is 0. This is the case for joystick input and keyboard input.

However, Mouse Delta and Window Shake Delta are how much the mouse or window moved during the last frame. This

means it can be larger than 1 or smaller than -1 when the user moves the mouse quickly.

It is possible to create multiple axes with the same name. When getting the input axis, the axis with the largest absolute value

will be returned. This makes it possible to assign more than one input device to one axis name. For example, create one axis

for keyboard input and one axis for joystick input with the same name. If the user is using the joystick, input will come from the

joystick, otherwise input will come from the keyboard. This way you don't have to consider where the input comes from when

writing scripts.

Button Names

To map a key to an axis, you have to enter the key's name in the Positive Button or Negative Button property in the

Inspector.

The names of keys follow this convention:

Normal keys: "a", "b", "c" ...

Number keys: "1", "2", "3", ...

Arrow keys: "up", "down", "left", "right"

Keypad keys: "[1]", "[2]", "[3]", "[+]", "[equals]"

Modifier keys: "right shift", "left shift", "right ctrl", "left ctrl", "right alt", "left alt", "right cmd", "left cmd"

Mouse Buttons: "mouse 0", "mouse 1", "mouse 2", ...

Joystick Buttons (from any joystick): "joystick button 0", "joystick button 1", "joystick button 2", ...

Joystick Buttons (from a specific joystick): "joystick 1 button 0", "joystick 1 button 1", "joystick 2 button 0", ...

Special keys: "backspace", "tab", "return", "escape", "space", "delete", "enter", "insert", "home", "end", "page up", "page

down"

Function keys: "f1", "f2", "f3", ...

The names used to identify the keys are the same in the scripting interface and the Inspector.

value = Input.GetKey ("a");

Mobile Input

On iOS and Android, the Input class offers access to touchscreen, accelerometer and geographical/location input.

Access to keyboard on mobile devices is provided via the iOS keyboard.

Multi-Touch Screen
The iPhone and iPod Touch devices are capable of tracking up to five fingers touching the screen simultaneously. You can

retrieve the status of each finger touching the screen during the last frame by accessing the Input.touches property array.

Android devices don't have a unified limit on how many fingers they track. Instead, it varies from device to device and can be

anything from two-touch on older devices to five fingers on some newer devices.

Each finger touch is represented by an Input.Touch data structure:

fingerId The unique index for a touch.

position The screen position of the touch.

deltaPosition The screen position change since the last frame.

deltaTime Amount of time that has passed since the last state change.

tapCount The iPhone/iPad screen is able to distinguish quick finger taps by the user. This counter will let you

know how many times the user has tapped the screen without moving a finger to the sides.

Android devices do not count number of taps, this field is always 1.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

134 of 1131 12/16/2012 10:12 PM

phase Describes so called "phase" or the state of the touch. It can help you determine if the touch just

began, if user moved the finger or if he just lifted the finger.

Phase can be one of the following:

Began A finger just touched the screen.

Moved A finger moved on the screen.

StationaryA finger is touching the screen but hasn't moved since the last frame.

Ended A finger was lifted from the screen. This is the final phase of a touch.

Canceled The system cancelled tracking for the touch, as when (for example) the user puts the device to her face or more

than five touches happened simultaneously. This is the final phase of a touch.

Following is an example script which will shoot a ray whenever the user taps on the screen:

var particle : GameObject;
function Update () {

for (var touch : Touch in Input.touches) {
if (touch.phase == TouchPhase.Began) {

// Construct a ray from the current touch coordinates
var ray = Camera.main.ScreenPointToRay (touch.position);
if (Physics.Raycast (ray)) {

// Create a particle if hit
Instantiate (particle, transform.position, transform.rotation);

}
}

}
}

Mouse Simulation

On top of native touch support Unity iOS/Android provides a mouse simulation. You can use mouse functionality from the

standard Input class.

Device Orientation
Unity iOS/Android allows you to get discrete description of the device physical orientation in three-dimensional space.

Detecting a change in orientation can be useful if you want to create game behaviors depending on how the user is holding

the device.

You can retrieve device orientation by accessing the Input.deviceOrientation property. Orientation can be one of the following:

Unknown The orientation of the device cannot be determined. For example when device is rotate diagonally.

Portrait The device is in portrait mode, with the device held upright and the home button at the bottom.

PortraitUpsideDownThe device is in portrait mode but upside down, with the device held upright and the home button at the

top.

LandscapeLeft The device is in landscape mode, with the device held upright and the home button on the right side.

LandscapeRight The device is in landscape mode, with the device held upright and the home button on the left side.

FaceUp The device is held parallel to the ground with the screen facing upwards.

FaceDown The device is held parallel to the ground with the screen facing downwards.

Accelerometer
As the mobile device moves, a built-in accelerometer reports linear acceleration changes along the three primary axes in three-

dimensional space. Acceleration along each axis is reported directly by the hardware as G-force values. A value of 1.0

represents a load of about +1g along a given axis while a value of -1.0 represents -1g. If you hold the device upright (with the

home button at the bottom) in front of you, the X axis is positive along the right, the Y axis is positive directly up, and the Z axis

is positive pointing toward you.

You can retrieve the accelerometer value by accessing the Input.acceleration property.

The following is an example script which will move an object using the accelerometer:

var speed = 10.0;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

135 of 1131 12/16/2012 10:12 PM

function Update () {
var dir : Vector3 = Vector3.zero;

// we assume that the device is held parallel to the ground
// and the Home button is in the right hand

// remap the device acceleration axis to game coordinates:
// 1) XY plane of the device is mapped onto XZ plane
// 2) rotated 90 degrees around Y axis
dir.x = -Input.acceleration.y;
dir.z = Input.acceleration.x;

// clamp acceleration vector to the unit sphere
if (dir.sqrMagnitude > 1)

dir.Normalize();

// Make it move 10 meters per second instead of 10 meters per frame...
dir *= Time.deltaTime;

// Move object
transform.Translate (dir * speed);

}

Low-Pass Filter

Accelerometer readings can be jerky and noisy. Applying low-pass filtering on the signal allows you to smooth it and get rid of

high frequency noise.

The following script shows you how to apply low-pass filtering to accelerometer readings:

var AccelerometerUpdateInterval : float = 1.0 / 60.0;
var LowPassKernelWidthInSeconds : float = 1.0;

private var LowPassFilterFactor : float = AccelerometerUpdateInterval / LowPassKernelWidthInSeconds; // tweakable
private var lowPassValue : Vector3 = Vector3.zero;
function Start () {

lowPassValue = Input.acceleration;
}

function LowPassFilterAccelerometer() : Vector3 {
lowPassValue = Mathf.Lerp(lowPassValue, Input.acceleration, LowPassFilterFactor);
return lowPassValue;

}

The greater the value of LowPassKernelWidthInSeconds, the slower the filtered value will converge towards the current

input sample (and vice versa). You should be able to use the LowPassFilter() function instead of avgSamples().

I'd like as much precision as possible when reading the accelerometer. What should I do?

Reading the Input.acceleration variable does not equal sampling the hardware. Put simply, Unity samples the hardware at a

frequency of 60Hz and stores the result into the variable. In reality, things are a little bit more complicated -- accelerometer

sampling doesn't occur at consistent time intervals, if under significant CPU loads. As a result, the system might report 2

samples during one frame, then 1 sample during the next frame.

You can access all measurements executed by accelerometer during the frame. The following code will illustrate a simple

average of all the accelerometer events that were collected within the last frame:

var period : float = 0.0;
var acc : Vector3 = Vector3.zero;
for (var evnt : iPhoneAccelerationEvent in iPhoneInput.accelerationEvents) {

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

136 of 1131 12/16/2012 10:12 PM

acc += evnt.acceleration * evnt.deltaTime;
period += evnt.deltaTime;

}
if (period > 0)

acc *= 1.0/period;
return acc;

Further Reading
The Unity mobile input API is originally based on Apple's API. It may help to learn more about the native API to better

understand Unity's Input API. You can find the Apple input API documentation here:

Programming Guide: Event Handling (Apple iPhone SDK documentation)

UITouch Class Reference (Apple iOS SDK documentation)

Note: The above links reference your locally installed iPhone SDK Reference Documentation and will contain native

ObjectiveC code. It is not necessary to understand these documents for using Unity on mobile devices, but may be helpful to

some!

 iOS

Device geographical location
Device geographical location can be obtained via the iPhoneInput.lastLocation property. Before calling this property you

should start location service updates using iPhoneSettings.StartLocationServiceUpdates() and check the service status via

iPhoneSettings.locationServiceStatus. See the scripting reference for details.

Page last updated: 2012-06-28

Transforms

Transforms are a key Component in every GameObject. They dictate where the GameObject is positioned, how it is

rotated, and its scale. It is impossible to have a GameObject without a Transform. You can adjust the Transform of any

GameObject from the Scene View, the Inspector, or through Scripting.

The remainder of this page's text is from the Transform Component Reference page.

Transform

The Transform Component determines the Position, Rotation, and Scale of each object in the scene. Every object has a

Transform.

The Transform Component is editable in the Scene View and in the Inspector

Properties
Position Position of the Transform in X, Y, and Z coordinates.

Rotation Rotation of the Transform around the X, Y, and Z axes, measured in degrees.

Scale Scale of the Transform along X, Y, and Z axes. Value "1" is the original size (size at which the object

was imported).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

137 of 1131 12/16/2012 10:12 PM

All properties of a Transform are measured relative to the Transform's parent (see below for further details). If the Transform

has no parent, the properties are measured relative to World Space.

Using Transforms
Transforms are always manipulated in 3D space in the X, Y, and Z axes. In Unity, these axes are represented by the colors

red, green, and blue respectively. Remember: XYZ = RGB.

Color-coded relationship between the three axes and Transform properties

Transforms can be directly manipulated in the Scene View or by editing properties in the Inspector. In the scene, you can

modify Transforms using the Move, Rotate and Scale tools. These tools are located in the upper left-hand corner of the Unity

Editor.

The View, Translate, Rotate, and Scale tools

The tools can be used on any object in the scene. When you click on an object, you will see the tool gizmo appear within it.

The appearance of the gizmo depends on which tool is selected.

All three Gizmos can be directly edited in the Scene View.

When you click and drag on one of the three gizmo axes, you will notice that its color changes. As you drag the mouse, you will

see the object translate, rotate, or scale along the selected axis. When you release the mouse button, the axis remains

selected. You can click the middle mouse button and drag the mouse to manipulate the Transform along the selected axis.

Any individual axis will become selected when you click on it

Around the centre of the Transform gizmo are three coloured squares. These allow you to drag the Transform in a single plane

(ie, the object will move in two axes but be held still in the third axis).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

138 of 1131 12/16/2012 10:12 PM

Dragging in the XZ plane

Parenting
Parenting is one of the most important concepts to understand when using Unity. When a GameObject is a Parent of another

GameObject, the Child GameObject will move, rotate, and scale exactly as its Parent does. Just like your arms are attached to

your body, when you turn your body, your arms move because they're attached. Any object can have multiple children, but only

one parent.

You can create a Parent by dragging any GameObject in the Hierarchy View onto another. This will create a Parent-Child

relationship between the two GameObjects.

Example of a Parent-Child hierarchy. GameObjects with foldout arrows to the left of their names are parents.

In the above example, we say that the arms are parented to the body and the hands are parented to the arms. The scenes you

make in Unity will contain collections of these Transform hierarchies. The topmost parent object is called the Root object.

When you move, scale or rotate a parent, all the changes in its Transform are applied to its children as well.

It is worth pointing out that the Transform values in the Inspector of any Child GameObject are displayed relative to the

Parent's Transform values. These are also called the Local Coordinates. Through scripting, you can access the Global

Coordinates as well as the local coordinates.

You can build compound objects by parenting several separate objects together, for example, the skeletal structure of a human

ragdoll. You can also achieve useful effects with simple hierarchies. For example, if you have a horror game that takes place at

night, you can create an effective atmosphere with a flashlight. To create this object, you would parent a spotlight Transform to

the flashlight Transform. Then, any alteration of the flashlight Transform will affect the spotlight, creating a convincing flashlight

effect.

Performance Issues and Limitations with Non-Uniform Scaling
Non-uniform scaling is when the Scale in a Transform has different values for x, y, and z; for example (2, 4, 2). In contrast,

uniform scaling has the same value for x, y, and z; for example (3, 3, 3). Non-uniform scaling can be useful in a few select

cases but should be avoided whenever possible.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

139 of 1131 12/16/2012 10:12 PM

Non-uniform scaling has a negative impact on rendering performance. In order to transform vertex normals correctly, we

transform the mesh on the CPU and create an extra copy of the data. Normally we can keep the mesh shared between

instances in graphics memory, but in this case you pay both a CPU and memory cost per instance.

There are also certain limitations in how Unity handles non-uniform scaling:

Certain components do not fully support non-uniform scaling. For example, for components with a radius property or

similar, such as a Sphere Collider, Capsule Collider, Light, Audio Source etc., the shape will never become elliptical

but remain circular/spherical regardless of non-uniform scaling.

A child object that has a non-uniformly scaled parent and is rotated relative to that parent may have a non-orthogonal

matrix, meaning that it may appear skewed. Some components that do support simple non-uniform scaling still do not

support non-orthogonal matrices. For example, a Box Collider cannot be skewed so if its transform is non-orthogonal, the

Box Collider will not match the shape of the rendered mesh accurately.

For performance reasons, a child object that has a non-uniformly scaled parent will not have its scale/matrix automatically

updated while rotating. This may result in popping of the scale once the scale is updated, for example if the object is

detached from its parent.

Importance of Scale
The scale of the Transform determines the difference between the size of your mesh in your modeling application and the size

of your mesh in Unity. The mesh's size in Unity (and therefore the Transform's scale) is very important, especially during

physics simulation. There are three factors that can affect the scale of your object:

The size of your mesh in your 3D modeling application.

The Mesh Scale Factor setting in the object's Import Settings.

The Scale values of your Transform Component.

Ideally, you should not adjust the Scale of your object in the Transform Component. The best option is to create your models

at real-life scale so you won't have to change your Transform's scale. The next best option is to adjust the scale at which your

mesh is imported in the Import Settings for your individual mesh. Certain optimizations occur based on the import size, and

instantiating an object that has an adjusted scale value can decrease performance. For more information, see the section

about optimizing scale on the Rigidbody component reference page.

Hints
When parenting Transforms, set the parent's location to <0,0,0> before adding the child. This will save you many

headaches later.

Particle Systems are not affected by the Transform's Scale. In order to scale a Particle System, you need to modify the

properties in the System's Particle Emitter, Animator and Renderer.

If you are using Rigidbodies for physics simulation, there is some important information about the Scale property on the

Rigidbody component reference page.

You can change the colors of the Transform axes (and other UI elements) from the preferences (Menu: Unity >

Preferences and then select the Colors & keys panel).

It is best to avoid scaling within Unity if possible. Try to have the scales of your object finalized in your 3D modeling

application, or in the Import Settings of your mesh.
Page last updated: 2007-11-16

Physics

Unity has NVIDIA PhysX physics engine built-in. This allows for unique emergent behaviour and has many useful features.

Basics
To put an object under physics control, simply add a Rigidbody to it. When you do this, the object will be affected by gravity,

and can collide with other objects in the world.

Rigidbodies

Rigidbodies are physically simulated objects. You use Rigidbodies for things that the player can push around, for example

crates or loose objects, or you can move Rigidbodies around directly by adding forces to it by scripting.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

140 of 1131 12/16/2012 10:12 PM

If you move the Transform of a non-Kinematic Rigidbody directly it may not collide correctly with other objects. Instead you

should move a Rigidbody by applying forces and torque to it. You can also add Joints to rigidbodies to make the behavior more

complex. For example, you could make a physical door or a crane with a swinging chain.

You also use Rigidbodies to bring vehicles to life, for example you can make cars using a Rigidbody, 4 Wheel Colliders and a

script applying wheel forces based on the user's Input.

You can make airplanes by applying forces to the Rigidbody from a script. Or you can create special vehicles or robots by

adding various Joints and applying forces via scripting.

Rigidbodies are most often used in combination with primitive colliders.

Tips:

You should never have a parent and child rigidbody together

You should never scale the parent of a rigidbody

Kinematic Rigidbodies

A Kinematic Rigidbody is a Rigidbody that has the isKinematic option enabled. Kinematic Rigidbodies are not affected by

forces, gravity or collisions. They are driven explicitly by setting the position and rotation of the Transform or animating them,

yet they can interact with other non-Kinematic Rigidbodies.

Kinematic Rigidbodies correctly wake up other Rigidbodies when they collide with them, and they apply friction to Rigidbodies

placed on top of them.

These are a few example uses for Kinematic Rigidbodies:

Sometimes you want an object to be under physics control but in another situation to be controlled explicitly from a

script or animation. For example you could make an animated character whose bones have Rigidbodies attached that

are connected with joints for use as a Ragdoll. Most of the time the character is under animation control, thus you

make the Rigidbody Kinematic. But when he gets hit you want him to turn into a Ragdoll and be affected by physics. To

accomplish this, you simply disable the isKinematic property.

1.

Sometimes you want a moving object that can push other objects yet not be pushed itself. For example if you have an

animated platform and you want to place some Rigidbody boxes on top, you should make the platform a Kinematic

Rigidbody instead of just a Collider without a Rigidbody.

2.

You might want to have a Kinematic Rigidbody that is animated and have a real Rigidbody follow it using one of the

available Joints.

3.

Static Colliders

A Static Collider is a GameObject that has a Collider but not a Rigidbody. Static Colliders are used for level geometry which

always stays at the same place and never moves around. You can add a Mesh Collider to your already existing graphical

meshes (even better use the Import Settings Generate Colliders check box), or you can use one of the other Collider types.

You should never move a Static Collider on a frame by frame basis. Moving Static Colliders will cause an internal

recomputation in PhysX that is quite expensive and which will result in a big drop in performance. On top of that the behaviour

of waking up other Rigidbodies based on a Static Collider is undefined, and moving Static Colliders will not apply friction to

Rigidbodies that touch it. Instead, Colliders that move should always be Kinematic Rigidbodies.

Character Controllers

You use Character Controllers if you want to make a humanoid character. This could be the main character in a third person

platformer, FPS shooter or any enemy characters.

These Controllers don't follow the rules of physics since it will not feel right (in Doom you run 90 miles per hour, come to halt in

one frame and turn on a dime). Instead, a Character Controller performs collision detection to make sure your characters can

slide along walls, walk up and down stairs, etc.

Character Controllers are not affected by forces but they can push Rigidbodies by applying forces to them from a script.

Usually, all humanoid characters are implemented using Character Controllers.

Character Controllers are inherently unphysical, thus if you want to apply real physics - Swing on ropes, get pushed by big

rocks - to your character you have to use a Rigidbody, this will let you use joints and forces on your character. Character

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

141 of 1131 12/16/2012 10:12 PM

Controllers are always aligned along the Y axis, so you also need to use a Rigidbody if your character needs to be able to

change orientation in space (for example under a changing gravity). However, be aware that tuning a Rigidbody to feel right for

a character is hard due to the unphysical way in which game characters are expected to behave. Another difference is that

Character Controllers can slide smoothly over steps of a specified height, while Rigidbodies will not.

If you parent a Character Controller with a Rigidbody you will get a "Joint" like behavior.

Rigidbody

Rigidbodies enable your GameObjects to act under the control of physics. The Rigidbody can receive forces and torque to

make your objects move in a realistic way. Any GameObject must contain a Rigidbody to be influenced by gravity, act under

added forces via scripting, or interact with other objects through the NVIDIA PhysX physics engine.

Rigidbodies allow GameObjects to act under physical influence

Properties
Mass The mass of the object (arbitrary units). It is recommended to make masses not more or less than

100 times that of other Rigidbodies.

Drag How much air resistance affects the object when moving from forces. 0 means no air resistance, and

infinity makes the object stop moving immediately.

Angular Drag How much air resistance affects the object when rotating from torque. 0 means no air resistance, and

infinity makes the object stop rotating immediately.

Use Gravity If enabled, the object is affected by gravity.

Is Kinematic If enabled, the object will not be driven by the physics engine, and can only be manipulated by its

Transform. This is useful for moving platforms or if you want to animate a Rigidbody that has a

HingeJoint attached.

Interpolate Try one of the options only if you are seeing jerkiness in your Rigidbody's movement.

None No Interpolation is applied.

Interpolate Transform is smoothed based on the Transform of the previous frame.

Extrapolate Transform is smoothed based on the estimated Transform of the next frame.

Collision Detection Used to prevent fast moving objects from passing through other objects without detecting collisions.

Discrete Use Discreet collision detection against all other colliders in the scene. Other colliders will use

Discreet collision detection when testing for collision against it. Used for normal collisions (This is the

default value).

Continuous Use Discrete collision detection against dynamic colliders (with a rigidbody) and continuous collision

detection against static MeshColliders (without a rigidbody). Rigidbodies set to Continuous Dynamic

will use continuous collision detection when testing for collision against this rigidbody. Other

rigidbodies will use Discreet Collision detection. Used for objects which the Continuous Dynamic

detection needs to collide with. (This has a big impact on physics performance, leave it set to

Discrete, if you don't have issues with collisions of fast objects)

Continuous

Dynamic

Use continuous collision detection against objects set to Continuous and Continuous Dynamic

Collision. It will also use continuous collision detection against static MeshColliders (without a

rigidbody). For all other colliders it uses discreet collision detection. Used for fast moving objects.

Constraints Restrictions on the Rigidbody's motion:-

Freeze Position Stops the Rigidbody moving in the world X, Y and Z axes selectively.

Freeze Rotation Stops the Rigidbody rotating around the world X, Y and Z axes selectively.

Details

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

142 of 1131 12/16/2012 10:12 PM

Rigidbodies allow your GameObjects to act under control of the physics engine. This opens the gateway to realistic collisions,

varied types of joints, and other very cool behaviors. Manipulating your GameObjects by adding forces to a Rigidbody creates

a very different feel and look than adjusting the Transform Component directly. Generally, you shouldn't manipulate the

Rigidbody and the Transform of the same GameObject - only one or the other.

The biggest difference between manipulating the Transform versus the Rigidbody is the use of forces. Rigidbodies can receive

forces and torque, but Transforms cannot. Transforms can be translated and rotated, but this is not the same as using physics.

You'll notice the distinct difference when you try it for yourself. Adding forces/torque to the Rigidbody will actually change the

object's position and rotation of the Transform component. This is why you should only be using one or the other. Changing

the Transform while using physics could cause problems with collisions and other calculations.

Rigidbodies must be explicitly added to your GameObject before they will be affected by the physics engine. You can add a

Rigidbody to your selected object from Components->Physics->Rigidbody in the menubar. Now your object is physics-

ready; it will fall under gravity and can receive forces via scripting, but you may need to add a Collider or a Joint to get it to

behave exactly how you want.

Parenting

When an object is under physics control, it moves semi-independently of the way its transform parents move. If you move any

parents, they will pull the Rigidbody child along with them. However, the Rigidbodies will still fall down due to gravity and react

to collision events.

Scripting

To control your Rigidbodies, you will primarily use scripts to add forces or torque. You do this by calling AddForce() and

AddTorque() on the object's Rigidbody. Remember that you shouldn't be directly altering the object's Transform when you are

using physics.

Animation

For some situations, mainly creating ragdoll effects, it is neccessary to switch control of the object between animations and

physics. For this purpose Rigidbodies can be marked isKinematic. While the Rigidbody is marked isKinematic, it will not be

affected by collisions, forces, or any other part of physX. This means that you will have to control the object by manipulating

the Transform component directly. Kinematic Rigidbodies will affect other objects, but they themselves will not be affected by

physics. For example, Joints which are attached to Kinematic objects will constrain any other Rigidbodies attached to them

and Kinematic Rigidbodies will affect other Rigidbodies through collisions.

Colliders

Colliders are another kind of component that must be added alongside the Rigidbody in order to allow collisions to occur. If two

Rigidbodies bump into each other, the physics engine will not calculate a collision unless both objects also have a Collider

attached. Collider-less Rigidbodies will simply pass through each other during physics simulation.

Colliders define the physical boundaries of a Rigidbody

Add a Collider with the Component->Physics menu. View the Component Reference page of any individual Collider for more

specific information:

Box Collider - primitive shape of a cube

Sphere Collider - primitive shape of a sphere

Capsule Collider - primitive shape of a capsule

Mesh Collider - creates a collider from the object's mesh, cannot collide with another Mesh Collider

Wheel Collider - specifically for creating cars or other moving vehicles

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

143 of 1131 12/16/2012 10:12 PM

Compound Colliders

Compound Colliders are combinations of primitive Colliders, collectively acting as a single Collider. They come in handy when

you have a complex mesh to use in collisions but cannot use a Mesh Collider. To create a Compound Collider, create child

objects of your colliding object, then add a primitive Collider to each child object. This allows you to position, rotate, and scale

each Collider easily and independently of one another.

A real-world Compound Collider setup

In the above picture, the Gun Model GameObject has a Rigidbody attached, and multiple primitive Colliders as child

GameObjects. When the Rigidbody parent is moved around by forces, the child Colliders move along with it. The primitive

Colliders will collide with the environment's Mesh Collider, and the parent Rigidbody will alter the way it moves based on forces

being applied to it and how its child Colliders interact with other Colliders in the Scene.

Mesh Colliders can't normally collide with each other. If a Mesh Collider is marked as Convex, then it can collide with another

Mesh Collider. The typical solution is to use primitive Colliders for any objects that move, and Mesh Colliders for static

background objects.

Continuous Collision Detection

Continuous collision detection is a feature to prevent fast-moving colliders from passing each other. This may happen when

using normal (Discrete) collision detection, when an object is one side of a collider in one frame, and already passed the

collider in the next frame. To solve this, you can enable continuous collision detection on the rigidbody of the fast-moving

object. Set the collision detection mode to Continuous to prevent the rigidbody from passing through any static (ie,

non-rigidbody) MeshColliders. Set it to Continuous Dynamic to also prevent the rigidbody from passing through any other

supported rigidbodies with collision detection mode set to Continuous or Continuous Dynamic. Continuous collision

detection is supported for Box-, Sphere- and CapsuleColliders. Note that continuous collision detection is intended as a safety

net to catch collisions in cases where objects would otherwise pass through each other, but will not deliver physically accurate

collision results, so you might still consider decreasing the fixed Time step value in the TimeManager inspector to make the

simulation more precise, if you run into problems with fast moving objects.

Use the right size
The size of the your GameObject's mesh is much more important than the mass of the Rigidbody. If you find that your

Rigidbody is not behaving exactly how you expect - it moves slowly, floats, or doesn't collide correctly - consider adjusting the

scale of your mesh asset. Unity's default unit scale is 1 unit = 1 meter, so the scale of your imported mesh is maintained, and

applied to physics calculations. For example, a crumbling skyscraper is going to fall apart very differently than a tower made of

toy blocks, so objects of different sizes should be modeled to accurate scale.

If you are modeling a human make sure he is around 2 meters tall in Unity. To check if your object has the right size compare it

to the default cube. You can create a cube using GameObject->Create Other->Cube. The cube's height will be exactly 1

meter, so your human should be twice as tall.

If you aren't able to adjust the mesh itself, you can change the uniform scale of a particular mesh asset by selecting it in

Project View and choosing Assets->Import Settings... from the menubar. Here, you can change the scale and re-import

your mesh.

If your game requires that your GameObject needs to be instantiated at different scales, it is okay to adjust the values of your

Transform's scale axes. The downside is that the physics simulation must do more work at the time the object is instantiated,

and could cause a performance drop in your game. This isn't a terrible loss, but it is not as efficient as finalizing your scale with

the other two options. Also keep in mind that non-uniform scales can create undesirable behaviors when Parenting is used.

For these reasons it is always optimal to create your object at the correct scale in your modeling application.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

144 of 1131 12/16/2012 10:12 PM

Hints
The relative Mass of two Rigidbodies determines how they react when they collide with each other.

Making one Rigidbody have greater Mass than another does not make it fall faster in free fall. Use Drag for that.

A low Drag value makes an object seem heavy. A high one makes it seem light. Typical values for Drag are between .001

(solid block of metal) and 10 (feather).

If you are directly manipulating the Transform component of your object but still want physics, attach a Rigidbody and make

it Kinematic.

If you are moving a GameObject through its Transform component but you want to receive Collision/Trigger messages, you

must attach a Rigidbody to the object that is moving.

Constant Force

Constant Force is a quick utility for adding constant forces to a Rigidbody. This works great for one shot objects like rockets,

if you don't want it to start with a large velocity but instead accelerate.

A rocket propelled forward by a Constant Force

Properties
Force The vector of a force to be applied in world space.

Relative Force The vector of a force to be applied in the object's local space.

Torque The vector of a torque, applied in world space. The object will begin spinning around this vector. The

longer the vector is, the faster the rotation.

Relative Torque The vector of a torque, applied in local space. The object will begin spinning around this vector. The

longer the vector is, the faster the rotation.

Details

To make a rocket that accelerates forward set the Relative Force to be along the positive z-axis. Then use the Rigidbody's

Drag property to make it not exceed some maximum velocity (the higher the drag the lower the maximum velocity will be). In

the Rigidbody, also make sure to turn off gravity so that the rocket will always stay on its path.

Hints
To make an object flow upwards, add a Constant Force with the Force property having a positive Y value.

To make an object fly forwards, add a Constant Force with the Relative Force property having a positive Z value.

Sphere Collider

The Sphere Collider is a basic sphere-shaped collision primitive.

A pile of Sphere Colliders

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

145 of 1131 12/16/2012 10:12 PM

Properties
Is Trigger If enabled, this Collider is used for triggering events, and is ignored by the physics engine.

Material Reference to the Physics Material that determines how this Collider interacts with others.

Radius The size of the Collider.

Center The position of the Collider in the object's local space.

Details
The Sphere Collider can be resized to uniform scale, but not along individual axes. It works great for falling boulders, ping

pong balls, marbles, etc.

A standard Sphere Collider

Colliders work with Rigidbodies to bring physics in Unity to life. Whereas Rigidbodies allow objects to be controlled by physics,

Colliders allow objects to collide with each other. Colliders must be added to objects independently of Rigidbodies. A Collider

does not necessarily need a Rigidbody attached, but a Rigidbody must be attached in order for the object to move as a result

of collisions.

When a collision between two Colliders occurs and if at least one of them has a Rigidbody attached, three collision messages

are sent out to the objects attached to them. These events can be handled in scripting, and allow you to create unique

behaviors with or without making use of the built-in NVIDIA PhysX engine.

Triggers

An alternative way of using Colliders is to mark them as a Trigger, just check the IsTrigger property checkbox in the Inspector.

Triggers are effectively ignored by the physics engine, and have a unique set of three trigger messages that are sent out when

a collision with a Trigger occurs. Triggers are useful for triggering other events in your game, like cutscenes, automatic door

opening, displaying tutorial messages, etc. Use your imagination!

Be aware that in order for two Triggers to send out trigger events when they collide, one of them must include a Rigidbody as

well. For a Trigger to collide with a normal Collider, one of them must have a Rigidbody attached. For a detailed chart of

different types of collisions, see the collision action matrix in the Advanced section below.

Friction and bounciness

Friction, bounciness and softness are defined in the Physisc Material. The Standard Assets contain the most common physics

materials. To use one of them click on the Physics Material drop-down and select one, eg. Ice. You can also create your own

physics materials and tweak all friction values.

Compound Colliders
Compound Colliders are combinations of primitive Colliders, collectively acting as a single Collider. They come in handy when

you have a complex mesh to use in collisions but cannot use a Mesh Collider. To create a Compound Collider, create child

objects of your colliding object, then add a primitive Collider to each child object. This allows you to position, rotate, and scale

each Collider easily and independently of one another.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

146 of 1131 12/16/2012 10:12 PM

A real-world Compound Collider setup

In the above picture, the Gun Model GameObject has a Rigidbody attached, and multiple primitive Colliders as child

GameObjects. When the Rigidbody parent is moved around by forces, the child Colliders move along with it. The primitive

Colliders will collide with the environment's Mesh Collider, and the parent Rigidbody will alter the way it moves based on forces

being applied to it and how its child Colliders interact with other Colliders in the Scene.

Mesh Colliders can't normally collide with each other. If a Mesh Collider is marked as Convex, then it can collide with another

Mesh Collider. The typical solution is to use primitive Colliders for any objects that move, and Mesh Colliders for static

background objects.

Hints
To add multiple Colliders for an object, create child GameObjects and attach a Collider to each one. This allows each

Collider to be manipulated independently.

You can look at the gizmos in the Scene View to see how the Collider is being calculated on your object.

Colliders do their best to match the scale of an object. If you have a non-uniform scale (a scale which is different in each

direction), only the Mesh Collider can match completely.

If you are moving an object through its Transform component but you want to receive Collision/Trigger messages, you

must attach a Rigidbody to the object that is moving.

If you make an explosion, it can be very effective to add a rigidbody with lots of drag and a sphere collider to it in order to

push it out a bit from the wall it hits.

Advanced

Collider combinations

There are numerous different combinations of collisions that can happen in Unity. Each game is unique, and different

combinations may work better for different types of games. If you're using physics in your game, it will be very helpful to

understand the different basic Collider types, their common uses, and how they interact with other types of objects.

Static Collider

These are GameObjects that do not have a Rigidbody attached, but do have a Collider attached. These objects should

remain still, or move very little. These work great for your environment geometry. They will not move if a Rigidbody collides

with them.

Rigidbody Collider

These GameObjects contain both a Rigidbody and a Collider. They are completely affected by the physics engine through

scripted forces and collisions. They might collide with a GameObject that only contains a Collider. These will likely be your

primary type of Collider in games that use physics.

Kinematic Rigidbody Collider

This GameObject contains a Collider and a Rigidbody which is marked IsKinematic. To move this GameObject, you modify its

Transform Component, rather than applying forces. They're similar to Static Colliders but will work better when you want to

move the Collider around frequently. There are some other specialized scenarios for using this GameObject.

This object can be used for circumstances in which you would normally want a Static Collider to send a trigger event. Since a

Trigger must have a Rigidbody attached, you should add a Rigidbody, then enable IsKinematic. This will prevent your Object

from moving from physics influence, and allow you to receive trigger events when you want to.

Kinematic Rigidbodies can easily be turned on and off. This is great for creating ragdolls, when you normally want a character

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

147 of 1131 12/16/2012 10:12 PM

to follow an animation, then turn into a ragdoll when a collision occurs, prompted by an explosion or anything else you choose.

When this happens, simply turn all your Kinematic Rigidbodies into normal Rigidbodies through scripting.

If you have Rigidbodies come to rest so they are not moving for some time, they will "fall asleep". That is, they will not be

calculated during the physics update since they are not going anywhere. If you move a Kinematic Rigidbody out from

underneath normal Rigidbodies that are at rest on top of it, the sleeping Rigidbodies will "wake up" and be correctly calculated

again in the physics update. So if you have a lot of Static Colliders that you want to move around and have different object fall

on them correctly, use Kinematic Rigidbody Colliders.

Collision action matrix

Depending on the configurations of the two colliding Objects, a number of different actions can occur. The chart below outlines

what you can expect from two colliding Objects, based on the components that are attached to them. Some of the

combinations only cause one of the two Objects to be affected by the collision, so keep the standard rule in mind - physics will

not be applied to objects that do not have Rigidbodies attached.

Collision detection occurs and messages are sent upon collision

 Static

Collider

Rigidbody

Collider

Kinematic

Rigidbody

Collider

Static

Trigger

Collider

Rigidbody

Trigger

Collider

Kinematic

Rigidbody

Trigger Collider

Static Collider Y

Rigidbody Collider Y Y Y

Kinematic Rigidbody Collider Y

Static Trigger Collider

Rigidbody Trigger Collider

Kinematic Rigidbody Trigger

Collider

Trigger messages are sent upon collision

 Static

Collider

Rigidbody

Collider

Kinematic

Rigidbody

Collider

Static

Trigger

Collider

Rigidbody

Trigger

Collider

Kinematic

Rigidbody

Trigger Collider

Static Collider Y Y

Rigidbody Collider Y Y Y

Kinematic Rigidbody Collider Y Y Y

Static Trigger Collider Y Y Y Y

Rigidbody Trigger Collider Y Y Y Y Y Y

Kinematic Rigidbody Trigger

Collider

Y Y Y Y Y Y

Layer-Based Collision Detection

In Unity 3.x we introduce something called Layer-Based Collision Detection, and you can now selectively tell Unity

GameObjects to collide with specific layers they are attached to. For more information click here

Box Collider

The Box Collider is a basic cube-shaped collision primitive.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

148 of 1131 12/16/2012 10:12 PM

A pile of Box Colliders

Properties
Is Trigger If enabled, this Collider is used for triggering events, and is ignored by the physics engine.

Material Reference to the Physics Material that determines how this Collider interacts with others.

Center The position of the Collider in the object's local space.

Size The size of the Collider in the X, Y, Z directions.

Details
The Box Collider can be resized into different shapes of rectangular prisms. It works great for doors, walls, platforms, etc. It is

also effective as a human torso in a ragdoll or as a car hull in a vehicle. Of course, it works perfectly for just boxes and crates

as well!

A standard Box Collider

Colliders work with Rigidbodies to bring physics in Unity to life. Whereas Rigidbodies allow objects to be controlled by physics,

Colliders allow objects to collide with each other. Colliders must be added to objects independently of Rigidbodies. A Collider

does not necessarily need a Rigidbody attached, but a Rigidbody must be attached in order for the object to move as a result

of collisions.

When a collision between two Colliders occurs and if at least one of them has a Rigidbody attached, three collision messages

are sent out to the objects attached to them. These events can be handled in scripting, and allow you to create unique

behaviors with or without making use of the built-in NVIDIA PhysX engine.

Triggers

An alternative way of using Colliders is to mark them as a Trigger, just check the IsTrigger property checkbox in the Inspector.

Triggers are effectively ignored by the physics engine, and have a unique set of three trigger messages that are sent out when

a collision with a Trigger occurs. Triggers are useful for triggering other events in your game, like cutscenes, automatic door

opening, displaying tutorial messages, etc. Use your imagination!

Be aware that in order for two Triggers to send out trigger events when they collide, one of them must include a Rigidbody as

well. For a Trigger to collide with a normal Collider, one of them must have a Rigidbody attached. For a detailed chart of

different types of collisions, see the collision action matrix in the Advanced section below.

Friction and bounciness

Friction, bounciness and softness are defined in the Physisc Material. The Standard Assets contain the most common physics

materials. To use one of them click on the Physics Material drop-down and select one, eg. Ice. You can also create your own

physics materials and tweak all friction values.

Mesh Collider

The Mesh Collider takes a Mesh Asset and builds its Collider based on that mesh. It is far more accurate for collision

detection than using primitives for complicated meshes. Mesh Colliders that are marked as Convex can collide with other

Mesh Colliders.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

149 of 1131 12/16/2012 10:12 PM

A Mesh Collider used on level geometry

Properties
Is Trigger If enabled, this Collider is used for triggering events, and is ignored by the physics engine.

Material Reference to the Physics Material that determines how this Collider interacts with others.

Mesh Reference to the Mesh to use for collisions.

Smooth Sphere

Collisions

When this is enabled, collision mesh normals are smoothed. You should enable this on smooth

surfaces eg. rolling terrain without hard edges to make sphere rolling smoother.

Convex If enabled, this Mesh Collider will collide with other Mesh Colliders. Convex Mesh Colliders are

limited to 255 triangles.

Details
The Mesh Collider builds its collision representation from the Mesh attached to the GameObject, and reads the properties of

the attached Transform to set its position and scale correctly.

Collision meshes use backface culling. If an object collides with a mesh that will be backface culled graphically it will also not

collide with it physically.

There are some limitations when using the Mesh Collider. Usually, two Mesh Colliders cannot collide with each other. All Mesh

Colliders can collide with any primitive Collider. If your mesh is marked as Convex, then it can collide with other Mesh

Colliders.

Colliders work with Rigidbodies to bring physics in Unity to life. Whereas Rigidbodies allow objects to be controlled by physics,

Colliders allow objects to collide with each other. Colliders must be added to objects independently of Rigidbodies. A Collider

does not necessarily need a Rigidbody attached, but a Rigidbody must be attached in order for the object to move as a result

of collisions.

When a collision between two Colliders occurs and if at least one of them has a Rigidbody attached, three collision messages

are sent out to the objects attached to them. These events can be handled in scripting, and allow you to create unique

behaviors with or without making use of the built-in NVIDIA PhysX engine.

Triggers

An alternative way of using Colliders is to mark them as a Trigger, just check the IsTrigger property checkbox in the Inspector.

Triggers are effectively ignored by the physics engine, and have a unique set of three trigger messages that are sent out when

a collision with a Trigger occurs. Triggers are useful for triggering other events in your game, like cutscenes, automatic door

opening, displaying tutorial messages, etc. Use your imagination!

Be aware that in order for two Triggers to send out trigger events when they collide, one of them must include a Rigidbody as

well. For a Trigger to collide with a normal Collider, one of them must have a Rigidbody attached. For a detailed chart of

different types of collisions, see the collision action matrix in the Advanced section below.

Friction and bounciness

Friction, bounciness and softness are defined in the Physisc Material. The Standard Assets contain the most common physics

materials. To use one of them click on the Physics Material drop-down and select one, eg. Ice. You can also create your own

physics materials and tweak all friction values.

Hints

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

150 of 1131 12/16/2012 10:12 PM

Mesh Colliders cannot collide with each other unless they are marked as Convex. Therefore, they are most useful for

background objects like environment geometry.

Convex Mesh Colliders must be fewer than 255 triangles.

Primitive Colliders are less costly for objects under physics control.

When you attach a Mesh Collider to a GameObject, its Mesh property will default to the mesh being rendered. You can

change that by assigning a different Mesh.

To add multiple Colliders for an object, create child GameObjects and attach a Collider to each one. This allows each

Collider to be manipulated independently.

You can look at the gizmos in the Scene View to see how the Collider is being calculated on your object.

Colliders do their best to match the scale of an object. If you have a non-uniform scale (a scale which is different in each

direction), only the Mesh Collider can match completely.

If you are moving an object through its Transform component but you want to receive Collision/Trigger messages, you

must attach a Rigidbody to the object that is moving.

Physics Material

The Physics Material is used to adjust friction and bouncing effects of colliding objects.

To create a Physics Material select Assets->Create->Physics Material from the menu bar. Then drag the Physics Material

from the Project View onto a Collider in the scene.

The Physics Material Inspector

Properties
Dynamic Friction The friction used when already moving. Usually a value from 0 to 1. A value of zero feels like ice, a

value of 1 will make it come to rest very quickly unless a lot of force or gravity pushes the object.

Static Friction The friction used when an object is laying still on a surface. Usually a value from 0 to 1. A value of

zero feels like ice, a value of 1 will make it very hard to get the object moving.

Bounciness How bouncy is the surface? A value of 0 will not bounce. A value of 1 will bounce without any loss of

energy.

Friction Combine

Mode

How the friction of two colliding objects is combined.

Average The two friction values are averaged.

Min The smallest of the two values is used.

Max The largest of the two values is used.

Multiply The friction values are multiplied with each other.

Bounce Combine How the bounciness of two colliding objects is combined. It has the same modes as Friction Combine

Mode

Friction Direction 2 The direction of anisotropy. Anisotropic friction is enabled if this direction is not zero. Dynamic

Friction 2 and Static Friction 2 will be applied along Friction Direction 2.

Dynamic Friction 2 If anisotropic friction is enabled, DynamicFriction2 will be applied along Friction Direction 2.

Static Friction 2 If anisotropic friction is enabled, StaticFriction2 will be applied along Friction Direction 2.

Details
Friction is the quantity which prevents surfaces from sliding off each other. This value is critical when trying to stack objects.

Friction comes in two forms, dynamic and static. Static friction is used when the object is lying still. It will prevent the object

from starting to move. If a large enough force is applied to the object it will start moving. At this point Dynamic Friction will

come into play. Dynamic Friction will now attempt to slow down the object while in contact with another.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

151 of 1131 12/16/2012 10:12 PM

Hints
Don't try to use a standard physics material for the main character. Make a customized one and get it perfect.

Hinge Joint

The Hinge Joint groups together two Rigidbodies, constraining them to move like they are connected by a hinge. It is perfect

for doors, but can also be used to model chains, pendulums, etc.

The Hinge Joint Inspector

Properties
Connected Body Optional reference to the Rigidbody that the joint is dependent upon. If not set, the joint connects to

the world.

Anchor The position of the axis around which the body swings. The position is defined in local space.

Axis The direction of the axis around which the body swings. The direction is defined in local space.

Use Spring Spring makes the Rigidbody reach for a specific angle compared to its connected body.

Spring Properties of the Spring that are used if Use Spring is enabled.

Spring The force the object asserts to move into the position.

Damper The higher this value, the more the object will slow down.

Target Position Target angle of the spring. The spring pulls towards this angle measured in degrees.

Use Motor The motor makes the object spin around.

Motor Properties of the Motor that are used if Use Motor is enabled.

Target Velocity The speed the object tries to attain.

Force The force applied in order to attain the speed.

Free Spin If enabled, the motor is never used to brake the spinning, only accelerate it.

Use Limits If enabled, the angle of the hinge will be restricted within the Min & Max values.

Limits Properties of the Limits that are used if Use Limits is enabled.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

152 of 1131 12/16/2012 10:12 PM

Min The lowest angle the rotation can go.

Max The highest angle the rotation can go.

Min Bounce How much the object bounces when it hits the minimum stop.

Max Bounce How much the object bounces when it hits the maximum stop.

Break Force The force that needs to be applied for this joint to break.

Break Torque The torque that needs to be applied for this joint to break.

Details
A single Hinge Joint should be applied to a GameObject. The hinge will rotate at the point specified by the Anchor property,

moving around the specified Axis property. You do not need to assign a GameObject to the joint's Connected Body

property. You should only assign a GameObject to the Connected Body property if you want the joint's Transform to be

dependent on the attached object's Transform.

Think about how the hinge of a door works. The Axis in this case is up, positive along the Y axis. The Anchor is placed

somewhere at the intersection between door and wall. You would not need to assign the wall to the Connected Body,

because the joint will be connected to the world by default.

Now think about a doggy door hinge. The doggy door's Axis would be sideways, positive along the relative X axis. The main

door should be assigned as the Connected Body, so the doggy door's hinge is dependent on the main door's Rigidbody.

Chains

Multiple Hinge Joints can also be strung together to create a chain. Add a joint to each link in the chain, and attach the next

link as the Connected Body.

Hints
You do not need to assign a Connected Body to your joint for it to work.

Use Break Force in order to make dynamic damage systems. This is really cool as it allows the player to break a door off

its hinge by blasting it with a rocket launcher or running into it with a car.

The Spring, Motor, and Limits properties allow you to fine-tune your joint's behaviors.

Spring Joint

The Spring Joint groups together two Rigidbodies, constraining them to move like they are connected by a spring.

The Spring Joint Inspector

Properties
Connected Body Optional reference to the Rigidbody that the joint is dependent upon.

Anchor Position in the object's local space (at rest) that defines the center of the joint. This is not the point

that the object will be drawn toward.

X Position of the joint's local center along the X axis.

Y Position of the joint's local center along the Y axis.

Z Position of the joint's local center along the Z axis.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

153 of 1131 12/16/2012 10:12 PM

Spring Strength of the spring.

Damper Amount that the spring is reduced when active.

Min Distance Distances greater than this will not cause the Spring to activate.

Max Distance Distances less than this will not cause the Spring to activate.

Break Force The force that needs to be applied for this joint to break.

Break Torque The torque that needs to be applied for this joint to break.

Details
Spring Joints allows a Rigidbodied GameObject to be pulled toward a particular "target" position. This position will either be

another Rigidbodied GameObject or the world. As the GameObject travels further away from this "target" position, the Spring

Joint applies forces that will pull it back to its original "target" position. This creates an effect very similar to a rubber band or a

slingshot.

The "target" position of the Spring is determined by the relative position from the Anchor to the Connected Body (or the

world) when the Spring Joint is created, or when Play mode is entered. This makes the Spring Joint very effective at setting up

Jointed characters or objects in the Editor, but is harder to create push/pull spring behaviors in runtime through scripting. If you

want to primarily control a GameObject's position using a Spring Joint, it is best to create an empty GameObject with a

Rigidbody, and set that to be the Connected Rigidbody of the Jointed object. Then in scripting you can change the position

of the Connected Rigidbody and see your Spring move in the ways you expect.

Connected Rigidbody

You do not need to use a Connected Rigidbody for your joint to work. Generally, you should only use one if your object's

position and/or rotation is dependent on it. If there is no Connected Rigidbody, your Spring will connect to the world.

Spring & Damper

Spring is the strength of the force that draws the object back toward its "target" position. If this is 0, then there is no force that

will pull on the object, and it will behave as if no Spring Joint is attached at all.

Damper is the resistance encountered by the Spring force. The lower this is, the springier the object will be. As the Damper

is increased, the amount of bounciness caused by the Joint will be reduced.

Min & Max Distance

If the position of your object falls in-between the Min & Max Distances, then the Joint will not be applied to your object. The

position must be moved outside of these values for the Joint to activate.

Hints
You do not need to assign a Connected Body to your Joint for it to work.

Set the ideal positions of your Jointed objects in the Editor prior to entering Play mode.

Spring Joints require your object to have a Rigidbody attached.

 iOS

iOS physics optimization hints can be found here .

Page last updated: 2011-01-12

RandomNumbers

Randomly chosen items or values are important in many games. This sections shows how you can use Unity's built-in random

functions to implement some common game mechanics.

Choosing a Random Item from an Array
Picking an array element at random boils down to choosing a random integer between zero and the array's maximum index

value (which is equal to the length of the array minus one). This is easily done using the built-in Random.Range function:-

var element = myArray[Random.Range(0, myArray.Length)];

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

154 of 1131 12/16/2012 10:12 PM

Note that Random.Range returns a value from a range that includes the first parameter but excludes the second, so using

myArray.Length here gives the correct result.

Choosing Items with Different Probabilities
Sometimes, you need to choose items at random but with some items more likely to be chosen than others. For example, an

NPC may react in several different ways when it encounters a player:-

50% chance of friendly greeting

25% chance of running away

20% chance of immediate attack

5% chance of offering money as a gift

You can visualise these different outcomes as a paper strip divided into sections each of which occupies a fraction of the

strip's total length. The fraction occupied is equal to the probability of that outcome being chosen. Making the choice is

equivalent to picking a random point along the strip's length (say by throwing a dart) and then seeing which section it is in.

In the script, the paper strip is actually an array of floats that contain the different probabilities for the items in order. The

random point is obtained by multiplying Random.value by the total of all the floats in the array (they need not add up to 1; the

significant thing is the relative size of the different values). To find which array element the point is "in", firstly check to see if it

is less than the value in the first element. If so, then the first element is the one selected. Otherwise, subtract the first element's

value from the point value and compare that to the second element and so on until the correct element is found. In code, this

would look something like the following:-

function Choose(probs: float[]) {
var total = 0;

for (elem in probs) {
total += elem;

}

var randomPoint = Random.value * total;

for (i = 0; i < probs.Length; i++) {
if (randomPoint < probs[i])

return i;
else

randomPoint -= probs[i];
}

return probs.Length - 1;
}

Note that the final return statement is necessary because Random.value can return a result of 1. In this case, the search will

not find the random point anywhere. Changing the line

if (randomPoint < probs[i])

...to a less-than-or-equal test would avoid the extra return statement but would also allow an item to be chosen occasionally

even when its probability is zero.

Shuffling a List
A common game mechanic is to choose from a known set of items but have them arrive in random order. For example, a deck

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

155 of 1131 12/16/2012 10:12 PM

of cards is typically shuffled so they are not drawn in a predictable sequence. You can shuffle the items in an array by visiting

each element and swapping it with another element at a random index in the array:-

function Shuffle(deck: int[]) {
for (i = 0; i < deck.Length; i++) {

var temp = deck[i];
var randomIndex = Random.Range(0, deck.Length);
deck[i] = deck[randomIndex];
deck[randomIndex] = temp;

}
}

Choosing from a Set of Items Without Repetition
A common task is to pick a number of items randomly from a set without picking the same one more than once. For example,

you may want to generate a number of NPCs at random spawn points but be sure that only one NPC gets generated at each

point. This can be done by iterating through the items in sequence, making a random decision for each as to whether or not it

gets added to the chosen set. As each item is visited, the probability of its being chosen is equal to the number of items still

needed divided by the number still left to choose from.

As an example, suppose that ten spawn points are available but only five must be chosen. The probability of the first item

being chosen will be 5 / 10 or 0.5. If it is chosen then the probability for the second item will be 4 / 9 or 0.44 (ie, four items still

needed, nine left to choose from). However, if the first was not chosen then the probability for the second will be 5 / 9 or 0.56

(ie, five still needed, nine left to choose from). This continues until the set contains the five items required. You could

accomplish this in code as follows:-

var spawnPoints: Transform[];

function ChooseSet(numRequired: int) {
var result = new Transform[numRequired];

var numToChoose = numRequired;

for (numLeft = spawnPoints.Length; numLeft > 0; numLeft--) {
// Adding 0.0 is simply to cast the integers to float for the division.
var prob = numToChoose + 0.0 / numLeft + 0.0;

if (Random.value <= prob) {
numToChoose--;
result[numToChoose] = spawnPoints[numLeft - 1];

if (numToChoose == 0)
break;

}
}

return result;
}

Note that although the selection is random, items in the chosen set will be in the same order they had in the original array. If

the items are to be used one at a time in sequence then the ordering can make them partly predictable, so it may be necessary

to shuffle the array before use.

Random Points in Space
A random point in a cubic volume can be chosen by setting each component of a Vector3 to a value returned by

Random.value:-

var randVec = Vector3(Random.value, Random.value, Random.value);

This gives a point inside a cube with sides one unit long. The cube can be scaled simply by multiplying the X, Y and Z

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

156 of 1131 12/16/2012 10:12 PM

components of the vector by the desired side lengths. If one of the axes is set to zero, the point will always lie within a single

plane. For example, picking a random point on the "ground" is usually a matter of setting the X and Z components randomly

and setting the Y component to zero.

When the volume is a sphere (ie, when you want a random point within a given radius from a point of origin), you can use

Random.insideUnitSphere multiplied by the desired radius:-

var randWithinRadius = Random.insideUnitSphere * radius;

Note that if you set one of the resulting vector's components to zero, you will *not* get a correct random point within a circle.

Although the point is indeed random and lies within the right radius, the probability is heavily biased toward the edge of the

circle and so points will be spread very unevenly. You should use Random.insideUnitCircle for this task instead:-

var randWithinCircle = Random.insideUnitCircle * radius;

Page last updated: 2011-09-12

Particle Systems

Note: This is the documentation for the new particle system (Shuriken). For documentation on the legacy particle system go to

Legacy Particle System.

Particle System (Shuriken)

Particle Systems in Unity are used to make clouds of smoke, steam, fire and other atmospheric effects.

You can create a new particle system by creating a Particle System GameObject (menu GameObject -> Create Other ->

Particle System) or by creating an empty GameObject and adding the ParticleSystem component to it (in

Component->Effects)

The Particle System Inspector (Shuriken)
The Particle System Inspector shows one particle system at a time (the currently selected one), and it looks like this:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

157 of 1131 12/16/2012 10:12 PM

Individual particle systems can take on various complex behaviors by using Modules.

They can also be extended by being grouped together into Particle Effects.

If you press the button Open Editor ..., this will open up the Extended Particle Editor, that shows all of the particle systems

under the same root in the scene tree. For more information on particle system grouping, see the section on Particle Effects.

Scene View Editing
When creating and editing Particle Systems, you either work with the Inspector or the extended Particle Editor, and your

changes are reflected in the SceneView. The scene view has a Preview Panel, where playback of the currently selected

Particle Effect can be controlled in Edit Mode, with actions like play, pause, stop and scrubbing playback time

Scrubbing play back time can be performed by dragging on the label Playback Time. All Playback controls have shortcut keys

which can be customized in the Preferences window

Particle System Curve Editor

MinMax curves
Many of the properties in the particle system modules describe a change of a value with time. That change is described via

MinMax Curves. These time-animated properties (for example size and speed), will have a pull down menu on the right hand

side, where you can choose between:

Constant: The value of the property will not change with time, and will not be displayed in the Curve Editor

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

158 of 1131 12/16/2012 10:12 PM

Random between constants: The value of the property will be selected at random between the two constants

Curve: The value of the property will change with time based on the curve specified in the Curve Editor

A property animated with a Curve

Random between curves: A curve will be generated at random between the min and the max curve, and the value of the

property will change in time based on the generated curve

A property animated as Random Between Two Curves

In the Curve Editor, the x-axis spans time between 0 and the value specified by the Duration property, and the y-axis

represents the value of the animated property at each point in time. The range of the y-axis can be adjusted in the number field

in the upper right corner of the Curve Editor. The Curve Editor currently displays all of the curves for a particle system in the

same window.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

159 of 1131 12/16/2012 10:12 PM

Multiple curves in the same curve editor

Note that the "-" in the bottom-right corner will remove the currently selected curve, while the "+" will optimize it (that is make it

into a parametrized curve with at most 3 keys).

For animating properties that describe vectors in 3D space, we use the TripleMinMax Curves, which are simply curves for the

x-,y-, and z- dimensions side by side, and it looks like this:

Managing many curves in the curve editor
To avoid cluttering in the Curve Editor, it is possible to toggle curves on and off, by clicking on them in the inspector. The

Particle System Curve Editor can also be detached from the Inspector by right-clicking on the Particle System Curves title

bar, after which you should see something like this:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

160 of 1131 12/16/2012 10:12 PM

A detached Curve Editor that can be docked like any other window

For more information on working with curves, take a look at the Curve Editor documentation

Colors and Gradients in the Particle System (Shuriken)

For properties that deal with color, the Particle System makes use of the Color and Gradient Editor. It works in a similar

way to the Curve Editor.

The color-based properties will have a pull down menu on the right hand side, where you can choose between:

Color: The color will be the same throughout time (see Color Picker)

Gradient: The gradient (RGBA) will vary throughout time, edited in the Gradient Editor

Random Between Two Colors: The color varies with time and is chosen at random between two values specified in the

Color Picker

Random Between Two Gradients: The gradient (RGBA) varies with time and is chosen at random between two values

specified Gradient Editor

Particle System Curve Editor

Colors and Gradients in the Particle System (Shuriken)

Gradient Editor

Particle System Inspector

Introduction to Particle System Modules (Shuriken)

Particle System Modules (Shuriken)

Particle Effects (Shuriken)
Page last updated: 2012-01-13

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

161 of 1131 12/16/2012 10:12 PM

Particle System Curve Editor

MinMax curves
Many of the properties in the particle system modules describe a change of a value with time. That change is described via

MinMax Curves. These time-animated properties (for example size and speed), will have a pull down menu on the right hand

side, where you can choose between:

Constant: The value of the property will not change with time, and will not be displayed in the Curve Editor

Random between constants: The value of the property will be selected at random between the two constants

Curve: The value of the property will change with time based on the curve specified in the Curve Editor

A property animated with a Curve

Random between curves: A curve will be generated at random between the min and the max curve, and the value of the

property will change in time based on the generated curve

A property animated as Random Between Two Curves

In the Curve Editor, the x-axis spans time between 0 and the value specified by the Duration property, and the y-axis

represents the value of the animated property at each point in time. The range of the y-axis can be adjusted in the number field

in the upper right corner of the Curve Editor. The Curve Editor currently displays all of the curves for a particle system in the

same window.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

162 of 1131 12/16/2012 10:12 PM

Multiple curves in the same curve editor

Note that the "-" in the bottom-right corner will remove the currently selected curve, while the "+" will optimize it (that is make it

into a parametrized curve with at most 3 keys).

For animating properties that describe vectors in 3D space, we use the TripleMinMax Curves, which are simply curves for the

x-,y-, and z- dimensions side by side, and it looks like this:

Managing many curves in the curve editor
To avoid cluttering in the Curve Editor, it is possible to toggle curves on and off, by clicking on them in the inspector. The

Particle System Curve Editor can also be detached from the Inspector by right-clicking on the Particle System Curves title

bar, after which you should see something like this:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

163 of 1131 12/16/2012 10:12 PM

A detached Curve Editor that can be docked like any other window

For more information on working with curves, take a look at the Curve Editor documentation

Page last updated: 2012-01-16

Particle System Color Editor

For properties that deal with color, the Particle System makes use of the Color and Gradient Editor. It works in a similar

way to the Curve Editor.

The color-based properties will have a pull down menu on the right hand side, where you can choose between:

Color: The color will be the same throughout time (see Color Picker)

Gradient: The gradient (RGBA) will vary throughout time, edited in the Gradient Editor

Random Between Two Colors: The color varies with time and is chosen at random between two values specified in the

Color Picker

Random Between Two Gradients: The gradient (RGBA) varies with time and is chosen at random between two values

specified Gradient Editor

Page last updated: 2012-01-13

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

164 of 1131 12/16/2012 10:12 PM

Particle System Gradient Editor

Gradient editor

The Gradient Editor is used for describing change of gradient with time. It animates the color (RGB-space, described by the

markers at the bottom), and Alpha (described by the markers at the top).

You can add new markers for Alpha values by clicking near the top of the rectangle, and new ticks for Color by clicking near

the bottom. The markers can be intuitively dragged along the timeline.

If an Alpha tick is selected, you can edit the value for that tick by dragging the alpha value.

If a Color tick is selected, the color can be modified by double clicking on the tick or clicking on the color bar.

To remove a marker, just drag it off the screen.

Page last updated: 2012-08-28

Particle System Inspector

The Particle System Inspector (Shuriken)
The Particle System Inspector shows one particle system at a time (the currently selected one), and it looks like this:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

165 of 1131 12/16/2012 10:12 PM

Individual particle systems can take on various complex behaviors by using Modules.

They can also be extended by being grouped together into Particle Effects.

If you press the button Open Editor ..., this will open up the Extended Particle Editor, that shows all of the particle systems

under the same root in the scene tree. For more information on particle system grouping, see the section on Particle Effects.

Page last updated: 2012-08-28

Particle System Modules Intro

A Particle System consists of a predefined set of modules that can be enabled and disabled. These modules describe the

behavior of particles in an individual particle system.

Initially only a few modules are enabled. Addding or removing modules changes the behavior of the particle system. You can

add new modules by pressing the (+) sign in the top-right corner of the Particle System Inspector. This pops up a selection

menu, where you can choose the module you want to enable.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

166 of 1131 12/16/2012 10:12 PM

An alternative way to work with modules is to select "Show All Modules", at which point all of the modules will show up in the

inspector.

Then you can enable / disable modules directly from the inspector by clicking the checkbox to the left.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

167 of 1131 12/16/2012 10:12 PM

Most of the properties are controllable by curves (see Curve Editor). Color properties are controlled via gradients which define

an animation for color (see Color Editor).

For details on individual modules and their properties, see Particle System Modules

Page last updated: 2012-10-25

Particle System Modules40

This page is dedicated to individual modules and their properties. For introduction to modules see this page

Initial Module

This module is always present, cannot be removed or disabled.

Duration The duration the Particle System will be emitting particles.

Looping Is the Particle System looping.

Prewarm Only looping systems can be prewarmed which means that the Particle System will have emitted

particles at start as if it had already emitted particles one cycle.

Start Delay Delay in seconds that this Particle System will wait before emitting particles. Note prewarmed looping

systems cannot use a start delay.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

168 of 1131 12/16/2012 10:12 PM

Start Lifetime The lifetime of particles in seconds (see MinMaxCurve).

Start Speed The speed of particles when emitted.(see MinMaxCurve).

Start Size The size of particles when emitted. (see MinMaxCurve).

Start Rotation The rotation of particles when emitted. (see MinMaxCurve).

Start Color The color of particles when emitted. (see MinMaxGradient).

Gravity Modifier The amount of gravity that will affect particles during their lifetime.

Inherit Velocity Factor for controlling the amount of velocity the particles should inherit of the transform of the Particle

System (for moving Particle Systems).

Simulation Space Simulate the Particle System in local space or world space.

Play On Awake If enabled the Particle System will automatically start when it's created.

Max Particles Max number of particles the Particle System will emit.

Emission Module

Controls the rate of particles being emitted and allows spawning large groups of particles at certain moments (over Particle

System duration time). Useful for explosions when a bunch of particles need to be created at once.

Rate Amount of particles emitted over Time (per second) or Distance (per meter). (see MinMaxCurve)

Bursts (Time option

only)

Add bursts of particles that occur within the duration of the Particle System

Time and Number

of Particles

Specify time (in seconds within duration) that a specified amount of particles should be emitted. Use

the + and - for adjusting number of bursts.

Shape Module

Defines the shape of the emitter: Sphere, Hemishpere, Cone, Box and Mesh. Can apply initial force along the surface normal

or random direction.

Sphere

Radius Radius of the sphere (can also be manipulated by handles in the Scene View)

Emit from Shell Emit from shell of the sphere. If disabled, particles will be emitted from the volume of the sphere.

Random Direction Should particles have have a random direction when emitted or a direction along the surface normal

of the sphere

Hemisphere

Radius Radius of the hemisphere (can also be manipulated by handles in the Scene View)

Emit from Shell Emit from shell of the hemisphere. If disabled particles will be emitted from the volume of the

hemisphere.

Random Direction Should particles have have a random direction when emitted or a direction along the surface normal

of the hemisphere.

Cone

Angle Angle of the cone. If angle is 0 then particles will be emitted in one direction. (can also be

manipulated by handles in the Scene View)

Radius A value larger than 0 when basically create a capped cone, using this will change emission from a

point to a disc.(can also be manipulated by handles in the Scene View)

Emit From Determines where emission originates from. Possible values are Base, Base Shell, Volume and

Volume Shell.

Box

Box X Scale of box in X (can also be manipulated by handles in the Scene View)

Box Y Scale of box in Y (can also be manipulated by handles in the Scene View)

Box Z Scale of box in Z (can also be manipulated by handles in the Scene View)

Random Direction Should particles have have a random direction when emitted or a direction along the Z-axis of the box

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

169 of 1131 12/16/2012 10:12 PM

Mesh

Type Particles can be emitted from either Vertex, Edge or Triangle

Mesh Select Mesh that should be used as emission shape

Random Direction Should particles have have a random direction when emitted or a direction along the surface of the

mesh

Velocity Over Lifetime Module

Directly animates velocity of the particle. Mostly useful for particles which has complex physical, but simple visual behavior

(like smoke with turbulence and temperature loss) and has little interaction with physical world.

XYZ Use either constant values for curves or random between curves for controlling the movement of the

particles. See MinMaxCurve.

Space Local / World: Are the velocity values in local space or world space

Limit Velocity Over Lifetime Module

Basically can be used to simulate drag. Dampens or clamps velocity, if it is over certain threshold. Can be configured per axis

or per vector length.

Separate Axis Use for setting per axis control.

Speed Specify magnitude as constant or by curve that will limit all axes of velocity.

XYZ Control each axis seperately. See MinMaxCurve.

Dampen (0-1) value that controls how much the exceeding velocity should be dampened. For example, a value

of 0.5 will dampen exceeding velocity by 50%

Force Over Lifetime Module

XYZ Use either constant values for curves or random between curves for controlling the force applied to

the particles. See MinMaxCurve.

Randomize Randomize the force applied to the particles every frame

Color Over Lifetime Module

Color Controls the color of each particle during its lifetime. If some particles have a shorter lifetime than

others, they will animate faster. Use constant color, random between two colors, animate it using

gradient or specify a random color using two gradients (see Gradient). Note that this colour will be

multiplied by the value in the Start Color property - if the Start Color is black then Color Over

Lifetime will not affect the particle.

Color Scale Use the color scale for easy adjustment of color or gradient.

Color By Speed Module

Animates particle color based on its speed. Remaps speed in the defined range to a color.

Color Color used for remapping of speed. Use gradients for varying colors. See MinMaxGradient.

Color Scale Use the color scale for easy adjustment of color or gradient.

Speed Range The min and max values for defining the speed range which is used for remapping a speed to a color.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

170 of 1131 12/16/2012 10:12 PM

Size Over Lifetime Module

Size Controls the size of each particle during its lifetime. Use constant size, animate it using a curve or

specify a random size using two curves. See MinMaxCurve.

Size By Speed Module

Size Size used for remapping of speed. Use curves for varying sizes. See MinMaxCurve.

Speed Range The min and max values for defining the speed range which is used for remapping a speed to a size.

Rotation Over Lifetime Module

Specify values in degrees.

Rotational Speed Controls the rotational speed of each particle during its lifetime. Use constant rotational speed,

animate it using a curve or specify a random rotational speed using two curves. See MinMaxCurve.

Rotation By Speed Module

Rotational Speed Rotational speed used for remapping of a particle's speed. Use curves for varying rotational speeds.

See MinMaxCurve.

Speed Range The min and max values for defining the speed range which is used for remapping a speed to a

rotational speed.

External Forces Module

Multiplier Scale factor that determines how much the particles are affected by wind zones (i.e., the wind force

vector is multiplied by this value).

Collision Module

Set up collisions for the particles of this Particle System. World and planar collisions are supported. Planar collision is very

efficient for simple collision detection. Planes are set up by referencing an existing transform in the scene or by creating a new

empty GameObject for this purpose. Another benefit of planar collision is that particle systems with collision planes can be set

up as prefabs. World collision uses raycasts so must be used with care in order to ensure good performance. However, for

cases where approximate collisions are acceptable world collision in Low or Medium quality can be very efficient.

Properties common for any Collision Module

Planes/World Specify the collision type: Planes for planar collision or World for world collisions.

Dampen (0-1) When the particle collides, it will keep this fraction of its speed. Unless it is set to 1.0, the

particle will become slower after collision.

Bounce (0-1) When the particle collides, it will keep this fraction of the component of the velocity, which is

normal to the plane of collision.

Lifetime Loss (0-1) The fraction of Start Lifetime lost on each collision. When lifetime reaches 0, the particle dies.

For example if a particle should die on first collision, set this to 1.0.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

171 of 1131 12/16/2012 10:12 PM

Min Kill Speed The minimum speed of a particle before it is killed.

Properties available only in the Planes Mode

Planes Planes are defined by assigning a reference to a transform. This transform can be any transform in

the scene and can be animated. Multiple planes can be used. Note: the Y-axis is used as the normal

of a plane.

Visualization Only used for visualizing the planes: Grid or Solid.

Grid Rendered as gizmos and is useful for quick indication of position and orientation in the world.

Solid Renders a plane in the scene which is useful for exact positioning of a plane.

Scale Plane Resizes the visualization planes.

Particle Radius The assumed radius of the particle for collision purposes.

Properties available only in the World Mode

Collides With Filter for specifying colliders. Select Everything to colllide with the whole world.

Collision Quality The quality of the world collision.

High All particles performs a scene raycast per frame. Note: This is CPU intensive, it should only be used

with 1000 simultaneous particles (scene wide) or less.

Medium The particle system receives a share of the globally set Particle Raycast Budget (see Particle

Raycast Budget) in each frame. Particles are updated in a round-robin fashion where particles that

do not receive a raycast in a given frame will lookup and use older collisions stored in a cache. Note:

This collision type is approximate and some particles will leak, particularly at corners.

Low Same as Medium except the particle system is only awarded a share of the Particle Raycast

Budget every fourth frame.

Voxel Size Density of the voxels used for caching intersections used in the Medium and Low quality setting.

The size of a voxel is given in scene units. Usually, 0.5 - 1.0 should be used (assuming metric units).

Sub Emitter Module

This is a powerful module that enables spawning of other Particle Systems at the follwing particle events: birth, death or

collision of a particle.

Birth Spawn another Particle System at birth of each particle in this Particle System

Death Spawn another Particle System at death of each particle in this Particle System

Collision Spawn another Particle System at collision of each particle in this Particle System. IMPORTANT:

Collision needs to be set up using the Collision Module. See Collision Module

Texture Sheet Animation Module

Animates UV coordinates of the particle over its lifetime. Animation frames can be presented in a form of a grid or every row in

the sheet can be separate animation. The frames are animated with curves or can be a random frame between two curves.

The speed of the animation is defined by "Cycles".

IMPORTANT: The texture used for animation is the one used by the material found in the Renderer module.

Tiles Define the tiling of the texture.

Animation Specify the animation type: Whole Sheet or Single Row.

Whole Sheet Uses the whole sheet for uv animation

- Frame over Time Controls the uv animation frame of each particle during its lifetime over the whole sheet. Use

constant, animate it using a curve or specify a random frame using two curves. See MinMaxCurve.

Single Row Uses a single row of the texture sheet for uv animation

- Random Row If checked the start row will be random and if unchecked the row index can be specified (first row is

0).

- Frame over Time Controls the uv animation frame of each particle during its lifetime within the specified row. Use

constant, animate it using a curve or specify a random frame using two curves. See MinMaxCurve.

- Cycles Specify speed of animation.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

172 of 1131 12/16/2012 10:12 PM

Renderer Module

The renderer module exposes the ParticleSystemRenderer component's properties. Note that even though a GameObject

has a ParticleSystemRenderer component, its properties are only exposed here, when this module is removed/added. It is

actually the ParticleSystemRenderer component that is added or removed.

Render Mode Select one of the following particle render modes

Billboard Makes the particles always face the camera

Stretched Billboard Particles are stretched using the following parameters

- Camera Scale How much the camera speed is factored in when determining particle stretching

- Speed Scale Defines the length of the particle compared to its speed

- Length Scale Defines the length of the particle compared to its width

Horizontal Billboard Makes the particles align with the Y axis

Vertical Billboard Makes the particles align with the XZ plane while facing the camera

Mesh Particles are rendered using a mesh instead of a quad

- Mesh The reference to the mesh used for rendering particles

Normal Direction Value from 0 to 1 that determines how much normals point toward the camera (0) and how much

sideways toward the centre of the view (1).

Material Material used by billboarded or mesh particles.

Sort Mode The draw order of particles can be sorted by distance, youngest first, or oldest first.

Sorting Fudge Use this to affect the draw order. Particle systems with lower sorting fudge numbers are more likely to

be drawn last, and thus appear in front of other transparent objects, including other particles.

Cast Shadows Should particles cast shadows? May or may not be possible depending on the material

Receive Shadows Should particles receive shadows? May or may not be possible depending on the material

Max Particle Size Set max relative viewport size. Valid values: 0-1
Page last updated: 2012-11-09

Particle System Grouping

An important feature of Unity's Particle System is that individual Particle Systems can be grouped by being parented to the

same root. We will use the term Paricle Effect for such a group. Particle Systems belonging to the same Particle Effect, are

played, stopped and paused together.

For managing complex particle effects, Unity provides a Particle Editor, which can be accessed from the Inspector, by pressing

Open Editor

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

173 of 1131 12/16/2012 10:12 PM

Overview of the Particle System Editor

You can toggle between Show: All and Show: Selected in this Editor. Show: All will render the entire particle effect. Show:

Selected will only render the selected particle systems. What is selected will be highlighted with a blue frame in the Particle

Editor and also shown in blue in the Hierarchy view. You can also change the selection both from the Hierarchy View and the

Particle Editor, by clicking the icon in the top-left corner of the Particle System. To do a multiselect, use Ctrl+click on windows

and Command+click on the Mac.

You can explicitly control rendering order of grouped particles (or otherwise spatially close particle emitters) by tweaking

Sorting Fudge property in the Renderer module .

Particle Systems in the same hierarchy are considered as part of the same Particle Effect. This hierarchy shows the setup of

the effect shown above.

Page last updated: 2012-08-28

Mecanim Animation System

Unity has a rich and sophisticated animation system called Mecanim. Mecanim provides:

Easy workflow and setup of animations on humanoid characters.

Animation retargeting - the ability to apply animations from one character model onto another.

Simplified workflow for aligning animation clips.

Convenient preview of animation clips, transitions and interactions between them. This allows animators to work more

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

174 of 1131 12/16/2012 10:12 PM

independently of programmers, prototype and preview their animations before gameplay code is hooked in.

Management of complex interactions between animations with a visual programming tool.

Animating different body parts with different logic.

Typical setup in the Visual Programming Tool and the Animation Preview window

Mecanim workflow
Workflow in Mecanim can be split into three major stages.

1. Asset preparation and import. This is done by artists or animators, with 3rd party tools, such as Max or Maya. This step

is independent of Mecanim features.

2. Character setup for Mecanim, which can be done in 2 ways:

 a. Humanoid character setup. Mecanim has a special workflow for humanoid models, with exten

 b. Generic character setup. This is for anything like creatures, animated props, four-legge

3. Bringing characters to life. This involves setting up animation clips, as well as interactions between them, and involves

setup of State Machines and Blend Trees, exposing Animation Parameters, and controlling animations from code.

Mecanim comes with a lot of new concepts and terminology. If at any point, you need to find out what something means, go to

our Animation Glossary.

A Glossary of Animation and Mecanim terms

Asset Preparation and Import

Preparing your own character

Importing Animations

Splitting Animations

Working with humanoid animations

Creating the Avatar

Configuring the Avatar

Muscle setup

Avatar Body Mask

Retargeting of Humanoid animations

Inverse Kinematics (Pro only)

Generic Animations in Mecanim

Bringing Characters to Life

Looping animation clips

Animator Component and Animator Controller

Animation State Machines

Animation States

Animation Transitions

Animation Parameters

Blend Trees

Mecanim Advanced topics

Working with Animation Curves in Mecanim (Pro only)

Sub-State Machines

Animation Layers

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

175 of 1131 12/16/2012 10:12 PM

Animation State Machine Preview (solo and mute)

Target Matching

Root Motion - how it works

Tutorial: Scripting Root Motion for "in-place" humanoid animations

Legacy animation system
While Mecanim is recommended for use in most situations, especially for working humanoid animations, the Legacy animation

system is still used in a variety of contexts. One of them is working legacy animations and code (content created before Unity

4.0). Another is controlling animation clips with parameters other than time (for example for controlling the aiming angle). For

information on the Legacy animation system, see this section

Unity intends to phase out the Legacy animation system over time for all cases by merging the workflows into Mecanim.

Page last updated: 2012-11-08

A glossary of animation and Mecanim terms

Icon Term Description Type of
Concept

Usage/Comments

Animation Clip related terms
Animation

Clip

Animation data that can be used for animated characters

or simple animations. It is a simple "unit" piece of motion,

such as (one specific instance of) "Idle", "Walk" or "Run"

sub-Asset

Body Mask A specification for which body parts to include or

exclude for a skeleton

Asset (.mask) Used in Animation Layers

and in the importer

 Animation

Curves

Curves can be attached to animation clips and

controlled by various parameters from the game

Avatar related terms
Avatar An interface for retargeting one skeleton to another sub-Asset

 Retargeting Applying animations created for one model to another Process

 Rigging The prcoess of building a skeleton hierarchy of bone

joints for your mesh

Process done in an external tool,

such as Max or Maya

 Skinning The process of binding bone joints to the character's

mesh or 'skin'

Process done in an external tool,

such as Max or Maya

 Muscle

Definition

A Mecanim concept, which allows you to have a more

intuitive control over the character's skeleton. When an

Avatar is in place, Mecanim works in muscle space,

which is more intuitive than bone space

 T-pose The pose in which the character has his arms straight

out to the sides, forming a "T". The required pose for the

character to be in, in order to make an Avatar

 Bind-pose The pose at which the character was modelled

Human

template

A pre-defined bone-mapping Asset (.ht) Used for matching bones

from FBX files to the Avatar.

Animator and Animator Controller related terms
 Animator

Component

Component on a model that animates that model using

the Mecanim animation system. The component has a

reference to an Animator Controller asset that controls

the animation.

Component

 Root Motion Motion of character's root, whether it's controlled by the

animation itself or externally.

Animator

Controller

(Asset)

The Animator Controller controls animation through

Animation Layers with Animation State Machines and

Animation Blend Trees, controlled by Animation

Parameters. The same Animator Controller can be

Asset

(.controller)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

176 of 1131 12/16/2012 10:12 PM

referenced by multiple models with Animator

components.

 Animator

Controller

(Window)

The window where the Animator Controller Asset is

visualized and edited.

Window

 Animation

Layer

An Animation Layer contains an Animation State

Machine that controls animations of a model or part of it.

An example of this is if you have a full-body layer for

walking / jumping and a higher layer for upper-body

motions such as throwing object / shooting. The higher

layers take precedence for the body parts they control.

 Animation

State

Machine

A graph controlling the interaction of Animation States.

Each state references an Animation Blend Tree or a

single Animation Clip.

 Animation

Blend Tree

Used for continuous blending between similar Animation

Clips based on float Animation Parameters.

 Animation

Parameters

Used to communicate between scripting and the

Animator Controller. Some parameters can be set in

scripting and used by the controller, while other

parameters are based on Custom Curves in Animation

Clips and can be sampled using the scripting API.

 Inverse

Kinematics

(IK)

The ability to control the character's body parts based

on various objects in the world.

Non-Mecanim animation terms
 Animation

Component

The component needed for non-Mecanim animations Component

Page last updated: 2012-11-07

Asset Preparation and Import

Humanoid meshes
In order to take full advantage of Mecanim's humanoid animation system and retargeting, you need to have a rigged and

skinned humanoid type mesh.

A character model is generally made up of polygons in a 3D package or converted to polygon or triangulated mesh,

from a more complex mesh type before export.

1.

A joint hierarchy or skeleton which defines the bones inside the mesh and their movement in relation to one another,

must be created to control the movement of the character. The process for creating the joint hierarchy is known as

rigging.

2.

The mesh or skin must then be connected to the joint hierarchy in order to define which parts of the character mesh

move when a given joint is animated. The process of connecting the skeleton to the mesh is known as skinning.

3.

Stages for preparing a character (modeling, rigging, and skinning)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

177 of 1131 12/16/2012 10:12 PM

How to obtain humanoid models
There are three main ways to obtain humanoid models for with the Mecanim Animation system:

Use a procedural character system or character generator such as Poser, Makehuman or Mixamo. Some of these

systems will rig and skin your mesh (eg, Mixamo) while others will not. Furthermore, these methods may require that

you reduce the number of polygons in your original mesh to make it suitable for use in Unity.

1.

Purchase demo examples and character content from the Unity Asset Store.2.

Also, you can of course prepare your own character from scratch.3.

Export & Verify
Unity imports a number of different generic and native 3D file formats. The format we recommend for exporting and verifying

your model is FBX 2012 since it will allow you to:

Export the mesh with the skeleton hierarchy, normals, textures and animation

Re-import into your 3D package to verify your animated model has exported as you expected

Export animations without meshes

Further details
The following pages cover the stages of preparing and importing animation assets in greater depth

Preparing your own character

Importing Animations

Splitting Animations

(back to Mecanim introduction)

Page last updated: 2012-11-01

Preparing your own character

There are three main steps in creating an animated humanoid character from scratch: modelling, rigging and skinning.

Modelling
This is the process of creating your own humanoid mesh in a 3D modelling package - 3DSMax, Maya, Blender, etc. Although

this is a whole subject in its own right, there are a few guidelines you can follow to ensure a model works well with animation in

a Unity project.

Observe a sensible topology. The exact nature of a "sensible" structure for your mesh is rather subtle but generally, you

should bear in mind how the vertices and triangles of the model will be distorted as it is animated. A poor topology will not

allow the model to move without unsightly distortion of the mesh. A lot can be learned by studying existing 3D character

meshes to see how the topology is arranged and why.

Be mindful of the scale of your mesh. Do a test import and compare the size of your imported model with a "meter cube"

(the standard Unity cube primitive has a side length of one unit, so it can be taken as a 1m cube for most purposes). Check

the units your 3D package is using and adjust the export settings so that the size of the model is in correct proportion to the

cube. Unless you are careful, it is easy to create models without any notion of their scale and consequently end up with a

set of objects that are disproportionate in size when they are imported into Unity.

Arrange the mesh so that the character's feet are standing on the local origin or "anchor point" of the model. Since a

character typically walks upright on a floor, it is much easier to handle if its anchor point (ie, its transform position) is

directly on that floor.

Model in a T-pose if you can. This will help allow space to refine polygon detail where you need it (e.g. underarms). This

will also make it easier to position your rig inside the mesh.

Clean up your model. Where possible, cap holes, weld verts and remove hidden faces, this will help with skinning,

especially automated skinning processes.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

178 of 1131 12/16/2012 10:12 PM

Skin Mesh - Modelled, textured and triangulated

Rigging
This is the process of creating a skeleton of joints to control the movements of your model.

3D packages provide a number of ways to create joints for your humanoid rig. These range from ready-made biped skeletons

that you can scale to fit your mesh, right through to tools for individual bone creation and parenting to create your own bone

structure. Although the details are outside the scope of Unity, here are some general guidelines:

Study existing humanoid skeletons hierarchies (eg, bipeds) and where possible use or mimic the bone structure.

Make sure the hips are the parent bone for your skeleton hierarchy.

A minimum of fifteen bones are required in the skeleton.

The joint/bone hierachy should follow a natural structure for the character you are creating. Given that arms and legs come

in pairs, you should use a consistent convention for naming them (eg, "arm_L" for the left arm, "arm_R" for the right arm,

etc). Possible hierarchies include:

HIPS - spine - chest - shoulders - arm - forearm - hand

HIPS - spine - chest - neck - head

HIPS - UpLeg - Leg - foot - toe - toe_end

Biped Skeleton, positioned in T-pose

Skinning
This is the process of attaching the mesh to the skeleton

Skinning involves binding vertices in your mesh to bones, either directly (rigid bind) or with blended influence to a number of

bones (soft bind). Different software packages use different methods, eg, assigning individual vertices and painting the

weighting of influence per bone onto the mesh. The initial setup is typically automated, say by finding the nearest influence or

using "heatmaps". Skinning usually requires a fair amount of work and testing with animations in order to ensure satisfactory

results for the skin deformation. Some general guidelines for this process include:

Using an automated process initially to set up some of the skinning (see relevant tutorials on 3DMax, Maya, etc.)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

179 of 1131 12/16/2012 10:12 PM

Creating a simple animation for your rig or importing some animation data to act as a test for the skinning. This should give

you a quick way to evaluate whether or not the skinning looks good in motion.

Incrementally editing and refining your skinning solution.

Sticking to a maximum of four influences when using a soft bind, since this is the maximum number that Unity will handle. If

more than four influences affect part of the mesh then at least some information will be lost when playing the animation in

Unity.

Interactive Skin Bind, one of many skinning methods

(back to AssetPreparationandImport)

(back to Mecanim introduction)

Page last updated: 2012-11-01

Importing Animations

Before a character model can be used, it must first be imported into your project. Unity can import native Maya (.mb or .ma)

and Cinema 4D (.c4d) files, and also generic FBX files which can be exported from most animation packages (see this page for

further details on exporting). To import an animation, simply drag the model file to the Assets folder of your project. When you

select the file in the Project View you can edit the Import Settings in the inspector:-

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

180 of 1131 12/16/2012 10:12 PM

The Import Settings Dialog for a mesh

See the FBX importer page for a full description of the available import options.

Splitting animations

(back to Mecanim introduction)

Page last updated: 2012-11-01

Splitting animations

An animated character typically has a number of different movements that are activated in the game in different circumstances.

These movements are called Animation Clips. For example, we might have separate animation clips for walking, running,

jumping, throwing, dying, etc. Depending on the way the model was animated, these separate movements might be imported

as distinct animation clips or as one single clip where each movement simply follows on from the previous one. In cases where

there is only a single clip, the clip must be split into its component animation clips within Unity, which will involve some extra

steps in your workflow.

Working with models that have pre-split animations
The simplest types of models to work with are those that contain pre-split animations. If you have an animation like that, the

Animations tab in the Animation Importer Inspector will look like this:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

181 of 1131 12/16/2012 10:12 PM

You will see a list available clips which you can preview by pressing Play in the Preview Window (lower down in the inspector).

The frame ranges of the clips can be edited, if needed.

Working with models that have unsplit animations
For models where the clips are supplied as one continuous animation, the Animation tab in the Animation Importer Inspector

will look like this:

4In cases like this, you can define the frame ranges that correspond to each of the separate animation sequences (walking,

jumping, etc). You can create a new animation clip by pressing (+) and selecting the range of frames that are included in it.

For example:

walk animation during frames 1 - 33

run animation during frames 41 - 57

kick animation during frames 81 - 97

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

182 of 1131 12/16/2012 10:12 PM

The Import Settings Options for Animation

In the Import Settings, the Split Animations table is where you tell Unity which frames in your asset file make up which

Animation Clip. The names you specify here are used to activate them in your game.

For further information about the animation inspector, see the Animation Clip component reference page.

Adding animations to models that do not contain them
You can add animation clips to an Animation component even for models without muscle definitions (ie, non-Mecanim). You

need to specify the default animation clip in the Animation property, and the available animation clips in the Animations

property. The animation clips you add to such a non-Mecanim model should also be setup in a non-Mecanim way (ie, the

Muscle Definition property should be set to None)

For models that have muscle definitions (Mecanim), the process is different:-

Create a New Animator Controller

Open the Animator Controller Window

Drag the desired animation clip into the Animator Controller Window

Drag the model asset into the Hierarchy.

Add the animator controller to the Animator component of the asset.

Importing Animations using multiple model files

Another way to import animations is to follow a naming scheme that Unity allows for the animation files. You create separate

model files and name them with the convention 'modelName@animationName.fbx'. For example, for a model called "goober",

you could import separate idle, walk, jump and walljump animations using files named "goober@idle.fbx", "goober@walk.fbx",

"goober@jump.fbx" and "goober@walljump.fbx". Only the animation data from these files will be used, even if the original files

are exported with mesh data.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

183 of 1131 12/16/2012 10:12 PM

An example of four animation files for an animated character (note that the .fbx suffix is not shown within Unity)

Unity automatically imports all four files and collects all animations to the file without the @ sign in. In the example above, the

goober.mb file will be set up to reference idle, jump, walk and wallJump automatically.

For FBX files, simply export a model file with no animation ticked (eg, goober.fbx) and the 4 clips as goober@animname.fbx by

exporting the desired keyframes for each (enable animation in the FBX dialog).

(back to Mecanim introduction)

Page last updated: 2012-11-12

Avatar Creation and Setup

The Mecanim Animation System is particularly well suited for working with animations for humanoid skeletons. Since humanoid

skeletons are a very common special case and are used extensively in games, Unity provides a specialized workflow, and an

extended tool set for humanoid animations.

Because of the similarity in bone structure, it is possible to map animations from one humanoid skeleton to another, allowing

retargeting and inverse kinematics.

With rare exceptions, humanoid models can be expected to have the same basic structure, representing the major articulate

parts of the body, head and limbs. The Mecanim system makes good use of this idea to simplify the rigging and control of

animations. A fundamental step in creating a animation is to set up a mapping between the simplified humanoid bone structure

understood by Mecanim and the actual bones present in the skeleton; in Mecanim terminology, this mapping is called an

Avatar. The pages in this section explain how to create an Avatar for your model.

Creating the Avatar

Configuring the Avatar

Muscle setup

Avatar Body Mask

Retargeting of Humanoid animations

Inverse Kinematics (Pro only)
Page last updated: 2012-11-08

Creating the Avatar

After an FBX file is imported, you can specify what kind of rig it is in the Rig tab of the FBX importer options.

Humanoid animations
For a Humanoid rig, select Humanoid and click Apply. Mecanim will attempt to match up your existing bone structure to the

Avatar bone structure. In many cases, it can do this automatically by analysing the connections between bones in the rig.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

184 of 1131 12/16/2012 10:12 PM

If the match has succeeded, you will see a check mark next to the Configure... menu

Also, in the case of a successful match, an Avatar sub-asset is added to the FBX asset, which you will be able to see in the

project view hierarchy.

Models with and without an Avatar sub-asset

The inspector for an Avatar asset

If Mecanim was unable to create the Avatar, you will see a cross next to the Configure ... button, and no Avatar sub-asset will

be added. When this happens, you need to configure the avatar manually.

Non-humanoid animations
Two options for non-humanoid animation are provided: Generic and Legacy. Generic animations are imported using the

Mecanim system but don't take advantage of the extra features available for humanoid animations. Legacy animations use the

the animation system that was provided by Unity before Mecanim. There are some cases where it is still useful to work with

legacy animations (most notably with legacy projects that you don't want to update fully) but they are seldom needed for new

projects. See this section of the manual for further details on legacy animations.

(back to Avatar Creation and Setup)

(back to Mecanim introduction)

Page last updated: 2012-11-07

Configuring the Avatar

Since the Avatar is such an important aspect of the Mecanim system, it is important that it is configured properly for your

model. So, whether the automatic Avatar creation fails or succeeds, you need to go into the Configure Avatar mode to ensure

your Avatar is valid and properly set up. It is important that your character's bone structure matches Mecanim's predefined

bone structure and that the model is in T-pose.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

185 of 1131 12/16/2012 10:12 PM

If the automatic Avatar creation fails, you will see a cross next to the Configure button.

If it succeeds, you will see a check/tick mark:

Here, success simply means all of the required bones have been matched but for better results, you might want to match the

optional bones as well and get the model into a proper T-pose.

When you go to the Configure ... menu, the editor will ask you to save your scene. The reason for this is that in Configure

mode, the Scene View is used to display bone, muscle and animation information for the selected model alone, without

displaying the rest of the scene.

Once you have saved the scene, you will see a new Avatar Configuration inspector, with a bone mapping.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

186 of 1131 12/16/2012 10:12 PM

The inspector shows which of the bones are required and which are optional - the optional ones can have their movements

interpolated automatically. For Mecanim to produce a valid match, your skeleton needs to have at least the required bones in

place. In order to improve your chances for finding a match to the Avatar, name your bones in a way that reflects the body

parts they represent (names like "LeftArm", "RightForearm" are suitable here).

If the model does NOT yield a valid match, you can manually follow a similar process to the one used internally by Mecanim:-

Sample Bind-pose (try to get the model closer to the pose with which it was modelled, a sensible initial pose)1.

Automap (create a bone-mapping from an initial pose)2.

Enforce T-pose (force the model closer to T-pose, which is the default pose used by Mecanim animations)3.

If the auto-mapping (Mapping->Automap) fails completely or partially, you can assign bones by either draging them from the

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

187 of 1131 12/16/2012 10:12 PM

Scene or from the Hierarchy. If Mecanim thinks a bone fits, it will show up as green in the Avatar Inspector, otherwise it shows

up in red.

Finally, if the bone assignment is correct, but the character is not in the correct pose, you will see the message "Character not

in T-Pose". You can try to fix that with Enforce T-Pose or rotate the remaining bones into T-pose.

Human Template files

You can save the mapping of bones in your skeleton to the Avatar on disk as a "human template file" (extention *.ht), which

can be reused by any characters that use this mapping. This is useful, for example, if your animators use a consistent layout

and naming convention for all skeleton but Mecanim doesn't know how to interpret it. You can then Load the .ht file for each

model, so that manual remapping only needs to be done once.

(back to Avatar Creation and Setup)

(back to Mecanim introduction)

Page last updated: 2012-11-05

Muscle Definitions

Mecanim allows you to control the range of motion of different bones using Muscles.

Once the Avatar has been properly configured, Mecanim will "understand" the bone structure and allow you to start working in

the Muscles tab of the Avatar Inspector. Here, it is very easy to tweak the character's range of motion and ensure the character

deforms in a convincing way, free from visual artifacts or self-overlaps.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

188 of 1131 12/16/2012 10:12 PM

You can either adjust individual bones in the body (lower part of the view) or manipulate the character using predefined

deformations which operate on several bones at once (upper part of the view).

Muscle Clips

In the Animation tab, you can set up Muscle Clips, which are animations for specific muscles and muscle groups.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

189 of 1131 12/16/2012 10:12 PM

You can also define which body parts these muscle clips apply to.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

190 of 1131 12/16/2012 10:12 PM

(back to Avatar Creation and Setup)

(back to Mecanim introduction)

Page last updated: 2012-11-01

Avatar Body Mask

Specific body parts can be selectively enabled or disabled in an animation using a so-called Body Mask. Body masks are

used in the Animation tab of the mesh import inspector and Animation Layers. Body masks enable you to tailor an animation to

fit the specific requirements of your character more closely. For example, you may have a standard walking animation that

includes both arm and leg motion, but if a character is carrying a large object with both hands then you wouldn't want his arms

to swing by his sides as he walks. However, you could still use the standard walking animation by switching off the arm

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

191 of 1131 12/16/2012 10:12 PM

movements in the body mask.

The body parts included are: Head, Left Arm, Right Arm, Left Hand, Right Hand, Left Leg, Right Leg and Root (which is

denoted by the "shadow" under the feet). In the body mask, you can also toggle inverse kinematics (IK) for hands and feet,

which will determine whether or not IK curves will be included in animation blending.

Click the avatar section to toggle inclusion or exclusion (green/red)

Double click in empty space surrounding the avatar to toggle all

Body mask in the Body Mask inspector (arms excluded)

In the Animation tab of the mesh import inspector, you will see a list entitled Clips that contains all the object's animation clips.

When you select an item from this list, options for the clip will be shown, including the body mask editor.

You can also create Body Mask Assets (Assets->Create->Avatar Body Mask), which show up as .mask files on disk.

The BodyMask assets can be reused in Animator Controllers, when specifying Animation Layers

A benefit of using body masks is that they tend to reduce memory overheads since body parts that are not active do not need

their associated animation curves. Also, the unused curves need not be calculated during playback which will tend to reduce

the CPU overhead of the animation.

(back to Mecanim introduction)

Page last updated: 2012-10-18

Retargeting

One of the most powerful features of Mecanim is retargeting of humanoid animations. This means that with relative ease, you

can apply the same set of animations to various character models. Retargeting is only possible for humanoid models, where an

Avatar has been configured, because this gives us a correspondence between the models' bone structure.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

192 of 1131 12/16/2012 10:12 PM

Recommended Hierarchy structure
When working with Mecanim animations, you can expect your scene to contain the following elements:-

The Imported character model, which has an Avatar on it.

The Animator Component, referencing an Animator Controller asset.

A set of animation clips, referenced from the Animator Controller.

Scripts for the character.

Character-related components, such as the Character Controller.

Your project should also contain another character model with a valid Avatar.

If in doubt about the terminology, consult the Animation Glossary

The recommended setup is to:

Create a GameObject in the Hierarchy that contains Character-related components

Put the model as a child of the GameObject, together with the Animator component

Make sure scripts referencing the Animator are looking for the animator in the children instead of the root (use

GetComponentInChildren<Animator>() instead of GetComponent<Animator>())

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

193 of 1131 12/16/2012 10:12 PM

Then in order to reuse the same animations on another model, you need to:

Disable the original model

Drop in the desired model as another child of GameObject

Make sure the Animator Controller property for the new model is referencing the same controller asset

Tweak the character controller, the transform, and other properties on the top-level GameObject, to make sure that the

animations work smoothly with the new model.

You're done!

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

194 of 1131 12/16/2012 10:12 PM

(back to Mecanim introduction)

Page last updated: 2012-11-08

Inverse Kinematics

Most animation is produced by rotating the angles of joints in a skeleton to predetermined values. The position of a child joint

changes according to the rotation of its parent and so the end point of a chain of joints can be determined from the angles and

relative positions of the individual joints it contains. This method of posing a skeleton is known as forward kinematics.

However, it is often useful to look at the task of posing joints from the opposite point of view - given a chosen position in space,

work backwards and find a valid way of orienting the joints so that the end point lands at that position. This can be useful

when you want a character to touch an object at a point selected by the user or plant its feet convincingly on an uneven

surface. This approach is known as Inverse Kinematics (IK) and is supported in Mecanim for any humanoid character with a

correctly configured Avatar.

To set up IK for a character, you typically have objects around the scene that a character interacts with, and then set up the IK

thru script, in particular, Animator functions like SetIKPositionWeight, SetIKRotationWeight, SetIKPosition, SetIKRotation,

SetLookAtPosition, bodyPosition, bodyRotation

In the illustration above, we show a character grabbing a cylindrical object. How do we make this happen?

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

195 of 1131 12/16/2012 10:12 PM

We start out with a character that has a valid Avatar, and attach to it a script that actually takes care of the IK, let's call it

IKCtrl:

using UnityEngine;
using System;
using System.Collections;

[RequireComponent(typeof(Animator))]

public class IKCtrl : MonoBehaviour {

protected Animator animator;

public bool ikActive = false;
public Transform rightHandObj = null;

void Start ()
{

animator = GetComponent<Animator>();
}

 //a callback for calculating IK
void OnAnimatorIK()
{
 if(animator) {

 //if the IK is active, set the position and rotation directly to the goal.
if(ikActive) {

 //weight = 1.0 for the right hand means position and rotation will be at the IK goal (the place the cha
animator.SetIKPositionWeight(AvatarIKGoal.RightHand,1.0f);
animator.SetIKRotationWeight(AvatarIKGoal.RightHand,1.0f);

 //set the position and the rotation of the right hand where the external object is
if(rightHandObj != null) {

animator.SetIKPosition(AvatarIKGoal.RightHand,rightHandObj.position);
animator.SetIKRotation(AvatarIKGoal.RightHand,rightHandObj.rotation);

}

}

 //if the IK is not active, set the position and rotation of the hand back to the original position
else {

animator.SetIKPositionWeight(AvatarIKGoal.RightHand,0);
animator.SetIKRotationWeight(AvatarIKGoal.RightHand,0);

}
}

}
}

As we do not intend for the character to grab the entire object with his hand, we position a sphere where the hand should be

on the cylinder, and rotate it accordingly.

This sphere should then be placed as the "Right Hand Obj" property of the IKCtrl script

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

196 of 1131 12/16/2012 10:12 PM

Observe the character grabbing and ungrabbing the object as you click the IKActive checkbox

(back to Mecanim introduction)

Page last updated: 2012-11-06

Generic Animations

The full power of Mecanim is most evident when you are working with humanoid animations. However, non-humanoid

animations are also supported although without the avatar system and other features. In Mecanim terminology, non-humanoid

animations are referred to as Generic Animations.

To start working with a generic skeleton, go to the Rig tab in the FBX importer and choose Generic from the Animation Type

menu.

Root node in generic animations
While in the case of humanoid animations, we have the knowledge about the center of mass and orientation, in the case of

Generic animations, the skeleton can be arbitrary, and we need to specify a reference bone, or the "root node". Selecting the

root node allows us to establish correspondence between animation clips for a generic model, and blend properly between

animations that are not "in place". The root node is also essential for separating animation of bones relative to reach other and

motion of the root in the world (controlled from OnAnimatorMove)

Page last updated: 2012-11-06

Bringing characters to life

Once the character mesh and animations are imported and the avatar is set up, you are ready to start making use of them in

your game. The following sections cover the main features that Mecanim provides for controlling and sequencing your

animations.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

197 of 1131 12/16/2012 10:12 PM

Looping animation clips

Animator Component and Animator Controller

Animation State Machines

Animation States

Animation Transitions

Animation Parameters

Blend Trees

Mecanim Advanced topics

Working with Animation Curves in Mecanim (Pro only)

Sub-State Machines

Animation Layers

Animation State Machine Preview (solo and mute)

Target Matching

Root Motion - how it works

Tutorial: Scripting Root Motion for "in-place" humanoid animations
Page last updated: 2012-11-08

Looping Animation Clips

A common operation for people working with animations is to make sure they loop properly. It is important, for example, that the

animation clip representing the walk cycle, begins and ends in a similar pose (e.g. left foot on the ground), to ensure there is

no foot sliding, or strange jerky motions. Mecanim provides convenient tools for this. Animation clips can loop based on pose,

rotation, and position.

If you drag the Start or End points of the animation clip, you will see the Looping fitness curves for all of the paramers based

on which it is possible to loop. If you place the Start / End marker in a place where the curve for the property is green, it is

more likely that the clip can loop properly. The loop match indicator will show how good the looping is for the selected ranges.

Clip ranges with bad match for Loop Pose

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

198 of 1131 12/16/2012 10:12 PM

Clip ranges with good match for Loop Pose

Once the loop match indicator is green, Enabling Loop Pose (for example) will make sure the looping of the pose is

artifact-free.

For more details on animation clip options, see Animation Clip reference

(back to Mecanim introduction)

Page last updated: 2012-11-12

Animator Component and Window

Animator Component

Any GameObject that has an avatar will also have an Animator component, which is the link between the character and its

behavior.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

199 of 1131 12/16/2012 10:12 PM

The Animator component references an Animator Controller which is used for setting up behavior on the character. This

includes setup for State Machines, Blend Trees, and events to be controlled from script.

Properties
Controller The animator controller attached to this character

Avatar The Avatar for this character.

Apply Root Motion Should we control the character's position from the animation itself or from script.

Animate Physics Should the animation interact with physics?

Culling Mode Culling mode for animations

Always animate Always animate, don't do culling

Based on

Renderers

When the renderers are invisible, only root motion is animated. All other body parts will remain static

while the character is invisible.

Animator Controller

You can view and set up character behavior from the Animator Controller view (Menu: Window > Animator Controller).

An Animator Controller can be created from the Project View (Menu: Create > Animator Controller). This creates a

.controller asset on disk, which looks like this in the Project Browser

Animator Controller asset on disk

After the state machine setup has been made, you can drop the controller onto the Animator component of any character with

an Avatar in the Hierarchy View.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

200 of 1131 12/16/2012 10:12 PM

The Animator Controller Window

The Animator Controller Window will contain

The Animation Layer Widget (top-left corner, see Animation Layers)

The Event Parameters Widget (bottom-left, see Animation Parameters)

The visualization of the State Machine itself.

Note that the Animator Controller Window will always display the state machine from the most recently selected

.controller asset, regardless of what scene is currently loaded.

(back to Mecanim introduction)

Page last updated: 2012-10-18

Animation State Machines

It is common for a character to have several different animations that correspond to different actions it can perform in the

game. For example, it may breathe or sway slightly while idle, walk when commanded to and raise its arms in panic as it falls

from a platform. Controlling when these animations are played back is potentially quite a complicated scripting task. Mecanim

borrows a computer science concept known as a state machine to simplify the control and sequencing of a character's

animations.

State machine basics
The basic idea is that a character is engaged in some particular kind of action at any given time. The actions available will

depend on the type of gameplay but typical actions include things like idling, walking, running, jumping, etc. These actions are

referred to as states, in the sense that the character is in a "state" where it is walking, idling or whatever. In general, the

character will have restrictions on the next state it can go to rather than being able to switch immediately from any state to any

other. For example, a running jump can only be taken when the character is already running and not when it is at a standstill,

so it should never switch straight from the idle state to the running jump state. The options for the next state that a character

can enter from its current state are referred to as state transitions. Taken together, the set of states, the set of transitions and

the variable to remember the current state form a state machine.

The states and transitions of a state machine can be represented using a graph diagram, where the nodes represent the

states and the arcs (arrows between nodes) represent the transitions. You can think of the current state as being a marker or

highlight that is placed on one of the nodes and can then only jump to another node along one of the arrows.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

201 of 1131 12/16/2012 10:12 PM

The importance of state machines for animation is that they can be designed and updated quite easily with relatively little

coding. Each state has an animation sequence associated with it that will play whenever the machine is in that state. This

enables an animator or designer to define the possible sequences of character actions and animations without being

concerned about how the code will work.

Mecanim state machines
Mecanim's Animation State Machines provide a way to overview all of the animation clips related to a particular character and

allow various events in the game (for example user input) to trigger different animations.

Animation State Machines can be set up from the Animator Controller Window, and they look something like this:

State Machines consist of States, Transitions and Events and smaller Sub-State Machines can be used as components in

larger machines.

Animation States

Animation Transitions

Animation Parameters

(back to Mecanim introduction)

Page last updated: 2012-11-02

Animation States

Animation States are the basic building blocks of an Animation State Machine. Each state contains an individual animation

sequence (or blend tree) which will play while the character is in that state. When an event in the game triggers a state

transition, the character will be left in a new state whose animation sequence will then take over.

When you select a state in the Animator Controller, you will see the properties for that state in the inspector:-

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

202 of 1131 12/16/2012 10:12 PM

Speed The default speed of the animation

Motion The animation clip assigned to this state

Foot IK Should Foot IK be respected for this state

Transitions The list of transitions originating from this state

The default state, displayed in brown, is the state that the machine will be in when it is first activated. You can change the

default state, if necessary, by right-clicking on another state and selecting Set As Default from the context menu. The solo

and mute checkboxes on each transition are used to control the behaviour of animation previews - see this page for further

details.

A new state can be added by right-clicking on an empty space in the Animator Controller Window and selecting Create

State->Empty from the context menu. Alternatively, you can drag an animation into the Animator Controller Window to create

a state containing that animation. (Note that you can only drag Mecanim animations into the Controller - non-Mecanim

animations will be rejected.) States can also contain Blend Trees.

Any State

Any State is a special state which is always present. It exists for the situation where you want to go to a specific state

regardless of which state you are currently in. This is a shorthand way of adding the same outward transition to all states in

your machine. Note that the special meaning of Any State implies that it cannot be the end point of a transition (ie, jumping to

"any state" cannot be used as a way to pick a random state to enter next).

(back to Animation State Machines)

Page last updated: 2012-10-18

Animation Transitions

Animation Transitions define what happens when you switch from one Animation State to another. There can be only one

transition active at any given time.

Atomic Is this transition atomic? (cannot be interrupted)

Conditions Here we decide when transitions get triggered.

A condition consists of:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

203 of 1131 12/16/2012 10:12 PM

An event parameter

Instead of a parameter, you can also use Exit Time, and specify a number which represents the normalized time of the

source state (e.g. 0.95 means the transition will trigger, when we've played the source clip 95% through).

A conditional predicate, if needed (for example Less/Greater for floats).

A parameter value (if needed).

You can adjust the transition between the two animation clips by dragging the start and end values of the overlap.

(See also Transition solo / mute)

(back to Animation State Machines)

Page last updated: 2012-10-18

Animation Parameters

Animation Parameters are variables that are defined within the animation system but can also be accessed and assigned

values from scripts. For example, the value of a parameter can be updated by an animation curve and then accessed from a

script so that, say, the pitch of a sound effect can be varied as if it were a piece of animation. Likewise, a script can set

parameter values to be picked up by Mecanim. For example, a script can set a parameter to control a Blend Tree.

Default parameter values can be set up using the Parameters widget in the bottom left corner of the Animator window. They

can be of four basic types:

Vector - a point in space

Int - an integer (whole number)

Float - a number with a fractional part

Bool - true or false value

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

204 of 1131 12/16/2012 10:12 PM

Parameters can be assigned values from a script using functions in the Animator class: SetVector, SetFloat, SetInt, and

SetBool.

Here's an example of a script that modifies parameters based on user input

using UnityEngine;
using System.Collections;

public class AvatarCtrl : MonoBehaviour {

protected Animator animator;

public float DirectionDampTime = .25f;

void Start ()
{

animator = GetComponent<Animator>();
}

void Update ()
{

if(animator)
{

//get the current state
AnimatorStateInfo stateInfo = animator.GetCurrentAnimatorStateInfo(0);

//if we're in "Run" mode, respond to input for jump, and set the Jump parameter accordingly.
if(stateInfo.nameHash == Animator.StringToHash("Base Layer.RunBT"))
{

if(Input.GetButton("Fire1"))
animator.SetBool("Jump", true);

}
else
{

animator.SetBool("Jump", false);
}

float h = Input.GetAxis("Horizontal");
float v = Input.GetAxis("Vertical");

//set event parameters based on user input
animator.SetFloat("Speed", h*h+v*v);
animator.SetFloat("Direction", h, DirectionDampTime, Time.deltaTime);

}
}

}

(back to Animation State Machines)

Page last updated: 2012-11-09

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

205 of 1131 12/16/2012 10:12 PM

Animation Blend Trees

A common task in game animation is to transition between two or more similar sequences. Perhaps the best-known example is

the transition between walking and running animations according to the character's speed (ie, running movements are not just

faster versions of walking movements, so they require separate animation clips). Another example is a character leaning to the

left or right as he turns during a run. The most important detail of the transition is to ensure that it happens smoothly without a

noticeable jerk where the animations are switched.

Blend Trees are Mecanim's method of allowing one animation to be blended smoothly with another. By tracking the bone

movements of the two animations precisely, Mecanim can incorporate parts of both to varying degrees. The amount that each

of the two animation clips contributes to the final effect is controlled using a blending parameter, which is just one of the

numeric animation parameters associated with the character. To make for a smooth transition, Mecanim requires that the two

clips to be blended are aligned so that the corresponding movements take place at the same points in normalized time. For

example, walking and running animations can be aligned so that the individual footfalls take place at the same points in

normalized time, even though the running cycle is faster in real time (the left foot hits at 0.0, the right foot at 0.5, say).

To start working with a new blend tree, you need to:

Right-click on empty space on the Animator Controller Window1.

Select Create State > From New Blend Tree from the context menu that appears.2.

Double-click on the Blend Tree to bring up the Blend Tree Inspector. (Note that you will just get the standard state

inspector if you single click here.)

3.

In the inspector, the first thing you need is to select the Animation Parameter that will control this Blend Tree. In this example,

the parameter is direction which varies between -1.0 (left) and +1.0 (right), with 0.0 denoting a straight run without leaning.

Then you can add individual animations by clicking + -> Add Motion Field to add an animation clip to the blend tree. When

you're done, it should look something like this:

The lines in the diagram at the top of the inspector show the proportion of each animation that is incorporated as the

parameter varies between its minimum and maximum values.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

206 of 1131 12/16/2012 10:12 PM

If you click and hold down the left mouse button on a line or the space beneath, the animation that it corresponds to will be

highlighted in the list below. You can also drag the line left and right to change the parameter range over which it influences

the animation (this also performs a live update of the Threshold values in the inspector).

The Automate Thresholds checkbox will distribute the clips' thresholds evenly across the numeric range of the parameter. For

example, if there are five clips and the parameter ranges from -90 to +90, the thresholds will be set to -90, -45, 0, +45 and +90

in order. The Compute Thresholds buttons will set the thresholds from speed data obtained from the animation. Say, for

example, you had a walk animation that covered 1.5 units per second, a jog at 2.3 units per second, and a run at 4 units per

second, clicking the Average button would set the parameter range and thresholds for the three animations based on these

values. So, if you set the speed parameter to 3.0, it would blend the jog and run with a slight bias toward the jog. The Angular

button performs a similar calculation but based on angular speed (degrees per second) rather than linear speed. You can alter

the "natural" speed of the animation clips using the time scaling text boxes (the column next to the threshold values), so you

could make the walk twice as fast by using a value of 2.0 as its scale. The Adjust Time Scale > Homogenized button rescales

the speeds of the clips so that they correspond with the chosen minimum and maximum values of the parameter but keep the

same relative speeds they initially had.

The red vertical bar indicates the value of the event parameter. If you press Play in the Animation Preview panel and drag the

bar left and right, you can see how the value of the parameter is controlling the blending of the different animations.

In the Animation view, a diagram of the blend tree complements the information shown in the inspector.

This gives a graphical display of how the animations are combined as the parameter value changes (as you drag the slider,

the arrows from the tree root change their shading to show the dominant animation clip).

(back to Mecanim introduction)

Page last updated: 2012-11-08

Advanced topics

The following section covers the features Mecanim provides for controlling and managing complex sets of animations.

Working with Animation Curves in Mecanim (Pro only)

Sub-State Machines

Animation Layers

Animation State Machine Preview (solo and mute)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

207 of 1131 12/16/2012 10:12 PM

Target Matching

Root Motion - how it works

Tutorial: Scripting Root Motion for "in-place" humanoid animations

(back to Mecanim introduction)

Page last updated: 2012-11-08

Animation Curves in Mecanim

Animation curves can be attached to animation clips in the Animations tab of the Animation Import Settings.

The curves on animation clips in Mecanim

The curve's X-axis represents normalized time and always ranges between 0.0 and 1.0 (corresponding to the beginning and

the end of the animation clip respectively, regardless of its duration).

Unity Curve Editor

Double-clicking an animation curve will bring up the standard Unity curve editor (see Editing Value Properties for further

details) which you can use to add keys to the curve. Keys are points along the curve's timeline where it has a value explicitly

set by the animator rather than just using an interpolated value. Keys are very useful for marking important points along the

timeline of the animation. For example, with a walking animation, you might use keys to mark the points where the left foot is

on the ground, then both feet on the ground, right foot on the ground, etc. Once the keys are set up, you can move

conveniently between key frames by pressing the Previous/Next Key Frame buttons. This will move the vertical red line and

show the normalized time at the keyframe; the value you enter in the text box will then set the value of the curve at that time.

Animation Curves and Animator Controller parameters
If you have a curve with the same name as one of the parameters in the Animator Controller, then that parameter will take its

value from the value of the curve at each point in the timeline. For example, if you make a call to GetFloat from a script, the

returned value will be equal to the value of the curve at the time the call is made. Note that at any given point in time, there

might be multiple animation clips attempting to set the same parameter from the same controller. In that case, the curve values

from the multiple animation clips are blended. If an animation has no curve for a particular parameter then the blending will be

done with the default value for that parameter.

(back to Mecanim introduction)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

208 of 1131 12/16/2012 10:12 PM

Page last updated: 2012-11-08

Nested State Machines

It is common for a character to have complex actions that consist of a number of stages. Rather than handle the entire action

with a single state, it makes sense to identify the separate stages and use a separate state for each. For example, a character

may have an action called "Trickshot" where it crouches to take a steady aim, shoots and then stands up again.

The sequence of states in a "Trickshot" action

Although this is useful for control purposes, the downside is that the state machine will become large and unwieldy as more of

these complex actions are added. You can simplify things somewhat just by separating the groups of states visually with empty

space in the editor. However, Mecanim goes a step further than this by allowing you to collapse a group of states into a single

named item in the state machine diagram. These collapsed groups of states are called Sub-state machines.

You can create a sub-state machine by right clicking on an empty space within the Animator Controller window and selecting

Create Sub-State Machine from the context menu. A sub-state machine is represented in the editor by an elongated hexagon

to distinguish it from normal states.

A sub-state machine

When you double-click the hexagon, the editor is cleared to let you edit the sub-state machine as though it were a completely

separate state machine in its own right. The bar at the top of the window shows a "breadcrumb trail" to show which sub-state

machine is currently being edited (and note that you can create sub-state machines within other sub-state machines, and so

on). Clicking an item in the trail will focus the editor on that particular sub-state machine.

The "breadcrumb trail"

External transitions
As noted above, a sub-state machine is just a way of visually collapsing a group of states in the editor, so when you make a

transition to a sub-state machine, you have to choose which of its states you want to connect to.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

209 of 1131 12/16/2012 10:12 PM

Choosing a target state within the "Trickshot" sub-state machine

You will notice an extra state in the sub-state machine whose name begins with Up.

The "Up" state

The Up state represents the "outside world", the state machine that encloses the sub-state machine in the view. If you add a

transition from a state in sub-state machine to the Up state, you will be prompted to choose one of the states of the enclosing

machine to connect to.

Connecting to a state in the enclosing machine

(back to State Machines introduction)

(back to Mecanim introduction)

Page last updated: 2012-11-07

Animation Layers

Unity uses Animation Layers for managing complex state machines for different body parts. An example of this is if you have

a lower-body layer for walking-jumping, and an upper-body layer for throwing objects / shooting.

You can manage animation layers from the Layers Widget in the top-left corner of the Animator Controller.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

210 of 1131 12/16/2012 10:12 PM

You can add a new layer by pressing the + on the widget. On each layer, you can specify the body mask (the part of the body

on which the animation would be applied), and the Blending type. Override means information from other layers will be

ignored, while Additive means that the animation will be added on top of previous layers.

The Mask property is there to specify the body mask used on this layer. For example if you want to use upper body throwing

animations, while having your character walk or run, you would use an upper body mask, like this:

For more on Avatar Body Masks, you can read this section

Animation Layer syncing (Pro only)
Sometimes it is useful to be able to re-use the same state machine in different layers. For example if you want to simulate

"wounded" behavior, and have "wounded" animations for walk / run / jump instead of the "healthy" ones. You can click the

Sync checkbox on one of your layers, and then select the layer you want to sync with. The state machine structure will then

be the same, but the actual animation clips used by the states will be distinct.

(back to Mecanim introduction)

Page last updated: 2012-11-06

Animation State Machine Preview (solo and mute)

Solo and Mute functionality
In complex state machines, it is useful to preview the operation of some parts of the machine separately. For this, you can use

the Mute / Solo functionality. Muting means a transition will be disabled. Soloed transtions are enabled and with respect to

other transitions originating from the same state. You can set up mute and solo states either from the Transition Inspector, or

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

211 of 1131 12/16/2012 10:12 PM

the State Inspector (recommended), where you'll have an overview of all the transitions from that state.

Soloed transitions will be shown in green, while muted transitions in red, like this:

In the example above, if you are in State 0, only transitions to State A and State B will be available.

The basic rule of thumb is that if one Solo is ticked, the rest of the transitions from that state will be muted.

If both Solo and Mute are ticked, then Mute takes precedence.

Known issues:

The controller graph currently doesn't always reflect the internal mute states of the engine.

(back to State Machines introduction)

(back to Mecanim introduction)

Page last updated: 2012-10-08

Target Matching

Often in games, a situation arises where a character must move in such a way that a hand or foot lands at a certain place at a

certain time. For example, the character may need to jump across stepping stones or jump and grab an overhead beam.

You can use the Animator.MatchTarget function to handle this kind of situation. Say, for example, you want to arrange an

situation where the character jumps onto a platform and you already have an animation clip for it called Jump Up. To do this,

follow the steps below.

Find the place in the animation clip at which the character is beginning to get off the ground, note in this case it is 14.1% or

0.141 into the animation clip in normalized time.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

212 of 1131 12/16/2012 10:12 PM

Find the place in the animation clip at which the character is about to land on his feet, note in this case the value is 78.0%

or 0.78.

Create a script (TargetCtrl.cs) that makes a call to MatchTarget, like this:

using UnityEngine;
using System;

[RequireComponent(typeof(Animator))]
public class TargetCtrl : MonoBehaviour {

protected Animator animator;

//the platform object in the scene
public Transform jumpTarget = null;
void Start () {

animator = GetComponent<Animator>();
}

void Update () {

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

213 of 1131 12/16/2012 10:12 PM

if(animator) {
if(Input.GetButton("Fire1"))

animator.MatchTarget(jumpTarget.position, jumpTarget.rotation, AvatarTarget.LeftFoot,
 new MatchTargetWeightMask(Vector3.one, 1f), 0.141f, 0.78f);

}
}

}

Attach that script onto the Mecanim model.

The script will move the character so that it jumps from its current position and lands with its left foot at the target. Bear in mind

that the result of using MatchTarget will generally only make sense if it is called at the right point in gameplay.

(back to Mecanim introduction)

Page last updated: 2012-11-08

Root Motion

Body Transform
The body transform must be set to be the same for all humanoid characters (from a retargeting standpoint). The body mass

center should be used as the body position as this will nearly follow a straight line in most circumstances. The body orientation

is an average of the lower and upper body orientation. Do not use the hips to store the world-space position and orientation of

the animation as this can lead to unpredictable results. The body orientation is at identity for the Avatar T-Pose.

The body position and orientation are stored in the Animation Clip (using the Muscle definitions set up in the Avatar). They

are the only world-space curves stored in the Animation Clip. Everything else: muscle curves and IK goals (Hands and Feet)

are stored relative to the body transform.

Root Transform
The Root Transform is a projection on the Y plane of the Body Transform and is computed at runtime. At every frame, a

change in the Root Transform is computed. This change in transform is then applied to the Game Object to make it move.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

214 of 1131 12/16/2012 10:12 PM

The circle below the character represents the root transform

Animation Clip Inspector
The Animation Clip Editor settings (Root Transform Rotation, Root Transform Position (Y) and Root Transform Position

(XZ)) let you control the Root Transform projection from the Body Transform. Depending on these settings some parts of the

Body Transform may be transferred Root Transform. For example you can decide if you want the motion Y position to be part

of the Root Motion (trajectory) or part of the pose (body transform), which is known as Baked into Pose.

Root Transform Rotation

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

215 of 1131 12/16/2012 10:12 PM

Bake into Pose: The orientation will stay on the body transform (or Pose). The Root Orientation will be constant and delta

Orientation will be identity. This means the the Game Object will not be rotated at all by that AnimationClip.

Only AnimationClips that have similar start and stop Root Orientation should use this option. You will have a Green Light in the

UI telling you that an AnimationClip is a good candidate. A suitable candidate would be a straight walk or a run.

Based Upon: This let you set the orientation of the clip. Using Body Orientation, the clip will be oriented to follow the forward

vector of body. This default setting works well for most Motion Capture (Mocap) data like walks, runs, and jumps, but it will fail

with motion like strafing where the motion is perpendicular to the body's forward vector. In those cases you can manually

adjust the orientation using the Offset setting. Finally you have Original that will automatically add the authored offset found

in the imported clip. It is usually used with Keyframed data to respect orientation that was set by the artist.

Offset: used to enter the offset when that option is chosen for Based Upon.

Root Transform Position (Y)
This uses the same concepts described in Root Transform Rotation.

Bake Into Pose: The Y component of the motion will stay on the Body Transform (Pose). The Y component of the Root

Transform will be constant and Delta Root Position Y will be 0. This means that this clip won�t change the Game Object

Height. Again you have a Green Light telling you that a clip is a good candidate for baking Y motion into pose.

Most of the AnimationClips will enable this setting. Only clips that will change the GameObject height should have this

turned off, like jump up or down.

Note: the Animator.gravityWeight is driven by Bake Into Pose position Y. When enabled, gravityWeight = 1, when

disable = 0. gravityWeight is blended for clips when transitioning between states.

Based Upon: In a similar way to Root Transform Rotation you can choose from Original or Mass Center (Body). There is

also a Feet option that is very convenient for AnimationClips that change height (Bake Into Pose disabled). When using

Feet the Root Transform Position Y will match the lowest foot Y for all frames. Thus the blending point always remains around

the feet which prevents floating problem when blending or transitioning.

Offset: In a similar way to Root Transform Rotation, you can manually adjust the AnimationClip height using the Offset

setting.

Root Transform Position (XZ)
Again, this uses same concepts described in Root Transform Rotation and Root Motion Position (Y).

Bake Into Pose will usually be used for �Idles� where you want to force the delta Position (XZ) to be 0. It will stop the

accumulation of small deltas drifting after many evaluations. It can also be used for a Keyframed clip with Based Upon

Original to force an authored position that was set by the artist.

Loop Pose
Loop Pose (like Pose Blending in Blend Trees or Transitions) happens in the referential of Root Transform. Once the Root

Transform is computed, the Pose becomes relative to it. The relative Pose difference between Start and Stop frame is

computed and distributed over the range of the clip from 0-100%.

Generic Root Motion and Loop Pose.
This works in essentially the same as Humanoid Root Motion, but instead of using the Body Transform to compute/project a

Root Transform, the transform set in Root Node is used. The Pose (all the bones which transform below the Root Motion

bone) is made relative to the Root Transform.

Page last updated: 2012-11-09

Scripting Root Motion

Sometimes your animation comes as "in-place", which means if you put it in a scene, it will not move the character that it's on.

In other words, the animation does not contain "root motion". For this, we can modify root motion from script. To put everything

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

216 of 1131 12/16/2012 10:12 PM

together follow the steps below (note there are many variations of achieving the same result, this is just one recipe).

Open the inspector for the FBX file that contains the in-place animation, and go to the Animation tab

Make sure the Muscle Definition is set to the Avatar you intend to control (let's say this avatar is called Dude, and he has

already been added to the Hierarchy View).

Select the animation clip from the available clips

Make sure Loop Pose is properly aligned (the light next to it is green), and that the checkbox for Loop Pose is clicked

Preview the animation in the animation viewer to make sure the beginning and the end of the animation align smoothly, and

that the character is moving "in-place"

On the animation clip create a curve that will control the speed of the character (you can add a curve from the Animation

Import inspector Curves-> +)

Name that curve something meaningful, like "Runspeed"

Create a new Animator Controller, (let's call it RootMotionController)

Drop the desired animation clip into it, this should create a state with the name of the animation (say Run)

Add a parameter to the Controller with the same name as the curve (in this case, "Runspeed")

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

217 of 1131 12/16/2012 10:12 PM

Select the character Dude in the Hierarchy, whose inspector should already have an Animator component.

Drag RootMotionController onto the Controller property of the Animator

If you press play now, you should see the "Dude" running in place

Finally, to control the motion, we will need to create a script (RootMotionScript.cs), that implements the OnAnimatorMove

callback.

using UnityEngine;
using System.Collections;

[RequireComponent(typeof(Animator))]

public class RootMotionScript : MonoBehaviour {

void OnAnimatorMove()
{

 Animator animator = GetComponent<Animator>();

 if (animator)
 {

 Vector3 newPosition = transform.position;
 newPosition.z += animator.GetFloat("Runspeed") * Time.deltaTime;

 transform.position = newPosition;
 }

}
}

Attach RootMotionScript.cs to "Dude"

Note that the Animator component detects there is a script with OnAnimatorMove and Apply Root Motion property

shows up as Handled by Script

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

218 of 1131 12/16/2012 10:12 PM

Now you should see that the character is moving at the speed specified.

(back to Mecanim introduction)

Page last updated: 2012-11-07

Legacy Animation system

Prior to the introduction of Mecanim, Unity used its own animation system and for backward compatiblity, this system is still

available. The main reason for using legacy animation is to continue working with an old project without the work of updating it

for Mecanim. However, it is not recommended that you use the legacy system for new projects.

Working with legacy animations
To import a legacy animation, you first need to mark it as such in the Mesh importer's Rig tab:-

The Animation tab on the importer will then look something like this:-

Import Animation Selects whether or not animation should be imported at all.

Wrap Mode The method of handling what happens when the animation comes to an end:-

Default Uses whatever setting is specified in the animation clip.

Once Play the clip to the end and then finish.

Loop Play to the end, then immediately restart from the beginning.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

219 of 1131 12/16/2012 10:12 PM

PingPong Play to the end, then play from the end in reverse, and so on.

Forever Play to the end, then loop the last frame indefinitely.

Anim Compression Settings to attempt to remove redundant information from clips:-

Off No compression.

Keyframe reduction Attempt to remove keyframes where differences are too small to be seen

Keyframe reduction and

compression

As for Keyframe reduction, but clip data is also compressed.

Rotation error Minimum difference in rotation values (in degrees), below which two keyframes are

counted as equal.

Position error Minimum difference in position (as a percentage of coordinate values), below which two

keyframes are counted as equal.

Rotation error Minimum difference in scale (as a percentage of coordinate values), below which two

keyframes are counted as equal.

Below the properties in the inspector is a list of animation clips. When you click on a clip in the list, an additional panel will

appear below it in the inspector:-

The Start and End values can be changed to allow you to use just a part of the original clip (see the page on |splitting

animations for further details). The Add Loop Frame option adds an extra keyframe to the end of the animation that is exactly

the same as the keyframe at the start. This enables the animation to loop smoothly even when the last frame doesn't exactly

match up with the first. The Wrap Mode setting is identical to the master setting in the main animation properties but applies

only to that specific clip.

Page last updated: 2012-11-09

Animation Editor Guide (Legacy)

The Animation View in Unity allows you to create and modify Animation Clips directly inside Unity. It is designed to act as a

powerful and straightforward alternative to external 3D animation programs. In addition to animating movement, the editor also

allows you to animate variables of materials and components and augment your Animation Clips with Animation Events,

functions that are called at specified points along the timeline.

See the pages about Animation import and Animation Scripting for further information about these subject.

The Animation View Guide is broken up into several pages that each focus on different areas of the View:-

Using the Animation View

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

220 of 1131 12/16/2012 10:12 PM

This section covers the basic operations of the Animation View, such as creating and editing Animations Clips.

Using Animation Curves

This section explains how to create Animation Curves, add and move keyframes and set WrapModes. It also offers tips for

using Animation Curves to their full advantage.

Editing Curves

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

221 of 1131 12/16/2012 10:12 PM

This section explains how to navigate efficienlty in the editor, create and move keys, and edit tangents and tangent types.

Objects with Multiple Moving Parts

This section explains how to animate Game Objects with multiple moving parts and how to handle cases where there is more

than one Animation Component that can control the selected Game Object.

Using Animation Events

This section explains how to add Animation Events to an Animation Clip. Animation Events allow you call a script function

at specified points in the animation's timeline.

Page last updated: 2012-09-10

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

222 of 1131 12/16/2012 10:12 PM

Animation Scripting (Legacy)

Unity's Animation System allows you to create beautifully animated skinned characters. The Animation System supports

animation blending, mixing, additive animations, walk cycle time synchronization, animation layers, control over all aspects of

the animation playback (time, speed, blend-weights), mesh skinning with 1, 2 or 4 bones per vertex as well as supporting

physically based rag-dolls and procedural animation. To obtain the best results, it is recommended that you read about the

best practices and techniques for creating a rigged character with optimal performance in Unity on the Modeling Optimized

Characters page.

Making an animated character involves two things; moving it through the world and animating it accordingly. If you want to

learn more about moving characters around, take a look at the Character Controller page. This page focuses on the animation.

The actual animating of characters is done through Unity's scripting interface.

You can download example demos showing pre-setup animated characters. Once you have learned the basics on this page

you can also see the animation script interface.

This page contains the following sections:-

Animation Blending

Animation Layers

Animation Mixing

Additive Animation

Procedural Animation

Animation Playback and Sampling

Animation Blending
In today's games, animation blending is an essential feature to ensure that characters have smooth animations. Animators

create separate animations, for example, a walk cycle, run cycle, idle animation or shoot animation. At any point in time during

your game you need to be able to transition from the idle animation into the walk cycle and vice versa. Naturally, you want the

transition to be smooth and avoid sudden jerks in the motion.

This is where animation blending comes in. In Unity you can have any number of animations playing on the same character. All

animations are blended or added together to generate the final animation.

Our first step will be to make a character blend smoothly between the idle and walk animations. In order to make the scripter's

job easier, we will first set the Wrap Mode of the animation to Loop. Then we will turn off Play Automatically to make sure

our script is the only one playing animations.

Our first script for animating the character is quite simple; we only need some way to detect how fast our character is moving,

and then fade between the walk and idle animations. For this simple test, we will use the standard input axes:-

function Update () {
 if (Input.GetAxis("Vertical") > 0.2)
 animation.CrossFade ("walk");
 else
 animation.CrossFade ("idle");
}

To use this script in your project:-

Create a Javascript file using Assets->Create Other->Javascript.1.

Copy and paste the code into it2.

Drag the script onto the character (it needs to be attached to the GameObject that has the animation)3.

When you hit the Play button, the character will start walking in place when you hold the up arrow key and return to the idle

pose when you release it.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

223 of 1131 12/16/2012 10:12 PM

Animation Layers
Layers are an incredibly useful concept that allow you to group animations and prioritize weighting.

Unity's animation system can blend between as many animation clips as you want. You can assign blend weights manually or

simply use animation.CrossFade(), which will animate the weight automatically.

Blend weights are always normalized before being applied

Let's say you have a walk cycle and a run cycle, both having a weight of 1 (100%). When Unity generates the final animation,

it will normalize the weights, which means the walk cycle will contribute 50% to the animation and the run cycle will also

contribute 50%.

However, you will generally want to prioritize which animation receives most weight when there are two animations playing. It is

certainly possible to ensure that the weight sums up to 100% manually, but it is easier just to use layers for this purpose.

Layering Example

As an example, you might have a shoot animation, an idle and a walk cycle. The walk and idle animations would be blended

based on the player's speed but when the player shoots, you would want to show only the shoot animation. Thus, the shoot

animation essentially has a higher priority.

The easiest way to do this is to simply keep playing the walk and idle animations while shooting. To do this, we need to make

sure that the shoot animation is in a higher layer than the idle and walk animations, which means the shoot animation will

receive blend weights first. The walk and idle animations will receive weights only if the shoot animation doesn't use all 100%

of the blend weighting. So, when CrossFading the shoot animation in, the weight will start out at zero and over a short period

become 100%. In the beginning the walk and idle layer will still receive blend weights but when the shoot animation is

completely faded in, they will receive no weights at all. This is exactly what we need!

function Start () {
 // Set all animations to loop
 animation.wrapMode = WrapMode.Loop;
 // except shooting
 animation["shoot"].wrapMode = WrapMode.Once;

 // Put idle and walk into lower layers (The default layer is always 0)
 // This will do two things
 // - Since shoot and idle/walk are in different layers they will not affect
 // each other's playback when calling CrossFade.
 // - Since shoot is in a higher layer, the animation will replace idle/walk
 // animations when faded in.
 animation["shoot"].layer = 1;

 // Stop animations that are already playing
 //(In case user forgot to disable play automatically)
 animation.Stop();
}

function Update () {
 // Based on the key that is pressed,
 // play the walk animation or the idle animation
 if (Mathf.Abs(Input.GetAxis("Vertical")) > 0.1)
 animation.CrossFade("walk");
 else
 animation.CrossFade("idle");

 // Shoot
 if (Input.GetButtonDown ("Fire1"))
 animation.CrossFade("shoot");
}

By default the animation.Play() and animation.CrossFade() will stop or fade out animations that are in the same layer. This

is exactly what we want in most cases. In our shoot, idle, run example, playing idle and run will not affect the shoot animation

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

224 of 1131 12/16/2012 10:12 PM

and vice versa (you can change this behavior with an optional parameter to animation.CrossFade if you like).

Animation Mixing
Animation mixing allow you to cut down on the number of animations you need to create for your game by having some

animations apply to part of the body only. This means such animations can be used together with other animations in various

combinations.

You add an animation mixing transform to an animation by calling AddMixingTransform() on the given AnimationState.

Mixing Example

An example of mixing might be something like a hand-waving animation. You might want to make the hand wave either when

the character is idle or when it is walking. Without animation mixing you would have to create separate hand waving

animations for the idle and walking states. However, if you add the shoulder transform as a mixing transform to the hand

waving animation, the hand waving animation will have full control only from the shoulder joint to the hand. Since the rest of

the body will not be affected by he hand-waving, it will continue playing the idle or walk animation. Consequently, only the one

animation is needed to make the hand wave while the rest of the body is using the idle or walk animation.

/// Adds a mixing transform using a Transform variable
var shoulder : Transform;
animation["wave_hand"].AddMixingTransform(shoulder);

Another example using a path.

function Start () {
 // Adds a mixing transform using a path instead
 var mixTransform : Transform = transform.Find("root/upper_body/left_shoulder");
 animation["wave_hand"].AddMixingTransform(mixTransform);
}

Additive Animations
Additive animations and animation mixing allow you to cut down on the number of animations you have to create for your

game, and are important for creating facial animations.

Suppose you want to create a character that leans to the sides as it turns while walking and running. This leads to four

combinations (walk-lean-left, walk-lean-right, run-lean-left, run-lean-right), each of which needs an animation. Creating a

separate animation for each combination clearly leads to a lot of extra work even in this simple case but the number of

combinations increases dramatically with each additional action. Fortunately additive animation and mixing avoids the need to

produce separate animations for combinations of simple movements.

Additive Animation Example

Additive animations allow you to overlay the effects of one animation on top of any others that may be playing. When

generating additive animations, Unity will calculate the difference between the first frame in the animation clip and the current

frame. Then it will apply this difference on top of all other playing animations.

Referring to the previous example, you could make animations to lean right and left and Unity would be able to superimpose

these on the walk, idle or run cycle. This could be achieved with code like the following:-

private var leanLeft : AnimationState;
private var leanRight : AnimationState;

function Start () {
 leanLeft = animation["leanLeft"];
 leanRight = animation["leanRight"];

 // Put the leaning animation in a separate layer
 // So that other calls to CrossFade won't affect it.
 leanLeft.layer = 10;
 leanRight.layer = 10;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

225 of 1131 12/16/2012 10:12 PM

 // Set the lean animation to be additive
 leanLeft.blendMode = AnimationBlendMode.Additive;
 leanRight.blendMode = AnimationBlendMode.Additive;

 // Set the lean animation ClampForever
 // With ClampForever animations will not stop
 // automatically when reaching the end of the clip
 leanLeft.wrapMode = WrapMode.ClampForever;
 leanRight.wrapMode = WrapMode.ClampForever;

 // Enable the animation and fade it in completely
 // We don't use animation.Play here because we manually adjust the time
 // in the Update function.
 // Instead we just enable the animation and set it to full weight
 leanRight.enabled = true;
 leanLeft.enabled = true;
 leanRight.weight = 1.0;
 leanLeft.weight = 1.0;

 // For testing just play "walk" animation and loop it
 animation["walk"].wrapMode = WrapMode.Loop;
 animation.Play("walk");
}

// Every frame just set the normalized time
// based on how much lean we want to apply
function Update () {
 var lean = Input.GetAxis("Horizontal");
 // normalizedTime is 0 at the first frame and 1 at the last frame in the clip
 leanLeft.normalizedTime = -lean;
 leanRight.normalizedTime = lean;
}

Tip: When using Additive animations, it is critical that you also play some other non-additive animation on every transform that

is also used in the additive animation, otherwise the animations will add on top of the last frame's result. This is most certainly

not what you want.

Animating Characters Procedurally
Sometimes you want to animate the bones of your character procedurally. For example, you might want the head of your

character to look at a specific point in 3D space which is best handled by a script that tracks the target point. Fortunately, Unity

makes this very easy, since bones are just Transforms which drive the skinned mesh. Thus, you can control the bones of a

character from a script just like the Transforms of a GameObject.

One important thing to know is that the animation system updates Transforms after the Update() function and before the

LateUpdate() function. Thus if you want to do a LookAt() function you should do that in LateUpdate() to make sure that you

are really overriding the animation.

Ragdolls are created in the same way. You simply have to attach Rigidbodies, Character Joints and Capsule Colliders to the

different bones. This will then physically animate your skinned character.

Animation Playback and Sampling
This section explains how animations in Unity are sampled when they are played back by the engine.

AnimationClips are typically authored at a fixed frame rate. For example, you may create your animation in 3ds Max or Maya at

a frame rate of 60 frames per second (fps). When importing the animation in Unity, this frame rate will be read by the importer,

so the data of the imported animation is also sampled at 60 fps.

However, games typically run at a variable frame rate. The frame rate may be higher on some computers than on others, and it

may also vary from one second to the next based on the complexity of the view the camera is looking at at any given moment.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

226 of 1131 12/16/2012 10:12 PM

Basically this means that we can make no assumptions about the exact frame rate the game is running at. What this means is

that even if an animation is authored at 60 fps, it may be played back at a different framerate, such as 56.72 fps, or 83.14 fps,

or practically any other value.

As a result, Unity must sample an animation at variable framerates, and cannot guarantee the framerate for which it was

originally designed. Fortunately, animations for 3D computer graphics do not consist of discrete frames, but rather of

continuous curves. These curves can be sampled at any point in time, not just at those points in time that correspond to

frames in the original animation. In fact, if the game runs at a higher frame rate than the animation was authored with, the

animation will actually look smoother and more fluid in the game than it did in the animation software.

For most practical purposes, you can ignore the fact that Unity samples animations at variable framerates. However, if you

have gameplay logic that relies on animations that animate transforms or properties into very specific configurations, then you

need to be aware that the re-sampling takes place behind the scenes. For example, if you have an animation that rotates an

object from 0 to 180 degrees over 30 frames, and you want to know from your code when it has reached half way there, you

should not do it by having a conditional statement in your code that checks if the current rotation is 90 degrees. Because Unity

samples the animation according to the variable frame rate of the game, it may sample it when the rotation is just below 90

degrees, and the next time right after it reached 90 degrees. If you need to be notified when a specific point in an animation is

reached, you should use an AnimationEvent instead.

Note also that as a consequence of the variable framerate sampling, an animation that is played back using WrapMode.Once

may not be sampled at the exact time of the last frame. In one frame of the game the animation may be sampled just before the

end of the animation, and in the next frame the time can have exceeded the length of the animation, so it is disabled and not

sampled further. If you absolutely need the last frame of the animation to be sampled exactly, you should use

WrapMode.ClampForever which will keep sampling the last frame indefinitely until you stop the animation yourself.

Page last updated: 2012-09-05

Navmesh and Pathfinding

A navigation mesh (also known as the Navmesh) is a simplified representation of world geometry, which gameplay agents use

to navigate the world. Typically an agent has a goal, or a destination, to which it is trying to find a path, and then navigate to

that goal along the path. This process is called pathfinding. Note that Navmesh generation (or baking) is done by game

developers inside the editor, while the pathfinding is done by agents at runtime based on that Navmesh.

In the complex world of games, there can be many agents, dynamic obstacles, and constantly changing accessibility levels for

different areas in the world. Agents need to react dynamically to those changes. An agent's pathfinding task can be interrupted

by or affected by things like collision avoidance with other characters, changing characteristics of the terrain, physical

obstacles (such as closing doors), and an update to the actual destination.

Here is a simple example of how to set up a navmesh, and an agent that will do pathfinding on it:

Create some geometry in the level, for example a Plane or a Terrain.

In the Inspector Window's right hand corner click on Static and make sure that this geometry is marked up as Navigation

Static

Pull up the Navigation Mesh window (Window->Navigation).

Bake the mesh. This will generate the navmesh for all navigation-static geometry.

Create some dynamic geometry in the scene (such as characters).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

227 of 1131 12/16/2012 10:12 PM

Set up an agent (or multiple agents), by adding a NavMeshAgent component to a dynamic geometry in the scene.

Give the agent a destination (by setting the destination property) in a script attached to the agent.

Press play and watch the magic.

Note that it is also possible to define custom NavMesh layers. These are needed for situations where some parts of the

environment are easier for agents to pass through than others. For parts of the mesh that are not directly connected, it is

possible to create Off Mesh Links.

Automatic off-mesh links
Navmesh geometry can also be marked up for automatic off-mesh link generation, like this:

Marking up geometry for automatic off-mesh link generation

Geometry marked up in this way will be checked during the Navmesh Baking process for creating links to other Navmesh

geometry. This way, we can control the auto-generation for each GameObject. Whether an off-mesh link will be

auto-generated in the baking process is also determined by the Jump distance and the Drop height properties in the

Navigation Bake settings.

The NavMeshLayer assigned to auto-generated off-mesh links, is the built-in layer Jump. This allows for global control of the

auto-generated off-mesh links costs (see Navmesh layers).

Note, that there is also a possibility for setting up manual off-mesh links (described here).

Page last updated: 2012-04-24

Navmesh Baking

Once the Navmesh geometry and layers are marked up, it's time to bake the Navmesh geometry.

Inside the Navigation window (Window->Navigation), go to the Bake tab (the upper-right corner), and click on the Bake

button (the lower-right corner).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

228 of 1131 12/16/2012 10:12 PM

Navigation Bake Window

Here are the properties that affect Navmesh baking:

Radius radius of the "typical" agent (preferrably the smallest).

Height height of the "typical" agent (the "clearance" needed to get a character through).

Max Slope all surfaces with higher slope than this, will be discarded.

Step height the height difference below which navmesh regions are considered connected.

Drop height If the value of this property is positive, off-mesh links will be placed for adjacent navmesh surfaces

where the height difference is below this value.

Jump distance If the value of this property is positive, off-mesh links will be placed for adjacent navmesh surfaces

where the horizontal distance is below this value.

Advanced

Min region area Regions with areas below this threshold will be discarded.

Width inaccuracy % Allowable width inaccuracy

Height inaccuracy

%

Allowable height inaccuracy

Height mesh If this options is on, original height information is stored. This has performance implications for speed

and memory usage.

Note that the baked navmesh is part of the scene and agents will be able to traverse it. To remove the navmesh, click on Clear

when you're in the Bake tab.

(back to Navigation and Pathfinding)

Page last updated: 2012-04-24

Sound

Audio Listener

The Audio Listener acts as a microphone-like device. It receives input from any given Audio Source in the scene and plays

sounds through the computer speakers. For most applications it makes the most sense to attach the listener to the Main

Camera. If an audio listener is within the boundaries of a Reverb Zone reverberation is applied to all audible sounds in the

scene. (PRO only) Furthermore, Audio Effects can be applied to the listener and it will be applied to all audible sounds in the

scene.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

229 of 1131 12/16/2012 10:12 PM

The Audio Listener, attached to the Main Camera

Properties
The Audio Listener has no properties. It simply must be added to work. It is always added to the Main Camera by default.

Details
The Audio Listener works in conjunction with Audio Sources, allowing you to create the aural experience for your games.

When the Audio Listener is attached to a GameObject in your scene, any Sources that are close enough to the Listener will

be picked up and output to the computer's speakers. Each scene can only have 1 Audio Listener to work properly.

If the Sources are 3D (see import settings in Audio Clip), the Listener will emulate position, velocity and orientation of the

sound in the 3D world (You can tweak attenuation and 3D/2D behavior in great detail in Audio Source) . 2D will ignore any 3D

processing. For example, if your character walks off a street into a night club, the night club's music should probably be 2D,

while the individual voices of characters in the club should be mono with their realistic positioning being handled by Unity.

You should attach the Audio Listener to either the Main Camera or to the GameObject that represents the player. Try both to

find what suits your game best.

Hints
Each scene can only have one Audio Listener.

You access the project-wide audio settings using the Audio Manager, found in the Edit->Project Settings->Audio menu.

View the Audio Clip Component page for more information about Mono vs Stereo sounds.

Audio Source

The Audio Source plays back an Audio Clip in the scene. If the Audio Clip is a 3D clip, the source is played back at a given

position and will attenuate over distance. The audio can be spread out between speakers (stereo to 7.1) (Spread) and

morphed between 3D and 2D (PanLevel). This can be controlled over distance with falloff curves. Also, if the listener is within

one or multiple Reverb Zones, reverberations is applied to the source. (PRO only) Individual filters can be applied to each

audio source for an even richer audio experience. See Audio Effects for more details.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

230 of 1131 12/16/2012 10:12 PM

The Audio Source gizmo in the Scene View and its settings in the inspector.

Properties
Audio Clip Reference to the sound clip file that will be played.

Mute If enabled the sound will be playing but muted.

Bypass Effects This Is to quickly "by-pass" filter effects applied to the audio source. An easy way to turn all effects

on/off.

Play On Awake If enabled, the sound will start playing the moment the scene launches. If disabled, you need to start

it using the Play() command from scripting.

Loop Enable this to make the Audio Clip loop when it reaches the end.

Priority Determines the priority of this audio source among all the ones that coexist in the scene. (Priority: 0 =

most important. 256 = least important. Default = 128.). Use 0 for music tracks to avoid it getting

occasionally swapped out.

Volume How loud the sound is at a distance of one world unit (one meter) from the Audio Listener.

Pitch Amount of change in pitch due to slowdown/speed up of the Audio Clip. Value 1 is normal playback

speed.

3D Sound Settings Settings that are applied to the audio source if the Audio Clip is a 3D Sound.

Pan Level Sets how much the 3d engine has an effect on the audio source.

Spread Sets the spread angle to 3d stereo or multichannel sound in speaker space.

Doppler Level Determines how much doppler effect will be applied to this audio source (if is set to 0, then no effect

is applied).

Min Distance Within the MinDistance, the sound will stay at loudest possible. Outside MinDistance it will begin to

attenuate. Increase the MinDistance of a sound to make it 'louder' in a 3d world, and decrease it to

make it 'quieter' in a 3d world.

Max Distance The distance where the sound stops attenuating at. Beyond this point it will stay at the volume it

would be at MaxDistance units from the listener and will not attenuate any more.

Rolloff Mode How fast the sound fades. The higher the value, the closer the Listener has to be before hearing the

sound.(This is determined by a Graph).

Logarithmic Rolloff The sound is loud when you are close to the audio source, but when you get away from the object it

decreases significantly fast.

Linear Rolloff The further away from the audio source you go, the less you can hear it.

Custom Rolloff The sound from the audio source behaves accordingly to how you set the graph of roll offs.

2D Sound Settings Settings that are applied to the audio source if the Audio clip is a 2D Sound.

Pan 2D Sets how much the engine has an effect on the audio source.

Types of Rolloff

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

231 of 1131 12/16/2012 10:12 PM

There are three Rolloff modes: Logarithmic, Linear and Custom Rolloff. The Custom Rolloff can be modified by modifying the

volume distance curve as described below. If you try to modify the volume distance function when it is set to Logarithmic or

Linear, the type will automatically change to Custom Rolloff.

Rolloff Modes that an audio source can have.

Distance Functions
There are several properties of the audio that can be modified as a function of the distance between the audio source and the

audio listener.

Volume: Amplitude(0.0 - 1.0) over distance.

Pan: Left(-1.0) to Right(1.0) over distance.

Spread: Angle (degrees 0.0 - 360.0) over distance.

Low-Pass (only if LowPassFilter is attached to the AudioSource): Cutoff Frequency (22000.0-10.0) over distance.

Distance functions for Volume, Pan, Spread and Low-Pass audio filter. The current distance to the Audio Listener is marked

in the graph.

To modify the distance functions, you can edit the curves directly. For more information, see the guide to Editing Curves.

Creating Audio Sources
Audio Sources don't do anything without an assigned Audio Clip. The Clip is the actual sound file that will be played back.

The Source is like a controller for starting and stopping playback of that clip, and modifying other audio properties.

To create a new Audio Source:

Import your audio files into your Unity Project. These are now Audio Clips.1.

Go to GameObject->Create Empty from the menubar.2.

With the new GameObject selected, select Component->Audio->Audio Source.3.

Assign the Audio Clip property of the Audio Source Component in the Inspector.4.

Note: If you want to create an Audio Source just for one Audio Clip that you have in the Assets folder then you can just drag

that clip to the scene view - a GameObject with an Audio Source component will be created automatically for it. Dragging a

clip onto on existing GameObject will attach the clip along with a new Audio Source if there isn't one already there. If the

object does already have an Audio Source then the newly dragged clip will replace the one that the source currently uses.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

232 of 1131 12/16/2012 10:12 PM

Platform specific details

 iOS

On mobile platforms compressed audio is encoded as MP3 for speedier decompression. Beware that this compression can

remove samples at the end of the clip and potentially break a "perfect-looping" clip. Make sure the clip is right on a specific

MP3 sample boundary to avoid sample clipping - tools to perform this task are widely available. For performance reasons

audio clips can be played back using the Apple hardware codec. To enable this, check the "Use Hardware" checkbox in the

import settings. See the Audio Clip documentation for more details.

 Android

On mobile platforms compressed audio is encoded as MP3 for speedier decompression. Beware that this compression can

remove samples at the end of the clip and potentially break a "perfect-looping" clip. Make sure the clip is right on a specific

MP3 sample boundary to avoid sample clipping - tools to perform this task are widely available.

Audio Clip

Audio Clips contain the audio data used by Audio Sources. Unity supports mono, stereo and multichannel audio assets (up to

eight channels). The audio file formats that Unity can import are .aif, .wav, .mp3, and .ogg. Unity can also import tracker

modules in the .xm, .mod, .it, and .s3m formats. The tracker module assets behave the same way as any other audio assets

in Unity although no waveform preview is available in the asset import inspector.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

233 of 1131 12/16/2012 10:12 PM

The Audio Clip Inspector

Properties
Audio Format The specific format that will be used for the sound at runtime.

Native This option offers higher quality at the expense of larger file size and is best for very short sound

effects.

Compressed The compression results in smaller files but with somewhat lower quality compared to native audio.

This format is best for medium length sound effects and music.

3D Sound If enabled, the sound will play back in 3D space. Both Mono and Stereo sounds can be played in 3D.

Force to mono If enabled, the audio clip will be down-mixed to a single channel sound.

Load Type The method Unity uses to load audio assets at runtime.

Decompress on

load

Audio files will be decompressed as soon as they are loaded. Use this option for smaller compressed

sounds to avoid the performance overhead of decompressing on the fly. Be aware that

decompressing sounds on load will use about ten times more memory than keeping them

compressed, so don't use this option for large files.

Compressed in

memory

Keep sounds compressed in memory and decompress while playing. This option has a slight

performance overhead (especially for Ogg/Vorbis compressed files) so only use it for bigger files

where decompression on load would use a prohibitive amount of memory. Note that, due to technical

limitations, this option will silently switch to Stream From Disc (see below) for Ogg Vorbis assets on

platforms that use FMOD audio.

Stream from disc Stream audio data directly from disc. The memory used by this option is typically a small fraction of

the file size, so it is very useful for music or other very long tracks. For performance reasons, it is

usually advisable to stream only one or two files from disc at a time but the of streams that can

comfortably be handled depends on the hardware.

Compression Amount of Compression to be applied to a Compressed clip. Statistics about the file size can be

seen under the slider. A good approach to tuning this value is to drag the slider to a place that leaves

the playback "good enough" while keeping the file small enough for your distribution requirements.

Hardware

Decoding

(iOS only) On iOS devices, Apple's hardware decoder can be used resulting in lower CPU overhead during

decompression. Check out platform specific details for more info.

Gapless

looping

(Android/iOS only) Use this when compressing a seamless looping audio source file (in a non-compressed PCM

format) to ensure perfect continuity is preserved at the seam. Standard MPEG encoders introduce a short silence

at the loop point, which will be audible as a brief "click" or "pop".

Importing Audio Assets
Unity supports both Compressed and Native Audio. Any type of file (except MP3/Ogg Vorbis) will be initially imported as

Native. Compressed audio files must be decompressed by the CPU while the game is running, but have smaller file size. If

Stream is checked the audio is decompressed on the fly, otherwise it is decompressed completely as soon as it loads. Native

PCM formats (WAV, AIFF) have the benefit of giving higher fidelity without increasing the CPU overhead, but files in these

formats are typically much larger than compressed files. Module files (.mod,.it,.s3m..xm) can deliver very high quality with an

extremely low footprint.

As a general rule of thumb, Compressed audio (or modules) are best for long files like background music or dialog, while

Native is better for short sound effects. You should tweak the amount of Compression using the compression slider. Start with

high compression and gradually reduce the setting to the point where the loss of sound quality is perceptible. Then, increase it

again slightly until the perceived loss of quality disappears.

Using 3D Audio
If an audio clip is marked as a 3D Sound then it will be played back so as to simulate its position in the game world's 3D

space. 3D sounds emulate the distance and location of sounds by attenuating volume and panning across speakers. Both

mono and multiple channel sounds can be positioned in 3D. For multiple channel audio, use the spread option on the Audio

Source to spread and split out the discrete channels in speaker space. Unity offers a variety of options to control and fine-tune

the audio behavior in 3D space - see the Audio Source component reference for further details.

Platform specific details

 iOS

On mobile platforms compressed audio is encoded as MP3 to take advantage of hardware decompression.

To improve performance, audio clips can be played back using the Apple hardware codec. To enable this option, check the

"Hardware Decoding" checkbox in the Audio Importer. Note that only one hardware audio stream can be decompressed at a

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

234 of 1131 12/16/2012 10:12 PM

time, including the background iPod audio.

If the hardware decoder is not available, the decompression will fall back on the software decoder (on iPhone 3GS or later,

Apple's software decoder is used in preference to Unity's own decoder (FMOD)).

 Android

On mobile platforms compressed audio is encoded as MP3 to take advantage of hardware decompression.

Page last updated: 2007-11-16

Game Interface Elements

Unity gives you a number of options for creating your game's graphic user interface (GUI). You can use GUI Text and GUI

Texture objects in the scene, or generate the interface from scripts using UnityGUI.

The rest of this page contains a detailed guide for getting up and running with UnityGUI.

GUI Scripting Guide

Overview
UnityGUI allows you to create a wide variety of highly functional GUIs very quickly and easily. Rather than creating a GUI

object, manually positioning it, and then writing a script that handles its functionality, you can do everything at once with just a

few lines of code. The code produces GUI controls that are instantiated, positioned and handled with a single function call.

For example, the following code will create and handle a button with no additional work in the editor or elsewhere:-

// JavaScript
function OnGUI () {

if (GUI.Button (Rect (10,10,150,100), "I am a button")) {
print ("You clicked the button!");

}
}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

void OnGUI () {
if (GUI.Button (new Rect (10,10,150,100), "I am a button")) {

print ("You clicked the button!");
}

}
}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

235 of 1131 12/16/2012 10:12 PM

This is the button created by the code above

Although this example is very simple, there are very powerful and complex techniques available for use in UnityGUI. GUI

construction is a broad subject but the following sections should help you get up to speed as quickly as possible. This guide

can be read straight through or used as reference material.

UnityGUI Basics
This section covers the fundamental concepts of UnityGUI, giving you an overview as well as a set of working examples you

can paste into your own code. UnityGUI is very friendly to play with, so this is a good place to get started.

Controls
This section lists every available Control in UnityGUI, along with code samples and images showing the results.

Customization
It is important to be able to change the appearance of the GUI to match the look of your game. All controls in UnityGUI can be

customized with GUIStyles and GUISkins, as explained in this section.

Layout Modes
UnityGUI offers two ways to arrange your GUIs: you can manually place each control on the screen, or you can use an

automatic layout system which works in a similar way to HTML tables. Either system can be used as desired and the two can

be freely mixed. This section explains the functional differences between the two systems, including examples.

Extending UnityGUI
UnityGUI is very easy to extend with new Control types. This chapter shows you how to make simple compound controls -

complete with integration into Unity's event system.

Extending Unity Editor
The GUI of the Unity editor is actually written using UnityGUI. Consequently, the editor is highly extensible using the same type

of code you would use for in-game GUI. In addition, there are a number of Editor-specific GUI controls to help you create

custom editor GUI.

Page last updated: 2011-11-17

Networked Multiplayer

Realtime networking is a complex field but Unity makes it easy to add networking features to your game. Nevertheless, it is

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

236 of 1131 12/16/2012 10:12 PM

useful to have some idea of the scope of networking before using it in a game. This section explains the fundamentals of

networking along with the specifics of Unity's implementation. If you have never created a network game before then it is

strongly recommended that you work through this guide before getting started.

High Level Overview
This section outlines all the concepts involved in networking and serves as an introduction to deeper topics.

Networking Elements in Unity
This section of the guide covers Unity's implementation of the concepts explained in the overview.

RPC Details

Remote Procedure Call or RPC is a way of calling a function on a remote machine. This may be a client calling a function on

the server, or the server calling a function on some or all clients. This section explains RPC concepts in detail.

State Synchronization

State Synchronization is a method of regularly updating a specific set of data across two or more game instances running on

the network.

Minimizing Bandwidth

Every choice you make about where and how to share data will affect the network bandwidth your game uses. This page

explains how bandwidth is used and how to keep usage to a minimum.

Network View

Network Views are Components you use to share data across the network and are a fundamental aspect of Unity networking.

This page explains them in detail.

Network Instantiate

A complex subject in networking is ownership of an object and determination of who controls what. Network Instantiation

handles this task for you, as explained in this section. Also covered are some more sophisticated alternatives for situations

where you need more control over object ownership.

Master Server

The Master Server is like a game lobby where servers can advertise their presence to clients. It can also enable

communication from behind a firewall or home network using a technique called NAT punchthrough (with help from a facilitator)

to make sure your players can always connect with each other. This page explains how to use the Master Server.

Page last updated: 2011-11-17

iphone-GettingStarted

Building games for devices like the iPhone and iPad requires a different approach than you would use for desktop PC games.

Unlike the PC market, your target hardware is standardized and not as fast or powerful as a computer with a dedicated video

card. Because of this, you will have to approach the development of your games for these platforms a little differently. Also, the

features available in Unity for iOS differ slightly from those for desktop PCs.

Setting Up Your Apple Developer Account
Before you can run Unity iOS games on the actual device, you will need to have your Apple Developer account approved and

set up. This includes establishing your team, adding your devices, and finalizing your provisioning profiles. All this setup is

performed through Apple's developer website. Since this is a complex process, we have provided a basic outline of the tasks

that must be completed before you can run code on your iOS devices. However, the best thing to do is follow the step-by-step

instructions at Apple's iPhone Developer portal.

Note: We recommend that you set up your Apple Developer account before proceeding because you will need it to use Unity

to its full potential with iOS.

Accessing iOS Functionality
Unity provides a number of scripting APIs to access the multi-touch screen, accelerometer, device geographical location

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

237 of 1131 12/16/2012 10:12 PM

system and much more. You can find out more about the script classes on the iOS scripting page.

Exposing Native C, C++ or Objective-C Code to Scripts
Unity allows you to call custom native functions written in C, C++ or Objective-C directly from C# scripts. To find out how to

bind native functions, visit the plugins page.

Prepare Your Application for In-App Purchases
The Unity iOS runtime allows you to download new content and you can use this feature to implement in-app purchases. See

the downloadable content manual page for further information.

Occlusion Culling
Unity supports occlusion culling which is useful for squeezing high performance out of complex scenes with many objects. See

the occlusion culling manual page for further information.

Splash Screen Customization
See the splash screen customization page to find out how to change the image your game shows while launching.

Troubleshooting and Reporting Crashes.
If you are experiencing crashes on the iOS device, please consult the iOS troubleshooting page for a list of common issues

and solutions. If you can't find a solution here then please file a bug report for the crash (menu: Help > Report A Bug in the

Unity editor).

How Unity's iOS and Desktop Targets Differ

Statically Typed JavaScript

Dynamic typing in JavaScript is always turned off in Unity when targetting iOS (this is equivalent to #pragma strict getting

added to all your scripts automatically). Static typing greatly improves performance, which is especially important on iOS

devices. When you switch an existing Unity project to the iOS target, you will get compiler errors if you are using dynamic

typing. You can easily fix these either by using explicitly declared types for the variables that are causing errors or taking

advantage of type inference.

MP3 Instead of Ogg Vorbis Audio Compression

For performance reasons, MP3 compression is favored on iOS devices. If your project contains audio files with Ogg Vorbis

compression, they will be re-compressed to MP3 during the build. Consult the audio clip documentation for more information

on using compressed audio on the iPhone.

PVRTC Instead of DXT Texture Compression

Unity iOS does not support DXT textures. Instead, PVRTC texture compression is natively supported by iPhone/iPad devices.

Consult the texture import settings documentation to learn more about iOS texture formats.

Movie Playback

MovieTextures are not supported on iOS. Instead, full-screen streaming playback is provided via scripting functions. To learn

about the supported file formats and scripting API, consult the movie page in the manual.

Further Reading
Unity iOS Basics

Unity Remote

iOS Scripting

Input

Mobile Keyboard

Advanced Unity Mobile Scripting

Using .NET API 2.0 compatibility level

iOS Hardware Guide

Optimizing Performance in iOS.

iOS Specific Optimizations

Measuring Performance with the Built-in Profiler

Optimizing the Size of the Built iOS Player

Account Setup

Features currently not supported by Unity iOS

Building Plugins for iOS

Preparing your application for "In App Purchases"

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

238 of 1131 12/16/2012 10:12 PM

Customizing the Splash screen of Your Mobile Application

Trouble Shooting

Reporting crash bugs on iOS
Page last updated: 2012-06-06

iphone-basic

This section covers the most common and important questions that come up when starting to work with iOS.

Prerequisites

I've just received iPhone Developer approval from Apple, but I've never developed for iOS before. What do I do

first?

A: Download the SDK, get up and running on the Apple developer site, and set up your team, devices, and provisioning.

We've provided a basic list of steps to get you started.

Can Unity-built games run in the iPhone Simulator?

A: No, but Unity iOS can build to iPad Simulator if you're using the latest SDK. However the simulator itself is not very useful

for Unity because it does not simulate all inputs from iOS or properly emulate the performance you get on the iPhone/iPad. You

should test out gameplay directly inside Unity using the iPhone/iPad as a remote control while it is running the Unity Remote

application. Then, when you are ready to test performance and optimize the game, you publish to iOS devices.

Unity Features

How do I work with the touch screen and accelerometer?

A: In the scripting reference inside your Unity iOS installation, you will find classes that provide the hooks into the device's

functionality that you will need to build your apps. Consult the Input System page for more information.

My existing particle systems seem to run very slowly on iOS. What should I do?

A: iOS has relatively low fillrate. If your particles cover a rather large portion of the screen with multiple layers, it will kill iOS

performance even with the simplest shader. We suggest baking your particle effects into a series of textures off-line. Then, at

run-time, you can use 1-2 particles to display them via animated textures. You can get fairly decent looking effects with a

minimum amount of overdraw this way.

Can I make a game that uses heavy physics?

A: Physics can be expensive on iOS is it requires a lot of floating point number crunching. You should completely avoid

MeshColliders if at all possible, but they can be used if they are really necessary. To improve performance, use a low fixed

framerate using Edit->Time->Fixed Delta Time. A framerate of 10-30 is recommended. Enable rigidbody interpolation to

achieve smooth motion while using low physics frame rates. In order to achieve completely fluid framerate without oscillations,

it is best to pick fixed deltaTime value based on the average framerate your game is getting on iOS. Either 1:1 or half the

frame rate is recommended. For example, if you get 30 fps, you should use 15 or 30 fps for fixed frame rate (0.033 or 0.066)

Can I access the gallery, music library or the native iPod player in Unity iOS?

A: Yes - if you implement it. Unity iPhone supports the native plugin system, where you can add any feature you need --

including access to Gallery, Music library, iPod Player and any other feature that the iOS SDK exposes. Unity iOS does not

provide an API for accessing the listed features through Unity scripts.

UnityGUI Considerations

What kind of performance impact will UnityGUI make on my games?

A: UnityGUI is fairly expensive when many controls are used. It is ideal to limit your use of UnityGUI to game menus or very

minimal GUI Controls while your game is running. It is important to note that every object with a script containing an OnGUI()

call will require additional processor time -- even if it is an empty OnGUI() block. It is best to disable any scripts that have an

OnGUI() call if the GUI Controls are not being used. You can do this by marking the script as enabled = false.

Any other tips for using UnityGUI?

A: Try using GUILayout as little as possible. If you are not using GUILayout at all from one OnGUI() call, you can disable all

GUILayout rendering using MonoBehaviour.useGUILayout = false; This doubles GUI rendering performance. Finally,

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

239 of 1131 12/16/2012 10:12 PM

use as few GUI elements while rendering 3D scenes as possible.

Page last updated: 2011-10-29

unity-remote

Unity Remote is an application that allows you to use your iOS device as a remote control for your project in Unity. This is

useful during development since it is much quicker to test your project in the editor with remote control than to build and deploy

it to the device after each change.

Where can I find Unity Remote?
Unity remote is available for download from the AppStore at no charge. If you prefer to build and deploy the application

yourself, you can download the source here at the Unity website.

How do I build Unity Remote?
First, download the project source code here and unzip it to your preferred location. The zip file contains an XCode project to

build Unity Remote and install it on your device.

Assuming you have already created the provisioning profile and successfully installed iOS builds on your device, you just need

to open the Xcode project file UnityRemote.xcodeproj. Once XCode is launched, you should click "Build and Go" to install the

app on your iOS device. If you have never built and run applications before, we recommend that you try building some of the

Apple examples first to familiarize yourself with XCode and iOS.

Once Unity Remote is installed, make sure your device is connected via Wi-Fi to the same network as your development

machine. Launch Unity Remote on your iPhone/iPad while Unity is running on your computer and select your computer from

the list that appears. Now, whenever you enter Play mode in the Editor, your device will act as a remote control that you can

use for developing and testing your game. You can control the application with the device wirelessly and you will also see a

low-res version of the app on the device's screen.

Note: The Unity iOS editor cannot emulate the device's hardware perfectly, so you may not get the exact behavior (graphics

performance, touch responsiveness, sounds playback, etc) that you would on a real device.

Xcode shows strange errors while deploying Unity Remote to my device. What should I do?
This indicates that the default Identifier in the Unity Remote project is not compatible with your provisioning profile. You will

have to alter this Identifier manually in your XCode project. The Identifier must match your provisioning profile.

You will need to create an AppID with an trailing asterisk if you have not already done so; you can do this in the Program Portal

on Apple's iPhone Developer Program. First, go to the Program Portal and choose the AppIDs tab. Then, click the Add ID

button in the top right corner and type your usual bundle identifier followed by dot and asterisk (eg, com.mycompany.*) in the

App ID Bundle Seed ID and Bundle Identifier field. Add the new AppID to your provisioning profile, then download and reinstall

it. Don't forget to restart Xcode afterwards. If you have any problems creating the AppID, consult the Provisioning How-to

section on Apple's website.

Don't forget to change the Identifier before you install Unity Remote on your device.

Open the Unity Remote project with XCode. From the menu, select Project->Edit Active Target "Unity Remote". This will

open a new window entitled Target "Unity Remote" Info. Select the Properties tab. Change the Identifier property field from

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

240 of 1131 12/16/2012 10:12 PM

com.unity3d.UnityRemote to the bundle identifier in your AppID followed by "." (dot) followed by "UnityRemote". For

example, if your provisioning profile contains ##.com.mycompany.* AppID, then change the Identifier field to

com.mycompany.UnityRemote.

Next, select Build->Clean all targets from the menu, and compile and install Unity Remote again. You may also need to

change the active SDK from Simulator to Device - 2.0 | Release. There is no problem using SDK 2.0 even if your device runs

a newer version of the OS.

I'm getting really poor graphics quality when running my game in Unity Remote. What can I do to
improve it?
When you use Unity Remote, the game actually runs on your Mac while its visual content is heavily compressed and streamed

to the device. As a result, what you see on the device screen is just a low-res version of what the app would really look like.

You should check how the game runs on the device occasionally by building and deploying the app (select File->Build & Run

in the Unity editor).

Unity Remote is laggy. Can I improve it?
The performance of Unity Remote depends heavily on the speed of the Wi-Fi network, the quality of the networking hardware

and other factors. For the best experience, create an ad-hoc network between your Mac and iOS device. Click the Airport icon

on your Mac and choose "Create Network". Then, enter a name and password and click OK. On the device, choose

Settings->Wi-Fi and select the new Wi-Fi network you have just created. Remember that an ad-hoc network is really a

wireless connection that does not involve a wireless access point. Therefore, you will usually not have internet access while

using ad-hoc networking.

Turning Bluetooth off on both on your iPhone/iPad and on Mac should also improve connection quality.

If you do not need to see the game view on the device, you can turn image synchronization off in the Remote machine list. This

will reduce the network traffic needed for the Remote to work.

The connection to Unity Remote is easily lost
This can be due to a problem with the installation or other factors that prevent Unity Remote from functioning properly. Try the

following steps in sequence, checking if the performance improves at each step before moving on to the next:-

First of all, check if Bluetooth is switched on. Both your Mac and iOS device should have Bluetooth disabled for best

performance.

1.

Delete the settings file located at ~/Library/Preferences/com.unity3d.UnityEditoriPhone.plist2.

Reinstall the game on your iPhone/iPad.3.

Reinstall Unity on your Mac.4.

As a last resort, performing a hard reset on the iOS device can sometimes improve the performance of Unity Remote.5.

If you still experience problems then try installing Unity Remote on another device (in another location if possible) and see if it

gives you better results. There could be problems with RF interference or other software influencing the performance of the

wireless adapter on your Mac or iOS device.

Unity Remote doesn't see my Mac. What should I do?
Check if Unity Remote and your Mac are connected to the same wireless network.

Check your firewall settings, router security settings, and any other hardware/software that may filter packets on your

network.

Leave Unity Remote running, switch off your Mac's Airport for a minute or two, and switch on again.

Restart both Unity and Unity Remote. Sometimes you also need to cold-restart your iPhone/iPad (hold down the menu and

power buttons simultaneously).

Unity Remote uses the Apple Bonjour service, so check that your Mac has it switched on.

Reinstall Unity Remote from the latest Unity iOS package.
Page last updated: 2012-08-28

iphone-API

Most features of the iOS devices are exposed through the Input and Handheld classes. For cross-platform projects,

UNITY_IPHONE is defined for conditionally compiling iOS-specific C# code.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

241 of 1131 12/16/2012 10:12 PM

Further Reading
Input

Mobile Keyboard

Advanced Unity Mobile Scripting

Using .NET API 2.0 compatibility level
Page last updated: 2012-11-23

iphone-Input

 Desktop

Note: Keyboard, joystick and gamepad input work on the desktop versions of Unity (including webplayer and Flash) but not on

mobiles.

Unity supports keyboard, joystick and gamepad input.

Virtual axes and buttons can be created in the Input Manager, and end users can configure Keyboard input in a nice screen

configuration dialog.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

242 of 1131 12/16/2012 10:12 PM

You can setup joysticks, gamepads, keyboard, and mouse, then access them all through one simple scripting interface.

From scripts, all virtual axes are accessed by their name.

Every project has the following default input axes when it's created:

Horizontal and Vertical are mapped to w, a, s, d and the arrow keys.

Fire1, Fire2, Fire3 are mapped to Control, Option (Alt), and Command, respectively.

Mouse X and Mouse Y are mapped to the delta of mouse movement.

Window Shake X and Window Shake Y is mapped to the movement of the window.

Adding new Input Axes

If you want to add new virtual axes go to the Edit->Project Settings->Input menu. Here you can also change the settings of

each axis.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

243 of 1131 12/16/2012 10:12 PM

You map each axis to two buttons on a joystick, mouse, or keyboard keys.

Name The name of the string used to check this axis from a script.

Descriptive Name Positive value name displayed in the input tab of the Configuration dialog for standalone builds.

Descriptive Negative

Name

Negative value name displayed in the Input tab of the Configuration dialog for standalone builds.

Negative Button The button used to push the axis in the negative direction.

Positive Button The button used to push the axis in the positive direction.

Alt Negative Button Alternative button used to push the axis in the negative direction.

Alt Positive Button Alternative button used to push the axis in the positive direction.

Gravity Speed in units per second that the axis falls toward neutral when no buttons are pressed.

Dead Size of the analog dead zone. All analog device values within this range result map to neutral.

Sensitivity Speed in units per second that the the axis will move toward the target value. This is for digital

devices only.

Snap If enabled, the axis value will reset to zero when pressing a button of the opposite direction.

Invert If enabled, the Negative Buttons provide a positive value, and vice-versa.

Type The type of inputs that will control this axis.

Axis The axis of a connected device that will control this axis.

Joy Num The connected Joystick that will control this axis.

Use these settings to fine tune the look and feel of input. They are all documented with tooltips in the Editor as well.

Using Input Axes from Scripts

You can query the current state from a script like this:

value = Input.GetAxis ("Horizontal");

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

244 of 1131 12/16/2012 10:12 PM

An axis has a value between -1 and 1. The neutral position is 0. This is the case for joystick input and keyboard input.

However, Mouse Delta and Window Shake Delta are how much the mouse or window moved during the last frame. This

means it can be larger than 1 or smaller than -1 when the user moves the mouse quickly.

It is possible to create multiple axes with the same name. When getting the input axis, the axis with the largest absolute value

will be returned. This makes it possible to assign more than one input device to one axis name. For example, create one axis

for keyboard input and one axis for joystick input with the same name. If the user is using the joystick, input will come from the

joystick, otherwise input will come from the keyboard. This way you don't have to consider where the input comes from when

writing scripts.

Button Names

To map a key to an axis, you have to enter the key's name in the Positive Button or Negative Button property in the

Inspector.

The names of keys follow this convention:

Normal keys: "a", "b", "c" ...

Number keys: "1", "2", "3", ...

Arrow keys: "up", "down", "left", "right"

Keypad keys: "[1]", "[2]", "[3]", "[+]", "[equals]"

Modifier keys: "right shift", "left shift", "right ctrl", "left ctrl", "right alt", "left alt", "right cmd", "left cmd"

Mouse Buttons: "mouse 0", "mouse 1", "mouse 2", ...

Joystick Buttons (from any joystick): "joystick button 0", "joystick button 1", "joystick button 2", ...

Joystick Buttons (from a specific joystick): "joystick 1 button 0", "joystick 1 button 1", "joystick 2 button 0", ...

Special keys: "backspace", "tab", "return", "escape", "space", "delete", "enter", "insert", "home", "end", "page up", "page

down"

Function keys: "f1", "f2", "f3", ...

The names used to identify the keys are the same in the scripting interface and the Inspector.

value = Input.GetKey ("a");

Mobile Input

On iOS and Android, the Input class offers access to touchscreen, accelerometer and geographical/location input.

Access to keyboard on mobile devices is provided via the iOS keyboard.

Multi-Touch Screen
The iPhone and iPod Touch devices are capable of tracking up to five fingers touching the screen simultaneously. You can

retrieve the status of each finger touching the screen during the last frame by accessing the Input.touches property array.

Android devices don't have a unified limit on how many fingers they track. Instead, it varies from device to device and can be

anything from two-touch on older devices to five fingers on some newer devices.

Each finger touch is represented by an Input.Touch data structure:

fingerId The unique index for a touch.

position The screen position of the touch.

deltaPosition The screen position change since the last frame.

deltaTime Amount of time that has passed since the last state change.

tapCount The iPhone/iPad screen is able to distinguish quick finger taps by the user. This counter will let you

know how many times the user has tapped the screen without moving a finger to the sides.

Android devices do not count number of taps, this field is always 1.

phase Describes so called "phase" or the state of the touch. It can help you determine if the touch just

began, if user moved the finger or if he just lifted the finger.

Phase can be one of the following:

Began A finger just touched the screen.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

245 of 1131 12/16/2012 10:12 PM

Moved A finger moved on the screen.

StationaryA finger is touching the screen but hasn't moved since the last frame.

Ended A finger was lifted from the screen. This is the final phase of a touch.

Canceled The system cancelled tracking for the touch, as when (for example) the user puts the device to her face or more

than five touches happened simultaneously. This is the final phase of a touch.

Following is an example script which will shoot a ray whenever the user taps on the screen:

var particle : GameObject;
function Update () {

for (var touch : Touch in Input.touches) {
if (touch.phase == TouchPhase.Began) {

// Construct a ray from the current touch coordinates
var ray = Camera.main.ScreenPointToRay (touch.position);
if (Physics.Raycast (ray)) {

// Create a particle if hit
Instantiate (particle, transform.position, transform.rotation);

}
}

}
}

Mouse Simulation

On top of native touch support Unity iOS/Android provides a mouse simulation. You can use mouse functionality from the

standard Input class.

Device Orientation
Unity iOS/Android allows you to get discrete description of the device physical orientation in three-dimensional space.

Detecting a change in orientation can be useful if you want to create game behaviors depending on how the user is holding

the device.

You can retrieve device orientation by accessing the Input.deviceOrientation property. Orientation can be one of the following:

Unknown The orientation of the device cannot be determined. For example when device is rotate diagonally.

Portrait The device is in portrait mode, with the device held upright and the home button at the bottom.

PortraitUpsideDownThe device is in portrait mode but upside down, with the device held upright and the home button at the

top.

LandscapeLeft The device is in landscape mode, with the device held upright and the home button on the right side.

LandscapeRight The device is in landscape mode, with the device held upright and the home button on the left side.

FaceUp The device is held parallel to the ground with the screen facing upwards.

FaceDown The device is held parallel to the ground with the screen facing downwards.

Accelerometer
As the mobile device moves, a built-in accelerometer reports linear acceleration changes along the three primary axes in three-

dimensional space. Acceleration along each axis is reported directly by the hardware as G-force values. A value of 1.0

represents a load of about +1g along a given axis while a value of -1.0 represents -1g. If you hold the device upright (with the

home button at the bottom) in front of you, the X axis is positive along the right, the Y axis is positive directly up, and the Z axis

is positive pointing toward you.

You can retrieve the accelerometer value by accessing the Input.acceleration property.

The following is an example script which will move an object using the accelerometer:

var speed = 10.0;
function Update () {

var dir : Vector3 = Vector3.zero;

// we assume that the device is held parallel to the ground
// and the Home button is in the right hand

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

246 of 1131 12/16/2012 10:12 PM

// remap the device acceleration axis to game coordinates:
// 1) XY plane of the device is mapped onto XZ plane
// 2) rotated 90 degrees around Y axis
dir.x = -Input.acceleration.y;
dir.z = Input.acceleration.x;

// clamp acceleration vector to the unit sphere
if (dir.sqrMagnitude > 1)

dir.Normalize();

// Make it move 10 meters per second instead of 10 meters per frame...
dir *= Time.deltaTime;

// Move object
transform.Translate (dir * speed);

}

Low-Pass Filter

Accelerometer readings can be jerky and noisy. Applying low-pass filtering on the signal allows you to smooth it and get rid of

high frequency noise.

The following script shows you how to apply low-pass filtering to accelerometer readings:

var AccelerometerUpdateInterval : float = 1.0 / 60.0;
var LowPassKernelWidthInSeconds : float = 1.0;

private var LowPassFilterFactor : float = AccelerometerUpdateInterval / LowPassKernelWidthInSeconds; // tweakable
private var lowPassValue : Vector3 = Vector3.zero;
function Start () {

lowPassValue = Input.acceleration;
}

function LowPassFilterAccelerometer() : Vector3 {
lowPassValue = Mathf.Lerp(lowPassValue, Input.acceleration, LowPassFilterFactor);
return lowPassValue;

}

The greater the value of LowPassKernelWidthInSeconds, the slower the filtered value will converge towards the current

input sample (and vice versa). You should be able to use the LowPassFilter() function instead of avgSamples().

I'd like as much precision as possible when reading the accelerometer. What should I do?

Reading the Input.acceleration variable does not equal sampling the hardware. Put simply, Unity samples the hardware at a

frequency of 60Hz and stores the result into the variable. In reality, things are a little bit more complicated -- accelerometer

sampling doesn't occur at consistent time intervals, if under significant CPU loads. As a result, the system might report 2

samples during one frame, then 1 sample during the next frame.

You can access all measurements executed by accelerometer during the frame. The following code will illustrate a simple

average of all the accelerometer events that were collected within the last frame:

var period : float = 0.0;
var acc : Vector3 = Vector3.zero;
for (var evnt : iPhoneAccelerationEvent in iPhoneInput.accelerationEvents) {

acc += evnt.acceleration * evnt.deltaTime;
period += evnt.deltaTime;

}
if (period > 0)

acc *= 1.0/period;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

247 of 1131 12/16/2012 10:12 PM

return acc;

Further Reading
The Unity mobile input API is originally based on Apple's API. It may help to learn more about the native API to better

understand Unity's Input API. You can find the Apple input API documentation here:

Programming Guide: Event Handling (Apple iPhone SDK documentation)

UITouch Class Reference (Apple iOS SDK documentation)

Note: The above links reference your locally installed iPhone SDK Reference Documentation and will contain native

ObjectiveC code. It is not necessary to understand these documents for using Unity on mobile devices, but may be helpful to

some!

 iOS

Device geographical location
Device geographical location can be obtained via the iPhoneInput.lastLocation property. Before calling this property you

should start location service updates using iPhoneSettings.StartLocationServiceUpdates() and check the service status via

iPhoneSettings.locationServiceStatus. See the scripting reference for details.

Page last updated: 2012-06-28

iOS-Keyboard

In most cases, Unity will handle keyboard input automatically for GUI elements but it is also easy to show the keyboard on

demand from a script.

 iOS

Using the Keyboard

GUI Elements

The keyboard will appear automatically when a user taps on editable GUI elements. Currently, GUI.TextField, GUI.TextArea

and GUI.PasswordField will display the keyboard; see the GUI class documentation for further details.

Manual Keyboard Handling

Use the iPhoneKeyboard.Open function to open the keyboard. Please see the iPhoneKeyboard scripting reference for the

parameters that this function takes.

Keyboard Type Summary
The Keyboard supports the following types:

iPhoneKeyboardType.Default Letters. Can be switched to keyboard with numbers and punctuation.

iPhoneKeyboardType.ASCIICapable Letters. Can be switched to keyboard with numbers and punctuation.

iPhoneKeyboardType.NumbersAndPunctuationNumbers and punctuation. Can be switched to keyboard with letters.

iPhoneKeyboardType.URL Letters with slash and .com buttons. Can be switched to keyboard with

numbers and punctuation.

iPhoneKeyboardType.NumberPad Only numbers from 0 to 9.

iPhoneKeyboardType.PhonePad Keyboard used to enter phone numbers.

iPhoneKeyboardType.NamePhonePad Letters. Can be switched to phone keyboard.

iPhoneKeyboardType.EmailAddress Letters with @ sign. Can be switched to keyboard with numbers and

punctuation.

Text Preview
By default, an edit box will be created and placed on top of the keyboard after it appears. This works as preview of the text that

user is typing, so the text is always visible for the user. However, you can disable text preview by setting

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

248 of 1131 12/16/2012 10:12 PM

iPhoneKeyboard.hideInput to true. Note that this works only for certain keyboard types and input modes. For example, it will

not work for phone keypads and multi-line text input. In such cases, the edit box will always appear.

iPhoneKeyboard.hideInput is a global variable and will affect all keyboards.

Keyboard Orientation
By default, the keyboard automatically follows the device orientation. To disable or enable rotation to a certain orientation, use

the following properties available in iPhoneKeyboard:

autorotateToPortrait Enable or disable autorotation to portrait orientation (button at the bottom).

autorotateToPortraitUpsideDownEnable or disable autorotation to portrait orientation (button at top).

autorotateToLandscapeLeft Enable or disable autorotation to landscape left orientation (button on the right).

autorotateToLandscapeRight Enable or disable autorotation to landscape right orientation (button on the left).

Visibility and Keyboard Size
There are three keyboard properties in iPhoneKeyboard that determine keyboard visibility status and size on the screen.

visible Returns true if the keyboard is fully visible on the screen and can be used to enter characters.

area Returns the position and dimensions of the keyboard.

active Returns true if the keyboard is activated. This property is not static property. You must have a

keyboard instance to use this property.

Note that iPhoneKeyboard.area will return a rect with position and size set to 0 until the keyboard is fully visible on the

screen. You should not query this value immediately after iPhoneKeyboard.Open. The sequence of keyboard events is as

follows:

iPhoneKeyboard.Open is called. iPhoneKeyboard.active returns true. iPhoneKeyboard.visible returns false.

iPhoneKeyboard.area returns (0, 0, 0, 0).

Keyboard slides out into the screen. All properties remain the same.

Keyboard stops sliding. iPhoneKeyboard.active returns true. iPhoneKeyboard.visible returns true.

iPhoneKeyboard.area returns real position and size of the keyboard.

Secure Text Input
It is possible to configure the keyboard to hide symbols when typing. This is useful when users are required to enter sensitive

information (such as passwords). To manually open keyboard with secure text input enabled, use the following code:

iPhoneKeyboard.Open("", iPhoneKeyboardType.Default, false, false, true);

Hiding text while typing

Alert keyboard
To display the keyboard with a black semi-transparent background instead of the classic opaque, call iPhoneKeyboard.Open

as follows:

iPhoneKeyboard.Open("", iPhoneKeyboardType.Default, false, false, true, true);

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

249 of 1131 12/16/2012 10:12 PM

Classic keyboard

Alert keyboard

 Android

Unity Android reuses the iOS API to display system keyboard. Even though Unity Android supports most of the functionality of

its iPhone counterpart, there are two aspects which are not supported:

iPhoneKeyboard.hideInput

iPhoneKeyboard.area

Please also note that the layout of a iPhoneKeyboardType can differ somewhat between devices.

Page last updated: 2011-11-02

iOS-Advanced

 iOS

Advanced iOS scripting

Determining Device Generation
Different device generations support different functionality and have widely varying performance. You should query the

device's generation and decide which functionality should be disabled to compensate for slower devices.

You can find the device generation from the iPhone.generation property. The reported generation can be one of the following:

iPhone

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

250 of 1131 12/16/2012 10:12 PM

iPhone3G

iPhone3GS

iPhone4

iPodTouch1Gen

iPodTouch2Gen

iPodTouch3Gen

iPodTouch4Gen

iPad1Gen

You can find more information about different device generations, performance and supported functionality in our iPhone

Hardware Guide.

Device Properties
There are a number of device-specific properties that you can access:-

SystemInfo.deviceUniqueIdentifierUnique device identifier.

SystemInfo.deviceName User specified name for device.

SystemInfo.deviceModel Is it iPhone or iPod Touch?

SystemInfo.operatingSystem Operating system name and version.

Anti-Piracy Check
Pirates will often hack an application from the AppStore (by removing Apple DRM protection) and then redistribute it for free.

Unity iOS comes with an anti-piracy check which allows you to determine if your application was altered after it was submitted

to the AppStore.

You can check if your application is genuine (not-hacked) with the Application.genuine property. If this property returns false

then you might notify the user that he is using a hacked application or maybe disable access to some functions of your

application.

Note: accessing the Application.genuine property is a fairly expensive operation and so you shouldn't do it during frame

updates or other time-critical code.

Vibration Support
You can trigger a vibration by calling Handheld.Vibrate. Note that iPod Touch devices lack vibration hardware and will just

ignore this call.

 Android

Advanced Android scripting

Determining Device Generation
Different Android devices support different functionality and have widely varying performance. You should target specific

devices or device families and decide which functionality should be disabled to compensate for slower devices. There are a

number of device specific properties that you can access to which device is being used.

Note: Android Marketplace does some additional compatibility filtering, so you should not be concerned if an ARMv7-only app

optimised for OGLES2 is offered to some old slow devices.

Device Properties
SystemInfo.deviceUniqueIdentifierUnique device identifier.

SystemInfo.deviceName User specified name for device.

SystemInfo.deviceModel Is it iPhone or iPod Touch?

SystemInfo.operatingSystem Operating system name and version.

Anti-Piracy Check
Pirates will often hack an application (by removing Apple DRM protection) and then redistribute it for free. Unity Android comes

with an anti-piracy check which allows you to determine if your application was altered after it was submitted to the AppStore.

You can check if your application is genuine (not-hacked) with the Application.genuine property. If this property returns false

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

251 of 1131 12/16/2012 10:12 PM

then you might notify user that he is using a hacked application or maybe disable access to some functions of your application.

Note: Application.genuineCheckAvailable should be used along with Application.genuine to verify that application integrity

can actually be confirmed. Accessing the Application.genuine property is a fairly expensive operation and so you shouldn't do it

during frame updates or other time-critical code.

Vibration Support
You can trigger a vibration by calling Handheld.Vibrate. However, devices lacking vibration hardware will just ignore this call.

Page last updated: 2012-07-11

iOS-DotNet

 iOS

Now Unity iOS supports two .NET API compatibility levels: .NET 2.0 and a subset of .NET 2.0 .You can select the appropriate

level in the Player Settings.

.NET API 2.0
Unity supports the .NET 2.0 API profile. This is close to the full .NET 2.0 API and offers the best compatibility with pre-existing

.NET code. However, the application's build size and startup time will be relatively poor.

Note: Unity iOS does not support namespaces in scripts. If you have a third party library supplied as source code then the

best approach is to compile it to a DLL outside Unity and then drop the DLL file into your project's Assets folder.

.NET 2.0 Subset
Unity also supports the .NET 2.0 Subset API profile. This is close to the Mono "monotouch" profile, so many limitations of the

"monotouch" profile also apply to Unity's .NET 2.0 Subset profile. More information on the limitations of the "monotouch" profile

can be found here. The advantage of using this profile is reduced build size (and startup time) but this comes at the expense of

compatibility with existing .NET code.

 Android

Unity Android supports two .NET API compatibility levels: .NET 2.0 and a subset of .NET 2.0 You can select the appropriate

level in the Player Settings.

.NET API 2.0
Unity supports the .NET 2.0 API profile; It is close to the full .NET 2.0 API and offers the best compatibility with pre-existing

.NET code. However, the application's build size and startup time will be relatively poor.

Note: Unity Android does not support namespaces in scripts. If you have a third party library supplied as source code then the

best approach is to compile it to a DLL outside Unity and then drop the DLL file into your project's Assets folder.

.NET 2.0 Subset
Unity also supports the .NET 2.0 Subset API profile. This is close to the Mono "monotouch" profile, so many limitations of the

"monotouch" profile also apply to Unity's .NET 2.0 Subset profile. More information on the limitations of the "monotouch" profile

can be found here. The advantage of using this profile is reduced build size (and startup time) but this comes at the expense of

compatibility with existing .NET code.

Page last updated: 2012-07-11

iphone-Hardware

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

252 of 1131 12/16/2012 10:12 PM

Fixed-function graphics (no fancy shaders), very slow

CPU and GPU.

Shader-capable hardware, per-pixel-lighting (bumpmaps)

can only be on small portions of the screen at once.

Requires scripting optimization for complex games. This is

the average hardware of the app market as of July 2012

The iPhone 4S, with the new A5 chip, is

capable of rendering complex shaders

throughout the entire screen. Even image

effects may be possible. However, optimizing

your shaders is still crucial. But if your game

isn't trying to push limits of the device,

optimizing scripting and gameplay is probably

as much of a waste of time on this generation

of devices as it is on PC.

Hardware models
The following table summarizes iOS hardware available in devices of various generations:

iPhone Models

Original iPhone

Screen: 320x480 pixels, LCD at 163ppi

ARM11, 412 Mhz CPU

PowerVR MBX Lite 3D graphics processor

Slow

128MB of memory

2 megapixel camera

iPhone 3G

Screen: 320x480 pixels, LCD at 163ppi

ARM11, 412 Mhz CPU

PowerVR MBX Lite 3D graphics processor

Slow

128MB of memory

2 megapixel camera

GPS support

iPhone 3GS

Screen: 320x480 pixels, LCD at 163ppi

ARM Cortex A8, 600 MHz CPU

PowerVR SGX535 graphics processor

Shader perfomance at native resolution, compared to iPad2:

Raw shader perfomance, compared to iPad3:

256MB of memory

3 megapixel camera with video capture capability

GPS support

Compass support

iPhone 4

Screen: 960x640 pixels, LCD at 326 ppi, 800:1 contrast ratio.

Apple A4

1Ghz ARM Cortex-A8 CPU

PowerVR SGX535 GPU

Shader perfomance at native resolution, compared to iPad2:

Raw shader perfomance, compared to iPad3:

512MB of memory

Cameras

Rear 5.0 MP backside illuminated CMOS image sensor with 720p HD video at 30 fps and LED flash

Front 0.3 MP (VGA) with geotagging, tap to focus, and 480p SD video at 30 fps

GPS support

Compass Support

iPhone 4S

Screen: 960x640 pixels, LCD at 326 ppi, 800:1 contrast ratio.

Apple A5

Dual-Core 1Ghz ARM Cortex-A9 MPCore CPU

Dual-Core PowerVR SGX543MP2 GPU

Shader perfomance at native resolution, compared to iPad2:

Raw shader perfomance, compared to iPad3:

512MB of memory

Cameras

Rear 5.0 MP backside illuminated CMOS image sensor with 720p HD

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

253 of 1131 12/16/2012 10:12 PM

Fixed-function graphics (no fancy

shaders), very slow CPU and GPU.

Shader-capable hardware, per-pixel-lighting

(bumpmaps) can only be on small portions of

the screen at once. Requires scripting

optimization for complex games. This is the

average hardware of the app market as of

July 2012

Similar to iPod Touch 4th Generation and

iPhone 4.

The A5 can do full screen bumpmapping,

assuming the shader is simple enough.

However, it is likely that your game will perform

best with bumpmapping only on crucial objects.

Full screen image effects still out of reach.

Scripting optimization less important.

The iPad 3 has been shown to be capable of

render-to-texture effects such as reflective

water and fullscreen image effects. However,

optimized shaders are still crucial. But if your

game isn't trying to push limits of the device,

video at 30 fps and LED flash

Front 0.3 MP (VGA) with geotagging, tap to focus, and 480p SD video at 30 fps

GPS support

Compass Support

iPod Touch Models

iPod Touch 1st generation

Screen: 320x480 pixels, LCD at 163ppi

ARM11, 412 Mhz CPU

PowerVR MBX Lite 3D graphics processor

Slow

128MB of memory

iPod Touch 2nd generation

Screen: 320x480 pixels, LCD at 163ppi

ARM11, 533 Mhz CPU

PowerVR MBX Lite 3D graphics processor

Slow

128MB of memory

Speaker and microphone

iPod Touch 3rd generation

Comparable to iPhone 3GS

iPod Touch 4th generation

Comparable to iPhone 4

iPad Models

iPad

Screen: 1024x768 pixels, LCD at 132 ppi, LED-backlit.

Apple A4

1Ghz MHz ARM Cortex-A8 CPU

PowerVR SGX535 GPU

Shader perfomance at native resolution, compared to iPad2:

Raw shader perfomance, compared to iPad3:

Wifi + Blueooth + (3G Cellular HSDPA, 2G cellular EDGE on the 3G version)

Accelerometer, ambient light sensor, magnetometer (for digital compass)

Mechanical keys: Home, sleep, screen rotation lock, volume.

iPad 2

Screen: 1024x768 pixels, LCD at 132 ppi, LED-backlit.

Apple A5

Dual-Core 1Ghz ARM Cortex-A9 MPCore CPU

Dual-Core PowerVR SGX543MP2 GPU

Shader perfomance at native resolution, compared to iPad2:

Raw shader perfomance, compared to iPad3:

Same as Previous

iPad 3

Screen: 2048 � 1536 pixels, LCD at 264 ppi, LED-backlit.

Apple A5X

Dual-Core 1Ghz ARM Cortex-A9 MPCore CPU

Quad-Core PowerVR SGX543MP4 GPU

Shader perfomance at native resolution, compared to iPad2:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

254 of 1131 12/16/2012 10:12 PM

optimizing scripting and gameplay is probably

as much of a waste of time on this generation

of devices as it is on PC.

Raw shader perfomance, compared to iPad3:

Graphics Processing Unit and Hidden Surface Removal
The iPhone/iPad graphics processing unit (GPU) is a Tile-Based Deferred Renderer. In contrast with most GPUs in desktop

computers, the iPhone/iPad GPU focuses on minimizing the work required to render an image as early as possible in the

processing of a scene. That way, only the visible pixels will consume processing resources.

The GPU's frame buffer is divided up into tiles and rendering happens tile by tile. First, triangles for the whole frame are

gathered and assigned to the tiles. Then, visible fragments of each triangle are chosen. Finally, the selected triangle fragments

are passed to the rasterizer (triangle fragments occluded from the camera are rejected at this stage).

In other words, the iPhone/iPad GPU implements a Hidden Surface Removal operation at reduced cost. Such an

architecture consumes less memory bandwidth, has lower power consumption and utilizes the texture cache better. Tile-Based

Deferred Rendering allows the device to reject occluded fragments before actual rasterization, which helps to keep overdraw

low.

For more information see also:-

POWERVR MBX Technology Overview

Apple Notes on iPhone/iPad GPU and OpenGL ES

Apple Performance Advices for OpenGL ES in General

Apple Performance Advices for OpenGL ES Shaders

MBX series

Older devices such as the original iPhone, iPhone 3G and iPod Touch 1st and 2nd Generation are equipped with the MBX

series of GPUs. The MBX series supports only OpenGL ES1.1, the fixed function Transform/Lighting pipeline and two textures

per fragment.

SGX series

Starting with the iPhone 3GS, newer devices are equipped with the SGX series of GPUs. The SGX series features support for

the OpenGL ES2.0 rendering API and vertex and pixel shaders. The Fixed-function pipeline is not supported natively on such

GPUs, but instead is emulated by generating vertex and pixel shaders with analogous functionality on the fly.

The SGX series fully supports MultiSample anti-aliasing.

Texture Compression

The only texture compression format supported by iOS is PVRTC. PVRTC provides support for RGB and RGBA (color

information plus an alpha channel) texture formats and can compress a single pixel to two or four bits.

The PVRTC format is essential to reduce the memory footprint and to reduce consumption of memory bandwidth (ie, the rate

at which data can be read from memory, which is usually very limited on mobile devices).

Vertex Processing Unit

The iPhone/iPad has a dedicated unit responsible for vertex processing which runs calculations in parallel with rasterization. In

order to achieve better parallelization, the iPhone/iPad processes vertices one frame ahead of the rasterizer.

Unified Memory Architecture
Both the CPU and GPU on the iPhone/iPad share the same memory. The advantage is that you don't need to worry about

running out of video memory for your textures (unless, of course, you run out of main memory too). The disadvantage is that

you share the same memory bandwidth for gameplay and graphics. The more memory bandwidth you dedicate to graphics, the

less you will have for gameplay and physics.

Multimedia CoProcessing Unit
The iPhone/iPad main CPU is equipped with a powerful SIMD (Single Instruction, Multiple Data) coprocessor supporting either

the VFP or the NEON architecture. The Unity iOS run-time takes advantage of these units for multiple tasks such as

calculating skinned mesh transformations, geometry batching, audio processing and other calculation-intensive operations.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

255 of 1131 12/16/2012 10:12 PM

Page last updated: 2012-08-20

iphone-performance

This section covers optimzations which are unique to iOS devices. For more information on optimizing for mobile devices, see

the Practical Guide to Optimization for Mobiles.

iOS Specific Optimizations

Measuring Performance with the Built-in Profiler

Optimizing the Size of the Built iOS Player
Page last updated: 2012-07-30

iphone-iOS-Optimization

This page details optimizations which are unique to iOS deployment. For more information on optimizing for mobile devices,

see the Practical Guide to Optimization for Mobiles.

Script Call Optimization
Most of the functions in the UnityEngine namespace are implemented in C/C++. Calling a C/C++ function from a Mono script

involves a performance overhead. You can use iOS Script Call optimization (menu: Edit->Project Settings->Player) to save

about 1 to 4 milliseconds per frame. The options for this setting are:-

Slow and Safe - the default Mono internal call handling with exception support.

Fast and Exceptions Unsupported - a faster implementation of Mono internal call handling. However, this doesn't

support exceptions and so should be used with caution. An app that doesn't explicitly handle exceptions (and doesn't need

to deal with them gracefully) is an ideal candidate for this option.

Setting the Desired Framerate
Unity iOS allows you to change the frequency with which your application will try to execute its rendering loop, which is set to

30 frames per second by default. You can lower this number to save battery power but of course this saving will come at the

expense of frame updates. Conversely, you can increase the framerate to give the rendering priority over other activities such

as touch input and accelerometer processing. You will need to experiment with your choice of framerate to determine how it

affects gameplay in your case.

If your application involves heavy computation or rendering and can maintain only 15 frames per second, say, then setting the

desired frame rate higher than fifteen wouldn't give any extra performance. The application has to be optimized sufficiently to

allow for a higher framerate.

To set the desired framerate, open the XCode project generated by Unity and open the AppController.mm file. The line

#define kFPS 30

...determines the the current framerate, so you can just change to set the desired value. For example, if you change the define

to:-

#define kFPS 60

...then the application will attempt to render at 60 FPS instead of 30 FPS.

The Rendering Loop
When iOS version 3.1 or later is in use, Unity will use the CADisplayLink class to schedule the rendering loop. Versions

before 3.1 need to use one of several fallback methods to handle the loop. However, the fallback methods can be activated

even for iOS 3.1 and later by changing the line

#define USE_DISPLAY_LINK_IF_AVAILABLE 1

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

256 of 1131 12/16/2012 10:12 PM

...and changing it to

#define USE_DISPLAY_LINK_IF_AVAILABLE 0

Fallback Loop Types

Apple recommends the system timer for scheduling the rendering operation on iOS versions before 3.1. This approach is good

for applications where performance is not critical and favours battery life and correct processing of events over rendering

performance. However, better rendering performance is often more important to games, so Unity provides several scheduling

methods to tweak the performance of the rendering loop:-

System Timer: this is the standard approach suggested by Apple. It uses the NSTimer class to schedule rendering and

has the worst rendering performance but guarantees to process all input events.

Thread: a separate thread is used to schedule rendering. This offers better rendering performance than the NSTimer

approach, but sometimes could miss touch or accelerometer events. This method of scheduling is also the easiest to set

up and is the default method used by Unity for iOS versions before 3.1.

Event Pump: this uses a CFRunLoop object to dispatch events. It gives better rendering performance than the NSTimer

approach and also allows you to set the amount of time the OS should spend processing touch and accelerometer events.

This option must be used with care since touch and accelerometer events will be lost if there is not enough processor time

available to handle them.

The different fallback loop types can be selected by changing defines in the AppController.mm file. The significant lines are the

following:-

#define FALLBACK_LOOP_TYPE NSTIMER_BASED_LOOP
#define FALLBACK_LOOP_TYPE THREAD_BASED_LOOP
#define FALLBACK_LOOP_TYPE EVENT_PUMP_BASED_LOOP

The file should have all but one of these lines commented out. The uncommented line selects the rendering loop method that

will be used by the application.

If you want to prioritize rendering over input processing with the NSTimer approach you should locate and change the line

#define kThrottleFPS 2.0

...in AppController.mm. Increasing this number will give higher priority to rendering. The result of changing this value varies

among applications, so it is best to try it for yourself and see what happens in your specific case.

If you use the Event Pump rendering loop then you need to tweak the kMillisecondsPerFrameToProcessEvents

constant precisely to achieve the desired responsiveness. The kMillisecondsPerFrameToProcessEvents constant

allows you to specify exactly how much time (in milliseconds) you will allow the OS to process events. If you allocate

insufficient time for this task then touch or accelerometer events might be lost, and while the application will be fast, it will also

be less responsive.

To specify the amount of time (in milliseconds) that the OS will spend processing events, locate and change the line

#define kMillisecondsPerFrameToProcessEvents 7.0

...in AppController.mm.

Tuning Accelerometer Processing Frequency
If accelerometer input is processed too frequently then the overall performance of your game may suffer as a result. By default,

a Unity iOS application will sample the accelerometer 60 times per second. You may see some performance benefit by

reducing the accelerometer sampling frequency and it can even be set to zero for games that don't use accelerometer input.

You can change the accelerometer frequency from the Other Settings panel in the iOS Player Settings.

Page last updated: 2012-07-30

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

257 of 1131 12/16/2012 10:12 PM

iphone-InternalProfiler

 iOS

On iOS, it's disabled by default so to enable it, you need to open the Unity-generated XCode project, select the

iPhone_Profiler.h file and change the line

#define ENABLE_INTERNAL_PROFILER 0

to

#define ENABLE_INTERNAL_PROFILER 1

Select Run->Console in the XCode menu to display the output console (GDB) and then run your project. Unity will output

statistics to the console window every thirty frames.

 Android

On Android, it is enabled by default. Just make sure Development Build is checked in the player settings when building, and

the statistics should show up in logcat when run on the device. To view logcat, you need adb or the Android Debug Bridge.

Once you have that, simply run the shell command adb logcat.

Here's an example of the built-in profiler's output.

iPhone/iPad Unity internal profiler stats:
cpu-player> min: 9.8 max: 24.0 avg: 16.3
cpu-ogles-drv> min: 1.8 max: 8.2 avg: 4.3
cpu-waits-gpu> min: 0.8 max: 1.2 avg: 0.9
cpu-present> min: 1.2 max: 3.9 avg: 1.6
frametime> min: 31.9 max: 37.8 avg: 34.1
draw-call #> min: 4 max: 9 avg: 6 | batched: 10
tris #> min: 3590 max: 4561 avg: 3871 | batched: 3572
verts #> min: 1940 max: 2487 avg: 2104 | batched: 1900
player-detail> physx: 1.2 animation: 1.2 culling: 0.5 skinning: 0.0 batching: 0.2 render: 12.0 fixed-update-count: 1 .. 2
mono-scripts> update: 0.5 fixedUpdate: 0.0 coroutines: 0.0
mono-memory> used heap: 233472 allocated heap: 548864 max number of collections: 1 collection total duration: 5.7

All times are measured in milliseconds per frame. You can see the minimum, maximum and average times over the last thirty

frames.

General CPU Activity
cpu-player Displays the time your game spends executing code inside the Unity engine and executing scripts on the CPU.

cpu-ogles-drv Displays the time spent executing OpenGL ES driver code on the CPU. Many factors like the number of draw

calls, number of internal rendering state changes, the rendering pipeline setup and even the number of

processed vertices can have an effect on the driver stats.

cpu-waits-gpuDisplays the time the CPU is idle while waiting for the GPU to finish rendering. If this number exceeds 2-3

milliseconds then your application is most probably fillrate/GPU processing bound. If this value is too small then

the profile skips displaying the value.

msaa-resolve The time taken to apply anti-aliasiing.

cpu-present The amount of time spent executing the presentRenderbuffer command in OpenGL ES.

frametime Represents the overall time of a game frame. Note that iOS hardware is always locked at a 60Hz refresh rate,

so you will always get multiples times of ~16.7ms (1000ms/60Hz = ~16.7ms).

Rendering Statistics
draw-call

#

The number of draw calls per frame. Keep it as low as possible.

tris # Total number of triangles sent for rendering.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

258 of 1131 12/16/2012 10:12 PM

verts # Total number of vertices sent for rendering. You should keep this number below 10000 if you use only static

geometry but if you have lots of skinned geometry then you should keep it much lower.

batched Number of draw-calls, triangles and vertices which were automatically batched by the engine. Comparing these

numbers with draw-call and triangle totals will give you an idea how well is your scene prepared for batching. Share

as many materials as possible among your objects to improve batching.

Detailed Unity Player Statistics
The player-detail section provides a detailed breakdown of what is happening inside the engine:-

physx Time spent on physics.

animation Time spent animating bones.

culling Time spent culling objects outside the camera frustum.

skinning Time spent applying animations to skinned meshes.

batching Time spent batching geometry. Batching dynamic geometry is considerably more expensive than batching

static geometry.

render Time spent rendering visible objects.

fixed-

update-count

Minimum and maximum number of FixedUpdates executed during this frame. Too many FixedUpdates will

deteriorate performance considerably. There are some simple guidelines to set a good value for the fixed time

delta here.

Detailed Scripts Statistics
The mono-scripts section provides a detailed breakdown of the time spent executing code in the Mono runtime:

update Total time spent executing all Update() functions in scripts.

fixedUpdate Total time spent executing all FixedUpdate() functions in scripts.

coroutines Time spent inside script coroutines.

Detailed Statistics on Memory Allocated by Scripts
The mono-memory section gives you an idea of how memory is being managed by the Mono garbage collector:

allocated heap Total amount of memory available for allocations. A garbage collection will be triggered if there is not

enough memory left in the heap for a given allocation. If there is still not enough free memory even after the

collection then the allocated heap will grow in size.

used heap The portion of the allocated heap which is currently used up by objects. Every time you create a new class

instance (not a struct) this number will grow until the next garbage collection.

max number of

collections

Number of garbage collection passes during the last 30 frames.

collection total

duration

Total time (in milliseconds) of all garbage collection passes that have happened during the last 30 frames.

Page last updated: 2012-07-28

iphone-playerSizeOptimization

The two main ways of reducing the size of the player are by changing the Active Build Configuration within Xcode and by

changing the Stripping Level within Unity.

Building in Release Mode
You can choose between the Debug and Release options on the Active Build Configuration drop-down menu in Xcode.

Building as Release instead of Debug can reduce the size of the built player by as much as 2-3MB, depending on the game.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

259 of 1131 12/16/2012 10:12 PM

The Active Build Configuration drop-down

In Release mode, the player will be built without any debug information, so if your game crashes or has other problems there

will be no stack trace information available for output. This is fine for deploying a finished game but you will probably want to

use Debug mode during development.

iOS Stripping Level (Advanced License feature)
The size optimizations activated by stripping work in the following way:-

Strip assemblies level: the scripts' bytecode is analyzed so that classes and methods that are not referenced from the

scripts can be removed from the DLLs and thereby excluded from the AOT compilation phase. This optimization

reduces the size of the main binary and accompanying DLLs and is safe as long as no reflection is used.

1.

Strip ByteCode level: any .NET DLLs (stored in the Data folder) are stripped down to metadata only. This is possible

because all the code is already precompiled during the AOT phase and linked into the main binary.

2.

Use micro mscorlib level: a special, smaller version of mscorlib is used. Some components are removed from this

library, for example, Security, Reflection.Emit, Remoting, non Gregorian calendars, etc. Also, interdependencies

between internal components are minimized. This optimization reduces the main binary and mscorlib.dll size but it is not

compatible with some System and System.Xml assembly classes, so use it with care.

3.

These levels are cumulative, so level 3 optimization implicitly includes levels 2 and 1, while level 2 optimization includes level

1.

Note: Micro mscorlib is a heavily stripped-down version of the core library. Only those items that are required by the Mono

runtime in Unity remain. Best practice for using micro mscorlib is not to use any classes or other features of .NET that are not

required by your application. GUIDs are a good example of something you could omit; they can easily be replaced with custom

made pseudo GUIDs and doing this would result in better performance and app size.

Tips

How to Deal with Stripping when Using Reflection

Stripping depends highly on static code analysis and sometimes this can't be done effectively, especially when dynamic

features like reflection are used. In such cases, it is necessary to give some hints as to which classes shouldn't be touched.

Unity supports a per-project custom stripping blacklist. Using the blacklist is a simple matter of creating a link.xml file and

placing it into the Assets folder. An example of the contents of the link.xml file follows. Classes marked for preservation will

not be affected by stripping:-

<linker>

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

260 of 1131 12/16/2012 10:12 PM

 <assembly fullname="System.Web.Services">
 <type fullname="System.Web.Services.Protocols.SoapTypeStubInfo" preserve="all"/>
 <type fullname="System.Web.Services.Configuration.WebServicesConfigurationSectionHandler" preserve="all"/>
 </assembly>

 <assembly fullname="System">
 <type fullname="System.Net.Configuration.WebRequestModuleHandler" preserve="all"/>
 <type fullname="System.Net.HttpRequestCreator" preserve="all"/>
 <type fullname="System.Net.FileWebRequestCreator" preserve="all"/>
 </assembly>
</linker>

Note: it can sometimes be difficult to determine which classes are getting stripped in error even though the application

requires them. You can often get useful information about this by running the stripped application on the simulator and

checking the Xcode console for error messages.

Simple Checklist for Making Your Distribution as Small as Possible

Minimize your assets: enable PVRTC compression for textures and reduce their resolution as far as possible. Also,

minimize the number of uncompressed sounds. There are some additional tips for file size reduction here.

1.

Set the iOS Stripping Level to Use micro mscorlib.2.

Set the script call optimization level to Fast but no exceptions.3.

Don't use anything that lives in System.dll or System.Xml.dll in your code. These libraries are not compatible with micro

mscorlib.

4.

Remove unnecessary code dependencies.5.

Set the API Compatibility Level to .Net 2.0 subset. Note that .Net 2.0 subset has limited compatibility with other

libraries.

6.

Set the Target Platform to armv6 (OpenGL ES1.1).7.

Don't use JS Arrays.8.

Avoid generic containers in combination with value types, including structs.9.

Can I produce apps of less than 20 megabytes with Unity?

Yes. An empty project would take about 13 MB in the AppStore if all the size optimizations were turned off. This gives you a

budget of about 7MB for compressed assets in your game. If you own an Advanced License (and therefore have access to the

stripping option), the empty scene with just the main camera can be reduced to about 6 MB in the AppStore (zipped and DRM

attached) and you will have about 14 MB available for compressed assets.

Why did my app increase in size after being released to the AppStore?

When they publish your app, Apple first encrypt the binary file and then compresses it via zip. Most often Apple's DRM

increases the binary size by about 4 MB or so. As a general rule, you should expect the final size to be approximately equal to

the size of the zip-compressed archive of all files (except the executable) plus the size of the uncompressed executable file.

Page last updated: 2011-11-07

iphone-accountsetup

There are some steps you must follow before you can build and run any code (including Unity-built games) on your iOs device.

These steps are prerequisite to publishing your own iOS games.

1. Apply to Apple to Become a Registered iPhone/iPad Developer
You do this through Apple's website: http://developer.apple.com/iphone/program/

2. Upgrade your Operating System and iTunes Installation
Please note that these are Apple's requirements as part of using the iPhone SDK, but the requirements can change from time

to time.

3. Download the iPhone SDK
Download the latest iOS SDK from the iOS dev center and install it. Do not download the beta version of the SDK - you should

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

261 of 1131 12/16/2012 10:12 PM

use only the latest shipping version. Note that downloading and installing the iPhone SDK will also install XCode.

4. Get Your Device Identifier
Connect your iOS device to the Mac with the USB cable and launch XCode. XCode will detect your phone as a new device

and you should register it with the "Use For Development" button. This will usually open the Organizer window but if it doesn't

then go to Window->Organizer. You should see your iOS device) in the devices list on the left; select it and note your device's

identifier code (which is about 40 characters long).

5. Add Your Device
Log in to the iPhone developer center and enter the program portal (button on the right). Go to the Devices page via the link

on left side and then click the Add Device button on the right. Enter a name for your device (alphanumeric characters only) and

your device's identifier code (noted in step 5 above). Click the Submit button when done.

6. Create a Certificate
From the iPhone Developer Program Portal, click the Certificates link on the left side and follow the instructions listed under

How-To...

7. Download and Install the WWDR Intermediate Certificate
The download link is in the same "Certificates" section (just above the "Important Notice" rubric) as WWDR Intermediate

Certificate. Once downloaded, double-click the certificate file to install it.

8. Create a Provisioning File
Provisioning profiles are a bit complex, and need to be set up according to the way you have organized your team. It is difficult

to give general instructions for provisioning, so we recommend that you look at the Provisioning How-to section on the Apple

Developer website.

Page last updated: 2011-11-08

iphone-unsupported

Graphics
DXT texture compression is not supported; use PVRTC formats instead. Please see the Texture2D Component page for

more information.

Rectangular textures can not be compressed to PVRTC formats.

Movie Textures are not supported; use a full-screen streaming playback instead. Please see the Movie playback page for

more information.

Open GL ES2.0 is not supported on iPhone, iPhone 3G, iPod Touch 1st and iPod Touch 2nd Generation hardware.

Audio
Ogg audio compression is not supported. Ogg audio will be automatically converted to MP3 when you switch to iOS

platform in the Editor. Please see the AudioClip Component page for more information about audio support in Unity iOS.

Scripting
OnMouseDown, OnMouseEnter, OnMouseOver, OnMouseExit, OnMouseDown, OnMouseUp, OnMouseDrag

events are not supported.

Dynamic features like Duck Typing are not supported. Use #pragma strict for your scripts to force the compiler to

report dynamic features as errors.

Video streaming via WWW class is not supported.

FTP support by WWW class is limited.

Features Restricted to Unity iOS Advanced License
Static batching is only supported in Unity iOS Advanced.

Video playback is only supported in Unity iOS Advanced.

Splash-screen customization is only supported in Unity iOS Advanced.

AssetBundles are only supported in Unity iOS Advanced.

Code stripping is only supported in Unity iOS Advanced.

.NET sockets are only supported in Unity iOS Advanced.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

262 of 1131 12/16/2012 10:12 PM

Note: it is recommended to minimize your references to external libraries, because 1 MB of .NET CIL code roughly translates

to 3-4 MB of ARM code. For example, if your application references System.dll and System.Xml.dll then it means additional 6

MB of ARM code if stripping is not used. At some point application will reach limit when linker will have troubles linking the

code. If you care a lot about application size you might find C# a more suitable language for your code as is has less

dependencies than JavaScript.

Page last updated: 2011-10-29

iphone-Plugins

This page describes Native Code Plugins for the iOS platform.

Building an Application with a Native Plugin for iOS

Define your extern method in the C# file as follows:

[DllImport ("__Internal")]
private static extern float FooPluginFunction ();

1.

Set the editor to the iOS build target2.

Add your native code source files to the generated XCode project's "Classes" folder (this folder is not overwritten when

the project is updated, but don't forget to backup your native code).

3.

If you are using C++ (.cpp) or Objective-C (.mm) to implement the plugin you must ensure the functions are declared with C

linkage to avoid name mangling issues.

extern "C" {
 float FooPluginFunction ();
}

Using Your Plugin from C#
iOS native plugins can be called only when deployed on the actual device, so it is recommended to wrap all native code

methods with an additional C# code layer. This code should check Application.platform and call native methods only when the

app is running on the device; dummy values can be returned when the app runs in the Editor. See the Bonjour browser sample

application for an example.

Calling C# / JavaScript back from native code
Unity iOS supports limited native-to-managed callback functionality via UnitySendMessage:

UnitySendMessage("GameObjectName1", "MethodName1", "Message to send");

This function has three parameters : the name of the target GameObject, the script method to call on that object and the

message string to pass to the called method.

Known limitations:

Only script methods that correspond to the following signature can be called from native code: function

MethodName(message:string)

1.

Calls to UnitySendMessage are asynchronous and have a delay of one frame.2.

Automated plugin integration
Unity iOS supports automated plugin integration in a limited way. All files with extensions .a,.m,.mm,.c,.cpp located in the

Assets/Plugins/iOS folder will be merged into the generated Xcode project automatically. However, merging is done by

symlinking files from Assets/Plugins/iOS to the final destination, which might affect some workflows. The .h files are not

included in the Xcode project tree, but they appear on the destination file system, thus allowing compilation of .m/.mm/.c/.cpp

files.

Note: subfolders are currently not supported.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

263 of 1131 12/16/2012 10:12 PM

iOS Tips

Managed-to-unmanaged calls are quite processor intensive on iOS. Try to avoid calling multiple native methods per

frame.

1.

As mentioned above, wrap your native methods with an additional C# layer that calls native code on the device and

returns dummy values in the Editor.

2.

String values returned from a native method should be UTF-8 encoded and allocated on the heap. Mono marshaling

calls are free for strings like this.

3.

As mentioned above, the XCode project's "Classes" folder is a good place to store your native code because it is not

overwritten when the project is updated.

4.

Another good place for storing native code is the Assets folder or one of its subfolders. Just add references from the

XCode project to the native code files: right click on the "Classes" subfolder and choose "Add->Existing files...".

5.

Examples

Bonjour Browser Sample

A simple example of the use of a native code plugin can be found here

This sample demonstrates how objective-C code can be invoked from a Unity iOS application. This application implements a

very simple Bonjour client. The application consists of a Unity iOS project (Plugins/Bonjour.cs is the C# interface to the native

code, while BonjourTest.js is the JS script that implements the application logic) and native code (Assets/Code) that should be

added to the built XCode project.

Page last updated: 2011-11-01

iphone-Downloadable-Content

This chapter does not aim to cover how to integrate your game with Apple's "StoreKit" API. It is assumed that you already have

integration with "StoreKit" via a native code plugin.

Apple's "StoreKit" documentation defines four kinds of Products that could be sold via the "In App Purchase" process:

Content

Functionality

Services

Subscriptions

This chapter covers the first case only and focuses mainly on the downloadable content concept. AssetBundles are ideal

candidates for use as downloadable content, and two scenarios will be covered:

How to export asset bundles for use on iOS

How download and cache them on iOS

Exporting your assets for use on iOS
Having separate projects for downloadable content can be a good idea, allowing better separation between content that

comes with your main application and content that is downloaded later.

Please note: Any game scripts included in downloadable content must also be present in the main executable.

Create an Editor folder inside the Project View.1.

Create an ExportBundle.js script there and place the following code inside:

@MenuItem ("Assets/Build AssetBundle From Selection - Track dependencies")
static function ExportBundle(){

 var str : String = EditorUtility.SaveFilePanel("Save Bundle...", Application.dataPath, Selection.activeObject.name
 if (str.Length != 0){
 BuildPipeline.BuildAssetBundle(Selection.activeObject, Selection.objects, str, BuildAssetBundleOptions.Comp
 }

2.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

264 of 1131 12/16/2012 10:12 PM

}

Design your objects that need to be downloadable as prefabs3.

Select a prefab that needs to be exported and mouse right click

If the first two steps were done properly, then the Build AssetBundle From Selection - Track dependencies context

menu item should be visible.

4.

Select it if you want to include everything that this asset uses.5.

A save dialog will be shown, enter the desired asset bundle file name. An .assetbundle extension will be added

automatically. The Unity iOS runtime accepts only asset bundles built with the same version of the Unity editor as the

final application. Read BuildPipeline.BuildAssetBundle for details.

6.

Downloading your assets on iOS

Asset bundles can be downloaded and loaded by using the WWW class and instantiating a main asset. Code sample:

var download : WWW;

var url = "http://somehost/somepath/someassetbundle.assetbundle";

download = new WWW (url);

yield download;

assetBundle = download.assetBundle;

if (assetBundle != null) {
// Alternatively you can also load an asset by name (assetBundle.Load("my asset name"))
var go : Object = assetBundle.mainAsset;

if (go != null)
instanced = Instantiate(go);

else
Debug.Log("Couldnt load resource");

} else {
Debug.Log("Couldnt load resource");

}

1.

You can save required files to a Documents folder next to your game's Data folder.

 public static string GetiPhoneDocumentsPath () {
 // Your game has read+write access to /var/mobile/Applications/XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXX
 // Application.dataPath returns

2.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

265 of 1131 12/16/2012 10:12 PM

 // /var/mobile/Applications/XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/myappname.app/Data
 // Strip "/Data" from path
 string path = Application.dataPath.Substring (0, Application.dataPath.Length - 5);
 // Strip application name
 path = path.Substring(0, path.LastIndexOf('/'));
 return path + "/Documents";
 }

Cache a downloaded asset bundle using the .NET file API and for reuse it in the future by loading it via WWW class

and file:///pathtoyourapplication/Documents/savedassetbundle.assetbundle. Sample code for caching:

// Code designed for caching on iPhone, cachedAssetBundle path must be different when running in Editor
// See code snippet above for getting the path to your Documents folder
private var cachedAssetBundle : String = "path to your Documents folder" + "/savedassetbundle.assetbundle";
var cache = new System.IO.FileStream(cachedAssetBundle, System.IO.FileMode.Create);
cache.Write(download.bytes, 0, download.bytes.Length);
cache.Close();
Debug.Log("Cache saved: " + cachedAssetBundle);

3.

Note: You can test reading files from the Documents folder if you enable file sharing. Setting UIFileSharingEnabled to true in

your Info.plist allows you to access the Documents folder from iTunes.
Page last updated: 2011-11-16

MobileCustomizeSplashScreen

 iOS

Under iOS Basic, a default splash screen will be displayed while your game loads, oriented according to the Default Screen

Orientation option in the Player Settings.

Users with an iOS Pro license can use any texture in the project as a splash screen. The size of the texture depends on the

target device (320x480 pixels for 1-3rd gen devices, 1024x768 for iPad, 640x960 for 4th gen devices) and supplied textures

will be scaled to fit if necessary. You can set the splash screen textures using the iOS Player Settings.

 Android

Under Android Basic, a default splash screen will be displayed while your game loads, oriented according to the Default

Screen Orientation option in the Player Settings.

Android Pro users can use any texture in the project as a splash screen. You can set the texture from the Splash Image section

of the Android Player Settings. You should also select the Splash scaling method from the following options:-

Center (only scale down) will draw your image at its natural size unless it is too large, in which case it will be scaled

down to fit.

Scale to fit (letter-boxed) will draw your image so that the longer dimension fits the screen size exactly. Empty space

around the sides in the shorter dimension will be filled in black.

Scale to fill (cropped) will scale your image so that the shorter dimension fits the screen size exactly. The image will be

cropped in the longer dimension.

Page last updated: 2011-11-08

iphone-troubleshooting

This section addresses common problems that can arise when using Unity. Each platform is dealt with separately below.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

266 of 1131 12/16/2012 10:12 PM

 Desktop

In MonoDevelop, the Debug button is greyed out!
This means that MonoDevelop was unable to find the Unity executable. In the MonoDevelop preferences, go to the

Unity/Debugger section and then browse to where your Unity executable is located.

Is there a way to get rid of the welcome page in MonoDevelop?
Yes. In the MonoDevelop preferences, go to the Visual Style section, and uncheck "Load welcome page on startup".

Geforce 7300GT on OSX 10.6.4
Deferred rendering is disabled because materials are not displayed correctly for Geforce 7300GT on OX 10.6.4; This

happens because of buggy video drivers.

On Windows x64, Unity crashes when my script throws a NullReferenceException
Please apply Windows Hotfix #976038.

Graphics

Slow framerate and/or visual artifacts.

This may occur if your video card drivers are not up to date. Make sure you have the latest official drivers from your card

vendor.

Shadows

I see no shadows at all!

Shadows are a Unity Pro only feature, so without Unity Pro you won't get shadows. Simpler shadow methods, like using a

Projector, are still possible, of course.

Shadows also require certain graphics hardware support. See Shadows page for details.

Check if shadows are not completely disabled in Quality Settings.

Shadows are currently not supported for Android and iOS mobile platforms.

Some of my objects do not cast or receive shadows

An object's Renderer must have Receive Shadows enabled for shadows to be rendered onto it. Also, an object must have

Cast Shadows enabled in order to cast shadows on other objects (both are on by default).

Only opaque objects cast and receive shadows. This means that objects using the built-in Transparent or Particle shaders will

not cast shadows. In most cases it is possible to use Transparent Cutout shaders for objects like fences, vegetation, etc. If you

use custom written Shaders, they have to be pixel-lit and use the Geometry render queue. Objects using VertexLit shaders

do not receive shadows but are able to cast them.

Only Pixel lights cast shadows. If you want to make sure that a light always casts shadows no matter how many other lights

are in the scene, then you can set it to Force Pixel render mode (see the Light reference page).

 iOS

Troubleshooting on iOS devices

There are some situations with iOS where your game can work perfectly in the Unity editor but then doesn't work or maybe

doesn't even start on the actual device. The problems are often related to code or content quality. This section describes the

most common scenarios.

The game stops responding after a while. Xcode shows "interrupted" in the status bar.
There are a number of reasons why this may happen. Typical causes include:

Scripting errors such as using uninitialized variables, etc.1.

Using 3rd party Thumb compiled native libraries. Such libraries trigger a known problem in the iOS SDK linker and

might cause random crashes.

2.

Using generic types with value types as parameters (eg, List<int>, List<SomeStruct>, List<SomeEnum>, etc) for

serializable script properties.

3.

Using reflection when managed code stripping is enabled.4.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

267 of 1131 12/16/2012 10:12 PM

Errors in the native plugin interface (the managed code method signature does not match the native code function

signature).

5.

Information from the XCode Debugger console can often help detect these problems (Xcode menu: View > Debug Area >

Activate Console).

The Xcode console shows "Program received signal: “SIGBUS” or EXC_BAD_ACCESS error.
This message typically appears on iOS devices when your application receives a NullReferenceException. There two ways to

figure out where the fault happened:

Managed stack traces

Since version 3.4 Unity includes software-based handling of the NullReferenceException. The AOT compiler includes quick

checks for null references each time a method or variable is accessed on an object. This feature affects script performance

which is why it is enabled only for development builds (for basic license users it is enough to enable the "development build"

option in the Build Settings dialog, while iOS pro license users additionally need to enable the "script debugging" option). If

everything was done right and the fault actually is occurring in .NET code then you won't see EXC_BAD_ACCESS anymore.

Instead, the .NET exception text will be printed in the Xcode console (or else your code will just handle it in a "catch"

statement). Typical output might be:

Unhandled Exception: System.NullReferenceException: A null value was found where an object instance was required.
 at DayController+$handleTimeOfDay$121+$.MoveNext () [0x0035a] in DayController.js:122

This indicates that the fault happened in the handleTimeOfDay method of the DayController class, which works as a coroutine.

Also if it is script code then you will generally be told the exact line number (eg, "DayController.js:122"). The offending line

might be something like the following:

 Instantiate(_imgwww.assetBundle.mainAsset);

This might happen if, say, the script accesses an asset bundle without first checking that it was downloaded correctly.

Native stack traces

Native stack traces are a much more powerful tool for fault investigation but using them requires some expertise. Also, you

generally can't continue after these native (hardware memory access) faults happen. To get a native stack trace, type bt all

into the Xcode Debugger Console. Carefully inspect the printed stack traces - they may contain hints about where the error

occurred. You might see something like:

...
Thread 1 (thread 11523):
#0 0x006267d0 in m_OptionsMenu_Start ()
#1 0x002e4160 in wrapper_runtime_invoke_object_runtime_invoke_void__this___object_intptr_intptr_intptr ()
#2 0x00a1dd64 in mono_jit_runtime_invoke (method=0x18b63bc, obj=0x5d10cb0, params=0x0, exc=0x2fffdd34) at /Users/m
#3 0x0088481c in MonoBehaviour::InvokeMethodOrCoroutineChecked ()
...

First of all you should find the stack trace for "Thread 1", which is the main thread. The very first lines of the stack trace will

point to the place where the error occurred. In this example, the trace indicates that the NullReferenceException happened

inside the "OptionsMenu" script's "Start" method. Looking carefully at this method implementation would reveal the cause of

the problem. Typically, NullReferenceExceptions happen inside the Start method when incorrect assumptions are made about

initialization order. In some cases only a partial stack trace is seen on the Debugger Console:

Thread 1 (thread 11523):
#0 0x0062564c in start ()

This indicates that native symbols were stripped during the Release build of the application. The full stack trace can be

obtained with the following procedure:

Remove application from device.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

268 of 1131 12/16/2012 10:12 PM

Clean all targets.

Build and run.

Get stack traces again as described above.

EXC_BAD_ACCESS starts occurring when an external library is linked to the Unity iOS application.
This usually happens when an external library is compiled with the ARM Thumb instruction set. Currently such libraries are not

compatible with Unity. The problem can be solved easily by recompiling the library without Thumb instructions. You can do this

for the library's Xcode project with the following steps:

in Xcode, select "View" > "Navigators" > "Show Project Navigator" from the menu

select the "Unity-iPhone" project, activate "Build Settings" tab

in the search field enter : "Other C Flags"

add -mno-thumb flag there and rebuild the library.

If the library source is not available you should ask the supplier for a non-thumb version of the library.

The Xcode console shows "WARNING -> applicationDidReceiveMemoryWarning()" and the
application crashes immediately afterwards
(Sometimes you might see a message like Program received signal: �0�.) This warning message is often not fatal and

merely indicates that iOS is low on memory and is asking applications to free up some memory. Typically, background

processes like Mail will free some memory and your application can continue to run. However, if your application continues to

use memory or ask for more, the OS will eventually start killing applications and yours could be one of them. Apple does not

document what memory usage is safe, but empirical observations show that applications using less than 50% MB of all device

RAM (like ~200-256 MB for 2nd generation ipad) do not have major memory usage problems. The main metric you should rely

on is how much RAM your application uses. Your application memory usage consists of three major components:

application code (the OS needs to load and keep your application code in RAM, but some of it might be discarded if really

needed)

native heap (used by the engine to store its state, your assets, etc. in RAM)

managed heap (used by your Mono runtime to keep C# or JavaScript objects)

GLES driver memory pools: textures, framebuffers, compiled shaders, etc.

Your application memory usage can be tracked by two Xcode Instruments tools: Activity Monitor, Object Allocations and

VM Tracker. You can start from the Xcode Run menu: Product > Profile and then select specific tool. Activity Monitor tool

shows all process statistics including Real memory which can be regarded as the total amount of RAM used by your

application. Note: OS and device HW version combination might noticeably affect memory usage numbers, so you should be

careful when comparing numbers obtained on different devices.

Note: The internal profiler shows only the heap allocated by .NET scripts. Total memory usage can be determined via Xcode

Instruments as shown above. This figure includes parts of the application binary, some standard framework buffers, Unity

engine internal state buffers, the .NET runtime heap (number printed by internal profiler), GLES driver heap and some other

miscellaneous stuff.

The other tool displays all allocations made by your application and includes both native heap and managed heap statistics

(don't forget to check the Created and still living box to get the current state of the application). The important statistic is the

Net bytes value.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

269 of 1131 12/16/2012 10:12 PM

To keep memory usage low:

Reduce the application binary size by using the strongest iOS stripping options (Advanced license feature), and avoid

unnecessary dependencies on different .NET libraries. See the player settings and player size optimization manual pages

for further details.

Reduce the size of your content. Use PVRTC compression for textures and use low poly models. See the manual page

about reducing file size for more information.

Don't allocate more memory than necessary in your scripts. Track mono heap size and usage with the internal profiler

Note: with Unity 3.0, the scene loading implementation has changed significantly and now all scene assets are preloaded.

This results in fewer hiccups when instantiating game objects. If you need more fine-grained control of asset loading and

unloading during gameplay, you should use Resources.Load and Object.Destroy.

Querying the OS about the amount of free memory may seem like a good idea to evaluate how well your application is

performing. However, the free memory statistic is likely to be unreliable since the OS uses a lot of dynamic buffers and caches.

The only reliable approach is to keep track of memory consumption for your application and use that as the main metric. Pay

attention to how the graphs from the tools described above change over time, especially after loading new levels.

The game runs correctly when launched from Xcode but crashes while loading the first level when
launched manually on the device.
There could be several reasons for this. You need to inspect the device logs to get more details. Connect the device to your

Mac, launch Xcode and select Window > Organizer from the menu. Select your device in the Organizer's left toolbar, then

click on the "Console" tab and review the latest messages carefully. Additionally, you may need to investigate crash reports.

You can find out how to obtain crash reports here: http://developer.apple.com/iphone/library/technotes/tn2008/tn2151.html.

The Xcode Organizer console contains the message "killed by SpringBoard".
There is a poorly-documented time limit for an iOS application to render its first frames and process input. If your application

exceeds this limit, it will be killed by SpringBoard. This may happen in an application with a first scene which is too large, for

example. To avoid this problem, it is advisable to create a small initial scene which just displays a splash screen, waits a frame

or two with yield and then starts loading the real scene. This can be done with code as simple as the following:

function Start () {
 yield;
 Application.LoadLevel("Test");
}

Type.GetProperty() / Type.GetValue() cause crashes on the device
Currently Type.GetProperty() and Type.GetValue() are supported only for the .NET 2.0 Subset profile. You can select the

.NET API compatibility level in the Player Settings.

Note: Type.GetProperty() and Type.GetValue() might be incompatible with managed code stripping and might need to be

excluded (you can supply a custom non-strippable type list during the stripping process to accomplish this). For further details,

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

270 of 1131 12/16/2012 10:12 PM

see the iOS player size optimization guide.

The game crashes with the error message "ExecutionEngineException: Attempting to JIT compile
method 'SometType`1<SomeValueType>:.ctor ()' while running with --aot-only."
The Mono .NET implementation for iOS is based on AOT (ahead of time compilation to native code) technology, which has its

limitations. It compiles only those generic type methods (where a value type is used as a generic parameter) which are

explicitly used by other code. When such methods are used only via reflection or from native code (ie, the serialization system)

then they get skipped during AOT compilation. The AOT compiler can be hinted to include code by adding a dummy method

somewhere in the script code. This can refer to the missing methods and so get them compiled ahead of time.

void _unusedMethod()
{
 var tmp = new SomeType<SomeValueType>();
}

Note: value types are basic types, enums and structs.

Various crashes occur on the device when a combination of System.Security.Cryptography and
managed code stripping is used
.NET Cryptography services rely heavily on reflection and so are not compatible with managed code stripping since this

involves static code analysis. Sometimes the easiest solution to the crashes is to exclude the whole

System.Security.Crypography namespace from the stripping process.

The stripping process can be customized by adding a custom link.xml file to the Assets folder of your Unity project. This

specifies which types and namespaces should be excluded from stripping. Further details can be found in the iOS player size

optimization guide.

link.xml

<linker>
 <assembly fullname="mscorlib">
 <namespace fullname="System.Security.Cryptography" preserve="all"/>
 </assembly>
</linker>

Application crashes when using System.Security.Cryptography.MD5 with managed code stripping

You might consider advice listed above or can work around this problem by adding extra reference to specific class to your

script code:

object obj = new MD5CryptoServiceProvider();

"Ran out of trampolines of type 1/2" runtime error
This error usually happens if you use lots of recursive generics. You can hint to the AOT compiler to allocate more trampolines

of type 1 or type 2. Additional AOT compiler command line options can be specified in the "Other Settings" section of the

Player Settings. For type 1 trampolines, specify nrgctx-trampolines=ABCD, where ABCD is the number of new trampolines

required (i.e. 4096). For type 2 trampolines specify nimt-trampolines=ABCD.

After upgrading Xcode Unity iOS runtime fails with message "You are using Unity iPhone Basic. You
are not allowed to remove the Unity splash screen from your game"
With some latest Xcode releases there were changes introduced in PNG compression and optimization tool. These changes

might cause false positives in Unity iOS runtime checks for splash screen modifications. If you encounter such problems try

upgrading Unity to the latest publicly available version. If it does not help you might consider following workaround:

Replace your Xcode project from scratch when building from Unity (instead of appending it)

Delete already installed project from device

Clean project in Xcode (Product->Clean)

Clear Xcode's Derived Data folders (Xcode->Preferences->Locations)

If this still does not help try disabling PNG re-compression in Xcode:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

271 of 1131 12/16/2012 10:12 PM

Open your Xcode project

Select "Unity-iPhone" project there

Select "Build Settings" tab there

Look for "Compress PNG files" option and set it to NO

App Store submission fails with "iPhone/iPod Touch: application executable is missing a required
architecture. At least one of the following architecture(s) must be present: armv6" message
You might get such message when updating already existing application, which previously was submitted with armv6 support.

Unity 4.x and Xcode 4.5 does not support armv6 platform anymore. To solve submission problem just set Target OS Version

in Unity Player Settings to 4.3 or higher.

WWW downloads are working fine in Unity Editor and on Android, but not on iOS
Most common mistake is to assume that WWW downloads are always happening on separate thread. On some platforms this

might be true, but you should not take it for granted. Best way to track WWW status is either to use yield statement or check

status in Update method. You should not use busy while loops for that.

"PlayerLoop called recursively!" error occurs when using Cocoa via a native function called from a
script
Some operations with the UI will result in iOS redrawing the window immediately (the most common example is adding a

UIView with a UIViewController to the main UIWindow). If you call a native function from a script, it will happen inside Unity's

PlayerLoop, resulting in PlayerLoop being called recursively. In such cases, you should consider using the

performSelectorOnMainThread method with waitUntilDone set to false. It will inform iOS to schedule the operation to run

between Unity's PlayerLoop calls.

Profiler or Debugger unable to see game running on iOS device
Check that you have built a Development build, and ticked the "Enable Script Debugging" and "Autoconnect profiler" boxes

(as appropriate).

The application running on the device will make a multicast broadcast to 225.0.0.222 on UDP port 54997. Check that your

network settings allow this traffic. Then, the profiler will make a connection to the remote device on a port in the range

55000 - 55511 to fetch profiler data from the device. These ports will need to be open for UDP access.

Missing DLLs
If your application runs ok in editor but you get errors in your iOS project this may be caused by missing DLLs (e.g. I18N.dll,

I19N.West.dll). In this case, try copying those dlls from within the Unity.app to your project's Assets/Plugins folder. The location

of the DLLs within the unity app is:

 Unity.app/Contents/Frameworks/Mono/lib/mono/unity

You should then also check the stripping level of your project to ensure the classes in the DLLs aren't being removed when the

build is optimised. Refer to the iOS Optimisation Page for more information on iOS Stripping Levels.

Xcode Debugger console reports: ExecutionEngineException: Attempting to JIT compile method
'(wrapper native-to-managed) Test:TestFunc (int)' while running with --aot-only
Typically such message is received when managed function delegate is passed to the native function, but required wrapper

code wasn't generated when building application. You can help AOT compiler by hinting which methods will be passed as

delegates to the native code. This can be done by adding "MonoPInvokeCallbackAttribute" custom attribute. Currently only

static methods can be passed as delegates to the native code.

Sample code:

using UnityEngine;
using System.Collections;
using System;
using System.Runtime.InteropServices;
using AOT;

public class NewBehaviourScript : MonoBehaviour {

[DllImport ("__Internal")]
private static extern void DoSomething (NoParamDelegate del1, StringParamDelegate del2);

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

272 of 1131 12/16/2012 10:12 PM

delegate void NoParamDelegate ();
delegate void StringParamDelegate (string str);

[MonoPInvokeCallback (typeof (NoParamDelegate))]
public static void NoParamCallback()
{

Debug.Log ("Hello from NoParamCallback");
}

[MonoPInvokeCallback (typeof (StringParamDelegate))]
public static void StringParamCallback(string str)
{

Debug.Log (string.Format ("Hello from StringParamCallback {0}", str));
}

// Use this for initialization
void Start () {

DoSomething(NoParamCallback, StringParamCallback);
}

}

 Android

Troubleshooting Android development

Unity fails to install your application to your device

Verify that your computer can actually see and communicate with the device. See the Publishing Builds page for further

details.

1.

Check the error message in the Unity console. This will often help diagnose the problem.2.

If you get an error saying "Unable to install APK, protocol failure" during a build then this indicates that the device is connected

to a low-power USB port (perhaps a port on a keyboard or other peripheral). If this happens, try connecting the device to a

USB port on the computer itself.

Your application crashes immediately after launch.

Ensure that you are not trying to use NativeActivity with devices that do not support it.1.

Try removing any native plugins you have.2.

Try disabling stripping.3.

Use adb logcat to get the crash report from your device.4.

Building DEX Failed
This an error which will produce a message like the following:-

Building DEX Failed!
G:\Unity\JavaPluginSample\Temp/StagingArea> java -Xmx1024M
-Djava.ext.dirs="G:/AndroidSDK/android-sdk_r09-windows\platform-tools/lib/"
-jar "G:/AndroidSDK/android-sdk_r09-windows\platform-tools/lib/dx.jar"
--dex --verbose --output=bin/classes.dex bin/classes.jar plugins
Error occurred during initialization of VM
Could not reserve enough space for object heap
Could not create the Java virtual machine.

This is usually caused by having the wrong version of Java installed on your machine. Updating your Java installation to the

latest version will generally solve this issue.

The game crashes after a couple of seconds when playing video

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

273 of 1131 12/16/2012 10:12 PM

Make sure Settings->Developer Options->Don't keep activities isn't enabled on the phone. The video player

is its own activity and therefore the regular game activity will be destroyed if the video player is activated.

My game quits when I press the sleep button
Change the <activity> tag in the AndroidManifest.xml to contain <android:configChanges> tag as described

here.

An example activity tag might look something like this:-

<activity android:name=".AdMobTestActivity"
 android:label="@string/app_name"
 android:configChanges="fontScale|keyboard|keyboardHidden|locale|mnc|mcc|navigation|orientation|screenLayou
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

Page last updated: 2012-11-26

iphone-bugreporting

Before submitting a bug report, please check the iOS Troubleshooting page, where you will find solutions to common crashes

and other problems.

If your application crashes in the Xcode debugger then you can add valuable information to your bug report as follows:-

Click Continue (Run->Continue) twice1.

Open the debugger console (Run->Console) and enter (in the console): thread apply all bt2.

Copy all console output and send it together with your bugreport.3.

If your application crashes on the iOS device then you should retrieve the crash report as described here on Apple's website.

Please attach the crash report, your built application and console log to your bug report before submitting.

Page last updated: 2011-11-08

android-GettingStarted

Building games for a device running Android OS requires an approach similar to that for iOS development. However, the

hardware is not completely standardized across all devices, and this raises issues that don't occur in iOS development. There

are some feature differences in the Android version of Unity just as there are with the iOS version.

Setting up your Android Developer environment
You will need to have your Android developer environment set up before you can test your Unity games on the device. This

involves downloading and installing the Android SDK with the different Android plaforms and adding your physical device to

your system (this is done a bit differently depending on whether you are developing on Windows or Mac). This setup process

is explained on the Android developer website, and there may be additional information provided by the manufacturer of your

device. Since this is a complex process, we've provided a basic outline of the tasks that must be completed before you can run

code on your Android device or in the Android emulator. However, the best thing to do is follow the instructions step-by-step

from the Android developer portal.

Access Android Functionality
Unity Android provides scripting APIs to access various input data and settings. You can find out more about the available

classes on the Android scripting page.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

274 of 1131 12/16/2012 10:12 PM

Exposing Native C, C++ or Java Code to Scripts
Unity Android allows you to call custom functions written in C/C++ directly from C# scripts (Java functions can be called

indirectly). To find out how to make functions from native code accessible from Unity, visit the plugins page.

Occlusion Culling
Unity includes support for occlusion culling which is a particularly valuable optimization on mobile platforms. More information

can be found on the occlusion culling page.

Splash Screen Customization
The splash screen displayed while the game launches can be customized - see this page for further details.

Troubleshooting and Bug Reports
There are many reasons why your application may crash or fail to work as you expected. Our Android troubleshooting guide

will help you get to the bottom of bugs as quickly as possible. If, after consulting the guide, you suspect the problem is internal

to Unity then you should file a bug report - see this page for details on how to do this.

How Unity Android Differs from Desktop Unity

Strongly Typed JavaScript

For performance reasons, dynamic typing in JavaScript is always turned off in Unity Android, as if #pragma strict were applied

automatically to all scripts. This is important to know if you start with a project originally developed for the desktop platforms

since you may find you get unexpected compile errors when switching to Android; dynamic typing is the first thing to

investigate. These errors are usually easy to fix if you make sure all variables are explicitly typed or use type inference on

initialization.

ETC as Recommended Texture Compression

Although Unity Android does support DXT/PVRTC/ATC textures, Unity will decompress the textures into RGB(A) format at

runtime if those compression methods are not supported by the particular device in use. This could have an impact on the

GPU rendering speed and it is recommended to use the ETC format instead. ETC is the de facto standard compression format

on Android, and should be supported on all post 2.0 devices. However, ETC does not support an alpha channel and RGBA

16-bit will sometimes be the best trade-off between size, quality and rendering speed where alpha is required.

It is also possible to create separate android distribution archives (.apk) for each of the DXT/PVRTC/ATC formats, and let the

Android Market's filtering system select the correct archives for different devices (see Publishing Builds for Android).

Movie Playback

Movie textures are not supported on Android, but a full-screen streaming playback is provided via scripting functions. To learn

about supported file formats and scripting API, consult the movie page or the Android supported media formats page.

Further Reading

Android SDK Setup

Android Remote

Trouble Shooting

Reporting crash bugs under Android

Features currently not supported by Unity Android

android-OBBsupport

Player Settings

Android Scripting

Input

Mobile Keyboard

Advanced Unity Mobile Scripting

Using .NET API 2.0 compatibility level

Building Plugins for Android

Customizing the Splash screen of Your Mobile Application
Page last updated: 2011-11-22

android-sdksetup

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

275 of 1131 12/16/2012 10:12 PM

There are some steps you must follow before you can build and run any code on your Android device. This is true regardless

of whether you use Unity or write Android applications from scratch.

1. Download the Android SDK
Go to the Android Developer SDK webpage. Download and unpack the latest Android SDK.

2. Installing the Android SDK
Follow the instructions under Installing the SDK (although you can freely skip the optional parts relating to Eclipse). In step 4 of

Installing the SDK be sure to add at least one Android platform with API level equal to or higher than 9 (Platform 2.3 or

greater), the Platform Tools, and the USB drivers if you're using Windows.

3. Get the device recognized by your system
This can be tricky, especially under Windows based systems where drivers tend to be a problem. Also, your device may come

with additional information or specific drivers from the manufacturer.

For Windows: If the Android device is automatically recognized by the system you still might need to update the drivers

with the ones that came with the Android SDK. This is done through the Windows Device Manager.

If the device is not recognized automatically use the drivers from the Android SDK, or any specific drivers provided

by the manufacturer.

Additional info can be found here: USB Drivers for Windows

For Mac: If you're developing on Mac OSX then no additional drivers are usually required.

Note: Don't forget to turn on "USB Debugging" on your device. You can do this from the home screen: press MENU, select

Applications > Development, then enable USB debugging.

If you are unsure whether your device is properly installed on your system, please read the trouble-shooting page for details.

4. Add the Android SDK path to Unity
The first time you build a project for Android (or if Unity later fails to locate the SDK) you will be asked to locate the folder

where you installed the Android SDK (you should select the root folder of the SDK installation). The location of the Android

SDK can also be changed in the editor by selecting Unity > Preferences from the menu and then clicking on External Tools in

the preferences window.

Page last updated: 2012-03-23

android-remote

Android Remote is a Android application that makes your device act as a remote control for the project in Unity. This is useful

for rapid development when you don't want to compile and deploy your project to device for each change.

How to use Android remote
To use Android Remote, you should firstly make sure that you have the latest Android SDK installed (this is necessary to set

up port-forwarding on the device). Then, connect the device to your computer with a USB cable and launch the Android

Remote app. When you press Play in the Unity editor, the device will act as a remote control and will pass accelerometer and

touch input events to the running game.

Page last updated: 2011-11-23

android-troubleshooting

This section addresses common problems that can arise when using Unity. Each platform is dealt with separately below.

 Desktop

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

276 of 1131 12/16/2012 10:12 PM

In MonoDevelop, the Debug button is greyed out!
This means that MonoDevelop was unable to find the Unity executable. In the MonoDevelop preferences, go to the

Unity/Debugger section and then browse to where your Unity executable is located.

Is there a way to get rid of the welcome page in MonoDevelop?
Yes. In the MonoDevelop preferences, go to the Visual Style section, and uncheck "Load welcome page on startup".

Geforce 7300GT on OSX 10.6.4
Deferred rendering is disabled because materials are not displayed correctly for Geforce 7300GT on OX 10.6.4; This

happens because of buggy video drivers.

On Windows x64, Unity crashes when my script throws a NullReferenceException
Please apply Windows Hotfix #976038.

Graphics

Slow framerate and/or visual artifacts.

This may occur if your video card drivers are not up to date. Make sure you have the latest official drivers from your card

vendor.

Shadows

I see no shadows at all!

Shadows are a Unity Pro only feature, so without Unity Pro you won't get shadows. Simpler shadow methods, like using a

Projector, are still possible, of course.

Shadows also require certain graphics hardware support. See Shadows page for details.

Check if shadows are not completely disabled in Quality Settings.

Shadows are currently not supported for Android and iOS mobile platforms.

Some of my objects do not cast or receive shadows

An object's Renderer must have Receive Shadows enabled for shadows to be rendered onto it. Also, an object must have

Cast Shadows enabled in order to cast shadows on other objects (both are on by default).

Only opaque objects cast and receive shadows. This means that objects using the built-in Transparent or Particle shaders will

not cast shadows. In most cases it is possible to use Transparent Cutout shaders for objects like fences, vegetation, etc. If you

use custom written Shaders, they have to be pixel-lit and use the Geometry render queue. Objects using VertexLit shaders

do not receive shadows but are able to cast them.

Only Pixel lights cast shadows. If you want to make sure that a light always casts shadows no matter how many other lights

are in the scene, then you can set it to Force Pixel render mode (see the Light reference page).

 iOS

Troubleshooting on iOS devices

There are some situations with iOS where your game can work perfectly in the Unity editor but then doesn't work or maybe

doesn't even start on the actual device. The problems are often related to code or content quality. This section describes the

most common scenarios.

The game stops responding after a while. Xcode shows "interrupted" in the status bar.
There are a number of reasons why this may happen. Typical causes include:

Scripting errors such as using uninitialized variables, etc.1.

Using 3rd party Thumb compiled native libraries. Such libraries trigger a known problem in the iOS SDK linker and

might cause random crashes.

2.

Using generic types with value types as parameters (eg, List<int>, List<SomeStruct>, List<SomeEnum>, etc) for

serializable script properties.

3.

Using reflection when managed code stripping is enabled.4.

Errors in the native plugin interface (the managed code method signature does not match the native code function

signature).

5.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

277 of 1131 12/16/2012 10:12 PM

Information from the XCode Debugger console can often help detect these problems (Xcode menu: View > Debug Area >

Activate Console).

The Xcode console shows "Program received signal: “SIGBUS” or EXC_BAD_ACCESS error.
This message typically appears on iOS devices when your application receives a NullReferenceException. There two ways to

figure out where the fault happened:

Managed stack traces

Since version 3.4 Unity includes software-based handling of the NullReferenceException. The AOT compiler includes quick

checks for null references each time a method or variable is accessed on an object. This feature affects script performance

which is why it is enabled only for development builds (for basic license users it is enough to enable the "development build"

option in the Build Settings dialog, while iOS pro license users additionally need to enable the "script debugging" option). If

everything was done right and the fault actually is occurring in .NET code then you won't see EXC_BAD_ACCESS anymore.

Instead, the .NET exception text will be printed in the Xcode console (or else your code will just handle it in a "catch"

statement). Typical output might be:

Unhandled Exception: System.NullReferenceException: A null value was found where an object instance was required.
 at DayController+$handleTimeOfDay$121+$.MoveNext () [0x0035a] in DayController.js:122

This indicates that the fault happened in the handleTimeOfDay method of the DayController class, which works as a coroutine.

Also if it is script code then you will generally be told the exact line number (eg, "DayController.js:122"). The offending line

might be something like the following:

 Instantiate(_imgwww.assetBundle.mainAsset);

This might happen if, say, the script accesses an asset bundle without first checking that it was downloaded correctly.

Native stack traces

Native stack traces are a much more powerful tool for fault investigation but using them requires some expertise. Also, you

generally can't continue after these native (hardware memory access) faults happen. To get a native stack trace, type bt all

into the Xcode Debugger Console. Carefully inspect the printed stack traces - they may contain hints about where the error

occurred. You might see something like:

...
Thread 1 (thread 11523):
#0 0x006267d0 in m_OptionsMenu_Start ()
#1 0x002e4160 in wrapper_runtime_invoke_object_runtime_invoke_void__this___object_intptr_intptr_intptr ()
#2 0x00a1dd64 in mono_jit_runtime_invoke (method=0x18b63bc, obj=0x5d10cb0, params=0x0, exc=0x2fffdd34) at /Users/m
#3 0x0088481c in MonoBehaviour::InvokeMethodOrCoroutineChecked ()
...

First of all you should find the stack trace for "Thread 1", which is the main thread. The very first lines of the stack trace will

point to the place where the error occurred. In this example, the trace indicates that the NullReferenceException happened

inside the "OptionsMenu" script's "Start" method. Looking carefully at this method implementation would reveal the cause of

the problem. Typically, NullReferenceExceptions happen inside the Start method when incorrect assumptions are made about

initialization order. In some cases only a partial stack trace is seen on the Debugger Console:

Thread 1 (thread 11523):
#0 0x0062564c in start ()

This indicates that native symbols were stripped during the Release build of the application. The full stack trace can be

obtained with the following procedure:

Remove application from device.

Clean all targets.

Build and run.

Get stack traces again as described above.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

278 of 1131 12/16/2012 10:12 PM

EXC_BAD_ACCESS starts occurring when an external library is linked to the Unity iOS application.
This usually happens when an external library is compiled with the ARM Thumb instruction set. Currently such libraries are not

compatible with Unity. The problem can be solved easily by recompiling the library without Thumb instructions. You can do this

for the library's Xcode project with the following steps:

in Xcode, select "View" > "Navigators" > "Show Project Navigator" from the menu

select the "Unity-iPhone" project, activate "Build Settings" tab

in the search field enter : "Other C Flags"

add -mno-thumb flag there and rebuild the library.

If the library source is not available you should ask the supplier for a non-thumb version of the library.

The Xcode console shows "WARNING -> applicationDidReceiveMemoryWarning()" and the
application crashes immediately afterwards
(Sometimes you might see a message like Program received signal: �0�.) This warning message is often not fatal and

merely indicates that iOS is low on memory and is asking applications to free up some memory. Typically, background

processes like Mail will free some memory and your application can continue to run. However, if your application continues to

use memory or ask for more, the OS will eventually start killing applications and yours could be one of them. Apple does not

document what memory usage is safe, but empirical observations show that applications using less than 50% MB of all device

RAM (like ~200-256 MB for 2nd generation ipad) do not have major memory usage problems. The main metric you should rely

on is how much RAM your application uses. Your application memory usage consists of three major components:

application code (the OS needs to load and keep your application code in RAM, but some of it might be discarded if really

needed)

native heap (used by the engine to store its state, your assets, etc. in RAM)

managed heap (used by your Mono runtime to keep C# or JavaScript objects)

GLES driver memory pools: textures, framebuffers, compiled shaders, etc.

Your application memory usage can be tracked by two Xcode Instruments tools: Activity Monitor, Object Allocations and

VM Tracker. You can start from the Xcode Run menu: Product > Profile and then select specific tool. Activity Monitor tool

shows all process statistics including Real memory which can be regarded as the total amount of RAM used by your

application. Note: OS and device HW version combination might noticeably affect memory usage numbers, so you should be

careful when comparing numbers obtained on different devices.

Note: The internal profiler shows only the heap allocated by .NET scripts. Total memory usage can be determined via Xcode

Instruments as shown above. This figure includes parts of the application binary, some standard framework buffers, Unity

engine internal state buffers, the .NET runtime heap (number printed by internal profiler), GLES driver heap and some other

miscellaneous stuff.

The other tool displays all allocations made by your application and includes both native heap and managed heap statistics

(don't forget to check the Created and still living box to get the current state of the application). The important statistic is the

Net bytes value.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

279 of 1131 12/16/2012 10:12 PM

To keep memory usage low:

Reduce the application binary size by using the strongest iOS stripping options (Advanced license feature), and avoid

unnecessary dependencies on different .NET libraries. See the player settings and player size optimization manual pages

for further details.

Reduce the size of your content. Use PVRTC compression for textures and use low poly models. See the manual page

about reducing file size for more information.

Don't allocate more memory than necessary in your scripts. Track mono heap size and usage with the internal profiler

Note: with Unity 3.0, the scene loading implementation has changed significantly and now all scene assets are preloaded.

This results in fewer hiccups when instantiating game objects. If you need more fine-grained control of asset loading and

unloading during gameplay, you should use Resources.Load and Object.Destroy.

Querying the OS about the amount of free memory may seem like a good idea to evaluate how well your application is

performing. However, the free memory statistic is likely to be unreliable since the OS uses a lot of dynamic buffers and caches.

The only reliable approach is to keep track of memory consumption for your application and use that as the main metric. Pay

attention to how the graphs from the tools described above change over time, especially after loading new levels.

The game runs correctly when launched from Xcode but crashes while loading the first level when
launched manually on the device.
There could be several reasons for this. You need to inspect the device logs to get more details. Connect the device to your

Mac, launch Xcode and select Window > Organizer from the menu. Select your device in the Organizer's left toolbar, then

click on the "Console" tab and review the latest messages carefully. Additionally, you may need to investigate crash reports.

You can find out how to obtain crash reports here: http://developer.apple.com/iphone/library/technotes/tn2008/tn2151.html.

The Xcode Organizer console contains the message "killed by SpringBoard".
There is a poorly-documented time limit for an iOS application to render its first frames and process input. If your application

exceeds this limit, it will be killed by SpringBoard. This may happen in an application with a first scene which is too large, for

example. To avoid this problem, it is advisable to create a small initial scene which just displays a splash screen, waits a frame

or two with yield and then starts loading the real scene. This can be done with code as simple as the following:

function Start () {
 yield;
 Application.LoadLevel("Test");
}

Type.GetProperty() / Type.GetValue() cause crashes on the device
Currently Type.GetProperty() and Type.GetValue() are supported only for the .NET 2.0 Subset profile. You can select the

.NET API compatibility level in the Player Settings.

Note: Type.GetProperty() and Type.GetValue() might be incompatible with managed code stripping and might need to be

excluded (you can supply a custom non-strippable type list during the stripping process to accomplish this). For further details,

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

280 of 1131 12/16/2012 10:12 PM

see the iOS player size optimization guide.

The game crashes with the error message "ExecutionEngineException: Attempting to JIT compile
method 'SometType`1<SomeValueType>:.ctor ()' while running with --aot-only."
The Mono .NET implementation for iOS is based on AOT (ahead of time compilation to native code) technology, which has its

limitations. It compiles only those generic type methods (where a value type is used as a generic parameter) which are

explicitly used by other code. When such methods are used only via reflection or from native code (ie, the serialization system)

then they get skipped during AOT compilation. The AOT compiler can be hinted to include code by adding a dummy method

somewhere in the script code. This can refer to the missing methods and so get them compiled ahead of time.

void _unusedMethod()
{
 var tmp = new SomeType<SomeValueType>();
}

Note: value types are basic types, enums and structs.

Various crashes occur on the device when a combination of System.Security.Cryptography and
managed code stripping is used
.NET Cryptography services rely heavily on reflection and so are not compatible with managed code stripping since this

involves static code analysis. Sometimes the easiest solution to the crashes is to exclude the whole

System.Security.Crypography namespace from the stripping process.

The stripping process can be customized by adding a custom link.xml file to the Assets folder of your Unity project. This

specifies which types and namespaces should be excluded from stripping. Further details can be found in the iOS player size

optimization guide.

link.xml

<linker>
 <assembly fullname="mscorlib">
 <namespace fullname="System.Security.Cryptography" preserve="all"/>
 </assembly>
</linker>

Application crashes when using System.Security.Cryptography.MD5 with managed code stripping

You might consider advice listed above or can work around this problem by adding extra reference to specific class to your

script code:

object obj = new MD5CryptoServiceProvider();

"Ran out of trampolines of type 1/2" runtime error
This error usually happens if you use lots of recursive generics. You can hint to the AOT compiler to allocate more trampolines

of type 1 or type 2. Additional AOT compiler command line options can be specified in the "Other Settings" section of the

Player Settings. For type 1 trampolines, specify nrgctx-trampolines=ABCD, where ABCD is the number of new trampolines

required (i.e. 4096). For type 2 trampolines specify nimt-trampolines=ABCD.

After upgrading Xcode Unity iOS runtime fails with message "You are using Unity iPhone Basic. You
are not allowed to remove the Unity splash screen from your game"
With some latest Xcode releases there were changes introduced in PNG compression and optimization tool. These changes

might cause false positives in Unity iOS runtime checks for splash screen modifications. If you encounter such problems try

upgrading Unity to the latest publicly available version. If it does not help you might consider following workaround:

Replace your Xcode project from scratch when building from Unity (instead of appending it)

Delete already installed project from device

Clean project in Xcode (Product->Clean)

Clear Xcode's Derived Data folders (Xcode->Preferences->Locations)

If this still does not help try disabling PNG re-compression in Xcode:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

281 of 1131 12/16/2012 10:12 PM

Open your Xcode project

Select "Unity-iPhone" project there

Select "Build Settings" tab there

Look for "Compress PNG files" option and set it to NO

App Store submission fails with "iPhone/iPod Touch: application executable is missing a required
architecture. At least one of the following architecture(s) must be present: armv6" message
You might get such message when updating already existing application, which previously was submitted with armv6 support.

Unity 4.x and Xcode 4.5 does not support armv6 platform anymore. To solve submission problem just set Target OS Version

in Unity Player Settings to 4.3 or higher.

WWW downloads are working fine in Unity Editor and on Android, but not on iOS
Most common mistake is to assume that WWW downloads are always happening on separate thread. On some platforms this

might be true, but you should not take it for granted. Best way to track WWW status is either to use yield statement or check

status in Update method. You should not use busy while loops for that.

"PlayerLoop called recursively!" error occurs when using Cocoa via a native function called from a
script
Some operations with the UI will result in iOS redrawing the window immediately (the most common example is adding a

UIView with a UIViewController to the main UIWindow). If you call a native function from a script, it will happen inside Unity's

PlayerLoop, resulting in PlayerLoop being called recursively. In such cases, you should consider using the

performSelectorOnMainThread method with waitUntilDone set to false. It will inform iOS to schedule the operation to run

between Unity's PlayerLoop calls.

Profiler or Debugger unable to see game running on iOS device
Check that you have built a Development build, and ticked the "Enable Script Debugging" and "Autoconnect profiler" boxes

(as appropriate).

The application running on the device will make a multicast broadcast to 225.0.0.222 on UDP port 54997. Check that your

network settings allow this traffic. Then, the profiler will make a connection to the remote device on a port in the range

55000 - 55511 to fetch profiler data from the device. These ports will need to be open for UDP access.

Missing DLLs
If your application runs ok in editor but you get errors in your iOS project this may be caused by missing DLLs (e.g. I18N.dll,

I19N.West.dll). In this case, try copying those dlls from within the Unity.app to your project's Assets/Plugins folder. The location

of the DLLs within the unity app is:

 Unity.app/Contents/Frameworks/Mono/lib/mono/unity

You should then also check the stripping level of your project to ensure the classes in the DLLs aren't being removed when the

build is optimised. Refer to the iOS Optimisation Page for more information on iOS Stripping Levels.

Xcode Debugger console reports: ExecutionEngineException: Attempting to JIT compile method
'(wrapper native-to-managed) Test:TestFunc (int)' while running with --aot-only
Typically such message is received when managed function delegate is passed to the native function, but required wrapper

code wasn't generated when building application. You can help AOT compiler by hinting which methods will be passed as

delegates to the native code. This can be done by adding "MonoPInvokeCallbackAttribute" custom attribute. Currently only

static methods can be passed as delegates to the native code.

Sample code:

using UnityEngine;
using System.Collections;
using System;
using System.Runtime.InteropServices;
using AOT;

public class NewBehaviourScript : MonoBehaviour {

[DllImport ("__Internal")]
private static extern void DoSomething (NoParamDelegate del1, StringParamDelegate del2);

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

282 of 1131 12/16/2012 10:12 PM

delegate void NoParamDelegate ();
delegate void StringParamDelegate (string str);

[MonoPInvokeCallback (typeof (NoParamDelegate))]
public static void NoParamCallback()
{

Debug.Log ("Hello from NoParamCallback");
}

[MonoPInvokeCallback (typeof (StringParamDelegate))]
public static void StringParamCallback(string str)
{

Debug.Log (string.Format ("Hello from StringParamCallback {0}", str));
}

// Use this for initialization
void Start () {

DoSomething(NoParamCallback, StringParamCallback);
}

}

 Android

Troubleshooting Android development

Unity fails to install your application to your device

Verify that your computer can actually see and communicate with the device. See the Publishing Builds page for further

details.

1.

Check the error message in the Unity console. This will often help diagnose the problem.2.

If you get an error saying "Unable to install APK, protocol failure" during a build then this indicates that the device is connected

to a low-power USB port (perhaps a port on a keyboard or other peripheral). If this happens, try connecting the device to a

USB port on the computer itself.

Your application crashes immediately after launch.

Ensure that you are not trying to use NativeActivity with devices that do not support it.1.

Try removing any native plugins you have.2.

Try disabling stripping.3.

Use adb logcat to get the crash report from your device.4.

Building DEX Failed
This an error which will produce a message like the following:-

Building DEX Failed!
G:\Unity\JavaPluginSample\Temp/StagingArea> java -Xmx1024M
-Djava.ext.dirs="G:/AndroidSDK/android-sdk_r09-windows\platform-tools/lib/"
-jar "G:/AndroidSDK/android-sdk_r09-windows\platform-tools/lib/dx.jar"
--dex --verbose --output=bin/classes.dex bin/classes.jar plugins
Error occurred during initialization of VM
Could not reserve enough space for object heap
Could not create the Java virtual machine.

This is usually caused by having the wrong version of Java installed on your machine. Updating your Java installation to the

latest version will generally solve this issue.

The game crashes after a couple of seconds when playing video

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

283 of 1131 12/16/2012 10:12 PM

Make sure Settings->Developer Options->Don't keep activities isn't enabled on the phone. The video player

is its own activity and therefore the regular game activity will be destroyed if the video player is activated.

My game quits when I press the sleep button
Change the <activity> tag in the AndroidManifest.xml to contain <android:configChanges> tag as described

here.

An example activity tag might look something like this:-

<activity android:name=".AdMobTestActivity"
 android:label="@string/app_name"
 android:configChanges="fontScale|keyboard|keyboardHidden|locale|mnc|mcc|navigation|orientation|screenLayou
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

Page last updated: 2012-11-26

android-bugreporting

Before submitting a bug with just "it crashes" in the message body, please look through the Troubleshooting Android

development page first.

At this point there are no advanced debug tools to investigate on-device app crashes. However you can use adb application

(found under Android-SDK/platform-tools) with logcat parameter. It prints status reports from your device. These reports may

include information related to the occurred crash.

If you are sure that the crash you're experiencing happens due to a bug in Unity software, please save the adb logcat output,

conduct a repro project and use the bugreporter (Help/Report a bug) to inform us about it. We will get back to you as soon as

we can.

Page last updated: 2011-02-24

android-unsupported

Graphics
Non-square textures are not supported by the ETC format.

Movie Textures are not supported, use a full-screen streaming playback instead. Please see the Movie playback page for

more information.

Scripting
OnMouseEnter, OnMouseOver, OnMouseExit, OnMouseDown, OnMouseUp, and OnMouseDrag events are not

supported on Android.

Dynamic features like Duck Typing are not supported. Use #pragma strict for your scripts to force the compiler to report

dynamic features as errors.

Video streaming via WWW class is not supported.
Page last updated: 2012-10-08

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

284 of 1131 12/16/2012 10:12 PM

android-OBBsupport

Support for Split Application Binary (.OBB)
Under Player Settings | Publishing Settings you'll find the option to split the application binary (.apk) into expansion files (.apk

+ .obb).

This mechanism is only necessary when publishing to the Google Play Store, if the application is larger than 50 MB. See

http://developer.android.com/guide/google/play/expansion-files.html for further information on APK Expansion Files.

When the Split Application Binary option is enabled the player executable and data will be split up, with a generated .apk

(main application binary) consisting only of the executable (Java, Native) code (around 10MB), any and all script / plugin code,

and the data for the first scene. Everything else (all additional scenes, resources, streaming assets ...) will be serialized

separately to a APK Expansion File (.obb).

When starting an .apk built with Split Application Binary enabled the application will check to see if it can access the .obb

file from it's position on the sdcard (location explained in the Apk Expansion docs from Google).

If the expansion file (.obb) cannot be found, only the first level can accessed (since the rest of the data is in the .obb).

The first level is then required to make the .obb file available on sdcard, before the application can proceed to load

subsequent scenes/data.

If the .obb is found the Application.dataPath will switch from .apk path, to instead point to .obb. Downloading the .obb is

then not necessary.

The contents of the .obb are never used manually. Always treat the .apk+.obb as a unique bundle, the same way you

would treat a single big .apk.

The Split Application Binary option is not the only way to split an .apk into .apk/.obb (other options include 3rd party

plugins/asset bundles/etc), but it's the only automatic splitting mechanism officially supported.

Downloading of the expansion file (.OBB)

The expansion file (.obb) may (but it's not required, in its current form at least) to be hosted on the Google Play servers.

If the .obb is published together with the .apk on Google Play, you must also include code to download the .obb. (for those

devices that require it, and for scenarios where the .obb is lost)

The asset store has a plugin (adapted from the Google Apk Expansion examples) which does this for you. It will download

the .obb and put it in the right place on the sdcard. See http://u3d.as/content/unity-technologies/google-play-obb-

downloader/2Qq

When using the asset store plugin you need to call that plugin from the first scene (because of the reasons explained

above).

The asset store plugin can also be used to download .obb's created in some other way (single data file, a zip of asset

bundles, etc) - it's agnostic to how the .obb was created.
Page last updated: 2012-11-14

Android Player Settings

Player Settings is where you define various parameters (platform specific) for the final game that you will build in Unity. Some

of these values for example are used in the Resolution Dialog that launches when you open a standalone game, others are

used by XCode when building your game for the iOS devices, so it's important to fill them out correctly.

To see the Player Settings choose Edit->Project Settings->Player from the menu bar.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

285 of 1131 12/16/2012 10:12 PM

Global Settings that apply to any project you create.

Cross-Platform Properties
Company Name The name of your company. This is used to locate the preferences file.

Product Name The name that will appear on the menu bar when your game is running and is used to locate the

preferences file also.

Default Icon Default icon the application will have on every platform (You can override this later for platform

specific needs).

Per-Platform Settings

 Desktop

Web-Player

Resolution And Presentation

Resolution

Default Screen Width Screen Width the player will be generated with.

Default Screen Height Screen Height the plater will be generated with.

Run in background Check this if you dont want to stop executing your game if the player looses focus.

WebPlayer Template For more information you should check the "Using WebPlayer templates page", note that for each

built-in and custom template there will be an icon in this section.

Icon

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

286 of 1131 12/16/2012 10:12 PM

Icons don't have any meaning for most webplayer builds but they are needed for Native Client builds used as Chrome

applications. You can set these icons here.

Other Settings

Rendering

Rendering Path This property is shared between Standalone and WebPlayer content.

Vertex Lit Lowest lighting fidelity, no shadows support. Best used on old machines or limited mobile platforms.

Forward with

Shaders

Good support for lighting features; limited support for shadows.

Deferred Lighting Best support for lighting and shadowing features, but requires certain level of hardware support. Best

used if you have many realtime lights. Unity Pro only.

Color Space The color space to be used for rendering

GammaSpace

Rendering

Rendering is gamma-corrected

Linear Rendering

Hardware Sampling

Rendering is done in linear space

Static Batching Set this to use Static batching on your build (Inactive by default in webplayers). Unity Pro only.

Dynamic Batching Set this to use Dynamic Batching on your build (Activated by default).

Streaming

First Streamed Level If you are publishing a Streamed Web Player, this is the index of the first level that will have access to

all Resources.Load assets.

Optimization

Optimize Mesh Data Remove any data from meshes that is not required by the material applied to them (tangents,

normals, colors, UV).

Debug Unload Mode Output debugging information regarding Resources.UnloadUnusedAssets.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

287 of 1131 12/16/2012 10:12 PM

Disabled Don't output any debug data for UnloadUnusedAssets.

Overview only Minimal stats about UnloadUnusedAssets usage.

Full (slow) Output overview stats along with stats for all affected objects. This option can slow down execution

due to the amount of data being displayed.

Standalone

Resolution And Presentation

Resolution

Default Screen Width Screen Width the stand alone game will be using by default.

Default Screen Height Screen Height the plater will be using by default.

Run in background Check this if you dont want to stop executing your game if it looses focus.

Standalone Player Options

Default is Full Screen Check this if you want to start your game by default in full screen mode.

Capture Single Screen If enabled, standalone games in fullscreen mode will not darken the secondary monitor in multi-

monitor setups.

DisplayResolution Dialog

Disabled No resolution dialog will appear when starting the game.

Enabled Resolution dialog will always appear when the game is launched.

Hidden by default The resolution player is possible to be opened only if you have pressed the "alt" key when starting

the game.

Use Player Log Write a log file with debugging information. If you plan to submit your application to the Mac App

Store you will want to leave this option un-ticked. Ticked is the default.

Mac App Store

Validation

Enable receipt validation for the Mac App Store.

Supported Aspect

Ratios

Aspect Ratios selectable in the Resolution Dialog will be monitor-supported resolutions of enabled

items from this list.

Icon

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

288 of 1131 12/16/2012 10:12 PM

Override for

Standalone

Check if you want to assign a custom icon you would like to be used for your standalone game.

Different sizes of the icon should fill in the squares below.

Splash Image

Config Dialog Banner Add your custom splash image that will be displayed when the game is starting.

Other Settings

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

289 of 1131 12/16/2012 10:12 PM

Rendering

Rendering Path This property is shared between Standalone and WebPlayer content.

Vertex Lit Lowest lighting fidelity, no shadows support. Best used on old machines or limited mobile platforms.

Forward with

Shaders

Good support for lighting features; limited support for shadows.

Deferred Lighting Best support for lighting and shadowing features, but requires certain level of hardware support. Best

used if you have many realtime lights. Unity Pro only.

Color Space The color space to be used for rendering

GammaSpace

Rendering

Rendering is gamma-corrected

Linear Rendering

Hardware Sampling

Rendering is done in linear space

Static Batching Set this to use Static batching on your build (Inactive by default in webplayers). Unity Pro only.

Dynamic Batching Set this to use Dynamic Batching on your build (Activated by default).

Optimization

API Compatibility Level

.Net 2.0 .Net 2.0 libraries. Maximum .net compatibility, biggest file sizes

.Net 2.0 Subset Subset of full .net compatibility, smaller file sizes

Optimize Mesh Data Remove any data from meshes that is not required by the material applied to them (tangents,

normals, colors, UV).

Debug Unload Mode Output debugging information regarding Resources.UnloadUnusedAssets.

Disabled Don't output any debug data for UnloadUnusedAssets.

Overview only Minimal stats about UnloadUnusedAssets usage.

Full (slow) Output overview stats along with stats for all affected objects. This option can slow down execution

due to the amount of data being displayed.

 iOS

Resolution And Presentation

Resolution

Default Orientation (This setting is shared between iOS and Android devices)

Portrait The device is in portrait mode, with the device held upright and the home button at the bottom.

Portrait Upside

Down (iOS Only)

The device is in portrait mode but upside down, with the device held upright and the home button at

the top.

Landscape Right

(iOS Only)

The device is in landscape mode, with the device held upright and the home button on the left side.

Landscape Left The device is in landscape mode, with the device held upright and the home button on the right side.

Auto Rotation The screen orientation is automatically set based on the physical device orientation.

Auto Rotation settings

Use Animated

Autorotation

When checked, orientation change is animated. This only applies when Default orientation is set to

Auto Rotation.

Allowed Orientations for Auto Rotation

Portrait When checked, portrait orientation is allowed. This only applies when Default orientation is set to

Auto Rotation.

Portrait Upside

Down

When checked, portrait upside down orientation is allowed. This only applies when Default

orientation is set to Auto Rotation.

Landscape Right When checked, landscape right (home button on the left side) orientation is allowed. This only

applies when Default orientation is set to Auto Rotation.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

290 of 1131 12/16/2012 10:12 PM

Landscape Left When checked, landscape left (home button is on the right side) orientation is allowed. This only

applies when Default orientation is set to Auto Rotation.

Status Bar

Status Bar Hidden Specifies whether the status bar is initially hidden when the application launches.

Status Bar Style Specifies the style of the status bar as the application launches

Default

Black Translucent

Black Opaque

Use 32-bit Display

Buffer

Specifies if Display Buffer should be created to hold 32-bit color values (16-bit by default). Use it if

you see banding, or need alpha in your ImageEffects, as they will create RTs in same format as

Display Buffer.

Show Loading

Indicator

Options for the loading indicator

Don't Show No indicator

White Large Indicator shown large and in white

White Indicator shown at normal size in white

Gray Indicator shown at normal size in gray

Icon

Override for iOS Check if you want to assign a custom icon you would like to be used for your iPhone/iPad game.

Different sizes of the icon should fill in the squares below.

Prerendered icon If unchecked iOS applies sheen and bevel effects to the application icon.

Splash Image

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

291 of 1131 12/16/2012 10:12 PM

Mobile Splash Screen

(Pro-only feature)

Specifies texture which should be used for iOS Splash Screen. Standard Splash Screen size is

320x480.(This is shared between Android and iOS)

High Res. iPhone

(Pro-only feature)

Specifies texture which should be used for iOS 4th gen device Splash Screen. Splash Screen size is

640x960.

iPad Portrait (Pro-only

feature)

Specifies texture which should be used as iPad Portrait orientation Splash Screen. Standard Splash

Screen size is 768x1024.

High Res iPad Portrait

(Pro-only feature)

Specifies texture which should be used as iPad Portrait orientation Splash Screen. Standard Splash

Screen size is 1536x2048.

iPad Landscape

(Pro-only feature)

Specifies texture which should be used as iPad Landscape orientation Splash Screen. Standard

Splash Screen size is 1024x768.

High Res iPad

Landscape (Pro-only

feature)

Specifies texture which should be used as iPad Portrait orientation Splash Screen. Standard Splash

Screen size is 2048x1536.

Other Settings

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

292 of 1131 12/16/2012 10:12 PM

Rendering

Static Batching Set this to use Static batching on your build (Activated by default). Pro-only feature.

Dynamic Batching Set this to use Dynamic Batching on your build (Activated by default).

Identification

Bundle Identifier The string used in your provisioning certificate from your Apple Developer Network account(This is

shared between iOS and Android)

Bundle Version Specifies the build version number of the bundle, which identifies an iteration (released or

unreleased) of the bundle. This is a monotonically increased string, comprised of one or more period-

separated

Configuration

Target Device Specifies application target device type.

iPhone Only Application is targeted for iPhone devices only.

iPad Only Application is targeted for iPad devices only.

iPhone + iPad Application is targeted for both iPad and iPhone devices.

Target Platform Specifies the target arquitecture you are going to build for.(This setting is shared between iOS and

Android Platforms)

armv6 (OpenGL

ES1.1)

Application is optimized for armv6 chipsets

Universal

armv6+armv7

(OpenGL ES1.1+2.0)

Application supports both armv6 and armv7 chipsets. Note: increases application distribution size

armv7 Application is optimized for armv7 chipsets. 1st-2nd gen. devices are not supported. There might be

additional requirements for this build target imposed by Apple App Store. Defaults to OpenGL ES 2.0.

Target Resolution Resolution you want to use on your deployed device.(This setting will not have any effect on devices

with maximum resolution of 480x320)

Native(Default

Device Resolution)

Will use the device native resolution.

Standard(Medium

or Low Resolution)

Use the lowest resolution possible (480x320).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

293 of 1131 12/16/2012 10:12 PM

HD(Highest

available resolution)

Use the maximum resolution allowed on the device (960x640).

Accelerometer

Frequency

How often the accelerometer is sampled

Disabled Accelerometer is not sampled

15Hz 15 samples per second

30Hz 30 samples per second

60Hz 60 samples per second

100Hz 100 samples per second

Override iPod Music If selected application will silence user's iPod music. Otherwise user's iPod music will continue

playing in the background.

UI Requires Persistent

WiFi

Specifies whether the application requires a Wi-Fi connection. iOS maintains the active Wi-Fi

connection open while the application is running.

Exit on Suspend Specifies whether the application should quit when suspended to background on iOS versions that

support multitasking.

Optimization

Api Compatibility

Level

Specifies active .NET API profile

.Net 2.0 .Net 2.0 libraries. Maximum .net compatibility, biggest file sizes

.Net 2.0 Subset Subset of full .net compatibility, smaller file sizes

AOT compilation

options

Additional AOT compiler options.

SDK Version Specifies iPhone OS SDK version to use for building in Xcode

iOS 4.0 iOS SDK 4.0.

iOS Simulator 4.0 iOS Simulator 4.0. Application built for this version of SDK will be able to run only on Simulator from

the SDK 4.

iOS 4.1 iOS 4.1.

iOS Simulator 4.1 iOS Simulator 4.1. Application built for this version of SDK will be able to run only on Simulator from

the SDK 4.x.

iOS 4.2 iOS 4.2.

iOS Simulator 4.2 iOS Simulator 4.2. Application built for this version of SDK will be able to run only on Simulator from

the SDK 4.x.

iOS 4.3 iOS 4.3.

iOS Simulator 4.3 iOS Simulator 4.3. Application built for this version of SDK will be able to run only on Simulator from

the SDK 4.x.

iOS 5.0 iOS 5.0

iOS Simulator 5.0 iOS Simulator 5.0. Application built for this version of SDK will be able to run only on Simulator from

the SDK 5.x.

iOS latest Latest available iOS SDK. Available since iOS SDK 4.2. (default value)

iOS Simulator latestLatest available iOS Simulator SDK. Available since iOS SDK 4.2.

Unknown iOS SDK version is not managed by Unity Editor.

Target iOS Version Specifies lowest iOS version where final application will able to run

3.0 iPhone OS 3.0. (default value)

3.1 iPhone OS 3.1.

3.1.2 iPhone OS 3.1.2.

3.1.3 iPhone OS 3.1.3.

3.2 iPhone OS 3.2.

4.0 iPhone OS 4.0.

4.1 iPhone OS 4.1.

4.2 iPhone OS 4.2.

4.3 iPhone OS 4.3.

5.0 iPhone OS 5.0

Unknown iPhone OS SDK version is not managed by Unity Editor.

Stripping Level

(Pro-only feature)

Options to strip out scripting features to reduce built player size(This setting is shared between iOS

and Android Platforms)

Disabled No reduction is done.

Strip Assemblies Level 1 size reduction.

Strip ByteCode Level 2 size reduction (includes reductions from Level 1).

Use micro mscorlib Level 3 size reduction (includes reductions from Levels 1 and 2).

Script Call

Optimization

Optionally disable exception handling for a speed boost at runtime

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

294 of 1131 12/16/2012 10:12 PM

Slow and Safe Full exception handling will occur with some performance impact on the device

Fast but no

Exceptions

No data provided for exceptions on the device, but the game will run faster

Optimize Mesh Data Remove any data from meshes that is not required by the material applied to them (tangents,

normals, colors, UV).

Debug Unload Mode Output debugging information regarding Resources.UnloadUnusedAssets.

Disabled Don't output any debug data for UnloadUnusedAssets.

Overview only Minimal stats about UnloadUnusedAssets usage.

Full (slow) Output overview stats along with stats for all affected objects. This option can slow down execution

due to the amount of data being displayed.

Note: If you build for example for iPhone OS 3.2, and then select Simulator 3.2 in Xcode you will get a ton of errors. So you

MUST be sure to select a proper Target SDK in Unity Editor.

 Android

Resolution And Presentation

Resolution and presentation for your Android project builds.

Resolution

Default Orientation (This setting is shared between iOS and Android devices)

Portrait The device is in portrait mode, with the device held upright and the home button at the bottom.

Portrait Upside

Down

The device is in portrait mode but upside down, with the device held upright and the home button at

the top (only available with Android OS 2.3 and later).

Landscape Right The device is in landscape mode, with the device held upright and the home button on the left side

(only available with Android OS 2.3 and later).

Landscape Left The device is in landscape mode, with the device held upright and the home button on the right side.

Use 32-bit Display

Buffer

Specifies if Display Buffer should be created to hold 32-bit color values (16-bit by default). Use it if

you see banding, or need alpha in your ImageEffects, as they will create RTs in same format as

Display Buffer. Not supported on devices running pre-Gingerbread OS (will be forced to 16-bit).

Use 24-bit Depth

Buffer

If set Depth Buffer will be created to hold (at least) 24-bit depth values. Use it only if you see

'z-fighting' or other artifacts, as it may have performance implications.

Icon

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

295 of 1131 12/16/2012 10:12 PM

Different icons that your project will have when built.

Override for Android Check if you want to assign a custom icon you would like to be used for your Android game. Different

sizes of the icon should fill in the squares below.

Splash Image

Splash image that is going to be displayed when your project is launched.

Mobile Splash Screen

(Pro-only feature)

Specifies texture which should be used by the iOS Splash Screen. Standard Splash Screen size is

320x480.(This is shared between Android and iOS)

Splash Scaling Specifies how will be the splash image scaling on the device.

Other Settings

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

296 of 1131 12/16/2012 10:12 PM

Rendering

Static

Batching

Set this to use Static batching on your build (Activated by default). Pro-only feature.

Dynamic

Batching

Set this to use Dynamic Batching on your build (Activated by default).

Identification

Bundle

Identifier

The string used in your provisioning certificate from your Apple Developer Network account(This is shared

between iOS and Android)

Bundle

Version

Specifies the build version number of the bundle, which identifies an iteration (released or unreleased) of the

bundle. This is a monotonically increased string, comprised of one or more period-separated(This is shared

between iOS and Android)

Bundle

Version Code

An internal version number. This number is used only to determine whether one version is more recent than

another, with higher numbers indicating more recent versions. This is not the version number shown to users;

that number is set by the versionName attribute. The value must be set as an integer, such as "100". You can

define it however you want, as long as each successive version has a higher number. For example, it could be

a build number. Or you could translate a version number in "x.y" format to an integer by encoding the "x" and

"y" separately in the lower and upper 16 bits. Or you could simply increase the number by one each time a

new version is released.

Configuration

Device Filter Specifies the target architecture you are going to build for.

ARMv7

only

Application optimized for ARMv7 CPU architecture. It will also enable correct Android Market device filtering,

thus recommended for publishing to the Android Market (only devices supporting Unity Android will list the

application on the Android Market).

Graphics Level Select either ES 1.1 ('fixed function') or ES 2.0 ('shader based') Open GL level. When using the AVD

(emulator) only ES 1.x is supported.

Install Location Specifies application install location on the device (for detailed information, please refer to

http://developer.android.com/guide/appendix/install-location.html).

Automatic Let OS decide. User will be able to move the app back and forth.

Prefer External Install app to external storage (SD-Card) if possible. OS does not guarantee that will be possible; if

not, the app will be installed to internal memory.

Force Internal Force app to be installed into internal memory. User will be unable to move the app to external

storage.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

297 of 1131 12/16/2012 10:12 PM

Internet Access When set to Require, will enable networking permissions even if your scripts are not using this.

Automatically enabled for development builds.

Write Access When set to External (SDCard), will enable write access to external storage such as the SD-Card.

Automatically enabled for development builds.

Optimization

Api Compatibility

Level

Specifies active .NET API profile

.Net 2.0 .Net 2.0 libraries. Maximum .net compatibility, biggest file sizes

.Net 2.0 Subset Subset of full .net compatibility, smaller file sizes

Stripping Level

(Pro-only feature)

Options to strip out scripting features to reduce built player size(This setting is shared between iOS

and Android Platforms)

Disabled No reduction is done.

Strip Assemblies Level 1 size reduction.

Strip ByteCode

(iOS only)

Level 2 size reduction (includes reductions from Level 1).

Use micro mscorlibLevel 3 size reduction (includes reductions from Levels 1 and 2).

Enable "logcat"

profiler

Enable this if you want to get feedback from your device while testing your projects. So adb logcat

prints logs from the device to the console (only available in development builds).

Optimize Mesh Data Remove any data from meshes that is not required by the material applied to them (tangents,

normals, colors, UV).

Debug Unload Mode Output debugging information regarding Resources.UnloadUnusedAssets.

Disabled Don't output any debug data for UnloadUnusedAssets.

Overview only Minimal stats about UnloadUnusedAssets usage.

Full (slow) Output overview stats along with stats for all affected objects. This option can slow down execution

due to the amount of data being displayed.

Publishing Settings

Publishing settings for Android Market

Keystore

Use Existing

Keystore / Create New

Keystore

Use this to choose whether to create a new Keystore or use an existing one.

Browse Keystore Lets you select an existing Keystore.

Keystore password Password for the Keystore.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

298 of 1131 12/16/2012 10:12 PM

Confirm password Password confirmation, only enabled if the Create New Keystore option is chosen.

Key

Alias Key alias

Password Password for key alias

Note that for security reasons, Unity will save neither the keystore password nor the key password.

Split

Application

Binary

Split application binary into expansion files, for use with Google Play Store if application is larger than 50 MB.

When enabled the player executable and data will be split up, with a generated .apk consisting only of the

executable (Java and Native) code (~10MB), and the data for the first scene. The application data will be

serialized separately to an APK Expansion File (.obb).

Flash

Resolution And Presentation

Resolution

Default Screen Width Screen Width the player will be generated with.

Default Screen Height Screen Height the plater will be generated with.

Other Settings

Optimization

Stripping Bytecode can optionally be stripped during the build.

Optimize Mesh Data Remove any data from meshes that is not required by the material applied to them (tangents,

normals, colors, UV).

Debug Unload Mode Output debugging information regarding Resources.UnloadUnusedAssets.

Disabled Don't output any debug data for UnloadUnusedAssets.

Overview only Minimal stats about UnloadUnusedAssets usage.

Full (slow) Output overview stats along with stats for all affected objects. This option can slow down execution

due to the amount of data being displayed.

Details

 Desktop

The Player Settings window is where many technical preference defaults are set. See also Quality Settings where the different

graphics quality levels can be set up.

Publishing a web player

Default Web Screen Width and Default Web Screen Height determine the size used in the html file. You can modify the

size in the html file later.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

299 of 1131 12/16/2012 10:12 PM

Default Screen Width and Default Screen Height are used by the Web Player when entering fullscreen mode through the

context menu in the Web Player at runtime.

Customizing your Resolution Dialog

The Resolution Dialog, presented to end-users

You have the option of adding a custom banner image to the Screen Resolution Dialog in the Standalone Player. The

maximum image size is 432 x 163 pixels. The image will not be scaled up to fit the screen selector. Instead it will be centered

and cropped.

Publishing to Mac App Store

Use Player Log enables writing a log file with debugging information. This is useful to find out what happened if there are

problems with your game. When publishing games for Apple's Mac App Store, it is recommended to turn this off, because

Apple may reject your submission otherwise. See this manual page for further information about log files.

Use Mac App Store Validation enables receipt validation for the Mac App Store. If this is enabled, your game will only run

when it contains a valid receipt from the Mac App Store. Use this when submitting games to Apple for publishing on the App

Store. This prevents people from running the game on any computer then the one it was purchased on. Note that this feature

does not implement any strong copy protection. In particular, any potential crack against one Unity game would work against

any other Unity content. For this reason, it is recommended that you implement your own receipt validation code on top of this

using Unity's plugin feature. However, since Apple requires plugin validation to initially happen before showing the screen

setup dialog, you should still enable this check, or Apple might reject your submission.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

300 of 1131 12/16/2012 10:12 PM

 iOS

Bundle Identifier

The Bundle Identifier string must match the provisioning profile of the game you are building. The basic structure of the

identifier is com.CompanyName.GameName. This structure may vary internationally based on where you live, so always

default to the string provided to you by Apple for your Developer Account. Your GameName is set up in your provisioning

certificates, that are manageable from the Apple iPhone Developer Center website. Please refer to the Apple iPhone

Developer Center website for more information on how this is performed.

Stripping Level (Pro-only)

Most games don't use all necessary dlls. With this option, you can strip out unused parts to reduce the size of the built player

on iOS devices. If your game is using classes that would normally be stripped out by the option you currently have selected,

you'll be presented with a Debug message when you make a build.

Script Call Optimization

A good development practice on iOS is to never rely on exception handling (either internally or through the use of try/catch

blocks). When using the default Slow and Safe option, any exceptions that occur on the device will be caught and a stack

trace will be provided. When using the Fast but no Exceptions option, any exceptions that occur will crash the game, and no

stack trace will be provided. However, the game will run faster since the processor is not diverting power to handle exceptions.

When releasing your game to the world, it's best to publish with the Fast but no Exceptions option.

 Android

Bundle Identifier

The Bundle Identifier string is the unique name of your application when published to the Android Market and installed on the

device. The basic structure of the identifier is com.CompanyName.GameName, and can be chosen arbitrarily. In Unity this

field is shared with the iOS Player Settings for convenience.

Stripping Level (Pro-only)

Most games don't use all the functionality of the provided dlls. With this option, you can strip out unused parts to reduce the

size of the built player on Android devices.

Page last updated: 2012-11-16

android-API

Unity Android provides a number of scripting APIs unified with iOS APIs to access handheld device functionality. For cross-

platform projects, UNITY_ANDROID is defined for conditionally compiling Android-specific C# code. The following scripting

classes contain Android-related changes (some of the API is shared between Android and iOS):

Input Access to multi-touch screen, accelerometer and device orientation.

iPhoneSettings Some of the Android settings, such as screen orientation, dimming and information about device hardware.

iPhoneKeyboard Support for native on-screen keyboard.

iPhoneUtils Useful functions for movie playback, anti-piracy protection and vibration.

Further Reading
Input

Mobile Keyboard

Advanced Unity Mobile Scripting

Using .NET API 2.0 compatibility level
Page last updated: 2010-09-08

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

301 of 1131 12/16/2012 10:12 PM

Android-Input

 Desktop

Note: Keyboard, joystick and gamepad input work on the desktop versions of Unity (including webplayer and Flash) but not on

mobiles.

Unity supports keyboard, joystick and gamepad input.

Virtual axes and buttons can be created in the Input Manager, and end users can configure Keyboard input in a nice screen

configuration dialog.

You can setup joysticks, gamepads, keyboard, and mouse, then access them all through one simple scripting interface.

From scripts, all virtual axes are accessed by their name.

Every project has the following default input axes when it's created:

Horizontal and Vertical are mapped to w, a, s, d and the arrow keys.

Fire1, Fire2, Fire3 are mapped to Control, Option (Alt), and Command, respectively.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

302 of 1131 12/16/2012 10:12 PM

Mouse X and Mouse Y are mapped to the delta of mouse movement.

Window Shake X and Window Shake Y is mapped to the movement of the window.

Adding new Input Axes

If you want to add new virtual axes go to the Edit->Project Settings->Input menu. Here you can also change the settings of

each axis.

You map each axis to two buttons on a joystick, mouse, or keyboard keys.

Name The name of the string used to check this axis from a script.

Descriptive Name Positive value name displayed in the input tab of the Configuration dialog for standalone builds.

Descriptive Negative

Name

Negative value name displayed in the Input tab of the Configuration dialog for standalone builds.

Negative Button The button used to push the axis in the negative direction.

Positive Button The button used to push the axis in the positive direction.

Alt Negative Button Alternative button used to push the axis in the negative direction.

Alt Positive Button Alternative button used to push the axis in the positive direction.

Gravity Speed in units per second that the axis falls toward neutral when no buttons are pressed.

Dead Size of the analog dead zone. All analog device values within this range result map to neutral.

Sensitivity Speed in units per second that the the axis will move toward the target value. This is for digital

devices only.

Snap If enabled, the axis value will reset to zero when pressing a button of the opposite direction.

Invert If enabled, the Negative Buttons provide a positive value, and vice-versa.

Type The type of inputs that will control this axis.

Axis The axis of a connected device that will control this axis.

Joy Num The connected Joystick that will control this axis.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

303 of 1131 12/16/2012 10:12 PM

Use these settings to fine tune the look and feel of input. They are all documented with tooltips in the Editor as well.

Using Input Axes from Scripts

You can query the current state from a script like this:

value = Input.GetAxis ("Horizontal");

An axis has a value between -1 and 1. The neutral position is 0. This is the case for joystick input and keyboard input.

However, Mouse Delta and Window Shake Delta are how much the mouse or window moved during the last frame. This

means it can be larger than 1 or smaller than -1 when the user moves the mouse quickly.

It is possible to create multiple axes with the same name. When getting the input axis, the axis with the largest absolute value

will be returned. This makes it possible to assign more than one input device to one axis name. For example, create one axis

for keyboard input and one axis for joystick input with the same name. If the user is using the joystick, input will come from the

joystick, otherwise input will come from the keyboard. This way you don't have to consider where the input comes from when

writing scripts.

Button Names

To map a key to an axis, you have to enter the key's name in the Positive Button or Negative Button property in the

Inspector.

The names of keys follow this convention:

Normal keys: "a", "b", "c" ...

Number keys: "1", "2", "3", ...

Arrow keys: "up", "down", "left", "right"

Keypad keys: "[1]", "[2]", "[3]", "[+]", "[equals]"

Modifier keys: "right shift", "left shift", "right ctrl", "left ctrl", "right alt", "left alt", "right cmd", "left cmd"

Mouse Buttons: "mouse 0", "mouse 1", "mouse 2", ...

Joystick Buttons (from any joystick): "joystick button 0", "joystick button 1", "joystick button 2", ...

Joystick Buttons (from a specific joystick): "joystick 1 button 0", "joystick 1 button 1", "joystick 2 button 0", ...

Special keys: "backspace", "tab", "return", "escape", "space", "delete", "enter", "insert", "home", "end", "page up", "page

down"

Function keys: "f1", "f2", "f3", ...

The names used to identify the keys are the same in the scripting interface and the Inspector.

value = Input.GetKey ("a");

Mobile Input

On iOS and Android, the Input class offers access to touchscreen, accelerometer and geographical/location input.

Access to keyboard on mobile devices is provided via the iOS keyboard.

Multi-Touch Screen
The iPhone and iPod Touch devices are capable of tracking up to five fingers touching the screen simultaneously. You can

retrieve the status of each finger touching the screen during the last frame by accessing the Input.touches property array.

Android devices don't have a unified limit on how many fingers they track. Instead, it varies from device to device and can be

anything from two-touch on older devices to five fingers on some newer devices.

Each finger touch is represented by an Input.Touch data structure:

fingerId The unique index for a touch.

position The screen position of the touch.

deltaPosition The screen position change since the last frame.

deltaTime Amount of time that has passed since the last state change.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

304 of 1131 12/16/2012 10:12 PM

tapCount The iPhone/iPad screen is able to distinguish quick finger taps by the user. This counter will let you

know how many times the user has tapped the screen without moving a finger to the sides.

Android devices do not count number of taps, this field is always 1.

phase Describes so called "phase" or the state of the touch. It can help you determine if the touch just

began, if user moved the finger or if he just lifted the finger.

Phase can be one of the following:

Began A finger just touched the screen.

Moved A finger moved on the screen.

StationaryA finger is touching the screen but hasn't moved since the last frame.

Ended A finger was lifted from the screen. This is the final phase of a touch.

Canceled The system cancelled tracking for the touch, as when (for example) the user puts the device to her face or more

than five touches happened simultaneously. This is the final phase of a touch.

Following is an example script which will shoot a ray whenever the user taps on the screen:

var particle : GameObject;
function Update () {

for (var touch : Touch in Input.touches) {
if (touch.phase == TouchPhase.Began) {

// Construct a ray from the current touch coordinates
var ray = Camera.main.ScreenPointToRay (touch.position);
if (Physics.Raycast (ray)) {

// Create a particle if hit
Instantiate (particle, transform.position, transform.rotation);

}
}

}
}

Mouse Simulation

On top of native touch support Unity iOS/Android provides a mouse simulation. You can use mouse functionality from the

standard Input class.

Device Orientation
Unity iOS/Android allows you to get discrete description of the device physical orientation in three-dimensional space.

Detecting a change in orientation can be useful if you want to create game behaviors depending on how the user is holding

the device.

You can retrieve device orientation by accessing the Input.deviceOrientation property. Orientation can be one of the following:

Unknown The orientation of the device cannot be determined. For example when device is rotate diagonally.

Portrait The device is in portrait mode, with the device held upright and the home button at the bottom.

PortraitUpsideDownThe device is in portrait mode but upside down, with the device held upright and the home button at the

top.

LandscapeLeft The device is in landscape mode, with the device held upright and the home button on the right side.

LandscapeRight The device is in landscape mode, with the device held upright and the home button on the left side.

FaceUp The device is held parallel to the ground with the screen facing upwards.

FaceDown The device is held parallel to the ground with the screen facing downwards.

Accelerometer
As the mobile device moves, a built-in accelerometer reports linear acceleration changes along the three primary axes in three-

dimensional space. Acceleration along each axis is reported directly by the hardware as G-force values. A value of 1.0

represents a load of about +1g along a given axis while a value of -1.0 represents -1g. If you hold the device upright (with the

home button at the bottom) in front of you, the X axis is positive along the right, the Y axis is positive directly up, and the Z axis

is positive pointing toward you.

You can retrieve the accelerometer value by accessing the Input.acceleration property.

The following is an example script which will move an object using the accelerometer:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

305 of 1131 12/16/2012 10:12 PM

var speed = 10.0;
function Update () {

var dir : Vector3 = Vector3.zero;

// we assume that the device is held parallel to the ground
// and the Home button is in the right hand

// remap the device acceleration axis to game coordinates:
// 1) XY plane of the device is mapped onto XZ plane
// 2) rotated 90 degrees around Y axis
dir.x = -Input.acceleration.y;
dir.z = Input.acceleration.x;

// clamp acceleration vector to the unit sphere
if (dir.sqrMagnitude > 1)

dir.Normalize();

// Make it move 10 meters per second instead of 10 meters per frame...
dir *= Time.deltaTime;

// Move object
transform.Translate (dir * speed);

}

Low-Pass Filter

Accelerometer readings can be jerky and noisy. Applying low-pass filtering on the signal allows you to smooth it and get rid of

high frequency noise.

The following script shows you how to apply low-pass filtering to accelerometer readings:

var AccelerometerUpdateInterval : float = 1.0 / 60.0;
var LowPassKernelWidthInSeconds : float = 1.0;

private var LowPassFilterFactor : float = AccelerometerUpdateInterval / LowPassKernelWidthInSeconds; // tweakable
private var lowPassValue : Vector3 = Vector3.zero;
function Start () {

lowPassValue = Input.acceleration;
}

function LowPassFilterAccelerometer() : Vector3 {
lowPassValue = Mathf.Lerp(lowPassValue, Input.acceleration, LowPassFilterFactor);
return lowPassValue;

}

The greater the value of LowPassKernelWidthInSeconds, the slower the filtered value will converge towards the current

input sample (and vice versa). You should be able to use the LowPassFilter() function instead of avgSamples().

I'd like as much precision as possible when reading the accelerometer. What should I do?

Reading the Input.acceleration variable does not equal sampling the hardware. Put simply, Unity samples the hardware at a

frequency of 60Hz and stores the result into the variable. In reality, things are a little bit more complicated -- accelerometer

sampling doesn't occur at consistent time intervals, if under significant CPU loads. As a result, the system might report 2

samples during one frame, then 1 sample during the next frame.

You can access all measurements executed by accelerometer during the frame. The following code will illustrate a simple

average of all the accelerometer events that were collected within the last frame:

var period : float = 0.0;
var acc : Vector3 = Vector3.zero;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

306 of 1131 12/16/2012 10:12 PM

for (var evnt : iPhoneAccelerationEvent in iPhoneInput.accelerationEvents) {
acc += evnt.acceleration * evnt.deltaTime;
period += evnt.deltaTime;

}
if (period > 0)

acc *= 1.0/period;
return acc;

Further Reading
The Unity mobile input API is originally based on Apple's API. It may help to learn more about the native API to better

understand Unity's Input API. You can find the Apple input API documentation here:

Programming Guide: Event Handling (Apple iPhone SDK documentation)

UITouch Class Reference (Apple iOS SDK documentation)

Note: The above links reference your locally installed iPhone SDK Reference Documentation and will contain native

ObjectiveC code. It is not necessary to understand these documents for using Unity on mobile devices, but may be helpful to

some!

 iOS

Device geographical location
Device geographical location can be obtained via the iPhoneInput.lastLocation property. Before calling this property you

should start location service updates using iPhoneSettings.StartLocationServiceUpdates() and check the service status via

iPhoneSettings.locationServiceStatus. See the scripting reference for details.

Page last updated: 2012-06-28

Android-Keyboard

In most cases, Unity will handle keyboard input automatically for GUI elements but it is also easy to show the keyboard on

demand from a script.

 iOS

Using the Keyboard

GUI Elements

The keyboard will appear automatically when a user taps on editable GUI elements. Currently, GUI.TextField, GUI.TextArea

and GUI.PasswordField will display the keyboard; see the GUI class documentation for further details.

Manual Keyboard Handling

Use the iPhoneKeyboard.Open function to open the keyboard. Please see the iPhoneKeyboard scripting reference for the

parameters that this function takes.

Keyboard Type Summary
The Keyboard supports the following types:

iPhoneKeyboardType.Default Letters. Can be switched to keyboard with numbers and punctuation.

iPhoneKeyboardType.ASCIICapable Letters. Can be switched to keyboard with numbers and punctuation.

iPhoneKeyboardType.NumbersAndPunctuationNumbers and punctuation. Can be switched to keyboard with letters.

iPhoneKeyboardType.URL Letters with slash and .com buttons. Can be switched to keyboard with

numbers and punctuation.

iPhoneKeyboardType.NumberPad Only numbers from 0 to 9.

iPhoneKeyboardType.PhonePad Keyboard used to enter phone numbers.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

307 of 1131 12/16/2012 10:12 PM

iPhoneKeyboardType.NamePhonePad Letters. Can be switched to phone keyboard.

iPhoneKeyboardType.EmailAddress Letters with @ sign. Can be switched to keyboard with numbers and

punctuation.

Text Preview
By default, an edit box will be created and placed on top of the keyboard after it appears. This works as preview of the text that

user is typing, so the text is always visible for the user. However, you can disable text preview by setting

iPhoneKeyboard.hideInput to true. Note that this works only for certain keyboard types and input modes. For example, it will

not work for phone keypads and multi-line text input. In such cases, the edit box will always appear.

iPhoneKeyboard.hideInput is a global variable and will affect all keyboards.

Keyboard Orientation
By default, the keyboard automatically follows the device orientation. To disable or enable rotation to a certain orientation, use

the following properties available in iPhoneKeyboard:

autorotateToPortrait Enable or disable autorotation to portrait orientation (button at the bottom).

autorotateToPortraitUpsideDownEnable or disable autorotation to portrait orientation (button at top).

autorotateToLandscapeLeft Enable or disable autorotation to landscape left orientation (button on the right).

autorotateToLandscapeRight Enable or disable autorotation to landscape right orientation (button on the left).

Visibility and Keyboard Size
There are three keyboard properties in iPhoneKeyboard that determine keyboard visibility status and size on the screen.

visible Returns true if the keyboard is fully visible on the screen and can be used to enter characters.

area Returns the position and dimensions of the keyboard.

active Returns true if the keyboard is activated. This property is not static property. You must have a

keyboard instance to use this property.

Note that iPhoneKeyboard.area will return a rect with position and size set to 0 until the keyboard is fully visible on the

screen. You should not query this value immediately after iPhoneKeyboard.Open. The sequence of keyboard events is as

follows:

iPhoneKeyboard.Open is called. iPhoneKeyboard.active returns true. iPhoneKeyboard.visible returns false.

iPhoneKeyboard.area returns (0, 0, 0, 0).

Keyboard slides out into the screen. All properties remain the same.

Keyboard stops sliding. iPhoneKeyboard.active returns true. iPhoneKeyboard.visible returns true.

iPhoneKeyboard.area returns real position and size of the keyboard.

Secure Text Input
It is possible to configure the keyboard to hide symbols when typing. This is useful when users are required to enter sensitive

information (such as passwords). To manually open keyboard with secure text input enabled, use the following code:

iPhoneKeyboard.Open("", iPhoneKeyboardType.Default, false, false, true);

Hiding text while typing

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

308 of 1131 12/16/2012 10:12 PM

Alert keyboard
To display the keyboard with a black semi-transparent background instead of the classic opaque, call iPhoneKeyboard.Open

as follows:

iPhoneKeyboard.Open("", iPhoneKeyboardType.Default, false, false, true, true);

Classic keyboard

Alert keyboard

 Android

Unity Android reuses the iOS API to display system keyboard. Even though Unity Android supports most of the functionality of

its iPhone counterpart, there are two aspects which are not supported:

iPhoneKeyboard.hideInput

iPhoneKeyboard.area

Please also note that the layout of a iPhoneKeyboardType can differ somewhat between devices.

Page last updated: 2011-11-02

Android-Advanced

 iOS

Advanced iOS scripting

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

309 of 1131 12/16/2012 10:12 PM

Determining Device Generation
Different device generations support different functionality and have widely varying performance. You should query the

device's generation and decide which functionality should be disabled to compensate for slower devices.

You can find the device generation from the iPhone.generation property. The reported generation can be one of the following:

iPhone

iPhone3G

iPhone3GS

iPhone4

iPodTouch1Gen

iPodTouch2Gen

iPodTouch3Gen

iPodTouch4Gen

iPad1Gen

You can find more information about different device generations, performance and supported functionality in our iPhone

Hardware Guide.

Device Properties
There are a number of device-specific properties that you can access:-

SystemInfo.deviceUniqueIdentifierUnique device identifier.

SystemInfo.deviceName User specified name for device.

SystemInfo.deviceModel Is it iPhone or iPod Touch?

SystemInfo.operatingSystem Operating system name and version.

Anti-Piracy Check
Pirates will often hack an application from the AppStore (by removing Apple DRM protection) and then redistribute it for free.

Unity iOS comes with an anti-piracy check which allows you to determine if your application was altered after it was submitted

to the AppStore.

You can check if your application is genuine (not-hacked) with the Application.genuine property. If this property returns false

then you might notify the user that he is using a hacked application or maybe disable access to some functions of your

application.

Note: accessing the Application.genuine property is a fairly expensive operation and so you shouldn't do it during frame

updates or other time-critical code.

Vibration Support
You can trigger a vibration by calling Handheld.Vibrate. Note that iPod Touch devices lack vibration hardware and will just

ignore this call.

 Android

Advanced Android scripting

Determining Device Generation
Different Android devices support different functionality and have widely varying performance. You should target specific

devices or device families and decide which functionality should be disabled to compensate for slower devices. There are a

number of device specific properties that you can access to which device is being used.

Note: Android Marketplace does some additional compatibility filtering, so you should not be concerned if an ARMv7-only app

optimised for OGLES2 is offered to some old slow devices.

Device Properties
SystemInfo.deviceUniqueIdentifierUnique device identifier.

SystemInfo.deviceName User specified name for device.

SystemInfo.deviceModel Is it iPhone or iPod Touch?

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

310 of 1131 12/16/2012 10:12 PM

SystemInfo.operatingSystem Operating system name and version.

Anti-Piracy Check
Pirates will often hack an application (by removing Apple DRM protection) and then redistribute it for free. Unity Android comes

with an anti-piracy check which allows you to determine if your application was altered after it was submitted to the AppStore.

You can check if your application is genuine (not-hacked) with the Application.genuine property. If this property returns false

then you might notify user that he is using a hacked application or maybe disable access to some functions of your application.

Note: Application.genuineCheckAvailable should be used along with Application.genuine to verify that application integrity

can actually be confirmed. Accessing the Application.genuine property is a fairly expensive operation and so you shouldn't do it

during frame updates or other time-critical code.

Vibration Support
You can trigger a vibration by calling Handheld.Vibrate. However, devices lacking vibration hardware will just ignore this call.

Page last updated: 2012-07-11

Android-DotNet

 iOS

Now Unity iOS supports two .NET API compatibility levels: .NET 2.0 and a subset of .NET 2.0 .You can select the appropriate

level in the Player Settings.

.NET API 2.0
Unity supports the .NET 2.0 API profile. This is close to the full .NET 2.0 API and offers the best compatibility with pre-existing

.NET code. However, the application's build size and startup time will be relatively poor.

Note: Unity iOS does not support namespaces in scripts. If you have a third party library supplied as source code then the

best approach is to compile it to a DLL outside Unity and then drop the DLL file into your project's Assets folder.

.NET 2.0 Subset
Unity also supports the .NET 2.0 Subset API profile. This is close to the Mono "monotouch" profile, so many limitations of the

"monotouch" profile also apply to Unity's .NET 2.0 Subset profile. More information on the limitations of the "monotouch" profile

can be found here. The advantage of using this profile is reduced build size (and startup time) but this comes at the expense of

compatibility with existing .NET code.

 Android

Unity Android supports two .NET API compatibility levels: .NET 2.0 and a subset of .NET 2.0 You can select the appropriate

level in the Player Settings.

.NET API 2.0
Unity supports the .NET 2.0 API profile; It is close to the full .NET 2.0 API and offers the best compatibility with pre-existing

.NET code. However, the application's build size and startup time will be relatively poor.

Note: Unity Android does not support namespaces in scripts. If you have a third party library supplied as source code then the

best approach is to compile it to a DLL outside Unity and then drop the DLL file into your project's Assets folder.

.NET 2.0 Subset
Unity also supports the .NET 2.0 Subset API profile. This is close to the Mono "monotouch" profile, so many limitations of the

"monotouch" profile also apply to Unity's .NET 2.0 Subset profile. More information on the limitations of the "monotouch" profile

can be found here. The advantage of using this profile is reduced build size (and startup time) but this comes at the expense of

compatibility with existing .NET code.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

311 of 1131 12/16/2012 10:12 PM

Page last updated: 2012-07-11

Android-Plugins

This page describes Native Code Plugins for Android.

Building a Plugin for Android
To build a plugin for Android, you should first obtain the Android NDK and familiarize yourself with the steps involved in

building a shared library.

If you are using C++ (.cpp) to implement the plugin you must ensure the functions are declared with C linkage to avoid name

mangling issues.

extern "C" {
 float FooPluginFunction ();
}

Using Your Plugin from C#
Once built, the shared library should be copied to the Assets->Plugins->Android folder. Unity will then find it by name when

you define a function like the following in the C# script:-

[DllImport ("PluginName")]
private static extern float FooPluginFunction ();

Please note that PluginName should not include the prefix ('lib') nor the extension ('.so') of the filename. It is advisable to wrap

all native code methods with an additional C# code layer. This code should check Application.platform and call native methods

only when the app is running on the actual device; dummy values can be returned from the C# code when running in the

Editor. You can also use platform defines to control platform dependent code compilation.

Deployment
For cross platform deployment, your project should include plugins for each supported platform (ie, libPlugin.so for Android,

Plugin.bundle for Mac and Plugin.dll for Windows). Unity automatically picks the right plugin for the target platform and

includes it with the player.

Using Java Plugins
The Android plugin mechanism also allows Java to be used to enable interaction with the Android OS.

Building a Java Plugin for Android

There are several ways to create a Java plugin but the result in each case is that you end up with a .jar file containing the

.class files for your plugin. One approach is to download the JDK, then compile your .java files from the command line with

javac. This will create .class files which you can then package into a .jar with the jar command line tool. Another option is to

use the Eclipse IDE together with the ADT.

Using Your Java Plugin from Native Code

Once you have built your Java plugin (.jar) you should copy it to the Assets->Plugins->Android folder in the Unity project.

Unity will package your .class files together with the rest of the Java code and then access the code using the Java Native

Interface (JNI). JNI is used both when calling native code from Java and when interacting with Java (or the JavaVM) from

native code.

To find your Java code from the native side you need access to the Java VM. Fortunately, that access can be obtained easily

by adding a function like this to your C/C++ code:

jint JNI_OnLoad(JavaVM* vm, void* reserved) {
 JNIEnv* jni_env = 0;
 vm->AttachCurrentThread(&jni_env, 0);

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

312 of 1131 12/16/2012 10:12 PM

}

This is all that is needed to start using Java from C/C++. It is beyond the scope of this document to explain JNI completely.

However, using it usually involves finding the class definition, resolving the constructor (<init>) method and creating a new

object instance, as shown in this example:-

jobject createJavaObject(JNIEnv* jni_env) {
 jclass cls_JavaClass = jni_env->FindClass("com/your/java/Class"); // find class definition
 jmethodID mid_JavaClass = jni_env->GetMethodID (cls_JavaClass, "<init>", "()V"); // find constructor method
 jobject obj_JavaClass = jni_env->NewObject(cls_JavaClass, mid_JavaClass); // create object instance
 return jni_env->NewGlobalRef(obj_JavaClass); // return object with a global reference
}

Using Your Java Plugin with helper classes

AndroidJNIHelper and AndroidJNI can be used to ease some of the pain with raw JNI.

AndroidJavaObject and AndroidJavaClass automate a lot of tasks and also use cacheing to make calls to Java faster. The

combination of AndroidJavaObject and AndroidJavaClass builds on top of AndroidJNI and AndroidJNIHelper, but also

has a lot of logic in its own right (to handle the automation). These classes also come in a 'static' version to access static

members of Java classes.

You can choose whichever approach you prefer, be it raw JNI through AndroidJNI class methods, or AndroidJNIHelper

together with AndroidJNI and eventually AndroidJavaObject/AndroidJavaClass for maximum automation and convenience.

UnityEngine.AndroidJNI is a wrapper for the JNI calls available in C (as described above). All methods in this class are static

and have a 1:1 mapping to the Java Native Interface. UnityEngine.AndroidJNIHelper provides helper functionality used by the

next level, but is exposed as public methods because they may be useful for some special cases.

Instances of UnityEngine.AndroidJavaObject and UnityEngine.AndroidJavaClass have a 1:1 mapping to an instance of

java.lang.Object and java.lang.Class (or subclasses thereof) on the Java side, respectively. They essentially provide 3 types

of interaction with the Java side:

Call a method

Get the value of a field

Set the value of a field

The Call is separated into two categories: Call to a 'void' method, and Call to a method with non-void return type. A generic

type is used to represent the return type of those methods which return a non-void type. The Get and Set always take a

generic type representing the field type.

Example 1

//The comments describe what you would need to do if you were using raw JNI
 AndroidJavaObject jo = new AndroidJavaObject("java.lang.String", "some_string");
 // jni.FindClass("java.lang.String");
 // jni.GetMethodID(classID, "<init>", "(Ljava/lang/String;)V");
 // jni.NewStringUTF("some_string");
 // jni.NewObject(classID, methodID, javaString);
 int hash = jo.Call<int>("hashCode");
 // jni.GetMethodID(classID, "hashCode", "()I");
 // jni.CallIntMethod(objectID, methodID);

Here, we're creating an instance of java.lang.String, initialized with a string of our choice and retrieving the hash value for that

string.

The AndroidJavaObject constructor takes at least one parameter, the name of class for which we want to construct an

instance. Any parameters after the class name are for the constructor call on the object, in this case the string "some_string".

The subsequent Call to hashCode() returns an 'int' which is why we use that as the generic type parameter to the Call

method.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

313 of 1131 12/16/2012 10:12 PM

Note: You cannot instantiate a nested Java class using dotted notation. Inner classes must use the $ separator, and it should

work in both dotted and slashed format. So android.view.ViewGroup$LayoutParams or android/view

/ViewGroup$LayoutParams can be used, where a LayoutParams class is nested in a ViewGroup class.

Example 2

One of the plugin samples above shows how to get the cache directory for the current application. This is how you would do

the same thing from C# without any plugins:-

 AndroidJavaClass jc = new AndroidJavaClass("com.unity3d.player.UnityPlayer");
 // jni.FindClass("com.unity3d.player.UnityPlayer");
 AndroidJavaObject jo = jc.GetStatic<AndroidJavaObject>("currentActivity");
 // jni.GetStaticFieldID(classID, "Ljava/lang/Object;");
 // jni.GetStaticObjectField(classID, fieldID);
 // jni.FindClass("java.lang.Object");

 Debug.Log(jo.Call<AndroidJavaObject>("getCacheDir").Call<string>("getCanonicalPath"));
 // jni.GetMethodID(classID, "getCacheDir", "()Ljava/io/File;"); // or any baseclass thereof!
 // jni.CallObjectMethod(objectID, methodID);
 // jni.FindClass("java.io.File");
 // jni.GetMethodID(classID, "getCanonicalPath", "()Ljava/lang/String;");
 // jni.CallObjectMethod(objectID, methodID);
 // jni.GetStringUTFChars(javaString);

In this case, we start with AndroidJavaClass instead of AndroidJavaObject because we want to access a static member of

com.unity3d.player.UnityPlayer rather than create a new object (an instance is created automatically by the Android

UnityPlayer). Then we access the static field "currentActivity" but this time we use AndroidJavaObject as the generic

parameter. This is because the actual field type (android.app.Activity) is a subclass of java.lang.Object, and any non-primitive

type must be accessed as AndroidJavaObject. The exceptions to this rule are strings, which can be accessed directly even

though they don't represent a primitive type in Java.

After that it is just a matter of traversing the Activity through getCacheDir() to get the File object representing the cache

directory, and then calling getCanonicalPath() to get a string representation.

Of course, nowadays you don't need to do that to get the cache directory since Unity provides access to the application's

cache and file directory with Application.temporaryCachePath and Application.persistentDataPath.

Example 3

Finally, here is a trick for passing data from Java to script code using UnitySendMessage.

using UnityEngine;
public class NewBehaviourScript : MonoBehaviour {

void Start () {
JNIHelper.debug = true;
using (JavaClass jc = new JavaClass("com.unity3d.player.UnityPlayer")) {

jc.CallStatic("UnitySendMessage", "Main Camera", "JavaMessage", "whoowhoo");
}

}

void JavaMessage(string message) {
Debug.Log("message from java: " + message);

}
}

The Java class com.unity3d.player.UnityPlayer now has a static method UnitySendMessage, equivalent to the iOS

UnitySendMessage on the native side. It can be used in Java to pass data to script code.

Here though, we call it directly from script code, which essentially relays the message on the Java side. This then calls back to

the native/Unity code to deliver the message to the object named "Main Camera". This object has a script attached which

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

314 of 1131 12/16/2012 10:12 PM

contains a method called "JavaMessage".

Best practice when using Java plugins with Unity

As this section is mainly aimed at people who don't have comprehensive JNI, Java and Android experience, we assume that

the AndroidJavaObject/AndroidJavaClass approach has been used for interacting with Java code from Unity.

The first thing to note is that any operation you perform on an AndroidJavaObject or AndroidJavaClass is computationally

expensive (as is the raw JNI approach). It is highly advisable to keep the number of transitions between managed and

native/Java code to a minimum, for the sake of performance and also code clarity.

You could have a Java method to do all the actual work and then use AndroidJavaObject / AndroidJavaClass to

communicate with that method and get the result. However, it is worth bearing in mind that the JNI helper classes try to cache

as much data as possible to improve performance.

//The first time you call a Java function like
AndroidJavaObject jo = new AndroidJavaObject("java.lang.String", "some_string"); // somewhat expensive
int hash = jo.Call<int>("hashCode"); // first time - expensive
int hash = jo.Call<int>("hashCode"); // second time - not as expensive as we already know the java method and can call it d

The Mono garbage collector should release all created instances of AndroidJavaObject and AndroidJavaClass after use,

but it is advisable to keep them in a using(){} statement to ensure they are deleted as soon as possible. Without this, you

cannot be sure when they will be destroyed. If you set AndroidJNIHelper.debug to true, you will see a record of the garbage

collector's activity in the debug output.

//Getting the system language with the safe approach
void Start () {

using (AndroidJavaClass cls = new AndroidJavaClass("java.util.Locale")) {
using(AndroidJavaObject locale = cls.CallStatic<AndroidJavaObject>("getDefault")) {

Debug.Log("current lang = " + locale.Call<string>("getDisplayLanguage"));

}
}

}

You can also call the .Dispose() method directly to ensure there are no Java objects lingering. The actual C# object might live

a bit longer, but will be garbage collected by mono eventually.

Extending the UnityPlayerActivity Java Code
With Unity Android it is possible to extend the standard UnityPlayerActivity class (the primary Java class for the Unity Player

on Android, similar to AppController.mm on Unity iOS).

An application can override any and all of the basic interaction between Android OS and Unity Android. You can enable this by

creating a new Activity which derives from UnityPlayerActivity (UnityPlayerActivity.java can be found at /Applications/Unity

/Unity.app/Contents/PlaybackEngines/AndroidPlayer/src/com/unity3d/player on Mac and usually at C:\Program

Files\Unity\Editor\Data\PlaybackEngines\AndroidPlayer\src\com\unity3d\player on Windows).

To do this, first locate the classes.jar shipped with Unity Android. It is found in the installation folder (usually C:\Program

Files\Unity\Editor\Data (on Windows) or /Applications/Unity (on Mac)) in a sub-folder called

PlaybackEngines/AndroidPlayer/bin. Then add classes.jar to the classpath used to compile the new Activity. The resulting

.class file(s) should be compressed into a .jar file and placed in the Assets->Plugins->Android folder. Since the manifest

dictates which activity to launch it is also necessary to create a new AndroidManifest.xml. The AndroidManifest.xml file should

also be placed in the Assets->Plugins->Android folder.

The new activity could look like the following example, OverrideExample.java:

package com.company.product;

import com.unity3d.player.UnityPlayerActivity;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

315 of 1131 12/16/2012 10:12 PM

import android.os.Bundle;
import android.util.Log;

public class OverrideExample extends UnityPlayerActivity {

 protected void onCreate(Bundle savedInstanceState) {

 // call UnityPlayerActivity.onCreate()
 super.onCreate(savedInstanceState);

 // print debug message to logcat
 Log.d("OverrideActivity", "onCreate called!");
 }

 public void onBackPressed()
 {
 // instead of calling UnityPlayerActivity.onBackPressed() we just ignore the back button event
 // super.onBackPressed();
 }
}

And this is what the corresponding AndroidManifest.xml would look like:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com.company.product">
 <application android:icon="@drawable/app_icon" android:label="@string/app_name">

<activity android:name=".OverrideExample"
 android:label="@string/app_name"
 android:configChanges="fontScale|keyboard|keyboardHidden|locale|mnc|mcc|navigation|orientation|screen

 <intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

 </application>
</manifest>

UnityPlayerNativeActivity

It is also possible to create your own subclass of UnityPlayerNativeActivity. This will have much the same effect as

subclassing UnityPlayerActivity but with improved input latency. Be aware, though, that NativeActivity was introduced in

Gingerbread and does not work with older devices. Since touch/motion events are processed in native code, Java views would

normally not see those events. There is, however, a forwarding mechanism in Unity which allows events to be propagated to

the DalvikVM. To access this mechanism, you need to modify the manifest file as follows:-

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com.company.product">
 <application android:icon="@drawable/app_icon" android:label="@string/app_name">

<activity android:name=".OverrideExampleNative"
 android:label="@string/app_name"
 android:configChanges="fontScale|keyboard|keyboardHidden|locale|mnc|mcc|navigation|orientation|screen

 <meta-data android:name="android.app.lib_name" android:value="unity" />
 <meta-data android:name="unityplayer.ForwardNativeEventsToDalvik" android:value="true" />
 <intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

 </application>

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

316 of 1131 12/16/2012 10:12 PM

</manifest>

Note the ".OverrideExampleNative" attribute in the activity element and the two additional meta-data elements. The first

meta-data is an instruction to use the Unity library libunity.so. The second enables events to be passed on to your custom

subclass of UnityPlayerNativeActivity.

Examples

Native Plugin Sample

A simple example of the use of a native code plugin can be found here

This sample demonstrates how C code can be invoked from a Unity Android application. The package includes a scene which

displays the sum of two values as calculated by the native plugin. Please note that you will need the Android NDK to compile

the plugin.

Java Plugin Sample

An example of the use of Java code can be found here

This sample demonstrates how Java code can be used to interact with the Android OS and how C++ creates a bridge

between C# and Java. The scene in the package displays a button which when clicked fetches the application cache directory,

as defined by the Android OS. Please note that you will need both the JDK and the Android NDK to compile the plugins.

Here is a similar example but based on a prebuilt JNI library to wrap the native code into C#.

Page last updated: 2012-09-25

Android Splash Screen

 iOS

Under iOS Basic, a default splash screen will be displayed while your game loads, oriented according to the Default Screen

Orientation option in the Player Settings.

Users with an iOS Pro license can use any texture in the project as a splash screen. The size of the texture depends on the

target device (320x480 pixels for 1-3rd gen devices, 1024x768 for iPad, 640x960 for 4th gen devices) and supplied textures

will be scaled to fit if necessary. You can set the splash screen textures using the iOS Player Settings.

 Android

Under Android Basic, a default splash screen will be displayed while your game loads, oriented according to the Default

Screen Orientation option in the Player Settings.

Android Pro users can use any texture in the project as a splash screen. You can set the texture from the Splash Image section

of the Android Player Settings. You should also select the Splash scaling method from the following options:-

Center (only scale down) will draw your image at its natural size unless it is too large, in which case it will be scaled

down to fit.

Scale to fit (letter-boxed) will draw your image so that the longer dimension fits the screen size exactly. Empty space

around the sides in the shorter dimension will be filled in black.

Scale to fill (cropped) will scale your image so that the shorter dimension fits the screen size exactly. The image will be

cropped in the longer dimension.

Page last updated: 2011-11-08

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

317 of 1131 12/16/2012 10:12 PM

nacl-gettingstarted

Native Client (NaCl) is a new technology by Google which allows you to embed native executable code in web pages to allow

deployment of very performant web apps without requiring the install of plugins. Currently, NaCl is only supported in Google

Chrome on Windows, Mac OS X and Linux (with Chrome OS support being worked on), but the technology is open source, so

it could be ported to other browser platforms in the future.

Unity 3.5 offers support to run Unity Web Player content (.unity3d files) using NaCl to allow content to be run without requiring

a plugin install in Chrome. This is an early release - it should be stable to use, but it does not yet support all features

supported in the Unity Web Player, because NaCl is an evolving platform, and does not support everything we can do in a

browser plugin.

Building and Testing games on NaCl
Building and testing games on NaCl is very simple. You need to have Google Chrome installed. Simply choose "Web Player" in

Build Settings, and tick the "Enable NaCl" checkbox. This will make sure the generated unity3d file can be run on NaCl (by

including GLSL ES shaders needed for NaCl, and by disabling dynamic fonts not supported by NaCl), and install the NaCl

runtime and a html file to launch the game in NaCl. If you click Build & Run, Unity will install your player as an app in Chrome

and launch it automatically.

Shipping Games with NaCl
In its current state, NaCl is not enabled for generic web pages in Chrome by default. While you can embed a NaCl player into

any web page, and direct your users to manually enable NaCl in chrome://flags, the only way to currently ship NaCl games

and have them work out of the box is to deploy them on the Chrome Web Store (for which NaCl is enabled by default). Note

that the Chrome Web Store is fairly unrestrictive, and allows you to host content embedded into your own web site, or to use

your own payment processing system if you like. The plan is that this restriction will be lifted when Google has finished a new

technology called portable NaCl (PNaCl), which lets you ship executables as LLVM bitcode, thus making NaCl apps

independent of any specific CPU architectures. Then NaCl should be enabled for any arbitrary web site.

Notes on Build size

When you make a NaCl build, you will probably notice that the unity_nacl_files_3.x.x folder is very large, over 100 MB. If you

are wondering, if all this much data needs to be downloaded on each run for NaCl content, the answer is generally "no". There

are two ways to serve apps on the Chrome Web Store, as a hosted or packaged app. If you serve your content as a packaged

app, all data will be downloaded on install as a compressed archive, which will then be stored on the user's disk. If you serve

your content as a hosted app, data will be downloaded from the web each time. But the nacl runtime will only download the

relevant architecture (i686 or x86_64) from the unity_nacl_files_3.x.x folder, and when the web server is configured correctly,

the data will be compressed on transfer, so the actual amount of data to be transferred should be around 10 MB (less when

physics stripping is used). The unity_nacl_files_3.x.x folder contains a .htaccess file to set up Apache to compress the data on

transfer. If you are using a different web server, you may have to set this up yourself.

Limitations in NaCl
NaCl does not yet support all the features in the regular Unity Web Player. Support for many of these will be coming in future

versions of Chrome and Unity. Currently, NaCl these features are unsupported by NaCl:

Webcam Textures

Joystick Input

Caching

Substances

Dynamic Fonts

Networking of any kind other then WWW class.

The Profiler does not work, because it requires a network connection to the Editor.

As with the standard webplayer plugin, native C/C++ plugins are not currently supported by NaCl.

The following features are supported, but have some limitations:

Depth textures:

Depth textures are required for real-time shadows and other effects. Depth textures are supported in Unity NaCl, but Chrome's

OpenGL ES 2.0 implementation does not support the required extensions on windows, so Depth textures will only work on OS

X and Linux.

Other graphics features:

NaCl uses OpenGL ES 2.0, which does not support all extensions included in the normal OpenGL. This means that some

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

318 of 1131 12/16/2012 10:12 PM

features relying on extensions, such as linear and HDR lighting will not currently work on NaCl. Also Shaders need to be able

to compile as GLSL shaders. Currently, not all built-in Unity shaders support this, for instance, the Screen Space Ambient

Occlusion is not supported on GLSL.

Cursor locking:

Cursor locking is supported, but only in fullscreen mode. Cursor locking in windowed mode is planned for a later Chrome

release.

NullReferenceExceptions:

NaCl does not have support for hardware exception handling. That means that a NullReferenceException in scripting code

results in a crash in NaCl. You can, however pass softexceptions="1" to the embed parameters (set automatically by

Unity when building a development player), to tell mono to do checking for NullReferences in software, which results in slower

script execution but no crashes.

While Google does not give any system requirements for NaCl other then requiring at least OS X 10.6.7 on the Mac, we've

found it to not work very well with old systems - especially when these systems have old GPUs or graphics drivers, or a low

amount of installed main memory. If you need to target old hardware, you may find that the Web Player will give you a better

experience.

Fullscreen mode:
Fullscreen mode is supported by setting Screen.fullScreen, but you can only enter fullscreen mode in a frame where the user

has released the mouse button. NaCl will not actually change the hardware screen resolution, which is why Screen.resolutions

will only ever return the current desktop resolution. However, Chrome supports rendering into smaller back buffers, and scaling

those up when blitting to the screen. So, requesting smaller resolutions then the desktop resolution is generally supported for

fullscreen mode, but will result in GPU based scaling, instead of changing the screen mode.

WWW class:
The WWW class is supported in NaCl, but follows different security policies then the Unity Web Player. While the Unity Web

Player uses crossdomain.xml policy files, similar to flash, Unity NaCl has to follow the cross-origin security model followed by

NaCl, documented here. Basically, in order to access html documents on a different domain then the player is hosted, you

need to configure your web server to send a Access-Control-Allow-Origin respond header for the requests, which

allows the domain hosting the player.

Communicating with browser javascript in NaCl
Interacting with the web page using JavaScript is supported, and is very similar to using the Unity Web Player, with one

exception: The syntax for sending messages to Unity from html javascript is different, because it has to go through the NaCl

module. When you are using the default Unity-generated html, then this code will work:

document.getElementById('UnityEmbed').postMessage("GameObject.Message(parameter)");

Logging
Since NaCl does not allow access to the user file system, it will not write log files. Instead it outputs all logging to stdout. To

see the player logs from NaCl:

Do a Build & Run in the edtior once to make sure your game is installed into Chrome as an app.

On Mac OS X, start Chrome from a Terminal, and start the app by clicking on it's icon. You should see the Unity player log

output in the terminal.

On Windows it's the same, but you need to set the NACL_EXE_STDOUT and NACL_EXE_STDERR environment

variables, and start Chrome with the --no-sandbox option. See Google's documentation.
Page last updated: 2012-09-20

flash-gettingstarted

What is Unity Flash?
The Flash build option allows Unity to publish swf (ShockWave Flash) files. These swf files can be played by a Flash plugin

installed into your browser. Most computers in the world will either have a Flash Player installed, or can have one installed by

visiting the Adobe Flash website. Just like a WebPlayer build creates a file with your 3d assets, audio, physics and scripts,

Unity can build a SWF file. All the scripts from your game are automatically converted to ActionScript, which is the scripting

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

319 of 1131 12/16/2012 10:12 PM

language that the Flash Player works with.

Note that the Unity Flash build option exports SWF files for playback in your browser. The SWF is not intended for playback on

mobile platforms.

Performance Comparison
We do not currently have direct comparisons of Unity webplayer content vs Flash SWF content. Much of our webplayer code

is executed as native code, so for example, PhysX runs as native code. By comparison, when building a SWF file all of the

physics runtime code (collision detection, newtonian physics) is converted to ActionScript. Typically you should expect the

SWF version to run more slowly than the Unity webplayer version. We are, of course, doing everything we can to optimize for

Flash.

Further reading:
Flash: Setup

Flash: Building & Running

Flash: Debugging

Flash: What is and is not supported

Flash: Embedding Unity Generated Flash Content in Larger Flash Projects

Flash: Adobe Premium Features License

Example: Supplying Data from Flash to Unity

Example: Calling ActionScript Functions from Unity

Example: Browser JavaScript Communication

Example: Accessing the Stage

Other Examples:
Forums post - Loading Textures from Web (in AS3)

Useful Resources:
Scripting Reference: ActionScript

Flash Development section on the Unity forums

Flash questions on Unity Answers
Page last updated: 2012-10-24

flash-setup

Installing Unity for Flash
To view the SWF files that Unity creates, your web browser will need Adobe Flash Player 11.2 or newer, which you can obtain

from http://get.adobe.com/flashplayer/. If you have Flash Player already installed, please visit http://kb2.adobe.com/cps/155

/tn_15507.html to check that you have at least version 11.2. Adobe Flash Player 11 introduced the Stage 3D Accelerated

Graphics Rendering feature that Unity requires for 3d rendering.

For system requirements see http://www.adobe.com/products/flashplayer/tech-specs.html

Flash Player Switcher
This will allow you to switch between debug (slow) and regular (fast) versions of the Flash Player. Ensure you have Adobe AIR

installed, or download it from http://get.adobe.com/air/. The Flash Player Switcher can be obtained from: https://github.com

/jvanoostveen/Flash-Player-Switcher/downloads (select FlashPlayerSwitcher.air). Note: it currently supports only Mac OS X.

Other Adobe Tools/Platforms
No other Adobe tools or platforms are required to develop with Unity and create SWF files. To embed the SWF that Unity

builds into your own Flash Application you will need one of Adobe FlashBuilder/PowerFlasher FDT/FlashDeveloper/etc and be

an experienced Flash developer. You will need to know:

Your embedding application needs to be set to -swf-version=15 / fp11.2

Your flash embeds wmode needs to be set to direct
Page last updated: 2012-10-24

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

320 of 1131 12/16/2012 10:12 PM

flash-building

The following is a step-by-step guide to build and run a new project exported to Flash.

Create your Unity content.1.

Choose File->Build Settings to bring up the Build Settings dialog and add your scene(s).2.

Change the Platform to Flash Player3.

Target Player can be left as the default. This option enables you to change the target Flash Player based on the

features you require (see http://www.adobe.com/support/documentation/en/flashplayer/releasenotes.html for details).

4.

Tick Development Build. (This causes Unity to not compress the final SWF file. Not compressing will make the build

faster, and also, the SWF file will not have to be decompressed before being run in the Flash Player. Note that an

empty scene built using the Development Build option will be around 16M in size, compared to around 2M

compressed.)

5.

Press the Build button.6.

Unity will build a SWF file at the location you choose. Additionally it will create the following files:

an html file - Use this to view your Flash-built content.

a swfobject.js file - Handles checking for the Flash Player and browser integration.

an embeddingapi.swc file.

To view your Flash-built content open the html file. Do not open the SWF file directly.

Build-and-run will create the same files, launch your default browser and load the generated html file.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

321 of 1131 12/16/2012 10:12 PM

The embeddingapi.swc file created in the build allows you to load the SWF in your own project. Embedding the Unity content

in a standard flash project allows you to do GUI in Flash. This type of Flash integration will of course not work in any of the

other build targets.

As with the other build targets, there are Player settings that you can specify. Most of the Flash settings are shared with other

platforms. Note that the resolution for the content is taken from the Standalone player settings.

We allow for a Flash API that gives you texture handles, which in combination with the swc embedding will give you means to

do webcam, video, vector graphics from flash as textures.

The Build Process
The Unity Flash Publisher attempts to convert scripts from C#/UnityScript into ActionScript. In this process, there can be two

kinds of conversion errors:

errors during conversion of unity code to ActionScript

errors while compiling the converted code.

Errors during conversion will point to the original files and will have the familiar UnityScript error messages with file names and

line numbers.

Errors during the compilation of the converted ActionScript will take you to the message in the generated ActionScript code

(with filenames ending with .as).

Debugging Converted ActionScript Code
During a build, the converted ActionScript (.as) files are stored within your project folder in:

/Temp/StagingArea/Data/ConvertedDotNetCode/

If you encounter errors with your SWF (at runtime or during a build), it can be useful to look at this converted code.

It is possible that any ActionScript errors at compilation time will not be easily understood. Just remember that the ActionScript

is generated from your game script code, so any changes you need to make will be in your original code and not the converted

ActionScript files.

Building for a specific Flash Player version
The dropdown box in the build settings window will enable you to choose which Flash Player version you wish to target. This

will always default to the lowest supported Flash Player version (currently 11.2) upon creating/reopening your Unity project.

If you wish to build for a specific Flash Player version you can do so by creating an editor script to perform the build for you. In

order to do this, you can specify a FlashBuildSubtarget in your EditorUserBuildSettings when building to Flash from an editor

script. For example:

EditorUserBuildSettings.flashBuildSubtarget = FlashBuildSubtarget.Flash11dot2;
BuildPipeline.BuildPlayer(..., ..., BuildTarget.FlashPlayer, BuildOptions.Development);

Example Build Errors and Warnings
Below are some common errors/warnings you may encounter when using the Flash export. We also have sections on the

Forums and Answers dedicated to Flash export which may be of help if your error is not listed below.

Unable to find Java

Error building Player: Exception: Compiling SWF Failed: Unable to launch Java - is the Java Runtime Environment (JRE) installe

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

322 of 1131 12/16/2012 10:12 PM

If you encounter the above error at build time, please install the 32-bit JRE and try again.

'TerrainCollider' is not supported

'TerrainCollider' is not supported when building for FlashPlayer.
'TerrainData' is not supported when building for FlashPlayer.
Asset: 'Assets/New Terrain.asset'

The terrain feature is not supported when building for the FlashPlayer target. All un-supported features will generate a similar

warning. Note that the build will continue, however, the unsupported feature will be missing from the final SWF.

Unboxing

Error: Call to a possibly undefined method RuntimeServices_UnboxSingle_Object through a reference with static type Class.

This is likely because the conversion between types that is defined on the UnityScript side is not defined for our Flash

Publisher. Any time you see an error that refers to Unbox it means a type conversion is required but cannot be found. In order

to resolve these issues:

Do not forget to use #pragma strict, and take care of all "implicit downcast" warning messages.

The rule of thumb is to avoid runtime casts from Object to primitive types (int, float, etc.). Also prefer containers with explicit

types to generic ones, for example:

System.Collections.Generic.List.<float> instead of Array

Dictionary<string, float> instead of Hashtable

UnauthorizedAccessException

Error building Player: UnauthorizedAccessException: Access to the path "Temp/StagingArea/Data/ConvertedDotNetCode/globa

If Unity-generated ActionScript files are open in a text editor, Unity may refuse to build issuing this error. To fix this, please

close the ActionScript files and allow Unity to overwrite them.

Page last updated: 2012-11-06

flash-debugging

Where can I find my Flash Player log file?
Make sure you've done all of the following:

1) Install "content debugger" version of the Adobe Flash Player plugin from: http://www.adobe.com/support/flashplayer

/downloads.html

2) Go to http://flashplayerversion.com/, and make sure that it says 'Debugger: Yes'

3) Be careful using Chrome as it ships with its own Flash Player. If you wish to use Chrome with the debug Flash Player, you

can do so by following these instructions: http://helpx.adobe.com/flash-player/kb/flash-player-google-chrome.html

4) Create a file called mm.cfg which will instruct the Flash Player to create a logfile. The mm.cfg file needs to be placed here:

Macintosh OS X /Library/Application Support/Macromedia/mm.cfg

XP C:\Documents and Settings\username\mm.cfg

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

323 of 1131 12/16/2012 10:12 PM

Windows Vista/Win7 C:\Users\username\mm.cfg

Linux /home/username/mm.cfg

Write this text in the mm.cfg file:

ErrorReportingEnable=1
TraceOutputFileEnable=1

5) Find and open your flashlog.txt here:

Macintosh OS X/Users/username/Library/Preferences/Macromedia/Flash

Player/Logs/

XP C:\Documents and Settings\username\Application

Data\Macromedia\Flash Player\Logs

Windows

Vista/Win7

C:\Users\username\AppData\Roaming\Macromedia\Flash

Player\Logs

Linux /home/username/.macromedia/Flash_Player/Logs/

Note that whilst your content is running this flashlog.txt will constantly be updated as new debug messages are generated by

your script code. You may need to reload the file or use an editor that can reload as the file grows in size.

More details about enabling debug logs when using SWFs is available at: http://livedocs.adobe.com/flex/3

/html/help.html?content=logging_04.html.

Page last updated: 2012-11-06

flash-whatssupported

Supported
Flash Player 11.2, 11.3 and 11.4

Full ActionScript API Access

Lightmapping

Occlusion culling

Editor Scripting (JavaScript / C# / Boo). Note: for JavaScript, use #pragma strict.

Custom shaders

Animation / skinning

Basic types like int, string, List

Basic audio features, such as AudioSource / AudioListener

Physics

Navigation Meshes

Substance Textures, however the textures are baked at build time so cannot be dynamically changed at runtime

PlayerPrefs - On Flash PlayerPrefs are stored per SWF per machine

UnityGUI classes that do not require text input

Particle System (Shuriken) works and is script accessible

Asset bundles - These are supported but caching of bundles (i.e. use of LoadFromCacheOrDownload) is not currently

supported

WWW and WWWForm

Mecanim

Limited support
Realtime shadows work, but do get affected by bugs in image effects

Untyped variables in JavaScript and implicit type conversions

Unity GUI / Immediate mode GUI

Any .NET specific stuff. Do not use stuff from exotic class libraries (reflection, LINQ etc).

GUIText wil have a dramatic impact on performance

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

324 of 1131 12/16/2012 10:12 PM

Not Currently Supported
Image Effects

Unity profiler

UnityGUI classes that require text input

Raknet networking (if you need networking, you can write it in Action Script 3 directly, using flash API)

Cloth

VertexLit shaders currently do not support Spot Lights (they are treated just like point lights).

Advanced audio features, such as audio effects

Terrain

Texture mipMapBias

Non-triangle MeshTopology and wireframe rendering

AsyncOperation

Won't be supported
Sockets - It is possible to use ActionScript sockets by implementing them in AS3.

Deferred rendering

Texture Support
We support jpeg textures, as well as RGBA / Truecolor. Textures which are jpg-xr compressed are not readable and thus not

supported.

The compression ratio can be specified in the texture import under 'Override for FlashPlayer' setting. Compressed textures get

converted to jpeg with the chosen compression ratio. The compression ratio is worth experimenting with since it can

considerably reduce the size of the final SWF.

Texture quality ranges from 0 to 100, with 100 indicating no compression, and 0 the highest amount of compression possible.

The maximum supported texture resolution is 2048x2048.

Unavailable APIs
UnityEngine.AccelerationEvent

UnityEngine.Achievement

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

325 of 1131 12/16/2012 10:12 PM

UnityEngine.AchievementDescription

UnityEngine.GameCenter

UnityEngine.GcLeaderboard

UnityEngine.IDList

UnityEngine.ISocial

UnityEngine.Leaderboard

UnityEngine.LocalServices

UnityEngine.RectOffset

UnityEngine.Score

UnityEngine.Security

UnityEngine.Serialization.ListSerializationSurrogate

UnityEngine.Serialization.UnitySurrogateSelector

UnityEngine.Social

UnityEngine.StackTraceUtility

UnityEngine.TextEditor

UnityEngine.Types

UnityEngine.UnityException

UnityEngine.UnityLogWriter

UnityEngine.UserProfile
Page last updated: 2012-11-06

flash-embeddingapi

embeddingapi.swc
If you want to embed your Unity generated Flash content within a larger Flash project, you can do so using the

embeddingapi.swc. This SWC provides functionality to load and communicate with Unity published Flash content. In the

embeddingapi.swc file, you will find two classes and two interfaces. Each of these, and their available functions, are

described below.

When your Unity Flash project is built, a copy of the embeddingapi.swc file will be placed in the same location as your built

SWF. You can then use this in your Flash projects as per other SWCs. For more details on what SWCs are and how to use

them, see Adobe's documentation.

Stage3D Restrictions
When embedding your Unity Flash content within another Flash project, it is useful to understand the Flash display model. All

Stage3D content is displayed behind the Flash Stage. This means that any Flash display list content added to the Stage will

always render in front of your 3D content. For more information on this, please refer to Adobe's "How Stage3D Works" page.

IUnityContent
IUnityContent is implemented by Unity built Flash content. This interface is how you communicate with or modify the Untiy

content.

Methods:

getTextureFromNativeId(id : int) : TextureBase; Enables retrieving of textures. A full example project using this can be

found on the forums.

sendMessage(objectPath : String, methodName :

String, value : Object = null) : Boolean;

The sendMessage function can be used to call a method on an object in

the Unity content.

setContentHost(contentHost : IUnityContentHost) :

void;

Sets the host (which must implement IUnityContentHost) for the Unity

content. The host can then listen for when the Unity content has

loaded/started.

setSize(width : int, height : int) : void; Modifies the size of the Unity content

setPosition(x:int = 0, y:int = 0):void; Enables you to reposition the Unity content within the content host.

startFrameLoop() : void; Starts the Unity content.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

326 of 1131 12/16/2012 10:12 PM

stopFrameLoop() : void; Stops the unity content.

forceUnload():void; Unloads the Unity flash content.

IUnityContentHost
This must be implemented by whichever class will host the Unity content.

Methods:

unityInitComplete() : void; Called when the Unity engine is done initializing and the first level is loaded.

unityInitStart() : void; Called when the content is loaded and the initialization of the Unity engine is started.

UnityContentLoader
The UnityContentLoader class can be used to load Unity published Flash content and extends the AS3 Loader class. As

with standard AS3 Loader instances, you can add event listeners to its contentLoaderInfo in order to know the progress of

the load and when it is complete.

Constructor:

UnityContentLoader(contentURL : String, contentHost : IUnityContentHost = null, params : UnityLoaderParams = null, autoLo

Creates a UnityContentLoader instance which you can attach event listeners to and use to load the unity content.

contentURL: The URL of the Unity published SWF to load.

contentHost: The host for the content. This should be your own ActionScript class that implements IUnityContentHost.

params: Supply a UnityLoaderParams instance if you wish to override the default load details.

autoLoad: If set to true, the load will begin as soon as the UnityContentLoader has been created (rather than needing to

call loadUnity() separately). If you wish to track progress of the load using events, this should be set to false. You can

then call loadUnity() manually once the relevant event listeners have been added.

Accessible Properties:

unityContent :

IUnityContent;

Once the content has finished loading, you can access the Unity content to perform functionality

such as sendMessage().

Methods:

loadUnity() : void; Instructs the UnityContentLoader to load the Unity content from the URL supplied in

the constructor.

forceUnload() : void; Unloads the unity content from the host.

unload() : void; Overrides the default unload() method of the AS3 Loader class and calls forceUnload.

unloadAndStop(gc:Boolean =

true):void

Unloads the unity content then calls the default Loader implementation of

unloadAndStop(gc).

UnityLoaderParams

Constructor:

Parameters can be supplied to the UnityContentLoader when created to provide additional loader configuration.

function UnityLoaderParams(scaleToStage : Boolean = false, width : int = 640, height : int = 480, usePreloader : Boolean = f

scaleToStage: Whether the Unity content remains at a fixed size or whether it scales as the parent Flash window resizes.

width: The width of the Unity content.

height: The height of the Unity content.

usePreloader: Whether or not to show the Unity preloader.

autoInit: This is not currently used.

catchGlobalErrors: Whether to catch errors and display them in a red box in the top left corner of the swf.

Example

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

327 of 1131 12/16/2012 10:12 PM

The following example shows how to load Unity published Flash content into a host SWF. It shows how to supply custom

UnityLoaderParams and track progress of the file load. Once the Unity content has been added to the host, a function in the

Unity content is called using the sendMessage function.

public class MyLoader extends Sprite implements IUnityContentHost
{
 private var unityContentLoader:UnityContentLoader;

 public function MyLoader()
 {
 var params:UnityLoaderParams = new UnityLoaderParams(false,720,400,false);
 unityContentLoader = new UnityContentLoader("UnityContent.swf", this, params, false);
 unityContentLoader.contentLoaderInfo.addEventListener(ProgressEvent.PROGRESS, onUnityContentLoaderProgress);
 unityContentLoader.contentLoaderInfo.addEventListener(Event.COMPLETE, onUnityContentLoaderComplete);
 unityContentLoader.loadUnity();
 }

 private function onUnityContentLoaderProgress(event:ProgressEvent):void
 {
 //Respond to load progress
 }

 private function onUnityContentLoaderComplete(event:Event):void
 {
 addChild(unityContentLoader);
 unityContentLoader.unityContent.setContentHost(this);
 }

 //unityInitStart has to be implemented by whatever implements IUnityContenthost
 //This is called when the content is loaded and the initialization of the unity engine is started.
 public function unityInitStart():void
 {
 //Unity engine started
 }

 //unityInitComplete has to be implemented by whatever implements IUnityContenthost
 //This is called when the unity engine is done initializing and the first level is loaded.
 public function unityInitComplete():void
 {
 unityContentLoader.unityContent.sendMessage("Main Camera","SetResponder",{responder:this});
 }

 ...

}

Page last updated: 2012-11-06

flash-adobelicense

What is the license and why is it needed?
When publishing your Unity project to Flash, you will need to acquire a license from Adobe in order for the content to work in

the Flash Player. The Adobe documentation of premium features explains why a license is required for Unity built Flash

games:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

328 of 1131 12/16/2012 10:12 PM

"Premium Features includes the XC APIs �(domain memory APIs in combination with Stage3D hardware acceleration APIs), w

For more information and the latest details on the license, please refer to the Adobe article which explains this in detail.

How do I obtain a license?
To obtain a license, you will need to sign into https://www.adobefpl.com/ using your AdobeId and follow their instructions.

Further reading
Premium Features for Flash Player FAQs

Adobe Premium Features for Flash Player

Adobe gaming
Page last updated: 2012-11-06

flashexamples-supplyingdata

If you wish to supply data from Flash to Unity, it must be one of the supported types. You can also create classes to represent

the data (by providing a matching C# or JavaScript implementation).

First, create an AS3 implementation of your object and include the class in your project (in an folder called ActionScript):

public class ExampleObject
{
 public var anInt : int;
 public var someString : String;
 public var aBool : Boolean;
}

Now create a C# or JavaScript object which matches the AS3 implementation.

The NotRenamed attribute used below prevents name mangling of constructors, methods, fields and properties.

The NotConverted attribute instructs the build pipeline not to convert a type or member to the target platform. Normally when

you build to Flash, each of your C#/JavaScript scripts are converted to an ActionScript (.as) script. Adding the [NotConverted]

attribute overrides this process, allowing you to provide your own version of the .as script, manually. The dummy

C#/JavaScript which you provide allows Unity to know the signature of the class (i.e. which functions it should be allowed to

call), and your .as script provides the implementations of those functions. Note that the ActionScript version will only be used

when you build to Flash. In editor or when built to other platforms, Unity will use your C#/JavaScript version.

C#

[NotConverted]
[NotRenamed]
public class ExampleObject
{
 [NotRenamed]
 public int anInt;

 [NotRenamed]
 public string someString;

 [NotRenamed]
 public bool aBool;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

329 of 1131 12/16/2012 10:12 PM

}

JavaScript

@NotConverted
@NotRenamed
class ExampleObject
{
 @NotRenamed
 public var anInt : int;

 @NotRenamed
 public var someString : String;

 @NotRenamed
 public var aBool : boolean;
}

Now you need a way in AS3 to retrieve your object, e.g.:

public static function getExampleObject() : ExampleObject
{
 return new ExampleObject();
}

Then you can then retrieve the object and access its data:

ExampleObject exampleObj = UnityEngine.Flash.ActionScript.Expression<ExampleObject>("MyStaticASClass.getExampleObjec
Debug.Log(exampleObj.someString);

Page last updated: 2012-10-24

flashexamples-callingflashfunctions

This example shows how you can call different AS3 functions from Unity. You will encounter three scripts:

An AS3 class (ExampleClass.as) containing different function examples. Any AS3 classes you create must be placed within

an "ActionScript" folder in your project.

A C#/JavaScript class (ExampleClass.cs/js) which mimics the AS3 implementation. You only need one of these.

An example of how to call the functions from Unity.

When built to Flash, the AS3 implementation of ExampleClass is used. When run in-editor or built to any platform other than

Flash the C#/JavaScript implementation will be used.

By creating an ActionScript version of your classes, this will enable you to use native AS3 libraries when building for Flash

Player. This is particularly useful when you need to work around a .net library which isn't yet supported for Flash export.

ExampleClass.as

public class ExampleClass
{
 public static function aStaticFunction() : void
 {
 trace("aStaticFunction - AS3 Implementation");

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

330 of 1131 12/16/2012 10:12 PM

 }

 public static function aStaticFunctionWithParams(a : int) : void
 {
 trace("aStaticFunctionWithParams - AS3 Implementation");
��}

 public static function aStaticFunctionWithReturnType() : int
 {
 trace("aStaticFunctionWithReturnType - AS3 Implementation");
 return 1;
 }

 public function aFunction() : void
 {
 trace("aFunction - AS3 Implementation");
 }
}

ExampleClass - C#/JavaScript Implementation
You can create the class to mimic the AS3 implementation in either C# or JavaScript. The implementations are very similar.

Both examples are provided below.

C# Implementation (ExampleClass.cs)

using UnityEngine;

[NotRenamed]
[NotConverted]
public class ExampleClass
{
 [NotRenamed]
 public static void aStaticFunction()
 {
 Debug.Log("aStaticFunction - C# Implementation");
 }

 [NotRenamed]
 public static void aStaticFunctionWithParams(int a)
 {
 Debug.Log("aStaticFunctionWithParams - C# Implementation");
 }

 [NotRenamed]
 public static int aStaticFunctionWithReturnType()
 {
 Debug.Log("aStaticFunctionWithReturnType - C# Implementation");
 return 1;
 }

 [NotRenamed]
 public void aFunction()
 {
 Debug.Log("aFunction - C# Implementation");
 }
}

JavaScript Implementation (ExampleClass.js)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

331 of 1131 12/16/2012 10:12 PM

@NotConverted
@NotRenamed
class ExampleClass
{
 @NotRenamed
 static function aStaticFunction()
 {
 Debug.Log("aStaticFunction - JS Implementation");
 }

 @NotRenamed
 static function aStaticFunctionWithParams(a : int)
 {
 Debug.Log("aStaticFunctionWithParams - JS Implementation");
 }

 @NotRenamed
 static function aStaticFunctionWithReturnType() : int
 {
 Debug.Log("aStaticFunctionWithReturnType - JS Implementation");
 return 1;
 }

 @NotRenamed
 function aFunction()
 {
 Debug.Log("aFunction - JS Implementation");
 }
}

How to Call the Functions
The below code will call the methods in the ActionScript (.as) implementation when building for Flash. This will allow you to

use native AS3 libraries in your flash export projects. When building to a non-Flash platform or running in editor, the C#/JS

implementation of the class will be used.

ExampleClass.aStaticFunction();
ExampleClass.aStaticFunctionWithParams(1);
int returnedValue = ExampleClass.aStaticFunctionWithReturnType();

ExampleClass exampleClass = new ExampleClass();
exampleClass.aFunction();

Page last updated: 2012-11-06

flashexamples-browserjavascriptcommunication

This example shows how AS3 code can communicate JavaScript in the browser. This example makes use of the

ExternalInterface ActionScript class.

When run, the BrowserCommunicator.TestCommunication() function will register a callback that the browser JavaScript can

then call. The ActionScript will then call out to the browser JavaScript, causing an alert popup to be displayed. The exposed

ActionScript function will then be invoked by the JavaScript, completing the two-way communication test.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

332 of 1131 12/16/2012 10:12 PM

Required JavaScript
The following JavaScript needs to be added to the html page that serves the Unity published SWF. It creates the function

which will be called from ActionScript:

<script type="text/javascript">

function calledFromActionScript()
{
 alert("ActionScript called Javascript function")

 var obj = swfobject.getObjectById("unityPlayer");
 if (obj)
 {
 obj.callFromJavascript();
 }
}

</script>

BrowserCommunicator.as (and matching C# class)

package
{
 import flash.external.ExternalInterface;
 import flash.system.Security;

 public class BrowserCommunicator
 {
 //Exposed so that it can be called from the browser JavaScript.
 public static function callFromJavascript() : void
 {
 trace("Javascript successfully called ActionScript function.");
 }

 //Sets up an ExternalInterface callback and calls a Javascript function.
 public static function TestCommunication() : void
 {
 if (ExternalInterface.available)
 {
 try
 {
 ExternalInterface.addCallback("callFromJavascript", callFromJavascript);
 }
 catch (error:SecurityError)
 {
 trace("A SecurityError occurred: " + error.message);
 }
 catch (error:Error)
 {
 trace("An Error occurred: " + error.message);
 }

 ExternalInterface.call('calledFromActionScript');
 }
 else
 {

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

333 of 1131 12/16/2012 10:12 PM

 trace("External interface not available");
 }
 }
 }
}

C# dummy implementation of the class:

[NotConverted]
[NotRenamed]
public class BrowserCommunicator
{
 [NotRenamed]
 public static void TestCommunication()
 {
 }
}

How to test
Simply call BrowserCommunicator.TestCommunication() and this will invoke the two-way communication test.

Potential Issues

Security Sandbox Violation
A SecurityError occurred: Error #2060: Security sandbox violation

This happens when your published SWF does not have permission to access your html file. To fix this locally, you can either:

Add the folder containing the SWF to the Flash Player's trusted locations in the Global Security Settings Panel.

Host the file on localhost.

For more information on the Flash Security Sandboxes, please refer to the Adobe documentation.

Page last updated: 2012-10-24

flashexamples-accessingthestage

You can access the Flash Stage from your C#/JS scripts in the following way:

ActionScript.Import("com.unity.UnityNative");
ActionScript.Statement("trace(UnityNative.stage);");

As an example, the following C# code will output the flashvars supplied to a SWF:

ActionScript.Import("flash.display.LoaderInfo");
ActionScript.Statement(
 "var params:Object = LoaderInfo(UnityNative.stage.loaderInfo).parameters;" +
 "var key:String;" +
 "for (key in params) {" +
 "trace(key + '=' + params[key]);" +
 "}"

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

334 of 1131 12/16/2012 10:12 PM

);

Page last updated: 2012-11-06

FAQ

The following is a list of common tasks in Unity and how to accomplish them.

Upgrade Guide from Unity 3.5 to 4.0

Unity 3.5 upgrade guide

Upgrading your Unity Projects from 2.x to 3.x

Physics upgrade details

Mono Upgrade Details

Rendering upgrade details

Unity 3.x Shader Conversion Guide

Unity 4.0 Activation - Overview

Managing your Unity 4.x license

Step-by-Step Guide to Online Activation of Unity 4.0

Step-by-Step Guide to Manual Activation of Unity 4.0

Game Code Questions

How to make a simple first person walkthrough

Graphics Questions

How do I Import Alpha Textures?

How do I Use Normal Maps?

How do I use Detail Textures?

How do I Make a Cubemap Texture?

How do I Make a Skybox?

How do I make a Mesh Particle Emitter? (Legacy Particle System)

How do I make a Splash Screen?

How do I make a Spot Light Cookie?

How do I fix the rotation of an imported model?

How do I use Water?

FBX export guide

Art Asset Best-Practice Guide

How do I import objects from my 3D app?

Importing Objects From Maya

Importing Objects From Cinema 4D

Importing Objects From 3D Studio Max

Importing Objects From Cheetah3D

Importing Objects From Modo

Importing Objects From Lightwave

Importing Objects From Blender

Workflow Questions

Getting started with Mono Develop

How do I reuse assets between projects?

How do I install or upgrade Standard Assets?

Porting a Project Between Platforms

Mobile Developer Checklist

Crashes

Profiling

Optimizations
Page last updated: 2007-11-16

Upgrade guide from 3.5 to 4.0

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

335 of 1131 12/16/2012 10:12 PM

GameObject active state
Unity 4.0 changes how the active state of GameObjects is handled. GameObject's active state is now inherited by child

GameObjects, so that any GameObject which is inactive will also cause its children to be inactive. We believe that the new

behavior makes more sense than the old one, and should have always been this way. Also, the upcoming new GUI system

heavily depends on the new 4.0 behavior, and would not be possible without it. Unfortunately, this may require some work to

fix existing projects to work with the new Unity 4.0 behavior, and here is the change:

The old behavior:

Whether a GameObject is active or not was defined by its .active property.

This could be queried and set by checking the .active property.

A GameObject's active state had no impact on the active state of child GameObjects. If you want to activate or deactivate a

GameObject and all of its children, you needed to call GameObject.SetActiveRecursively.

When using SetActiveRecursively on a GameObject, the previous active state of any child GameObject would be lost.

When you deactivate and then activated a GameObject and all its children using SetActiveRecursively, any child which

had been inactive before the call to SetActiveRecursively, would become active, and you had to manually keep track of

the active state of children if you want to restore it to the way it was.

Prefabs could not contain any active state, and were always active after prefab instantiation.

The new behavior:

Whether a GameObject is active or not is defined by its own .activeSelf property, and that of all of its parents. The

GameObject is active if its own .activeSelf property and that of all of its parents is true. If any of them are false, the

GameObject is inactive.

This can be queried using the .activeInHierarchy property.

The .activeSelf state of a GameObject can be changed by calling GameObject.SetActive. When calling SetActive

(false) on a previously active GameObject, this will deactivate the GameObject and all its children. When calling

SetActive (true) on a previously inactive GameObject, this will activate the GameObject, if all its parents are active.

Children will be activated when all their parents are active (i.e., when all their parents have .activeSelf set to true).

This means that SetActiveRecursively is no longer needed, as active state is inherited from the parents. It also means

that, when deactivating and activating part of a hierarchy by calling SetActive, the previous active state of any child

GameObject will be preserved.

Prefabs can contain active state, which is preserved on prefab instantiation.

Example:

You have three GameObjects, A, B and C, so that B and C are children of A.

Deactivate C by calling C.SetActive(false).

Now, A.activeInHierarchy == true, B.activeInHierarchy == true and C.activeInHierarchy == false.

Likewise, A.activeSelf == true, B.activeSelf == true and C.activeSelf == false.

Now we deactivate the parent A by calling A.SetActive(false).

Now, A.activeInHierarchy == false, B.activeInHierarchy == false and C.activeInHierarchy == false.

Likewise, A.activeSelf == false, B.activeSelf == true and C.activeSelf == false.

Now we activate the parent A again by calling A.SetActive(true).

Now, we are back to A.activeInHierarchy == true, B.activeInHierarchy == true and C.activeInHierarchy == false.

Likewise, A.activeSelf == true, B.activeSelf == true and C.activeSelf == false.

The new active state in the editor

To visualize these changes, in the Unity 4.0 editor, any GameObject which is inactive (either because it's own .activeSelf

property is set to false, or that of one of it's parents), will be greyed out in the hierarchy, and have a greyed out icon in the

inspector. The GameObject's own .activeSelf property is reflected by it's active checkbox, which can be toggled regardless of

parent state (but it will only activate the GameObject if all parents are active).

How this affects existing projects:

To make you aware of places in your code where this might affect you, the GameObject.active property and the

GameObject.SetActiveRecursively() function have been deprecated.

They are, however still functional. Reading the value of GameObject.active is equivalent to reading

GameObject.activeInHierarchy, and setting GameObject.active is equivalent to calling GameObject.SetActive().

Calling GameObject.SetActiveRecursively() is equivalent to calling GameObject.SetActive() on the GameObject and

all of it's children.

Exiting scenes from 3.5 are imported by setting the selfActive property of any GameObject in the scene to it's previous

active property.

As a result, any project imported from previous versions of Unity should still work as expected (with compiler warnings,

though), as long as it does not rely on having active children of inactive GameObjects (which is no longer possible in Unity

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

336 of 1131 12/16/2012 10:12 PM

4.0).

If your project relies on having active children of inactive GameObjects, you need to change your logic to a model which

works in Unity 4.0.

Changes to the asset processing pipeline
During the development of 4.0 our asset import pipeline has changed in some significant ways internal in order to improve

performance, memory usage and determinism. For the most part these changes does not have an impact on the user with one

exception: Objects in assets are not made persistent until the very end of the import pipeline and any previously imported

version of an assets will be completely replaced.

The first part means that during post processing you cannot get the correct references to objects in the asset and the second

part means that if you use the references to a previously imported version of the asset during post processing do store

modification those modifications will be lost.

Example of references being lost because they are not persistent yet

Consider this small example:

 public class ModelPostprocessor : AssetPostprocessor

 {

 public void OnPostprocessModel(GameObject go)

 {

 PrefabUtility.CreatePrefab("Prefabs/" + go.name, go);

 }

 }

In Unity 3.5 this would create a prefab with all the correct references to the meshes and so on because all the meshes would

already have been made persistent, but since this is not the case in Unity 4.0 the same post processor will create a prefab

where all the references to the meshes are gone, simply because Unity 4.0 does not yet know how to resolve the references to

objects in the original model prefab. To correctly copy a modelprefab in to prefab you should use OnPostProcessAllAssets

to go through all imported assets, find the modelprefab and create new prefabs as above.

Example of references to previously imported assets being discarded

The second example is a little more complex but is actually a use case we have seen in 3.5 that broke in 4.0. Here is a simple

ScriptableObject with a references to a mesh.

 public class Referencer : ScriptableObject

 {

 public Mesh myMesh;

 }

We use this ScriptableObject to create an asset with references to a mesh inside a model, then in our post processor we

take that reference and give it a different name, the end result being that when we have reimported the model the name of the

mesh will be what the post processor determines.

 public class Postprocess : AssetPostprocessor

 {

 public void OnPostprocessModel(GameObject go)

 {

 Referencer myRef = (Referencer)AssetDatabase.LoadAssetAtPath("Assets/MyRef.ass

 myRef.myMesh.name = "AwesomeMesh";

 }

 }

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

337 of 1131 12/16/2012 10:12 PM

This worked fine in Unity 3.5 but in Unity 4.0 the already imported model will be completely replaced, so changing the name of

the mesh from a previous import will have no effect. The Solution here is to find the mesh by some other means and change its

name. What is most important to note is that in Unity 4.0 you should ONLY modify the given input to the post processor and

not rely on the previously imported version of the same asset.

Mesh Read/Write option
Unity 4.0 adds a "Read/Write Enabled" option in Mesh import settings. When this option is turned off, it saves memory since

Unity can unload a copy of mesh data in the game.

However, if you are scaling or instantiating meshes at runtime with a non-uniform scale, you may have to enable "Read/Write

Enabled" in their import settings. The reason is that non-uniform scaling requires the mesh data to be kept in memory.

Normally we detect this at build time, but when meshes are scaled or instantiated at runtime you need to set this manually.

Otherwise they might not be rendered in game builds correctly.

Mesh optimization
The Model Importer in Unity 4.0 has become better at mesh optimization. The "Mesh Optimization" checkbox in the Model

Importer in Unity 4.0 is now enabled by default, and will reorder the vertices in your Mesh for optimal performance. You may

have some post-processing code or effects in your project which depend on the vertex order of your meshes, and these might

be broken by this change. In that case, turn off "Mesh Optimization" in the Mesh importer. Especially, if you are using the

SkinnedCloth component, mesh optimization will cause your vertex weight mapping to change. So if you are using

SkinnedCloth in a project imported from 3.5, you need to turn off "Mesh Optimization" for the affected meshes, or reconfigure

your vertex weights to match the new vertex order.

Page last updated: 2012-11-12

Upgrade guide from 3.4 to 3.5

If you have an FBX file with a root node marked up as a skeleton, it will be imported with an additional root node in 3.5,

compared to 3.4

Unity 3.5 does this because when importing animated characters, the most common setup is to have one root node with all

bones below and a skeleton next to it in the hierarchy. When creating additional animations, it is common to remove the

skinned mesh from the fbx file. In that case the new import method ensures that the additional root node always exists and thus

animations and the skinned mesh actually match.

If the connection between the instance and the FBX file's prefab has been broken in 3.4 the animation will not match in 3.5,

and as a result your animation might not play.

In that case it is recommended that you recreate the prefabs or Game Object hierarchies by dragging your FBX file into your

scene and recreating it.

Page last updated: 2012-02-03

HowToUpgradeFrom2xTo3x

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

338 of 1131 12/16/2012 10:12 PM

In our regular point releases of Unity, we make sure that projects from previous minor versions of the same major version are

automatically upgraded when opened in the new editor for the first time. New properties are given default values, formats are

converted and so on. However for major version changes such as 2.x to 3.x, we introduce several backwards-compatibility

breaking changes.

While the primary visibility of this is the fact that content authored in the previous version will play back slightly differently when

run in the new engine, some changes require more than a few property tweaks to play just like you want them to. These

documents outlines those changes from 2.x to 3.x:

Physics upgrade details

Mono Upgrade Details

Rendering upgrade details

Unity 3.x Shader Conversion Guide
Page last updated: 2010-09-30

PhysicsUpgradeDetails

For Unity 3.0, we upgraded the NVIDIA PhysX library from version 2.6 to 2.8.3, to give you access to many new features.

Generally for existing projects, the behavior should be roughly the same as in Unity 2.x, but there may be slight differences in

the outcome of physics simulation, so if your content depends on the exact behavior or on chain reactions of physical events,

you may have to re-tweak your setup to work as expected in Unity 3.x.

If you are using Configurable Joints, the JointDrive.maximumForce property will now also be taken into consideration when

JointDrive.mode is JointDriveMode.Position. If you have set this value to the default value of zero, the joint will not apply any

forces. We will automatically change all JointDrive properties imported from old versions if JointDrive.mode is

JointDriveMode.Position, but when you set up a joint from code, you may have to manually change this. Also, note that we

have changed the default value for JointDrive.maximumForce to infinity.

Page last updated: 2010-09-25

MonoUpgradeDetails

In Unity 3 we upgraded the mono runtime from 1.2.5 to 2.6 and on top of that, there are some JavaScript and Boo

improvements. Aside from all bug fixes and improvements to mono between the two versions, this page lists some of the

highlights.

C# Improvements
Basically the differences betweeen C# 3.5 and C# 2.0, including:

Variable type inference. More info here.

Linq .

Lambdas. More info here.

JavaScript Improvements
Compiler is now 4x faster;

'extends' no longer can be used with interfaces, unityscript now have 'implements' for that purpose (see below);

Added support for consuming generic types such as generic collections:

var list = new System.Collections.Generic.List.<String>();
list.Add("foo");

Added support for anonymous functions/closures:

list.Sort(function(x:String, y:String) {
return x.CompareTo(y);

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

339 of 1131 12/16/2012 10:12 PM

});

Which include a simplified lambda expression form with type inference for the parameters and return value:

list.Sort(function(x, y) x.CompareTo(y));

Function types:

function forEach(items, action: function(Object)) {
for (var item in items) action(item);

}

Type inferred javascript array comprehensions:

function printArray(a: int[]) {
print("[" + String.Join(", ", [i.ToString() for (i in a)]) + "]");

}

var doubles = [i*2 for (i in range(0, 3))];
var odds = [i for (i in range(0, 6)) if (i % 2 != 0)];
printArray(doubles);
printArray(odds);

Added support for declaring and implementing interfaces:

interface IFoo {
function bar();

}

class Foo implements IFoo {
function bar() {

Console.WriteLine("Foo.bar");
}

}

All functions are now implicitly virtual, as a result the 'virtual' keyword has been deprecated and the 'final' keyword has

been introduced to allow for non virtual methods to be defined as:

final function foo() {
}

Value types (structs) can be defined as classes inheriting from System.ValueType:

class Pair extends System.ValueType {
var First: Object;
var Second: Object;

function Pair(fst, snd) {
First = fst;
Second = snd;

}

override function ToString() {
return "Pair(" + First + ", " + Second + ")";

}
}

Boo Improvements
Boo upgrade to version 0.9.4.

Page last updated: 2011-11-08

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

340 of 1131 12/16/2012 10:12 PM

RenderingUpgradeDetails

Unity 3 brings a lot of graphics related changes, and some things might need to be tweaked when you upgrade existing Unity

2.x projects. For changes related to shaders, see Shader Upgrade Guide.

Forward Rendering Path changes
Unity 2.x had one rendering path, which is called Forward in Unity 3. Major changes in it compared to Unity 2.x:

Most common case (one directional per-pixel light) is drawn in one pass now! (used to be two passes)

Point & Spot light shadows are not supported. Only one Directional light can cast shadows. Use Deferred Lighting path if

you need more shadows.

Most "Vertex" lights replaced with Spherical Harmonics lighting.

Forward rendering path is purely shader based now, so it works on OpenGL ES 2.0, Xbox 360, PS3 (i.e. platforms that

don't support fixed function rendering).

Shader changes
See Shader Upgrade Guide for more details. Largest change is: if you want to write shaders that interact with lighting, you

should use Surface Shaders.

Obscure Graphics Changes That No One Will Probably Notice TM

Removed Mac Radeon 9200 pixel shader support (!!ATIfs assembly shaders).

Removed support for per-pixel lighting on pre-ShaderModel2.0 hardware. As a result, Diffuse Fast shader is just VertexLit

now.

Removed non-attenuated lights. All point and spot lights are attenuated now.

Removed script callbacks: OnPreCullObject and RenderBeforeQueues attribute.

Removed p-buffer based RenderTextures. RenderTextures on OpenGL require FBO support now.

Most Pass LightMode tags are gone, and replaced with new tags. You should generally be using Surface Shaders for that

stuff anyway.

Texture instanceIDs are not OpenGL texture names anymore. Might affect C++ Plugins that were relying on that; use

texture.GetNativeTextureID() instead.

Rename shader keywords SHADOWS_NATIVE to SHADOWS_DEPTH; SHADOWS_PCF4 to SHADOWS_SOFT.

Removed ambient boost on objects that were affected by more than 8 vertex lights.

Removed _ObjectSpaceCameraPos and _ObjectSpaceLightPos0 (added _WorldSpaceCameraPos and

_WorldSpaceLightPos0).

LightmapMode tag in shader texture property does nothing now.

Skybox shaders do not write into depth buffer.

GrabPass (i.e. refractive glass shader) now always grabs texture of the size of the screen.

#pragma multi_compile_vertex and #pragma multi_compile_fragment are gone.

Polygon offset in ShaderLab can't reference variables anymore (like Offset [_Var1], [_Var2]).

Renamed TRANSFER_EYEDEPTH/OUTPUT_EYEDEPTH to UNITY_TRANSFER_DEPTH/UNITY_OUTPUT_DEPTH. They

also work on a float2 in Unity 3.

Removed special shader pass types: R2TPass, OffscreenPass.

Removed _Light2World0, _World2Light0 built-in shader matrices.

Removed _SceneAmbient, _MultiModelAmbient, _MultiAmbient, _ModelAmbient, _MultiplyFog, _LightHackedDiffuse0,

_ObjectCenterModelLightColor0 built-in shader vectors.

Removed _FirstPass built-in shader float.

Fog mode in shader files can't come from variable (like Fog { Mode [_MyFogMode] }). To use global fog mode, write

Fog { Mode Global }.

Removed BlendColor color from ShaderLab.

Removed support for declaring texture matrix by-value in shader property.

Removed support for "static" shader properties.

Removed support for texture border color (RenderTexture.SetBorderColor).

Removed ColorMaterial Ambient, Diffuse, Specular support (ColorMaterial AmbientAndDiffuse & Emission

left). Support for the removed ones varied a lot depending on the platform causing confusion; and they didn't seem to be

very useful anyway.

Built-in _CameraToWorld and _WorldToCamera matrices now do what you'd expect them to do. Previously they only

contained the rotation part, and camera-to-world was flipped on Y axis. Yeah, we don't know how that happened either :)

Removed Shader.ClearAll(). Was deprecated since 2007, time to let it go.

Vertex shaders are compiled to Shader Model 2.0 now (before was 1.1). If you want to compile to SM1.1, add #pragma

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

341 of 1131 12/16/2012 10:12 PM

target 1.1 in the shader.

Page last updated: 2010-09-25

SL-V3Conversion

Unity 3 has many new features and changes to its rendering system, and ShaderLab did update accordingly. Some advanced

shaders that were used in Unity 2.x, especially the ones that used per-pixel lighting, will need update for Unity 3. If you have

trouble updating them - just ask for our help!

For general graphics related Unity 3 upgrade details, see Rendering Upgrade Details.

When you open your Unity 2.x project in Unity 3.x, it will automatically upgrade your shader files as much as possible. The

document below lists all the changes that were made to shaders, and what to do when you need manual shader upgrade.

Per-pixel lit shaders
In Unity 2.x, writing shaders that were lit per-pixel was quite complicated. Those shaders would have multiple passes, with

LightMode tags on each (usually PixelOrNone, Vertex and Pixel). With addition of Deferred Lighting in Unity 3.0 and

changes in old forward rendering, we needed an easier, more robust and future proof way of writing shaders that interact with

lighting. All old per-pixel lit shaders need to be rewritten to be Surface Shaders.

Cg shader changes

Built-in "glstate" variable renames

In Unity 2.x, accessing some built-in variables (like model*view*projection matrix) was possible through built-in Cg names like

glstate.matrix.mvp. However, that does not work on some platforms, so in Unity 3.0 we renamed those built-in variables.

All these replacements will be done automatically when upgrading your project:

glstate.matrix.mvp to UNITY_MATRIX_MVP

glstate.matrix.modelview[0] to UNITY_MATRIX_MV

glstate.matrix.projection to UNITY_MATRIX_P

glstate.matrix.transpose.modelview[0] to UNITY_MATRIX_T_MV

glstate.matrix.invtrans.modelview[0] to UNITY_MATRIX_IT_MV

glstate.matrix.texture[0] to UNITY_MATRIX_TEXTURE0

glstate.matrix.texture[1] to UNITY_MATRIX_TEXTURE1

glstate.matrix.texture[2] to UNITY_MATRIX_TEXTURE2

glstate.matrix.texture[3] to UNITY_MATRIX_TEXTURE3

glstate.lightmodel.ambient to UNITY_LIGHTMODEL_AMBIENT

glstate.matrix.texture to UNITY_MATRIX_TEXTURE

Semantics changes

Additionally, it is recommended to use SV_POSITION (instead of POSITION) semantic for position in vertex-to-fragment

structures.

More strict error checking

Depending on platform, shaders might be compiled using a different compiler than Cg (e.g. HLSL on Windows) that has more

strict error checking. Most common cases are:

All vertex/fragment shader inputs and outputs need to have "semantics" assigned to them. Unity 2.x allowed to not assign

any semantics (in which case some TEXCOORD would be used); in Unity 3.0 semantic is required.

All shader output variables need to be written into. For example, if you have a float4 color : COLOR as your vertex

shader output, you can't just write into rgb and leave alpha uninitialized.

Other Changes

RECT textures are gone

In Unity 2.x, RenderTextures could be not power of two in size, so called "RECT" textures. They were designated by "RECT"

texture type in shader properties and used as samplerRECT, texRECT and so on in Cg shaders. Texture coordinates for

RECT textures were a special case in OpenGL: they were in pixels. In all other platforms, texture coordinates were just like for

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

342 of 1131 12/16/2012 10:12 PM

any other texture: they went from 0.0 to 1.0 over the texture.

In Unity 3.0 we have decided to remove this OpenGL special case, and treat non power of two RenderTextures the same

everywhere. It is recommended to replace samplerRECT, texRECT and similar uses with regular sampler2D and tex2D.

Also, if you were doing any special pixel adressing for OpenGL case, you need to remove that from your shader, i.e. just keep

the non-OpenGL part (look for SHADER_API_D3D9 or SHADER_API_OPENGL macros in your shaders).

Page last updated: 2010-09-25

Unity 4.x Activation - Overview

What is the new Activation system?

With our new Licensing System, we allow you, the user, to manage your Unity license independently. Contacting the Support

Team when you need to switch machine is a thing of the past! The system allows instant, automated migration of your

machine, with a single click. Please read our 'Managing your Unity 4.0 License' link for more information.

http://docs.unity3d.com/Documentation/Manual/ManagingyourUnity4xLicense.html

If you're looking for step-by-step guides to Activation of Unity, please see the child pages.

FAQ

How many machines can I install my copy of Unity on?

Every paid commercial Unity license allows a *single* person to use Unity on *two* machines that they have exclusive use of.

Be it a Mac and a PC or your Home and Work machines. Educational licenses sold via Unity or any one of our resellers are

only good for a single activation. The same goes for Trial licenses, unless otherwise stated.

The free version of Unity may not be licensed by a commercial entity with annual gross revenues (based on fiscal year) in

excess of US$100,000, or by an educational, non-profit or government entity with an annual budget of over US$100,000.

If you are a Legal Entity, you may not combine files developed with the free version of Unity with any files developed by you (or

by any third party) through the use of Unity Pro. Please see our EULA http://unity3d.com/company/legal/eula for further

information regarding license usage.

I need to use my license on another machine, but I get that message that my license has been 'Activated too many

times'. What should I do?

You�ll need to 'Return' your license. This enables you to return the license on the machine you no longer require, which in

turn enables you to reactivate on a new machine. Please refer to the 'Managing your Unity 4.0 License' link at the top of the

page, for more information.

My account credentials aren�t recognised when logging in during the Activation process?

Please ensure that your details are being entered correctly. Passwords ARE case sensitive, so ensure you�re typing exactly

as you registered. You can reset your password using the link below:

https://accounts.unity3d.com/password/new

If you�re still having issues logging in, please contact 'support@unity3d.com'

Can I use Unity 4.x with my 3.x Serial number?

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

343 of 1131 12/16/2012 10:12 PM

No, you can�t. In order to use Unity 4.x, you�ll need to upgrade to a 4.x license. You can do this Online, via our Web Store.

https://store.unity3d.com/shop/

I�m planning on replacing an item of hardware and/or my OS. What should I do?

As with changing machine, you�ll need to 'Return' your license before making any hardware or OS changes to your machine.

If you fail to �Return� the license, our server will see a request from another machine and inform you that you�ve reached

your activation limit for the license. Please refer to the 'Managing your Unity 4.0 License' link at the top of the page, for more

information regarding the return of a license.

My machine died without me being able to 'Return' my license, what now?

Please email 'support@unity3d.com' explaining your situation, including the details below.

 - The Serial number you were using on the machine.

 - The (local network) name of the machine that died

The Support Team will then be able to 'Return' your license manually.

I have two licenses, each with an add-on I require, how do I activate them in unison on my machine?

You can�t, unfortunately! A single license may only be used on one machine at any one time.

Where is my Unity 4.x license file stored?

- /Library/Application Support/Unity/Unity_v4.x.ulf (OS X)

- C:\ProgramData\Unity (Windows)

For any further assistance, please contact support@unity3d.com.

Page last updated: 2012-11-19

Managing your Unity 4.x License

With Unity 4.0 you are now able to manage your license independently (no more contacting Support for migration to your shiny

new machine). Below is a guide to how this new system works and performs.

You will notice a new option under the 'Unity' drop-down on your toolbar that reads 'Manage License�'. This is the unified

place within the Editor for all your licensing needs.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

344 of 1131 12/16/2012 10:12 PM

Once you have clicked on the 'Manage License�' option you will be faced with the 'License Management' window. You then

have four options (see image), explained below:

'Check for updates' cross-references the server, querying your Serial number for any changes that may have been made

since you last activated. This is handy for updating your license to include new add-ons once purchased and added to your

existing license via the Unity Store.

'Activate a new license' does what it says on the tin. This enables you to activate a new Serial number on the machine

you�re using.

The 'Return license' feature enables you to return the license on the machine in question, in return for a new activation that

can be used on another machine. Once clicked the Editor will close and you will be able to activate your Serial number

elsewhere. For more information on how many machines a single license enables use on, please see our EULA:

http://unity3d.com/company/legal/eula.

'Manual activation' enables you to activate your copy of Unity offline. This is covered in more depth here:

http://docs.unity3d.com/Documentation/Manual/ManualActivationGuide.html.

For any further assistance, please contact support@unity3d.com.

Page last updated: 2012-11-20

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

345 of 1131 12/16/2012 10:12 PM

Online Activation Guide

Online activation is the easiest and fastest way to get up and running with Unity. Below is a step-by-step guide on how to

activate Unity online.

1. Download and install the Unity Editor. The latest version of Unity can be found at http://unity3d.com/unity/download/

2. Fire up the Editor from your Applications folder on OS X or the shortcut in the Start Menu on Windows.

3. You will be faced with a window titled 'Choose a version of Unity', you will then need to select the version of Unity you wish

to activate by checking the tick box of the appropriate option and clicking 'OK' to proceed.

a. To activate an existing Unity 4.x Serial number generated by the Store or a member of our Sales Team, check the 'Activate

an existing serial' box and enter the appropriate Serial number. Once the Serial number has been entered your license Type

will be displayed on-screen.

b. To Trial Unity Pro for 30 days Free-Of-Charge, check the 'Activate your free 30-day Unity Pro trial' box.

c. To activate the Free version of Unity, check the 'Activating Unity Free' box.

4. Next, you will encounter the 'Unity Account' window. Here you will need to enter your Unity Developer Network account

credentials. (If you don�t have an existing account or have forgotten your password, simply click the respective 'Create

account' and 'Forgot your password?' button and links. Follow the onscreen prompts to create or retrieve your account.) Once

your credentials are entered you can proceed by clicking 'OK'.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

346 of 1131 12/16/2012 10:12 PM

5. 'Thank you for your time' you will now be able to proceed to the Unity Editor by clicking the 'Start using Unity' button.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

347 of 1131 12/16/2012 10:12 PM

6. You�re all done!

For any further assistance, please contact support@unity3d.com.

Page last updated: 2012-11-27

Manual Activation Guide

With our new Licensing System, the Editor will automatically fall back to manual activation if Online Activation fails, or if you

don�t have an internet connection. Please see the steps below for an outline on how to manually Activate Unity 4.0.

1. As above, Unity will fall back to Manual Activation, should the Online Activation fail. However, you can manually prompt

Unity to start the Manual Activation procedure by navigating to 'Unity>Manage License�' within the Editor.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

348 of 1131 12/16/2012 10:12 PM

2. In the 'License Management' window, hit the 'Manual activation' button.

3. You should now be faced with a dialog displaying three buttons:

a. 'Cancel' will take you back to the 'License Management' window.

b. 'Save License' will generate you a license file specific to your machine, based on your HWID. This file can be saved in any

location on your physical machine.

c. 'Load License' will load the activation file generated by the Manual Activation process.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

349 of 1131 12/16/2012 10:12 PM

4. You will need to generate a license file; in order to do this, click the �Save License� button. Once clicked you will be

faced with the window 'Save license information for offline activation'. Here you can select a directory on your machine to save

the file.

5. Once saved, you will receive a message stating that 'License file saved successfully'. Click 'Ok' to proceed.

6. Now, you�ll need to minimise the Editor and navigate over to https://license.unity3d.com/manual within your Browser (if on

a machine without an internet connection, you�ll need to copy the file to a machine that does and proceed there).

7. You now need to navigate to the file you generated in Step 4, uploading it in the appropriate field. When your file has been

selected, click 'OK' to proceed.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

350 of 1131 12/16/2012 10:12 PM

8. Nearly done! You should have received a file in return, as with Step 4, save this to your machine in a directory of your

choice.

9. Moving back into Unity, you can now select the 'Load License' button. Again, this will open up your directories within your

hard drive. Now, select the file that you just saved via the Web form and click 'OK'.

10. Voila, you've just completed the Manual Activation process.

For any further assistance, please contact support@unity3d.com.

Page last updated: 2012-11-27

Game Code How-to

How to make a simple first person walkthrough
Page last updated: 2007-11-16

HOWTO-First Person Walkthrough

Here's how you can make a simple first person walk-through with your own artwork:

Import your level. See here on how to import geometry from your art package into Unity.1.

Select the imported model file and enable Generate Colliders in the Import Settings in the Inspector.2.

Locate the Standard Assets->Prefabs->First Person Controller in the Project View and drag it into the Scene

View.

3.

Make sure that the scale of your level is correct. The First Person Controller is exactly 2 meters high, so if your level

doesn't fit the size of the controller, you should adjust the scale of the level size within your modeling application.

Getting scale right is critical for physical simulation, and other reasons documented at the bottom of this page. Using

the wrong scale can make objects feel like they are floating or too heavy. If you can't change the scale in your modeling

app, you can change the scale in the Import Settings... of the model file.

4.

Move the First Person Controller to be at the start location using the Transform handles. It is critical that the first

person controller does not intersect any level geometry, when starting the game (otherwise it will be stuck!).

5.

Remove the default camera "Main Camera" in the hierarchy view. The First person controller already has its own

camera.

6.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

351 of 1131 12/16/2012 10:12 PM

Hit Play to walk around in your own level.7.

Page last updated: 2009-03-13

Graphics how-tos

The following is a list of common graphics-related questions in Unity and how to accomplish them.

There is an excellent tutorial for creating textures, including color, bump, specular, and reflection mapping here.

How do I Import Alpha Textures?

How do I Use Normal Maps?

How do I use Detail Textures?

How do I Make a Cubemap Texture?

How do I Make a Skybox?

How do I make a Mesh Particle Emitter? (Legacy Particle System)

How do I make a Splash Screen?

How do I make a Spot Light Cookie?

How do I fix the rotation of an imported model?

How do I use Water?

Page last updated: 2007-11-16

HOWTO-alphamaps

Unity uses straight alpha blending. Hence, you need to expand the color layers... The alpha channel in Unity will be read

from the first alpha channel in the Photoshop file.

Setting Up
Before doing this, install these alpha utility photoshop actions: AlphaUtility.atn.zip

After installing, your Action Palette should contain a folder called AlphaUtility:

Getting Alpha Right
Let's assume you have your alpha texture on a transparent layer inside photoshop. Something like this:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

352 of 1131 12/16/2012 10:12 PM

Duplicate the layer1.

Select the lowest layer. This will be source for the dilation of the background.2.

Select Layer->Matting->Defringe and apply with the default properties3.

Run the "Dilate Many" action a couple of times. This will expand the background into a new layer.4.

Select all the dilation layers and merge them with Command-E5.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

353 of 1131 12/16/2012 10:12 PM

Create a solid color layer at the bottom of your image stack. This should match the general color of your document (in

this case, greenish). Note that without this layer Unity will take alpha from merged transparency of all layers.

6.

Now we need to copy the transparency into the alpha layer.

Set the selection to be the contents of your main layer by Command-clicking on it in the Layer Palette.1.

Switch to the channels palette.2.

Create a new channel from the transparency.3.

Save your PSD file - you are now ready to go.

Extra
Note that if your image contains transparency (after merging layers), then Unity will take alpha from merged transparency of all

layers and it will ignore Alpha masks. A workaround for that is to create a layer with solid color as described in Item 6 on

"Getting Alpha Right"

Page last updated: 2012-10-10

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

354 of 1131 12/16/2012 10:12 PM

HOWTO-Normalmap

Normal maps are grayscale images that you use as a height map on your objects in order to give an appearance of raised or

recessed surfaces. Assuming you have a model that looks like this:

The 3D Model

The Texture

We want to make the light parts of the object appear raised.

Draw a grayscale height map of your texture in Photoshop. White is high, black is low. Something like this:1.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

355 of 1131 12/16/2012 10:12 PM

Save the image next to your main texture.2.

In Unity, select the image and select the 24 bit RGB format and enable Generate Normal Map in the Import Settings

in the Inspector:

3.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

356 of 1131 12/16/2012 10:12 PM

In the Material Inspector of your model, select 'Bumped Diffuse' from the Shader drop-down:1.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

357 of 1131 12/16/2012 10:12 PM

Drag your texture from the Project window to the 'Normalmap' texture slot:2.

Your object now has a normal map applied:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

358 of 1131 12/16/2012 10:12 PM

Hints
To make the bumps more noticable, either use the Bumpyness slider in the Texture Import Settings or blur the texture in

Photoshop. Experiment with both approaches to get a feel for it.
Page last updated: 2010-09-10

HOWTO-UseDetailTexture

A Detail texture is a small, fine pattern which is faded in as you approach a surface, for example wood grain, imperfections in

stone, or earthly details on a terrain. They are explicitly used with the Diffuse Detail shader.

Detail textures must tile in all directions. Color values from 0-127 makes the object it's applied to darker, 128 doesn't change

anything, and lighter colors make the object lighter. It's very important that the image is centered around 128 - otherwise the

object it's applied to will get lighter or darker as you approach.

Draw or find a grayscale image of the detail texture.1.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

359 of 1131 12/16/2012 10:12 PM

The Detail Texture

The Levels

Save the image next to your main texture.2.

In Unity, select the image and under "Generate Mip Maps", enable Fades Out and set the sliders to something like this

in the Import Settings in the Inspector.

3.

The top slider determines how small the texture should before before beginning to fade out, and the bottom determines

how far away it is before the detail texture completely disapear.

4.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

360 of 1131 12/16/2012 10:12 PM

s.

In the Material Inspector on the right, select Diffuse Detail from the Shader drop-down:5.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

361 of 1131 12/16/2012 10:12 PM

Drag your texture from the Project View to the Detail texture slot.6.

Set the Tiling values to a high value7.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

362 of 1131 12/16/2012 10:12 PM

Page last updated: 2009-02-16

HOWTO-MakeCubemap

Cubemaps are used by the Reflective built-in shaders. To build one, you either create six 2D textures and create a new

Cubemap asset, or build the Cubemap from a single square texture. More details are in the Cubemap Texture documentation

page.

Static and dynamic cubemap reflections can also be rendered from scripts. Code example in Camera.RenderToCubemap page

contains a simple wizard script for rendering cubemaps straight from the editor.

Page last updated: 2010-09-10

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

363 of 1131 12/16/2012 10:12 PM

HOWTO-UseSkybox

A Skybox is a 6-sided cube that is drawn behind all graphics in the game. Here are the steps to create one:

Make 6 textures that correspond to each of the 6 sides of the skybox and put them into your project's Assets folder.1.

For each texture you need to change the wrap mode from Repeat to Clamp. If you don't do this colors on the edges

will not match up:

2.

Create a new Material by choosing Assets->Create->Material from the menu bar.3.

Select the shader drop-down in the top of the Inspector, choose RenderFX->Skybox.4.

Assign the 6 textures to each texture slot in the material. You can do this by dragging each texture from the Project

View onto the corresponding slots.

5.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

364 of 1131 12/16/2012 10:12 PM

To Assign the skybox to the scene you're working on:

Choose Edit->Render Settings from the menu bar.1.

Drag the new Skybox Material to the Skybox Material slot in the Inspector.2.

Note that Standard Assets package contains several ready-to-use skyboxes - this is the quickest way to get started!

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

365 of 1131 12/16/2012 10:12 PM

Page last updated: 2007-11-16

HOWTO-MeshParticleEmitter

Mesh Particle Emitters are generally used when you need high control over where to emit particles.

For example, when you want to create a flaming sword:

Drag a mesh into the scene.1.

Remove the Mesh Renderer by right-clicking on the Mesh Renderer's Inspector title bar and choose Remove

Component.

2.

Choose Mesh Particle Emitter from the Component->Effects->Legacy Particles menu.3.

Choose Particle Animator from the Component->Effects->Legacy Particles menu.4.

Choose Particle Renderer from the Component->Effects->Legacy Particles menu.5.

You should now see particles emitting from the mesh.

Play around with the values in the Mesh Particle Emitter.

Especially enable Interpolate Triangles in the Mesh Particle Emitter Inspector and set Min Normal Velocity and Max

Normal Velocity to 1.

To customize the look of the particles that are emitted:

Choose Assets->Create->Material from the menu bar.1.

In the Material Inspector, select Particles->Additive from the shader drop-down.2.

Drag & drop a texture from the Project view onto the texture slot in the Material Inspector.3.

Drag the Material from the Project View onto the Particle System in the Scene View.4.

You should now see textured particles emitting from the mesh.

See Also
Mesh Particle Emitter Component Reference page

Page last updated: 2012-01-17

HOWTO-SplashScreen

 Desktop

Here's how to do a splash screen or any other type of full-screen image in Unity. This method works for multiple resolutions

and aspect ratios.

First you need a big texture. Ideally textures should be power of two in size. You might for example use 1024x512 as

this fits most screens.

1.

Make a box using the GameObject->Create Other->Cube menubar item.2.

Scale it to be in 16:9 format by entering 16 and 9 as the first two value in the Scale:3.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

366 of 1131 12/16/2012 10:12 PM

Drag the texture onto the cube and make the Camera point at it. Place the camera at such a distance so that the cube

is still visible on a 16:9 aspect ratio. Use the Aspect Ratio Selector in the Scene View menu bar to see the end

result.

4.

 iOS

Customising IOS device Splash Screens

 Android

Customising Android device Splash Screens

Page last updated: 2011-02-22

HOWTO-LightCookie

Unity ships with a few Light Cookies in the Standard Assets. When the Standard Assets are imported to your project, they

can be found in Standard Assets->Light Cookies. This page shows you how to create your own.

A great way to add a lot of visual detail to your scenes is to use cookies - grayscale textures you use to control the precise

look of in-game lighting. This is fantastic for making moving clouds and giving an impression of dense foilage. The Light

Component Reference page has more info on all this, but the main thing is that for textures to be usable for cookies, the

following properties need to be set:

To create a light cookie for a spot light:

Paint a cookie texture in Photoshop. The image should be greyscale. White pixels means full lighting intensity, black

pixels mean no lighting. The borders of the texture need to be completely black, otherwise the light will appear to leak

outside of the spotlight.

1.

In the Texture Inspector change the Repeat Wrap mode to Clamp2.

Select the Texture and edit the following Import Settings in the Inspector.3.

Enable Border Mipmaps4.

Enable Build Alpha From Grayscale (this way you can make a grayscale cookie and Unity converts it to an alpha

map automatically)

5.

Set the Texture Format to Alpha 8 Bit6.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

367 of 1131 12/16/2012 10:12 PM

Page last updated: 2009-02-16

HOWTO-FixZAxisIsUp

Some 3D art packages export their models so that the z-axis faces upward. Most of the standard scripts in Unity assume that

the y-axis represents up in your 3D world. It is usually easier to fix the rotation in Unity than to modify the scripts to make

things fit.

Your model with z-axis points upwards

If at all possible it is recommended that you fix the model in your 3D modelling application to have the y-axis face upwards

before exporting.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

368 of 1131 12/16/2012 10:12 PM

If this is not possible, you can fix it in Unity by adding an extra parent transform:

Create an empty GameObject using the GameObject->Create Empty menu1.

Position the new GameObject so that it is at the center of your mesh or whichever point you want your object to rotate

around.

2.

Drag the mesh onto the empty GameObject3.

You have now made your mesh a Child of an empty GameObject with the correct orientation. Whenever writing scripts that

make use of the y-axis as up, attach them to the Parent empty GameObject.

The model with an extra empty transform

Page last updated: 2007-11-16

HOWTO-Water

Note: The content on this page applies to the desktop editor mode only.

Unity includes several water prefabs (including needed shaders, scripts and art assets) within the Standard Assets and Pro

Standard Assets packages. Unity includes a basic water, while Unity Pro includes water with real-time reflections and

refractions, and in both cases those are provided as separate daylight and nighttime water prefabs.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

369 of 1131 12/16/2012 10:12 PM

Reflective daylight water (Unity Pro)

Reflective/Refractive daylight water (Unity Pro)

Water setup
In most cases you just need to place one of the existing Prefabs into your scene (make sure to have the Standard Assets

installed):

Unity has Daylight Simple Water and Nighttime Simple Water in Standard Assets->Water.

Unity Pro has Daylight Water and Nighttime Water in Pro Standard Assets->Water (but it needs some assets from

Standard Assets->Water as well). Water mode (Simple, Reflective, Refractive) can be set in the Inspector.

The prefab uses an oval-shaped mesh for the water. If you need to use a different Mesh the easiest way is to simply change it

in the Mesh Filter of the water object:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

370 of 1131 12/16/2012 10:12 PM

Creating water from scratch (Advanced)
The simple water in Unity requires attaching a script to a plane-like mesh and using the water shader:

Have mesh for the water. This should be a flat mesh, oriented horizontally. UV coordinates are not required. The water

GameObject should use the Water layer, which you can set in the Inspector.

1.

Attach WaterSimple script (from Standard Assets/Water/Sources) to the object.2.

Use FX/Water (simple) shader in the material, or tweak one of provided water materials (Daylight Simple Water or

Nighttime Simple Water).

3.

The reflective/refractive water in Unity Pro requires similar steps to set up from scratch:

Have mesh for the water. This should be a flat mesh, oriented horizontally. UV coordinates are not required. The water

GameObject should use the Water layer, which you can set in the Inspector.

1.

Attach Water script (from Pro Standard Assets/Water/Sources) to the object.

Water rendering mode can be set in the Inspector: Simple, Reflective or Refractive.

2.

Use FX/Water shader in the material, or tweak one of provided water materials (Daylight Water or Nighttime Water).3.

Properties in water materials
These properties are used in Reflective & Refractive water shader. Most of them are used in simple water shader as well.

Wave scale Scaling of waves normal map. The smaller the value, the larger water waves.

Reflection/refraction

distort

How much reflection/refraction is distorted by the waves normal map.

Refraction color Additional tint for refraction.

Environment

reflection/refraction

Render textures for real-time reflection and refraction.

Normalmap Defines the shape of the waves. The final waves are produced by combining two these normal maps,

each scrolling at different direction, scale and speed. The second normal map is half as large as the

first one.

Wave speed Scrolling speed for first normal map (1st and 2nd numbers) and the second normal map (3rd and 4th

numbers).

Fresnel A texture with alpha channel controlling the Fresnel efffect - how much reflection vs. refraction is

visible, based on viewing angle.

The rest of properties are not used by Reflective & Refractive shader by itself, but need to be set up in case user's video card

does not suppor it and must fallback to the simpler shader:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

371 of 1131 12/16/2012 10:12 PM

Reflective color/cube

and fresnel

A texture that defines water color (RGB) and Fresnel effect (A) based on viewing angle.

Horizon color The color of the water at horizon. (Used only in the simple water shader)

Fallback texture Texture used to represent the water on really old video cards, if none of better looking shaders can't

run on it.

Hardware support
Reflective + Refractive water works on graphics cards with pixel shader 2.0 support (GeForce FX and up, Radeon 9500

and up, Intel 9xx). On older cards, Reflective water is used.

Reflective water works on graphics cards with pixel shader 1.4 support (GeForce FX and up, Radeon 8500 and up, Intel

9xx). On older cards, Simple water is used.

Simple water works about everywhere, with various levels of detail depending on hardware capabilities.
Page last updated: 2010-09-10

HOWTO-exportFBX

Unity supports FBX files which can be generated from many popular 3D applications. Use these guidelines to help ensure the

most best results.

Select > Prepare > Check Settings > Export > Verify > Import

What do you want to export? - be aware of export scope e.g. meshes, cameras, lights, animation rigs, etc. -

Applications often let you export selected objects or a whole scene

Make sure you are exporting only the objects you want to use from your scene by either exporting selected, or removing

unwanted data from your scene.

Good working practice often means keeping a working file with all lights, guides, control rigs etc. but only export the data

you need with export selected, an export preset or even a custom scene exporter.

What do you need to include? - prepare your assets:

Meshes - Remove construction history, Nurbs, Nurms, Subdiv surfaces must be converted to polygons - e.g. triangulate or

quadrangulate

Animation - Select the correct rig, check frame rate, animation length etc.

Textures - Make sure your textures are sourced already from your Unity project or copied into a folder called \textures in

your project

Smoothing - Check if you want smoothing groups and/or smooth mesh

How do I include those elements? - check the FBX export settings

Be aware of your settings in the export dialogue so that you know what to expect and can match up the fbx settings In

Unity - see figs 1, 2 & 3 below

Nodes, markers and their transforms can be exporte

Cameras and Lights are not currently imported in to Unity

Which version of FBX are you using? if in doubt use 2012.2

Autodesk update their FBX installer regularly and it can provide different results with different versions of their own

software and other 3rd party 3D apps.

See Advanced Options > FBX file format

Will it work? - Verify your export

Check your file size - do a sanity check on the file size (e.g. >10kb?)

Re-import your FBX into a new scene in the 3D package you use to generate it - is it what you expected?

Import!

Import into Unity

Check FBX import settings in inspector : texures, animations, smoothing, etc.

See below for Maya FBX dialogue example:

Fig 1 General, Geometry & Animation

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

372 of 1131 12/16/2012 10:12 PM

Fig 2 Lights, Advanced options

Page last updated: 2012-11-16

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

373 of 1131 12/16/2012 10:12 PM

HOWTO-ArtAssetBestPracticeGuide

Unity supports textured 3D models from a variety of programs or sources. This short guide has been put together by games

artists with developers at Unity, to help you create assets that work better and more efficiently in your Unity project.

Scale & Units
Set your system and project units for your software to work consistently with Unity e.g. Metric.

Working to scale can be important for both lighting and physics simulation.

Be aware that, for example, the Max system unit default is inches and Maya is centimetres.

Unity has different scaling for FBX and 3D application files on import; check the FBX import scale setting in Inspector.

If in doubt export a metre cube with your scene to match in Unity.

Animation frame rate defaults can be different in packages, is a good idea to set consistently across your pipeline, for

example 30fps.

Files & Objects
Name objects in your scene sensibly and uniquely. This can help you locate and troubleshoot specific meshes in your

project.

Avoid special characters *()?"#$ etc.

Use simple but descriptive names for both objects and files (allow for duplication later).

Keep your hierarchies as simple as you can.

With big projects in your 3D application, consider having a working file outside your Unity project directory. This can often

save time consuming updates and importing unnecessary data.

Sensibly named objects help you find things quickly

Mesh

Build with an efficient topology. Use polygons only where you need them.

Optimise your geometry if it has too many polygons. Many character models need to be intelligently optimised or even

rebuilt by an artist especially if sourced/built from:

3D capture data

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

374 of 1131 12/16/2012 10:12 PM

Poser

Zbrush

Other high density Nurbs/Patch models designed for render

Where you can afford them, evenly spaced polygons in buildings, landscape and architecture will help spread lighting and

avoid awkward kinks.

Avoid really long thin triangles.

Stairway to framerate heaven

The method you use to construct objects can have a massive affect on the number of polygons, especially when not

optimised. In this digram the same shape mesh has 156 triangles on the right and 726 on the left. 726 may not sound like a

great deal of polygons, but if this is used 40 times in a level, you will really start to see the savings. A good rule of thumb is

often to start simple and add detail where needed. It's always easier to add polygon than take them away.

Textures

If you author your textures to a power of two (e.g. 512�512 or 256�1024), the textures will be more efficient and won't need

rescaling at build time. You can use up to 4096x4096 pixels, (although 2048x2048 is the highest available on many graphics

cards/platforms). Search online for expert advice on creating good textures, but some of these guidelines can help you get the

most efficient results from your project:

Work with a high-resolution source file outside your unity project (such as a PSD or Gimp file). You can always downsize

from source but not the other way round.

Use the texture resolution output you require in your scene (save a copy, for example a 256x256 optimised PNG or a TGA

file). You can make a judgement based on where the texture will be seen and where it is mapped.

Store your output texture files together in your Unity project (for example: \Assets\textures).

Make sure your 3D working file is referring to the same textures for consistency when you save/export.

Make use of the available space in your texture, but be aware of different materials requiring different parts of the same

texture. You can end up using/loading that texture multiple times.

For alpha (cutout) and elements that may require different shaders, separate the textures. For example, the single texture

below (left) has been replaced by three smaller textures below (right)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

375 of 1131 12/16/2012 10:12 PM

One texture (left) vs three textures (right)

Make use of tiling textures (which seamlessly repeat) then you can use better resolution repeating over space.

Remove easily noticeable repeating elements from your bitmap, and be careful with contrast. If you want to add details use

decals and objects to break up the repeats.

Tiling textures ftw

Unity takes care of compression for the output platform, so unless your source is already a JPG of the correct resolution

it's better to use a lossless format for your textures.

When creating a texture page from photographs, reduce the page to individual modular sections that can repeat. For

example, you don't need twelve of the same windows using up texture space. That way you can have more pixel detail for

that one window.

Do you need ALL those windows?

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

376 of 1131 12/16/2012 10:12 PM

Materials

Organise and name the materials in your scene. This way you can find and edit your materials in Unity more easily when

they�ve imported

You can choose to create materials in Unity from either:

<modelname>-< material name> or:

<texture name> - make sure you are aware of which you want.

Settings for materials in your native package will not all be imported to Unity:

Diffuse Colour, Diffuse texture and Names are usually supported

Shader model, specular, normal, other secondary textures and substance material settings will not be

recognised/imported (coming in 3.5)

Import/Export

Unity can use two types of files: Saved 3D application files and Exported 3D formats. Which you decide to use can be quite

important:

Saved application files
Unity can import, through conversion: Max, Maya, Blender, Cinema4D, Modo, Lightwave & cheetah3D files, e.g. .MAX, .MB,

.MA etc. see more in Importing Objects.

Advantages:

Quick iteration process (save and Unity updates)

Simple initially

Disadvantages:

A licensed copy of that software must be installed on all machines using the Unity project

Files can become bloated with unnecessary data

Big files can slow Unity updates

Less Validation and harder to troubleshoot problems

Exported 3D formats
Unity can also read FBX, OBJ, 3DS, DAE & DXF files. For a general export guide you can refer to this section this section

Advantages:

Only export the data you need

Verify your data (re-import into 3D package) before Unity

Generally smaller files

Encourages modular approach

Disadvantages:

Can be slower pipeline or prototyping and iterations

Easier to lose track of versions between source(working file) and game data (exported FBX)
Page last updated: 2012-11-16

HOWTO-importObject

Unity supports importing from most popular 3D applications. Choose the one you're working with below:

Maya

Cinema 4D

3ds Max

Cheetah3D

Modo

Lightwave

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

377 of 1131 12/16/2012 10:12 PM

Blender

Other applications
Unity can read .FBX, .dae, .3DS, .dxf and .obj files, so check to see if your program can export to one of these formats. FBX

exporters for popular 3D packages can be found here. Many packages also have a Collada exporter available.

Hints
Store textures in a folder called Textures next to the exported mesh. This will guarantee that Unity will always be able to

find the Texture and automatically connect the Texture to the Material. For more information, see the Textures reference.

See Also
Modeling Optimized Characters

How do I use normal maps?

Mesh Import Settings

How do I fix the rotation of an imported model?
Page last updated: 2012-08-06

HOWTO-ImportObjectMaya

Unity natively imports Maya files. To get started, simply place your .mb or .ma file in your project's Assets folder. When you

switch back into Unity, the scene is imported automatically and will show up in the Project view.

To see your model in Unity, simply drag it from the Project View into the Scene View or Hierarchy View.

Unity currently imports from Maya:

All nodes with position, rotation and scale. Pivot points and Names are also imported.1.

Meshes with vertex colors, normals and up to 2 UV sets.2.

Materials with Texture and diffuse color. Multiple materials per mesh.3.

Animations FK & IK4.

Bone-based animations5.

Unity does not import blend shapes. Use Bone-based animations instead. Unity automatically triangulates polygonal meshes

when importing, thus there is no need to do this manually in Maya.

If you are using IK to animate characters you have to select the imported .mb file in Project View and choose Bake IK &

Simulation in the Import Settings dialog in the Inspector.

Requirements
In order to import Maya .mb and .ma files, you need to have Maya installed on the machine you are using Unity to import the

.mb/.ma file. Maya 8.0 and up is supported.

If you don't have Maya installed on your machine but want to import a Maya file from another machine, you can export to fbx

format, which Unity imports natively. Please Install ->2011.3 for best results. To export see HOWTO_exportFBX.

Once exported Place the fbx file in the Unity project folder. Unity will now automatically import the fbx file. Check the FBX

import setting in the inspector as mentioned in HOWTO_exportFBX

Behind the import process (Advanced)

When Unity imports a Maya file it will launch Maya in the background. Unity then communicates with Maya to convert the .mb

file into a format Unity can read. The first time you import a Maya file in Unity, Maya has to launch in a command line process,

this can take around 20 seconds, but subsequent imports will be very quick.

Troubleshooting
Keep your scene simple, try and work with a file which only contains the objects you need in Unity

If your meshes cause problems, make sure you have converted any patches, nurbs surface etc into Polygons (Modify >

Convert + also Mesh > Quadragulate/Triangulate) Unity only support Polygons.

Maya in some rare cases messes up the node history, which sometimes results in models not exporting correctly.

Fortunately you can very easily fix this by selecting Edit->Delete by Type->Non-Deformer History.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

378 of 1131 12/16/2012 10:12 PM

Unity likes to keep up with the latest FBX where possible so if you have any issues with importing some models, check for

the latest FBX exporters from Autodesk website or revert to FBX 2012

Animation baking in Maya is now done with FBX instead of natively, which allows for more complex animations to be baked

properly to FBX format. If you are using driven keys, then make sure to set at least one key on your drivers for the

animation to bake properly
Page last updated: 2012-11-06

HOWTO-ImportObjectCinema4D

Unity natively imports Cinema 4D files. To get started, simply place your .c4d file in your project's Assets folder. When you

switch back into Unity, the scene is imported automatically and will show up in the Project View.

To see your model in Unity, simply drag it from the Project View into the Scene View.

If you modify your .c4d file, Unity will automatically update whenever you save.

Unity currently imports

All objects with position, rotation and scale. Pivot points and Names are also imported.1.

Meshes with UVs and normals.2.

Materials with Texture and diffuse color. Multiple materials per mesh.3.

Animations FK (IK needs to be manually baked).4.

Bone-based animations.5.

Unity does not import Point Level Animations (PLA) at the moment. Use Bone-based animations instead.

Animated Characters using IK
If you are using IK to animate your characters in Cinema 4D, you have to bake the IK before exporting using the

Plugins->Mocca->Cappucino menu. If you don't bake your IK prior to importing into Unity, you will most likely only get

animated locators but no animated bones.

Requirements
You need to have at least Cinema 4D version 8.5 installed to import .c4d files.

If you don't have Cinema 4D installed on your machine but want to import a Cinema 4D file from another machine, you can

export to the FBX format, which Unity imports natively:

Open the Cinema 4D file1.

In Cinema 4D choose File->Export->FBX 6.02.

Place the exported fbx file in the Unity project's Assets folder. Unity will now automatically import the fbx file.3.

Hints

To maximize import speed when importing Cinema 4D files: go to the Cinema 4D preferences (Edit->Preferences)

and select the FBX 6.0 preferences. Now uncheck Embed Textures.

1.

Behind the import process (Advanced)
When Unity imports a Cinema 4D file it will automatically install a Cinema 4D plugin and launch Cinema 4D in the background.

Unity then communicates with Cinema 4D to convert the .c4d file into a format Unity can read. The first time you import a .c4d

file and Cinema 4D is not open yet it will take a short while to launch it but afterwards importing .c4d files will be very quick.

Cinema 4D 10 support
When importing .c4d files directly, Unity behind the scenes lets Cinema 4D convert its files to FBX. When Maxon shipped

Cinema 4D 10.0, the FBX exporter was severly broken. With Cinema 4D 10.1 a lot of the issues have been fixed. Thus we

strongly recommend everyone using Cinema 4D 10 to upgrade to 10.1.

Now there are still some issues left in Maxons FBX exporter. It seems that currently there is no reliable way of exporting

animated characters that use the Joint's introduced in Cinema 4D 10. However the old bone system available in 9.6 exports

perfectly fine. Thus when creating animated characters it is critical that you use the old bone system instead of joints.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

379 of 1131 12/16/2012 10:12 PM

Page last updated: 2007-11-16

HOWTO-ImportObjectMax

If you make your 3D objects in 3dsMax, you can save your .max files directly into your Project or export them into Unity using

the Autodesk .FBX or other genric formats.

Unity imports meshes from 3ds Max. Saving a Max file or exporting a generic 3D file type each has
advantages and disadvantages see Mesh

All nodes with position, rotation and scale. Pivot points and Names are also imported.1.

Meshes with vertex colors, normals and one or two UV sets.2.

Materials with diffuse texture and color. Multiple materials per mesh.3.

Animations.4.

Bone based animations.5.

To manually export to FBX from 3DS Max

Download the latest fbx exporter from Autodesk website and install it.1.

Export your scene or selected objects (File->Export or File->Export Selected) in .fbx format. Using default export

options should be okay.

2.

Copy the exported fbx file into your Unity project folder.3.

When you switch back into Unity, the .fbx file is imported automatically.4.

Drag the file from the Project View into the Scene View.5.

Exporter options
Using default FBX exporter options (that basically export everything) you can choose:

Embed textures - this stores the image maps in the file, good for portability, not so good for file size

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

380 of 1131 12/16/2012 10:12 PM

Default FBX exporter options (for fbx plugin version 2013.3)

Exporting Bone-based Animations
There is a procedure you should follow when you want to export bone-based animations:

Set up the bone structure as you please.1.

Create the animations you want, using FK and/or IK2.

Select all bones and/or IK solvers3.

Go to Motion->Trajectories and press Collapse. Unity makes a key filter, so the amount of keys you export is

irrelevant

4.

"Export" or "Export selected" as newest FBX format5.

Drop the FBX file into Assets as usual6.

In Unity you must reassign the Texture to the Material in the root bone7.

When exporting a bone hierarchy with mesh and animations from 3ds Max to Unity, the GameObject hierarchy produced will

correspond to the hierarchy you can see in "Schematic view" in 3ds Max. One difference is Unity will place a GameObject as

the new root, containing the animations, and will place the mesh and material information in the root bone.

If you prefer to have animation and mesh information in the same Unity GameObject, go to the Hierarchy view in 3ds Max, and

parent the mesh node to a bone in the bone hierarchy.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

381 of 1131 12/16/2012 10:12 PM

Exporting Two UV Sets for Lightmapping
3ds Max' Render To Texture and automatic unwrapping functionality can be used to create lightmaps. Note that Unity has

built-in lightmapper, but you might prefer using 3dsmax if that fits your workflow better. Usually one UV set is used for main

texture and/or normal maps, and another UV set is used for the lightmap texture. For both UV sets to come through properly,

the material in 3ds Max has to be Standard and both Diffuse (for main texture) and Self-Illumination (for lightmap) map slots

have to be set up:

Material setup for Lightmapping in 3ds Max, using self-illumination map

Note that if object uses a Shell material type, then current Autodesk's FBX exporter will not export UVs correctly.

Alternatively, you can use Multi/Sub Object material type and setup two sub-materials, using the main texture and the lightmap

in their diffuse map slots, like shown below. However, if faces in your model use different sub-material IDs, this will result in

multiple materials being imported, which is not optimal for performance.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

382 of 1131 12/16/2012 10:12 PM

Alternate Material setup for Lightmapping in 3ds Max, using multi/sub object material

Troubleshooting
If you have any issues with importing some models: ensure that you have the latest FBX plugin installed from Autodesk

website or revert to FBX 2012.

Page last updated: 2012-11-06

HOWTO-ImportObjectCheetah3D

Unity natively imports Cheetah3D files. To get started, simply place your .jas file in your project's Assets folder. When you

switch back into Unity, the scene is imported automatically and will show up in the Project View.

To see your model in Unity, simply drag it from the Project View into the Scene View.

If you modify your .jas file, Unity will automatically update whenever you save.

Unity currently imports from Cheetah3D

All nodes with position, rotation and scale. Pivot points and Names are also imported.1.

Meshes with vertices, polygons, triangles, UV's and Normals.2.

Animations.3.

Materials with diffuse color and textures.4.

Requirements
You need to have at least Cheetah3D 2.6 installed.

Page last updated: 2007-11-16

HOWTO-ImportObjectModo

Unity natively imports modo files. This works under the hood by using the modo COLLADA exporter. Modo version 501 and

later use this approach. To get started, save your .lxo file in the project's Assets folder. When you switch back into Unity, the

file is imported automatically and will show up in the Project View.

For older modo versions prior to 501, simply save your Modo scene as an FBX or COLLADA file into the Unity project folder.

When you switch back into Unity, the scene is imported automatically and will show up in the Project View.

To see your model in Unity, drag it from the Project View into the Scene View.

If you modify the lxo file, Unity will automatically update whenever you save.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

383 of 1131 12/16/2012 10:12 PM

Unity currently imports

All nodes with position, rotation and scale. Pivot points and names are also imported.1.

Meshes with vertices, normals and UVs.2.

Materials with Texture and diffuse color. Multiple materials per mesh.3.

Animations4.

Requirements
modo 501 or later is required for native import of *.lxo files.

Page last updated: 2011-01-26

HOWTO-importObjectLightwave

You can import meshes and animations from Lightwave using the FBX plugin for Lightwave.

Unity currently imports

All nodes with position, rotation and scale. Pivot points and Names are also imported.1.

Meshes with UVs and normals.2.

Materials with Texture and diffuse color. Multiple materials per mesh.3.

Animations.4.

Bone-based animations.5.

Installation
Download the latest Lightwave FBX exporter from:

OS X lighwave 8.2 and 9.0 plugin

OS X Lighwave 8.0 plugin

Windows Lighwave 8.2 and 9.0 plugin

Windows Lighwave 8.0 plugin

By downloading these plugins you automatically agree to this licence.

There are two versions of the plugin, one for LightWave 8.0 and one for LightWave 8.2 through 9.0. Make sure you install the

correct version.

The plugin for Mac comes in an OS X package. If you double-click the package to install it, the installer will try to put it in the

correct folder. If it can't find your LightWave plugin folder, it will create its own LightWave folder in your Applications folder

and dump it there. If the latter occurs you should move it to your LightWave plugin folder (or any sub-folder). Once there you

have to add the plugin to LightWave via the "Edit Plugins" panel (Option-F11) - see the LightWave manual for more details on

how to add plugins.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

384 of 1131 12/16/2012 10:12 PM

Once added to LightWave, the plugin is acessible via the Generics menu (on the Utiliies) tab. If the Generic menu is not

present you will have to add it using the Config Menus panel. In the latter panel it can be found in the Plug-ins category and is

called "Generic Plugins". Add it to any convenient menu (see the LightWave manual for more details on how to do this).

More information about installation can also be found in the release notes that can downloaded with the installer.

Exporting
All objects and animations have to be exported from Layout (there is no Modeler FBX exporter).

1. Select Export to FBX from the Generics menu

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

385 of 1131 12/16/2012 10:12 PM

2. Select the appropriate settings in the fbx export dialog

Select the fbx file name. Make sure to save the exported fbx file in the Assets folder of your current Unity project.

In the FBX dialogue panel you MUST select Embed Textures otherwise the exported object will have no UVs. This is a

bug in the Lightwave fbx exporter and will be fixed in a future version according to Autodesk.

If you want to export animations into Unity you must have "Animations" checked. You also need to have "Lights" or

"Cameras" checked.

To change the name of the exported animation clip in Unity, change the name from "LW Take 001" to your liking.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

386 of 1131 12/16/2012 10:12 PM

3. Switch to Unity.

Unity will automatically import the fbx file and generate materials for the textures.

Drag the imported fbx file from the Project view into the Scene view.

Important notes
You must select Embed Textures in the FBX panel when exporting or no UVs are exported

If you want to export animations you must enable Animations and either Camera or Lights.

It is strongly recommended to always place your textures in a folder called "Textures" next to the fbx file. This will guarantee

that Unity can always find the Texture and automatically connect the texture to the material.
Page last updated: 2007-11-16

HOWTO-ImportObjectBlender

Unity natively imports Blender files. This works under the hood by using the Blender FBX exporter, which was added to

Blender in version 2.45. For this reason, you must update to Blender 2.45 or later (but see Requirements below).

To get started, save your .blend file in your project's Assets folder. When you switch back into Unity, the file is imported

automatically and will show up in the Project View.

To see your model in Unity, drag it from the Project View into the Scene View.

If you modify your .blend file, Unity will automatically update whenever you save.

Unity currently imports

All nodes with position, rotation and scale. Pivot points and Names are also imported.1.

Meshes with vertices, polygons, triangles, UVs, and normals.2.

Bones3.

Skinned Meshes4.

Animations5.

Requirements
You need to have Blender version 2.45-2.49 or 2.58 or later (versions 2.50-2.57 do not work, because FBX export was

changed/broken in Blender).

Textures and diffuse color are not assigned automatically. Manually assign them by dragging the texture onto the mesh in

the Scene View in Unity.
Page last updated: 2011-08-10

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

387 of 1131 12/16/2012 10:12 PM

Workflow

Getting started with Mono Develop

How do I reuse assets between projects?

How do I install or upgrade Standard Assets?

Porting a Project Between Platforms
Page last updated: 2007-11-16

HOWTO-MonoDevelop

Mono Develop comes now with Unity 3.x, this IDE will help you out taking care of the scripting part of your game and the

debugging o it.

Setting Up Mono Develop.

To set up Mono Develop to work with with Unity you just have to go to Unity Preferences and set it as your default editor.

Setting Mono Develop as the Default Editor

After this, create or open an existing project and make sure your project is synced with Mono Develop by clicking on Assets ->

Sync Mono Develop Project.

Mono Develop Sync.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

388 of 1131 12/16/2012 10:12 PM

This will open your project (Only The scripting files, no Assets) in Mono Develop. Now you are ready to start debugging.

Also you might want to visit the troubleshooting page in case you have any problem setting your project.

Page last updated: 2010-09-24

HOWTO-exportpackage

As you build your game, Unity stores a lot of metadata about your assets (import settings, links to other assets, etc.). If you

want to take your assets into a different project, there is a specific way to do that. Here's how to easily move assets between

projects and still preserve all this info.

In the Project View, select all the asset files you want to export.1.

Choose Assets->Export Package... from the menubar.2.

Name and save the package anywhere you like.3.

Open the project you want to bring the assets into.4.

Choose Assets->Import Package... from the menubar.5.

Select your package file saved in step 3.6.

Hints
When exporting a package Unity can export all dependencies as well. So for example if you select a Scene and export a

package with all dependencies, then all models, textures and other assets that appear in the scene will be exported as

well. This can be a quick way of exporting a bunch of assets without manually locating them all.

If you store your Exported Package in the Standard Packages folder next to your Unity application, they will appear in the

Create New Project dialog.
Page last updated: 2007-11-16

HOWTO-InstallStandardAssets

Unity ships with multiple Standard Assets packages. These are collections of assets that are widely used by most Unity

customers. When you create a new project from the Project Wizard you can optionally include these asset collections. These

assets are copied from the Unity install folder into your new project. This means that if you upgrade Unity to a new version you

will not get the new version of these assets and so upgrading them is needed. Also, consider that a newer version of e.g. an

effect might behave differently for performance or quality reasons and thus requires retweaking of parameters. It's important to

consider this before upgrading if you don't want your game to suddenly look or behave differently. Check with the package

contents and Unity's release notes.

Standard Assets contain useful things like a first person controller, skyboxes, lens flares, Water prefabs, Image Effects and so

on.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

389 of 1131 12/16/2012 10:12 PM

The Standard Assets packages listed when creating new project

Upgrading
Sometimes you might want to upgrade your Standard Assets, for example because a new version of Unity ships with new

Standard Assets:

Open your project.1.

Choose package you want to update from Assets->Import Package submenu.2.

A list of new or replaced assets will be presented, click Import.3.

For the cleanest possible upgrade, it should be considered to remove the old package contents first, as some scripts, effects

or prefabs might have become deprecated or unneeded and Unity packages don't have a way of deleting (unneeded) files (but

make sure to have a security copy of the old version available).

Page last updated: 2011-06-09

HOWTO-PortingBetweenPlatforms

Most of Unity's API and project structure is identical for all supported platforms and in some cases a project can simply be

rebuilt to run on different devices. However, fundamental differences in the hardware and deployment methods mean that

some parts of a project may not port between platforms without change. Below are details of some common cross-platform

issues and suggestions for solving them.

Input
The most obvious example of different behaviour between platforms is in the input methods offered by the hardware.

Keyboard and joypad

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

390 of 1131 12/16/2012 10:12 PM

The Input.GetAxis function is very convenient on desktop platforms as a way of consolidating keyboard and joypad input.

However, this function doesn't make sense for the mobile platforms which rely on touchscreen input. Likewise, the standard

desktop keyboard input doesn't port over to mobiles well for anything other than typed text. It is worthwhile to add a layer of

abstraction to your input code if you are considering porting to other platforms in the future. As a simple example, if you were

making a driving game then you might create your own input class and wrap the Unity API calls in your own functions:-

// Returns values in the range -1.0 .. +1.0 (== left .. right).
function Steering() {

return Input.GetAxis("Horizontal");
}

// Returns values in the range -1.0 .. +1.0 (== accel .. brake).
function Acceleration() {

return Input.GetAxis("Vertical");
}

var currentGear: int;

// Returns an integer corresponding to the selected gear.
function Gears() {

if (Input.GetKeyDown("p"))
currentGear++;

else if (Input.GetKeyDown("l"))
currentGear--;

return currentGear;
}

One advantage of wrapping the API calls in a class like this is that they are all concentrated in a single source file and are

consequently easy to locate and replace. However, the more important idea is that you should design your input functions

according to the logical meaning of the inputs in your game. This will help to isolate the rest of the game code from the specific

method of input used with a particular platform. For example, the Gears function above could be modified so that the actual

input comes from touches on the screen of a mobile device. Using an integer to represent the chosen gear works fine for all

platforms, but mixing the platform-specific API calls with the rest of the code would cause problems. You may find it convenient

to use platform dependent compilation to combine the different implementation of the input functions in the same source file

and avoid manual swaps.

Touches and clicks

The Input.GetMouseButtonXXX functions are designed so that they have a reasonably obvious interpretation on mobile

devices even though there is no "mouse" as such. A single touch on the screen is reported as a left click and the

Input.mousePosition property gives the position of the touch as long as the finger is touching the screen. This means that

games with simple mouse interaction can often work transparently between the desktop and mobile platforms. Naturally,

though, the conversion is often much less straightforward than this. A desktop game can make use of more than one mouse

button and a mobile game can detect multiple touches on the screen at a time.

As with API calls, the problem can be managed partly by representing input with logical values that are then used by the rest of

the game code. For example, a pinch gesture to zoom on a mobile device might be replaced by a plus/minus keystroke on the

desktop; the input function could simply return a float value specifying the zoom factor. Likewise, it might be possible to use a

two-finger tap on a mobile to replace a right button click on the desktop. However, if the properties of the input device are an

integral part of the game then it may not be possible to remodel them on a different platform. This may mean that game cannot

be ported at all or that the input and/or gameplay need to be modified extensively.

Accelerometer, compass, gyroscope and GPS

These inputs derive from the mobility of handheld devices and so may not have any meaningful equivalent on the desktop.

However, some use cases simply mirror standard game controls and can be ported quite easily. For example, a driving game

might implement the steering control from the tilt of a mobile device (determined by the accelerometer). In cases like this, the

input API calls are usually fairly easy to replace, so the accelerometer input might be replaced by keystrokes, say. However, it

may be necessary to recalibrate inputs or even vary the difficulty of the game to take account of the different input method.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

391 of 1131 12/16/2012 10:12 PM

Tilting a device is slower and eventually more strenuous than pressing keys and may also make it harder to concentrate on the

display. This may result in the game's being more difficult to master on a mobile device and so it may be appropriate to slow

down gameplay or allow more time per level. This will require the game code to be designed so that these factors can be

adjusted easily.

Memory, storage and CPU performance
Mobile devices inevitably have less storage, memory and CPU power available than desktop machines and so a game may be

difficult to port simply because its performance is not acceptable on lower powered hardware. Some resource issues can be

managed but if you are pushing the limits of the hardware on the desktop then the game is probably not a good candidate for

porting to a mobile platform.

Movie playback

Currently, mobile devices are highly reliant on hardware support for movie playback. The result is that playback options are

limited and certainly don't give the flexibility that the MovieTexture asset offers on desktop platforms. Movies can be played

back fullscreen on mobiles but there isn't any scope for using them to texture objects within the game (so it isn't possible to

display a movie on a TV screen within the game, for example). In terms of portability, it is fine to use movies for introductions,

cutscenes, instructions and other simple pieces of presentation. However, if movies need to be visible within the game world

then you should consider whether the mobile playback options will be adequate.

Storage requirements

Video, audio and even textures can use a lot of storage space and you may need to bear this in mind if you want to port your

game. Storage space (which often also corresponds to download time) is typically not an issue on desktop machines but this is

not the case with mobiles. Furthermore, mobile app stores often impose a limit on the maximum size of a submitted product. It

may require some planning to address these concerns during the development of your game. For example, you may need to

provide cut-down versions of assets for mobiles in order to save space. Another possibility is that the game may need to be

designed so that large assets can be downloaded on demand rather than being part of the initial download of the application.

Automatic memory management

The recovery of unused memory from "dead" objects is handled automatically by Unity and often happens imperceptibly on

desktop machines. However, the lower memory and CPU power on mobile devices means that garbage collections can be

more frequent and the time they take can impinge more heavily on performance (causing unwanted pauses in gameplay, etc).

Even if the game runs in the available memory, it may still be necessary to optimise code to avoid garbage collection pauses.

More information can be found on our memory management page.

CPU power

A game that runs well on a desktop machine may suffer from poor framerate on a mobile device simply because the mobile

CPU struggles with the game's complexity. Extra attention may therefore need to be paid to code efficiency when a project is

ported to a mobile platform. A number of simple steps to improve efficiency are outlined on this page in our manual.

Page last updated: 2012-05-31

MobileDeveloperChecklist

If you are having problems when developing for a mobile platform, this is a checklist to help you solve various problems.

Crashes

Profiling

Optimizations

Page last updated: 2012-10-10

MobileCrashes

Checklist for crashes
Disable code stripping (and set �slow with exceptions� for iOS)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

392 of 1131 12/16/2012 10:12 PM

Follow the instructions on Optimizing the Size of the Built iOS Player (http://docs.unity3d.com/Documentation/Manual

/iphone-playerSizeOptimization.html) to make sure your game does not crash with stripping on iOS.

Verify it is not because of out of memory (restart your device, use the device with maximum RAM for the platform, be sure

to watch the logs)

Editor.log - on the editor
The Debug messages, warnings and errors all go to the console. Also Unity prints status reports to the console � loading

assets, initializing mono, graphics driver info.

If you are trying to understand what is going on look at the editor.log. Here you will get the full picture, not just a console

fragment. You can try to understand what�s happening, and watch the full log of your coding session. This will help you track

down what has caused Unity crash to crash or find out what�s wrong with your assets.

Unity prints some tjings on the devices as well; Logcat console for android and Xcode gdb console on iOS devices

 Android

Debugging on Android

Use the DDMS or ADB tool1.

Watch the stacktrace (Android 3 or newer). Either use c++filt (part of the ndk) or the other methods, like:

http://slush.warosu.org/c++filtjs to decode the mangled function calls

2.

Look at the .so file that the crash occurs on:

libunity.so - the crash is in the Unity code or the user code1.

libdvm.so - the crash is in the Java world, somewhere with Dalvik. So find Dalvik�s stacktrace, look at your

JNI code or anything Java-related (including your possible changes to the AndroidManifest.xml).

2.

libmono.so - either a Mono bug or you're doing something Mono strongly dislikes3.

3.

If the crashlog does not help you can disassemble it to get a rough understanding of what has happened.

use ARM EABI tools from the Android NDK like this: objdump.exe -S libmono.so >> out.txt1.

Look at the code around pc from the stacktrace.2.

try to match that code within the fresh out.txt file.3.

Scroll up to understand what is happening in the function it occurs in.4.

4.

 iOS

Debugging on iOS

Xcode has built in tools. Xcode 4 has a really nice GUI for debugging crashes, Xcode 3 has less.1.

Full gdb stack - thread apply all bt2.

Enable soft-null-check:3.

Enable development build and script debugging. Now uncaught null ref exceptions will be printed to the Xcode console with

the appropriate managed call stack.

Try turning the "fast script call" and code stripping off. It may stop some random crashes, like those caused by using

some rare .Net functions or reflection.

1.

Strategy

Try to figure out which script the crash happens in and debug it using mono develop on the device.1.

If the crash seems to not be in your code, take a closer look at the stacktrace, there should be a hint of something

happening. Take a copy and submit it, and we�ll take a look.

2.

Page last updated: 2012-10-10

MobileProfiling

Ports that the Unity profiler uses:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

393 of 1131 12/16/2012 10:12 PM

MulticastPort : 54998

ListenPorts : 55000 - 55511

Multicast(unittests) : 55512 - 56023

They should be accessible from within the network node. That is, the devices that you�re trying to profile on should be able

to see these ports on the machine with the Unity Editor with the Profiler on.

First steps
Unity relies on the CPU (heavily optimized for the SIMD part of it, like SSE on x86 or NEON on ARM) for skinning, batching,

physics, user scripts, particles, etc.

The GPU is used for shaders, drawcalls, image effects.

CPU or GPU bound

Use the internal profiler to detect the CPU and GPU ms

Pareto analysis

A large majority of problems (80%) are produced by a few key causes (20%).

Use the Editor profiler to get the most problematic function calls and optimize them first.1.

Make sure the scripts run only when necessary.

Use OnBecameVisible/OnBecameInvisible to disable inactive objects.1.

Use coroutines if you don�t need some scripts to run every frame.2.

2.

// Do some stuff every frame:
void Update () {
}

//Do some stuff every 0.2 seconds:
IEnumerator Start ()_ {
 while (true) {
 yield return new WaitForSeconds (0.2f);
 }
}

Use the .NET System.Threading.Thread class to put heavy calculations to the other thread. This allows you to

run on multiple cores, but Unity API is not thread-safe. So buffer inputs and results and read and assign them

on the main thread.

1.

CPU Profiling

Profile user code

Not all of the user code is shown in the Profiler. But you can use Profiler.BeginSample and Profiler.EndSample to make the

required user code appear in the profiler.

GPU Profiling
The Unity Editor profiler cannot show GPU data as of now. We�re working with hardware manufacturers to make it happen

with the Tegra devices being the first to appear in the Editor profiler.

 iOS

Tools for iOS

Unity internal profiler (not the Editor profiler). This shows the GPU time for the whole scene.

PowerVR PVRUniSCo shader analyzer. See below.

iOS: Xcode OpenGL ES Driver Instruments can show only high-level info:

�Device Utilization %� - GPU time spent on rendering in total. >95% means the app is GPU bound.

�Renderer Utilization %� - GPU time spent drawing pixels.

�Tiler Utilization %� - GPU time spent processing vertices.

�Split count� - the number of frame splits, where the vertex data didn�t fit into allocated buffers.

PowerVR is tile based deferred renderer, so it’s impossible to get GPU timings per draw call. However you can get GPU times

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

394 of 1131 12/16/2012 10:12 PM

for the whole scene using Unity�s built-in profiler (the one that prints results to Xcode output). Apple�s tools currently can

only tell you how busy the GPU and its parts are, but do not give times in milliseconds.

PVRUniSCo gives cycles for the whole shader, and approximate cycles for each line in the shader code. Windows & Mac! But

it won�t match what Apple�s drivers are doing exactly anyway. Still, a good ballpark measure.

 Android

Tools for Android

Adreno (Qualcomm)

NVPerfHUD (NVIDIA)

PVRTune, PVRUniSCo (PowerVR)

On Tegra, NVIDIA provides excellent performance tools which does everything you want - GPU time per draw call, Cycles per

shader, Force 2x2 texture, Null view rectangle, runs on Windows, OSX, Linux. PerfHUD ES does not easily work with

consumer devices, you need the development board from NVIDIA.

Qualcomm provides excellent Adreno Profiler (Windows only) which is Windows only, but works with consumer devices! It

features Timeline graphs, frame capture, Frame debug, API calls, Shader analyzer, live editing.

Graphics related CPU profiling

The internal profiler gives a good overview per module:

time spent in OpenGL ES API

batching efficiency

skinning, animations, particles

Memory
Integrate this: http://docwiki.hq.unity3d.com/internal/index.php?n=Support.MemoryUsage

There is Unity memory and mono memory.

Mono memory

Mono memory handles script objects, wrappers for Unity objects (game objects, assets, components, etc). Garbage Collector

cleans up when the allocation does not fit in the available memory or on a System.GC.Collect() call.

Memory is allocated in heap blocks. More can allocated if it cannot fit the data into the allocated block. Heap blocks will be

kept in Mono until the app is closed. In other words, Mono does not release any memory used to the OS (Unity 3.x). Once you

allocate a certain amount of memory, it is reserved for mono and not available for the OS. Even when you release it, it will

become available internally for Mono only and not for the OS. The heap memory value in the Profiler will only increase, never

decrease.

If the system cannot fit new data into the allocated heap block, the Mono calls a "GC" and can allocate a new heap block (for

example, due to fragmentation).

�Too many heap sections� means you�ve run out of Mono memory (because of fragmentation or heavy usage).

Use System.GC.GetTotalMemory to get the total used Mono memory.

The general advice is, use as small an allocation as possible.

Unity memory

Unity memory handles Asset data (Textures, Meshes, Audio, Animation, etc), Game objects, Engine internals (Rendering,

Particles, Physics, etc). Use Profiler.usedHeapSize to get the total used Unity memory.

Memory map

No tools yet but you can use the following.

Unity Profiler - not perfect, skips stuff, but you can get an overview. It works on the device!

Internal profiler

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

395 of 1131 12/16/2012 10:12 PM

Shows Used heap and allocated heap - see mono memory.

Shows the number of mono allocations per frame.

Xcode tools - iOS

Xcode Instruments Activity Monitor - Real Memory column.

Xcode Instruments Allocations - net allocations for created and living objects.

VM Tracker

textures usually get allocated with IOKit label.

meshes usually go into VM Allocate.

Make your own tool

FindObjectsOfTypeAll (type : Type) : Object[]

FindObjectsOfType (type : Type): Object[]

GetRuntimeMemorySize (o : Object) : int

GetMonoHeapSize

GetMonoUsedSize

Profiler.BeginSample/EndSample - profile your own code

UnloadUnusedAssets () : AsyncOperation

System.GC.GetTotalMemory/Profiler.usedHeapSize

References to the loaded objects - There is no way to figure this out. A workaround is to �Find references in scene� for

public variables.

Memory hiccups

Garbage collector

This fires when the system cannot fit new data into the allocated heap block.

Don�t use OnGUI on mobiles

It shoots several times per frame

It completely redraws the view.

It creates tons of memory allocation calls that require Garbage Collection to be invoked.

Creating/removing too many objects too quickly?

This may lead to fragmentation.

Use the Editor profiler to track the memory activity.

The internal profiler can be used to track the mono memory activity.

System.GC.Collect() You can use this .Net function when it�s ok to have a hiccup.

New memory allocations

Allocation hiccups

Use lists of preallocated, reusable class instances to implement your own memory management scheme.

Don�t make huge allocations per frame, cache, preallocate instead

Problems with fragmentation?

Preallocate the memory pool.

Keep a List of inactive GameObjects and reuse them instead of Instantiating and Destroying them.

Out of mono memory

Profile memory activity - when does the first memory page fill up?

Do you really need so many gameobjects that a single memory page is not enough?

Use structs instead of classes for local data. Classes are stored on the heap; structs on the stack.

class MyClass {
 public int a, b, c;
}

struct MyStruct {
 public int a, b, c;
}

void Update () {
 //BAD
 // allocated on the heap, will be garbage collected later!
 MyClass c = new MyClass();

 //GOOD
 //allocated on the stack, no GC going to happen!
 MyStruct s = new MyStruct();
}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

396 of 1131 12/16/2012 10:12 PM

Read the relevant section in the manual Link to http://docs.unity3d.com/Documentation/Manual

/UnderstandingAutomaticMemoryManagement.html

Out of memory crashes

At some points a game may crash with "out of memory" though it in theory it should fit in fine. When this happens compare your

normal game memory footprint and the allocated memory size when the crash happens. If the numbers are not similar, then

there is a memory spike. This might be due to:

Two big scenes being loaded at the same time - use an empty scene between two bigger ones to fix this.

Additive scene loading - remove unused parts to maintain the memory size.

Huge asset bundles loaded to the memory

Loading via WWW or instantiating (a huge amount of) big objects like:

Textures without proper compression (a no go for mobiles).

Textures having Get/Set pixels enabled. This requires an uncompressed copy of the texture in memory.

Textures loaded from JPEG/PNGs at runtime are essentially uncompressed.

Big mp3 files marked as decompress on loading.

Keeping unused assets in weird caches like static monobehavior fields, which are not cleared when changing scenes.
Page last updated: 2012-10-10

MobileOptimisation

Just like on PCs, mobile platforms like iOS and Android have devices of various levels of performance. You can easily find a

phone that�s 10x more powerful for rendering than some other phone. Quite easy way of scaling:

Make sure it runs okay on baseline configuration1.

Use more eye-candy on higher performing configurations:

Resolution

Post-processing

MSAA

Anisotropy

Shaders

Fx/particles density, on/off

2.

Focus on GPUs
Graphics performance is bound by fillrate, pixel and geometric complexity (vertex count). All three of these can be reduced if

you can find a way to cull more renderers. Occlusion culling and could help here. Unity will automatically cull objects outside

the viewing frustum.

On mobiles you�re essentially fillrate bound (fillrate = screen pixels * shader complexity * overdraw), and over-complex

shaders is the most common cause of problems. So use mobile shaders that come with Unity or design your own but make

them as simple as possible. If possible simplify your pixel shaders by moving code to vertex shader.

If reducing the Texture Quality in Quality Settings makes the game run faster, you are probably limited by memory bandwidth.

So compress textures, use mipmaps, reduce texture size, etc.

LOD (Level of Detail) � make objects simpler or eliminate them completely as they move further away. The main goal would

be to reduce the number of draw calls.

Good practice

Mobile GPUs have huge constraints in how much heat they produce, how much power they use, and how large or noisy they

can be. So compared to the desktop parts, mobile GPUs have way less bandwidth, low ALU performance and texturing power.

The architectures of the GPUs are also tuned to use as little bandwidth & power as possible.

Unity is optimized for OpenGL ES 2.0, it uses GLSL ES (similar to HLSL) shading language. Built in shaders are most often

written in HLSL (also known as Cg). This is cross compiled into GLSL ES for mobile platforms. You can also write GLSL

directly if you want to, but doing that limits you to OpenGL-like platforms (e.g. mobile + Mac) since there currently are no

GLSL->HLSL translation tools. When you use float/half/fixed types in HLSL, they end up highp/mediump/lowp precision

qualifiers in GLSL ES.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

397 of 1131 12/16/2012 10:12 PM

Here is the checklist for good practice:

Keep the number of materials as low as possible. This makes it easier for Unity to batch stuff.1.

Use texture atlases (large images containing a collection of sub-images) instead of a number of individual textures.

These are faster to load, have fewer state switches, and are batching friendly.

2.

Use Renderer.sharedMaterial instead of Renderer.material if using texture atlases and shared materials.3.

Forward rendered pixel lights are expensive.

Use light mapping instead of realtime lights where ever possible.

Adjust pixel light count in quality settings. Essentially only the directional light should be per pixel, everything else -

per vertex. Certainly this depends on the game.

4.

Experiment with Render Mode of Lights in the Quality Settings to get the correct priority.5.

Avoid Cutout (alpha test) shaders unless really necessary.6.

Keep Transparent (alpha blend) screen coverage to a minimum.7.

Try to avoid situations where multiple lights illuminate any given object.8.

Try to reduce the overall number of shader passes (Shadows, pixel lights, reflections).9.

Rendering order is critical. In general case:

fully opaque objects roughly front-to-back.1.

alpha tested objects roughly front-to-back.2.

skybox.3.

alpha blended objects (back to front if needed).4.

10.

Post Processing is expensive on mobiles, use with care.11.

Particles: reduce overdraw, use the simplest possible shaders.12.

Double buffer for Meshes modified every frame:13.

void Update (){
 // flip between meshes
 bufferMesh = on ? meshA : meshB;
 on = !on;
 bufferMesh.vertices = vertices; // modification to mesh
 meshFilter.sharedMesh = bufferMesh;
}

Sharer optimizations

Checking if you are fillrate-bound is easy: does the game run faster if you decrease the display resolution? If yes, you are

limited by fillrate.

Try reducing shader complexity by the following methods:

Avoid alpha-testing shaders; instead use alpha-blended versions.

Use simple, optimized shader code (such as the �Mobile� shaders that ship with Unity).

Avoid expensive math functions in shader code (pow, exp, log, cos, sin, tan, etc). Consider using pre-calculated lookup

textures instead.

Pick lowest possible number precision format (float, half, fixedin Cg) for best performance.

Focus on CPUs
It is often the case that games are limited by the GPU on pixel processing. So they end up having unused CPU power,

especially on multicore mobile CPUs. So it is often sensible to pull some work off the GPU and put it onto the CPU instead

(Unity does all of these): mesh skinning, batching of small objects, particle geometry updates.

These should be used with care, not blindly. If you are not bound by draw calls, then batching is actually worse for

performance, as it makes culling less efficient and makes more objects affected by lights!

Good practice

Don�t use more than a few hundred draw calls per frame on mobiles.

FindObjectsOfType (and Unity getter properties in general) are very slow, so use them sensibly.

Set the Static property on non-moving objects to allow internal optimizations like static batching.

Spend lots of CPU cycles to do occlusion culling and better sorting (to take advantage of Early Z-cull).

Physics

Physics can be CPU heavy. It can be profiled via the Editor profiler. If Physics appears to take too much time on CPU:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

398 of 1131 12/16/2012 10:12 PM

Tweak Time.fixedDeltaTime (in Project settings -> Time) to be as high as you can get away with. If your game is slow

moving, you probably need less fixed updates than games with fast action. Fast paced games will need more frequent

calculations, and thus fixedDeltaTime will need to be lower or a collision may fail.

Physics.solverIterationCount (Physics Manager).

Use as little Cloth objects as possible.

Use Rigidbodies only where necessary.

Use primitive colliders in preference mesh colliders.

Never ever move a static collider (ie a collider without a Rigidbody) as it causes a big performance hit.

Shows up in Profiler as �Static Collider.Move� but actual processing is in Physics.Simulate

If necessary, add a RigidBody and set isKinematic to true.

On Windows you can use NVidia�s AgPerfMon profiling tool set to get more details if needed.

 Android

GPU

These are the popular mobile architectures. This is both different hardware vendors than in PC/console space, and very

different GPU architectures than the �usual� GPUs.

ImgTec PowerVR SGX - Tile based, deferred: render everything in small tiles (as 16x16), shade only visible pixels

NVIDIA Tegra - Classic: Render everything

Qualcomm Adreno - Tiled: Render everything in tile, engineered in large tiles (as 256k). Adreno 3xx can switch to

traditional.

ARM Mali Tiled: Render everything in tile, engineered in small tiles (as 16x16)

Spend some time looking into different rendering approaches and design your game accordingly. Pay especial attention to

sorting. Define the lowest end supported devices early in the dev cycle. Test on them with the profiler on as you design your

game.

Use platform specific texture compression.

Further reading

PowerVR SGX Architecture Guide http://imgtec.com/powervr/insider/powervr-sdk-docs.asp

Tegra GLES2 feature guide http://developer.download.nvidia.com/tegra/docs/tegra_gles2_development.pdf

Qualcomm Adreno GLES performance guide http://developer.qualcomm.com/file/607

/adreno200performanceoptimizationopenglestipsandtricksmarch10.pdf

Engel, Rible http://altdevblogaday.com/2011/08/04/programming-the-xperia-play-gpu-by-wolfgang-engel-and-maurice-

ribble/

ARM Mali GPU Optimization guide http://www.malideveloper.com/developer-resources/documentation/index.php

Screen resolution

Android version

 iOS

GPU

Only PowerVR architecture (tile based deferred) to be concerned about.

ImgTec PowerVR SGX. Tile based, deferred: render everything in tiles, shade only visible pixels

ImgTec .PowerVR MBX. Tile based, deferred, fixed function - pre iPhone 4/iPad 1 devices

This means:

Mipmaps are not so necessary.

Antialiasing and aniso are cheap enough, not needed on iPad 3 in some cases

And cons:

If vertex data per frame (number of vertices * storage required after vertex shader) exceeds the internal buffers allocated by

the driver, the scene has to be �split� which costs performance. The driver might allocate a larger buffer after this point,

or you might need to reduce your vertex count. This becomes apparent on iPad2 (iOS 4.3) at around 100 thousand

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

399 of 1131 12/16/2012 10:12 PM

vertices with quite complex shaders.

TBDR needs more transistors allocated for the tiling and deferred parts, leaving conceptually less transistors for �raw

performance�. It�s very hard (i.e. practically impossible) to get GPU timing for a draw call on TBDR, making profiling

hard.

Further reading

PowerVR SGX Architecture Guide http://imgtec.com/powervr/insider/powervr-sdk-docs.asp

Screen resolution

iOS version

Dynamic Objects

Asset Bundles

Asset Bundles are cached on a device to a certain limit

Create using the Editor API

Load

Using WWW API: WWW.LoadFromCacheOrDownload

As a resource: AssetBundle.CreateFromMemory or AssetBundle.CreateFromFile

Unload

AssetBundle.Unload

There is an option to unload the bundle, but keep the loaded asset from it

Also can kill all the loaded assets even if they�re referenced in the scene

Resources.UnloadUnusedAssets

Unloads all assets no longer referenced in the scene. So remember to kill references to the assets you don�t

need.

Public and static variables are never garbage collected.

Resources.UnloadAsset

Unloads a specific asset from memory. It can be reloaded from disk if needed.

Is there any limitation for download numbers of Assetbundle at the same time on iOS? (e.g Can we download over

10 assetbundles safely at the same time(or every frame)?)

Downloads are implemented via async API provided by OS, so OS decides how many threads need to be created for

downloads. When launching multiple concurrent downloads you should keep in mind total device bandwidth it can support and

amount of free memory. Each concurrent download allocates its own temporal buffer, so you should be careful there to not run

out of memory.

Resources

Assets need to be recognized by Unity to be placed in a build.

Add .bytes file extension to any raw bytes you want Unity to recognize as a binary data.

Add .txt file extension to any text files you want Unity to recognize as a text asset

Resources are converted to a platform format at a build time.

Resources.Load()

Silly issues checklist

Textures without proper compression

Different solutions for different cases, but be sure to compress textures unless you�re sure you should not.

ETC/RGBA16 - default for android

but can tweak depending on the GPU vendor

best approach is to use ETC where possible

alpha textures can use two ETC files with one channel being for alpha

PVRTC - default for iOS

good for most cases

Textures having Get/Set pixels enabled - doubles the footprint, uncheck unless Get/Set is needed

Textures loaded from JPEG/PNGs on the runtime will be uncompressed

Big mp3 files marked as decompress on load

Additive scene loading

Unused Assets that remain uncleaned in memory

Static fields

not unloaded asset bundles

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

400 of 1131 12/16/2012 10:12 PM

If it randomly crashes, try on a devkit or a device with 2 GB memory (like Ipad 3).

Sometimes there�s nothing in the console, just a random crash

Fast script call and stripping may lead to random crashes on iOS. Try without them.
Page last updated: 2012-10-10

Advanced

Vector Cookbook

Understanding Vector Arithmetic

Direction and Distance from One Object to Another

Computing a Normal/Perpendicular vector

The Amount of One Vector's Magnitude that Lies in Another Vector's Direction

AssetBundles (Pro only)

AssetBundles FAQ

Building AssetBundles

Downloading AssetBundles

Loading resources from AssetBundles

Keeping track of loaded AssetBundles

Storing and loading binary data in an AssetBundle

Protecting Content

Managing asset dependencies

Including scripts in AssetBundles

Graphics Features

HDR (High Dynamic Range) Rendering in Unity

Rendering Paths

Linear Lighting (Pro Only)

Level of Detail (Pro Only)

Shaders

Shaders: ShaderLab & Fixed Function shaders

Shaders: Vertex and Fragment Programs

Using DirectX 11 in Unity 4

Compute Shaders

Graphics Emulation

AssetDatabase

Build Player Pipeline

Profiler (Pro only)

Lightmapping Quickstart

Lightmapping In-Depth

Custom Beast Settings

Lightmapping UVs

Light Probes

Occlusion Culling (Pro only)

Camera Tricks

UnderstandingFrustum

The Size of the Frustum at a Given Distance from the Camera

Dolly Zoom (AKA the "Trombone" Effect)

Rays from the Camera

Using an Oblique Frustum

Creating an Impression of Large or Small Size

Loading Resources at Runtime

Modifying Source Assets Through Scripting

Generating Mesh Geometry Procedurally

Anatomy of a Mesh

Using the Mesh Class

Example - Creating a Billboard Plane

Rich Text

Using Mono DLLs in a Unity Project

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

401 of 1131 12/16/2012 10:12 PM

Execution Order of Event Functions

Practical Guide to Optimization for Mobiles

Practical Guide to Optimization for Mobiles - Future & High End Devices

Practical Guide to Optimization for Mobiles - Graphics Methods

Practical Guide to Optimization for Mobiles - Scripting and Gameplay Methods

Practical Guide to Optimization for Mobiles - Rendering Optimizations

Practical Guide to Optimization for Mobiles - Optimizing Scripts

Optimizing Graphics Performance

Draw Call Batching

Modeling Characters for Optimal Performance

Rendering Statistics Window

Reducing File Size

Understanding Automatic Memory Management

Platform Dependent Compilation

Generic Functions

Debugging

Console

Debugger

Log Files

Accessing hidden folders

Plugins (Pro/Mobile-Only Feature)

Building Plugins for Desktop Platforms

Building Plugins for iOS

Building Plugins for Android

Low-level Native Plugin Interface

Textual Scene File Format (Pro-only Feature)

Description of the Format

YAMLSceneExample

YAML Class ID Reference

Streaming Assets

Command line arguments

Running Editor Script Code on Launch

Network Emulation

Security Sandbox of the Webplayer

Overview of available .NET Class Libraries

Visual Studio C# Integration

Using External Version Control Systems with Unity

Analytics

Check For Updates

Installing Multiple Versions of Unity

Trouble Shooting

Shadows in Unity

Directional Shadow Details

Troubleshooting Shadows

Shadow Size Computation

IME in Unity

Optimizing for integrated graphics cards

Web Player Deployment

HTML code to load Unity content

Working with UnityObject2

Customizing the Unity Web Player loading screen

Customizing the Unity Web Player's Behavior

Unity Web Player and browser communication

Using web player templates

Web Player Streaming

Webplayer Release Channels
Page last updated: 2007-11-16

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

402 of 1131 12/16/2012 10:12 PM

Vector Cookbook

Vector Cookbook

Although vector operations are easy to easy to describe, they are surprisingly subtle and powerful and have many uses in

games programming. The following pages offer some suggestions about using vectors effectively in your code.

Understanding Vector Arithmetic

Direction and Distance from One Object to Another

Computing a Normal/Perpendicular vector

The Amount of One Vector's Magnitude that Lies in Another Vector's Direction
Page last updated: 2011-08-26

UnderstandingVectorArithmetic

Vector arithmetic is fundamental to 3D graphics, physics and animation and it is useful to understand it in depth to get the most

out of Unity. Below are descriptions of the main operations and some suggestions about the many things they can be used for.

Addition
When two vectors are added together, the result is equivalent to taking the original vectors as "steps", one after the other. Note

that the order of the two parameters doesn't matter, since the result is the same either way.

If the first vector is taken as a point in space then the second can be interpreted as an offset or "jump" from that position. For

example, to find a point 5 units above a location on the ground, you could use the following calculation:-

var pointInAir = pointOnGround + new Vector3(0, 5, 0);

If the vectors represent forces then it is more intuitive to think of them in terms of their direction and magnitude (the magnitude

indicates the size of the force). Adding two force vectors results in a new vector equivalent to the combination of the forces.

This concept is often useful when applying forces with several separate components acting at once (eg, a rocket being

propelled forward may also be affected by a crosswind).

Subtraction
Vector subtraction is most often used to get the direction and distance from one object to another. Note that the order of the

two parameters does matter with subtraction:-

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

403 of 1131 12/16/2012 10:12 PM

// The vector d has the same magnitude as c but points in the opposite direction.
var c = b - a;
var d = a - b;

As with numbers, adding the negative of a vector is the same as subtracting the positive.

// These both give the same result.
var c = a - b;
var c = a + -b;

The negative of a vector has the same magnitude as the original and points along the same line but in the exact opposite

direction.

Scalar Multiplication and Division
When discussing vectors, it is common to refer to an ordinary number (eg, a float value) as a scalar. The meaning of this is

that a scalar only has "scale" or magnitude whereas a vector has both magnitude and direction.

Multiplying a vector by a scalar results in a vector that points in the same direction as the original. However, the new vector's

magnitude is equal to the original magnitude multiplied by the scalar value.

Likewise, scalar division divides the original vector's magnitude by the scalar.

These operations are useful when the vector represents a movement offset or a force. They allow you to change the

magnitude of the vector without affecting its direction.

When any vector is divided by its own magnitude, the result is a vector with a magnitude of 1, which is known as a normalized

vector. If a normalized vector is multiplied by a scalar then the magnitude of the result will be equal to that scalar value. This is

useful when the direction of a force is constant but the strength is controllable (eg, the force from a car's wheel always pushes

forwards but the power is controlled by the driver).

Dot Product
The dot product takes two vectors and returns a scalar. This scalar is equal to the magnitudes of the two vectors multiplied

together and the result multiplied by the cosine of the angle between the vectors. When both vectors are normalized, the

cosine essentially states how far the first vector extends in the second's direction (or vice-versa - the order of the parameters

doesn't matter).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

404 of 1131 12/16/2012 10:12 PM

It is easy enough to think in terms of angles and then find the corresponding cosines using a calculator. However, it is useful to

get an intuitive understanding of some of the main cosine values as shown in the diagram below:-

The dot product is a very simple operation that can be used in place of the Mathf.Cos function or the vector magnitude

operation in some circumstances (it doesn't do exactly the same thing but sometimes the effect is equivalent). However,

calculating the dot product function takes much less CPU time and so it can be a valuable optimization.

Cross Product
The other operations are defined for 2D and 3D vectors and indeed vectors with any number of dimensions. The cross

product, by contrast, is only meaningful for 3D vectors. It takes two vectors as input and returns another vector as its result.

The result vector is perpendicular to the two input vectors. The "left hand rule" can be used to remember the direction of the

output vector from the ordering of the input vectors. If the first parameter is matched up to the thumb of the hand and the

second parameter to the forefinger, then the result will point in the direction of the middle finger. If the order of the parameters

is reversed then the resulting vector will point in the exact opposite direction but will have the same magnitude.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

405 of 1131 12/16/2012 10:12 PM

The magnitude of the result is equal to the magnitudes of the input vectors multiplied together and then that value multiplied by

the sine of the angle between them. Some useful values of the sine function are shown below:-

The cross product can seem complicated since it combines several useful pieces of information in its return value. However,

like the dot product, it is very efficient mathematically and can be used to optimize code that would otherwise depend on slow

transcendental functions.

Page last updated: 2011-08-26

DirectionDistanceFromOneObjectToAnother

If one point in space is subtracted from another then the result is a vector that "points" from one object to the other:

// Gets a vector that points from the player's position to the target's.
var heading = target.position - player.position;

As well as pointing in the direction of the target object, this vector's magnitude is equal to the distance between the two

positions. It is common to need a normalized vector giving the direction to the target and also the distance to the target (say for

directing a projectile). The distance between the objects is equal to the magnitude of the heading vector and this vector can be

normalized by dividing it by its magnitude:-

var distance = heading.magnitude;
var direction = heading / distance; // This is now the normalized direction.

This approach is preferable to using the both the magnitude and normalized properties separately, since they are both quite

CPU-hungry (they both involve calculating a square root).

If you only need to use the distance for comparison (for a proximity check, say) then you can avoid the magnitude calculation

altogether. The sqrMagnitude property gives the square of the magnitude value, and is calculated like the magnitude but

without the time-consuming square root operation. Rather than compare the magnitude against a known distance, you can

compare the squared magnitude against the squared distance:-

if (heading.sqrMagnitude < maxRange * maxRange) {
// Target is within range.

}

This is much more efficient than using the true magnitude in the comparison.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

406 of 1131 12/16/2012 10:12 PM

Sometimes, the overground heading to a target is required. For example, imagine a player standing on the ground who needs

to approach a target floating in the air. If you subtract the player's position from the target's then the resulting vector will point

upwards towards the target. This is not suitable for orienting the player's transform since he will also point upwards; what is

really needed is a vector from the player's position to the position on the ground directly below the target. This is easily

obtained by taking the result of the subtraction and setting the Y coordinate to zero:-

var heading = target.position - player.position;
heading.y = 0; // This is the overground heading.

Page last updated: 2011-08-26

ComputingNormalPerpendicularVector

A normal vector (ie, a vector perpendicular to a plane) is required frequently during mesh generation and may also be useful in

path following and other situations. Given three points in the plane, say the corner points of a mesh triangle, it is easy to find

the normal. Pick any of the three points and then subtract it from each of the two other points separately to give two vectors:-

var a: Vector3;
var b: Vector3;
var c: Vector3;

var side1: Vector3 = b - a;
var side2: Vector3 = c - a;

The cross product of these two vectors will give a third vector which is perpendicular to the surface. The "left hand rule" can

be used to decide the order in which the two vectors should be passed to the cross product function. As you look down at the

top side of the surface (from which the normal will point outwards) the first vector should sweep around clockwise to the

second:-

var perp: Vector3 = Vector3.Cross(side1, side2);

The result will point in exactly the opposite direction if the order of the input vectors is reversed.

For meshes, the normal vector must also be normalized. This can be done with the normalized property, but there is another

trick which is occasionally useful. You can also normalize the perpendicular vector by dividing it by its magnitude:-

var perpLength = perp.magnitude;
perp /= perpLength;

It turns out that the area of the triangle is equal to perpLength / 2. This is useful if you need to find the surface area of the

whole mesh or want to choose triangles randomly with probability based on their relative areas.

Page last updated: 2011-08-26

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

407 of 1131 12/16/2012 10:12 PM

AmountVectorMagnitudeInAnotherDirection

A car's speedometer typically works by measuring the rotational speed of one of the unpowered wheels. The car may not be

moving directly forward (it may be skidding sideways, for example) in which case part of the motion will not be in the direction

the speedometer can measure. The magnitude of an object's rigidbody.velocity vector will give the speed in its direction of

overall motion but to isolate the speed in the forward direction, you should use the dot product:-

var fwdSpeed = Vector3.Dot(rigidbody.velocity, transform.forward);

Naturally, the direction can be anything you like but the direction vector must always be normalized for this calculation. Not

only is the result more correct than the magnitude of the velocity, it also avoids the slow square root operation involved in

finding the magnitude.

Page last updated: 2011-08-26

AssetBundles

AssetBundles are files which you can export from Unity to contain assets of your choice. These files use a proprietary

compressed format and can be loaded on demand by your application. This allows you to stream in content, such as models,

textures, audio clips, or even entire scenes separately from the scene in which they will be used. AssetBundles have been

designed to simplify downloading content to your application. AssetBundles can contain any kind of asset type recognized by

Unity, as determined by the filename extension. If you want to include files with custom binary data, they should have the

extension ".bytes". Unity will import these files as TextAssets.

When working with AssetBundles, here's the typical workflow:

During development, the developer prepares AssetBundles and uploads them to a server.

 Building and uploading asset bundles

Building AssetBundles. Asset bundles are created in the editor from assets in your scene. The Asset Bundle building

process is described in more detail in the section for Building AssetBundles

1.

Uploading AssetBundles to external storage. This step does not include the Unity Editor or any other Unity

channels, but we include it for completeness. You can use an FTP client to upload your Asset Bundles to the server of

your choice.

2.

At runtime, on the user's machine, the application will load AssetBundles on demand and operate individual assets within each

AssetBundle as needed.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

408 of 1131 12/16/2012 10:12 PM

 Downloading AssetBundles and loading assets from them

Downloading AssetBundles at runtime from your application. This is done from script within a Unity scene, and

Asset Bundles are loaded from the server on demand. More on that in Downloading Asset Bundles.

1.

Loading objects from AssetBundles. Once the AssetBundle is downloaded, you might want to access its individual

Assets from the Bundle. More on that in Loading Resources from AssetBundles

2.

See also:

Frequently Asked Questions

Building AssetBundles

Downloading Asset Bundles

Loading Asset Bundles

Keeping track of loaded AssetBundles

Storing and loading binary data

Protecting content

Managing Asset Dependencies

Including scripts in AssetBundles
Page last updated: 2012-10-10

Frequently Asked Questions

What are AssetBundles?1.

What are they used for?2.

How do I create an AssetBundle?3.

How do I use an AssetBundle?4.

How do I use AssetBundles in the Editor?5.

How do I cache AssetBundles?6.

Are AssetBundles cross-platform?7.

How are assets in AssetBundles identified8.

Can I reuse my AssetBundles in another game?9.

Will an AssetBundle built now be usable with future versions of Unity?10.

How can I list the objects in an AssetBundle?11.

What are AssetBundles?1.

AssetBundles are a collection of assets, packaged for loading at runtime. With Asset Bundles, you can dynamically load and

unload new content into your application. AssetBundles can be used to implement post-release DLC.

What are they used for?2.

They can be used to reduce the amount of space on disk used by your game, when first deployed. It can also be used to add

new content to an already published game.

How do I create an AssetBundle?3.

To create an AssetBundle you need to use the BuildPipeline editor class. All scripts using Editor classes must be placed in a

folder named Editor, anywhere in the Assets folder. Here is an example of such a script in C#:

+ Show [Creating an AssetBundle] +

How do I use an AssetBundle?4.

There are two main steps involved when working with AssetBundles. The first step is to download the AssetBundle from a

server or disk location. This is done with the WWW class. The second step is to load the Assets from the AssetBundle, to be

used in the application. Here is an example C# script:

+ Show [Using an AssetBundle] +

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

409 of 1131 12/16/2012 10:12 PM

How do I use AssetBundles in the Editor?5.

As creating applications is an iterative process, you will very likely modify your Assets many times, which would require

rebuilding the AssetBundles after every change to be able to test them. Even though it is possible to load AssetBundles in the

Editor, that is not the recommended workflow. Instead, while testing in the Editor you should use the helper function

Resources.LoadAssetAtPath to avoid having to use and rebuild AssetBundles. The function lets you load the Asset as if it

were being loaded from an AssetBundle, but will skip the building process and your Assets are always up to date.

The following is an example helper script, that you can use to load your Assets depending on if you are running in the Editor or

not. Put this code in C# script named AssetBundleLoader.cs:

+ Show [Using an AssetBundle in the Editor] +

How do I cache AssetBundles?6.

You can use WWW.LoadFromCacheOrDownload which automatically takes care of saving your AssetBundles to disk. Be

aware that on the Webplayer you are limited to 50MB in total (shared between all webplayers). You can buy a separate

caching license for your game if you require more space.

Are AssetBundles cross-platform?7.

AssetBundles are compatible between some platforms. Use the following table as a guideline.

Platform compatibility for AssetBundles

 StandaloneWebplayeriOSAndroid

Editor Y Y Y Y

Standalone Y Y

Webplayer Y Y

iOS Y

Android Y

For example, a bundle created while the Webplayer build target was active would be compatible with the editor and with

standalone builds. However, it would not be compatible with apps built for the iOS or Android platforms.

How are assets in AssetBundles identified?8.

When you build AssetBundles the assets are identified internally by their filename without the extension. For example a

Texture located in your Project folder at "Assets/Textures/myTexture.jpg" is identified and loaded using "myTexture" if you use

the default method. You can have more control over this by supplying your own array of ids (strings) for each object when

Building your AssetBundle with BuildPipeline.BuildAssetBundleExplicitAssetNames.

Can I reuse my AssetBundles in another game?9.

AssetBundles allow you to share content between different games. The requirement is that any Assets which are referenced

by GameObjects in your AssetBundle must either be included in the AssetBundle or exist in the application (loaded in the

current scene). To make sure the referenced Assets are included in the AssetBundle when they are built you can pass the

BuildAssetBundleOptions.CollectDependencies option.

Will an AssetBundle built now be usable with future versions of Unity?10.

AssetBundles can contain a structure called a type tree which allows information about asset types to be understood correctly

between different versions of Unity. On desktop platforms, the type tree is included by default but can be disabled by passing

the BuildAssetBundleOptions.DisableWriteTypeTree to the BuildAssetBundle function. Webplayers intrinsically rely on the type

tree and so it is always included (ie, the DisableWriteTypeTree option has no effect). Type trees are never included for mobile

and console asset bundles and so you will need to rebuild these bundles whenever the serialization format changes. This can

happen in new versions of Unity. (Except for bugfix releases) It also happens if you add or remove serialized fields in

monobehaviour's that are included in the asset bundle. When loading an AssetBundle Unity will give you an error message if

the AssetBundle must be rebuilt.

How can I list the objects in an AssetBundle?11.

You can use AssetBundle.LoadAll to retrieve an array containing all objects from the AssetBundle. It is not possible to get a list

of the identifiers directly. A common workaround is to keep a separate TextAsset to hold the names of the assets in the

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

410 of 1131 12/16/2012 10:12 PM

AssetBundle.

back to AssetBundles Intro

Page last updated: 2012-09-13

Building AssetBundles

There are three class methods you can use to build AssetBundles:

BuildPipeline.BuildAssetBundle allows you to build AssetBundles of any type of asset.

BuildPipeline.BuildStreamedSceneAssetBundle is used when you want to include only scenes to be streamed and loaded

as the data becomes available.

BuildPipeline.BuildAssetBundleExplicitAssetNames is the same as BuildPipeline.BuildAssetBundle but has an extra

parameter to specify a custom string identifier (name) for each object.

An example of how to build an AssetBundle
Building asset bundles is done through editor scripting. There is basic example of this in the scripting documentation for

BuildPipeline.BuildAssetBundle.

For the sake of this example, copy and paste the script from the link above into a new C# script called ExportAssetBundles.

This script should be placed in a folder named Editor, so that it works inside the Unity Editor.

Now in the Assets menu, you should see two new menu options.

Build AssetBundle From Selection - Track dependencies. This will build the current object into an asset bundle

and include all of its dependencies. For example if you have a prefab that consists of several hierarchical layers then it

will recursively add all the child objects and components to the asset bundle.

1.

Build AssetBundle From Selection - No dependency tracking. This is the opposite of the previous and will only

include the single asset you have selected.

2.

For this example, you should create a new prefab. First create a new Cube by going to GameObject -> Create Other ->

Cube, which will create a new cube in the Hierarchy View. Then drag the Cube from the Hierarchy View into the Project View,

which will create a prefab of that object.

You should then right click the Cube prefab in the project window and select Build AssetBundle From Selection - Track

dependencies. At this point you will be presented with a window to save the �bundled� asset. If you created a new folder

called "AssetBundles" and saved the cube as Cube.unity3d, your project window will now look something like this.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

411 of 1131 12/16/2012 10:12 PM

At this point you can move the AssetBundle Cube.unity3d elsewhere on your local storage, or upload it to a server of your

choice.

Building AssetBundles in a production enviroment
When first using AssetBundles it may seem enough to manually build them as seen in the previous example. But as a project

grows in size and the number of Assets increases doing this process by hand is not efficient. A better approach is to write a

function that builds all of the AssetBundles for a project. You can for example use a text file that maps Asset files to

AssetBundle files.

back to AssetBundles Intro

Page last updated: 2012-09-04

Downloading AssetBundles

Downloading AssetBundles
This section assumes you already learned how to build asset bundles. If you have not, please see Building AssetBundles

There are two ways to download an AssetBundle

Non-caching: This is done using a creating a new WWW object. The AssetBundles are not cached to Unity�s Cache

folder in the local storage device.

1.

Caching: This is done using the WWW.LoadFromCacheOrDownload call. The AssetBundles are cached to Unity�s

Cache folder in the local storage device. The WebPlayer shared cache allows up to 50 MB of cached AssetBundles.

PC/Mac Standalone applications and iOS/Android applications have a limit of 4 GB. WebPlayer applications that make

use of a dedicated cache are limited to the number of bytes specified in the caching license agreement. Please refer to

the scripting documentation for other platforms.

2.

Here's an example of a non-caching download:

using System;
using UnityEngine;
using System.Collections; class NonCachingLoadExample : MonoBehaviour {
 public string BundleURL;
 public string AssetName;
 IEnumerator Start() {

 // Download the file from the URL. It will not be saved in the Cache
 using (WWW www = new WWW(BundleURL)) {

 yield return www;
 if (www.error != null)

 throw new Exception("WWW download had an error:" + www.error);
 AssetBundle bundle = www.assetBundle;
 if (AssetName == "")

 Instantiate(bundle.mainAsset);
 else

 Instantiate(bundle.Load(AssetName));
 // Unload the AssetBundles compressed contents to conserve memory
 bundle.Unload(false);

 }

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

412 of 1131 12/16/2012 10:12 PM

 }
}

The recommended way to download AssetBundles is to use WWW.LoadFromCacheOrDownload. For example:

using System;
using UnityEngine;
using System.Collections;

public class CachingLoadExample : MonoBehaviour {
public string BundleURL;
public string AssetName;
public int version;

void Start() {
StartCoroutine (DownloadAndCache());

}

IEnumerator DownloadAndCache (){
// Wait for the Caching system to be ready
while (!Caching.ready)

yield return null;

// Load the AssetBundle file from Cache if it exists with the same version or download and store it in the cache
using(WWW www = WWW.LoadFromCacheOrDownload (BundleURL, version)){

yield return www;
if (www.error != null)

throw new Exception("WWW download had an error:" + www.error);
AssetBundle bundle = www.assetBundle;
if (AssetName == "")

Instantiate(bundle.mainAsset);
else

Instantiate(bundle.Load(AssetName));
 // Unload the AssetBundles compressed contents to conserve memory
 bundle.Unload(false);

}
}

}

When you access the .assetBundle property, the downloaded data is extracted and the AssetBundle object is created. At

this point, you are ready to load the objects contained in the bundle. The second parameter passed to

LoadFromCacheOrDownload specifies which version of the AssetBundle to download. If the AssetBundle doesn't exist in the

cache or has a version lower than requested, LoadFromCacheOrDownload will download the AssetBundle. Otherwise the

AssetBundle will be loaded from cache.

Putting it all together

Now that the components are in place you can build a scene that will allow you to load your AssetBundle and display the

contents on screen.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

413 of 1131 12/16/2012 10:12 PM

Final project structure

First create an empty game object by going to GameObject->CreateEmpty. Drag the CachingLoadExample script onto the

empty game object you just created. Then type the the URL of your AssetBundle in the BundleURL field. As we have placed

this in the project directory you can copy the file directory location and add the prefix file://, for example file://C:

/UnityProjects/AssetBundlesGuide/Assets/AssetBundles/Cube.unity3d

You can now hit play in the Editor and you should see the Cube prefab being loaded from the AssetBundle.

Loading AssetBundles in the Editor

When working in the Editor requiring AssetBundles to be built and loaded can slow down the development process. For

instance, if an Asset from an AssetBundle is modified this will then require the AssetBundle to be rebuilt and in a production

environment it is most likely that all AssetBundles are built together and therefore making the process of updating a single

AssetBundle a lengthy operation. A better approach is to have a separate code path in the Editor that will load the Asset

directly instead of loading it from an AssetBundle. To do this it is possible to use Resources.LoadAssetAtPath (Editor only).

// C# Example
// Loading an Asset from disk instead of loading from an AssetBundle
// when running in the Editor
using System.Collections;
using UnityEngine;

class LoadAssetFromAssetBundle : MonoBehaviour
{

public Object Obj;

public IEnumerator DownloadAssetBundle<T>(string asset, string url, int version) where T : Object {
Obj = null;

#if UNITY_EDITOR
Obj = Resources.LoadAssetAtPath("Assets/" + asset, typeof(T));
yield return null;

#else
// Wait for the Caching system to be ready
while (!Caching.ready)

yield return null;

// Start the download
using(WWW www = WWW.LoadFromCacheOrDownload (url, version)){

yield return www;
if (www.error != null)

 throw new Exception("WWW download:" + www.error);
AssetBundle assetBundle = www.assetBundle;
Obj = assetBundle.Load(asset, typeof(T));
// Unload the AssetBundles compressed contents to conserve memory
bundle.Unload(false);

}
#endif

}
}

back to AssetBundles Intro

Page last updated: 2012-08-16

Loading resources from AssetBundles

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

414 of 1131 12/16/2012 10:12 PM

Loading and unloading objects from an AssetBundle
Having created an AssetBundle object from the downloaded data, you can load the objects contained in it using three different

methods:

AssetBundle.Load will load an object using its name identifier as a parameter. The name is the one visible in the Project

view. You can optionally pass an object type as an argument to the Load method to make sure the object loaded is of a

specific type.

AssetBundle.LoadAsync works the same as the Load method described above but it will not block the main thread while

the asset is loaded. This is useful when loading large assets or many assets at once to avoid pauses in your application.

AssetBundle.LoadAll will load all the objects contained in your AssetBundle. As with AssetBundle.Load, you can optionally

filter objects by their type.

To unload assets you need to use AssetBundle.Unload. This method takes a boolean parameter which tells Unity whether to

unload all data (including the loaded asset objects) or only the compressed data from the downloaded bundle. If your

application is using some objects from the AssetBundle and you want to free some memory you can pass false to unload the

compressed data from memory. If you want to completely unload everything from the AssetBundle you should pass true which

will destroy the Assets loaded from the AssetBundle.

Loading objects from an AssetBundles asynchronously
You can use the AssetBundle.LoadAsync method to load objects Asynchronously and reduce the likelihood of having hiccups

in your application.

using UnityEngine;

// Note: This example does not check for errors. Please look at the example in the DownloadingAssetBundles section for more
IEnumerator Start () {

// Start a download of the given URL
WWW www = WWW.LoadFromCacheOrDownload (url, 1);

// Wait for download to complete
yield return www;

// Load and retrieve the AssetBundle
AssetBundle bundle = www.assetBundle;

// Load the object asynchronously
AssetBundleRequest request = bundle.LoadAsync ("myObject", typeof(GameObject));

// Wait for completion
yield return request;

// Get the reference to the loaded object
GameObject obj = request.asset as GameObject;

 // Unload the AssetBundles compressed contents to conserve memory
 bundle.Unload(false);
}

back to AssetBundles Intro

Page last updated: 2012-08-14

Keeping track of loaded AssetBundles

Keeping Track of loaded AssetBundles
Unity will only allow you to have a single instance of a particular AssetBundle loaded at one time in your application. What this

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

415 of 1131 12/16/2012 10:12 PM

means is that you can�t retrieve an AssetBundle from a WWW object if the same one has been loaded previously and has

not been unloaded. In practical terms it means that when you try to access a previously loaded AssetBundle like this:

AssetBundle bundle = www.assetBundle;

the following error will be thrown

Cannot load cached AssetBundle. A file of the same name is already loaded from another

AssetBundle

and the assetBundle property will return null. Since you can�t retrieve the AssetBundle during the second download if the first

one is still loaded, what you need to do is to either unload the AssetBundle when you are no longer using it, or maintain a

reference to it and avoid downloading it if it is already in memory. You can decide the right course of action based on your

needs, but our recommendation is that you unload the AssetBundle as soon as you are done loading objects. This will free the

memory and you will no longer get an error about loading cached AssetBundles.

If you do want to keep track of which AssetBundles you have downloaded, you could use a wrapper class to help you manage

your downloads like the following:

using UnityEngine;
using System;
using System.Collections;
using System.Collections.Generic;

static public class AssetBundleManager {
 // A dictionary to hold the AssetBundle references
 static private Dictionary<string, AssetBundleRef> dictAssetBundleRefs;
 static AssetBundleManager (){
 dictAssetBundleRefs = new Dictionary<string, AssetBundleRef>();
 }
 // Class with the AssetBundle reference, url and version
 private class AssetBundleRef {
 public AssetBundle assetBundle = null;
 public int version;
 public string url;
 public AssetBundleRef(string strUrlIn, int intVersionIn) {
 url = strUrlIn;
 version = intVersionIn;
 }
 };
 // Get an AssetBundle
 public static AssetBundle getAssetBundle (string url, int version){
 string keyName = url + version.ToString();
 AssetBundleRef abRef;
 if (dictAssetBundleRefs.TryGetValue(keyName, out abRef))
 return abRef.assetBundle;
 else
 return null;
 }
 // Download an AssetBundle
 public static IEnumerator downloadAssetBundle (string url, int version){
 string keyName = url + version.ToString();
 if (dictAssetBundleRefs.ContainsKey(keyName))
 yield return null;
 else {
 using(WWW www = WWW.LoadFromCacheOrDownload (url, version)){
 yield return www;
 if (www.error != null)
 throw new Exception("WWW download:" + www.error);
 AssetBundleRef abRef = new AssetBundleRef (url, version);

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

416 of 1131 12/16/2012 10:12 PM

 abRef.assetBundle = www.assetBundle;
 dictAssetBundleRefs.Add (keyName, abRef);
 }
 }
 }
 // Unload an AssetBundle
 public static void Unload (string url, int version, bool allObjects){
 string keyName = url + version.ToString();
 AssetBundleRef abRef;
 if (dictAssetBundleRefs.TryGetValue(keyName, out abRef)){
 abRef.assetBundle.Unload (allObjects);
 abRef.assetBundle = null;
 dictAssetBundleRefs.Remove(keyName);
 }
 }
}

An example usage of the class would be:

using UnityEditor;

class ManagedAssetBundleExample : MonoBehaviour {
 public string url;
 public int version;
 AssetBundle bundle;
 void OnGUI (){
 if (GUILayout.Label ("Download bundle"){
 bundle = AssetBundleManager.getAssetBundle (url, version);
 if(!bundle)
 StartCoroutine (DownloadAB());
 }
 }
 IEnumerator DownloadAB (){
 yield return StartCoroutine(AssetBundleManager.downloadAssetBundle (url, version));
 bundle = AssetBundleManager.getAssetBundle (url, version);
 }
 void OnDisable (){
 AssetBundleManager.Unload (url, version);
 }
}

Please bear in mind, that the AssetBundleManager class in this example is static, and any AssetBundles that you are

referencing will not be destroyed when loading a new scene. Use this class as a guide but as recommended initially it is best if

you unload AssetBundles right after they have been used. You can always clone a previously Instantiated object, removing the

need to load the AssetBundles again.

back to AssetBundles Intro

Page last updated: 2012-05-11

Storing and loading binary data

The first step is to save your binary data file with the ".bytes" extension. Unity will treat this file as a TextAsset. As a TextAsset

the file can be included when you build your AssetBundle. Once you have downloaded the AssetBundle in your application

and loaded the TextAsset object, you can use the .bytes property of the TextAsset to retrieve your binary data.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

417 of 1131 12/16/2012 10:12 PM

string url = "http://www.mywebsite.com/mygame/assetbundles/assetbundle1.unity3d";
IEnumerator Start () {
 // Start a download of the given URL
 WWW www = WWW.LoadFromCacheOrDownload (url, 1);

 // Wait for download to complete
 yield return www;

 // Load and retrieve the AssetBundle
 AssetBundle bundle = www.assetBundle;

 // Load the TextAsset object
 TextAsset txt = bundle.Load("myBinaryAsText", typeof(TextAsset)) as TextAsset;

 // Retrieve the binary data as an array of bytes
 byte[] bytes = txt.bytes;
}

back to AssetBundles Intro

Page last updated: 2012-05-11

Protecting content

Whilst it is possible to use encryption to secure your Assets as they are being transmitted, once the data is in the hands of the

client it is possible to find ways to grab the content from them. For instance, there are tools out there which can record 3D data

at the driver level, allowing users to extract models and textures as they are sent to the GPU. For this reason, our general

stance is that if users are determined to extract your assets, they will be able to.

However, it is possible for you to use your own data encryption on AssetBundle files if you still want to.

One way to do this is making use of the TextAsset type to store your data as bytes. You can encrypt your data files and save

them with a .bytes extension, which Unity will treat as a TextAsset type. Once imported in the Editor the files as TextAssets can

be included in your AssetBundle to be placed in a server. In the client side the AssetBundle would be downloaded and the

content decrypted from the bytes stored in the TextAsset. With this method the AssetBundles are not encrypted, but the data

stored which is stored as TextAssets is.

string url = "http://www.mywebsite.com/mygame/assetbundles/assetbundle1.unity3d";
IEnumerator Start () {
 // Start a download of the encrypted assetbundle
 WWW www = new WWW.LoadFromCacheOrDownload (url, 1);

 // Wait for download to complete
 yield return www;

 // Load the TextAsset from the AssetBundle
 TextAsset textAsset = www.assetBundle.Load("EncryptedData", typeof(TextAsset));

 // Get the byte data
 byte[] encryptedData = textAsset.bytes;

 // Decrypt the AssetBundle data
 byte[] decryptedData = YourDecryptionMethod(encryptedData);

 // Use your byte array. The AssetBundle will be cached
}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

418 of 1131 12/16/2012 10:12 PM

An alternative approach is to fully encrypt the AssetBundles from source and then download them using the WWW class. You

can give them whatever file extension you like as long as your server serves them up as binary data. Once downloaded you

would then use your decryption routine on the data from the .bytes property of your WWW instance to get the decrypted

AssetBundle file data and create the AssetBundle from memory using AssetBundle.CreateFromMemory.

string url = "http://www.mywebsite.com/mygame/assetbundles/assetbundle1.unity3d";
IEnumerator Start () {
 // Start a download of the encrypted assetbundle
 WWW www = new WWW (url);

 // Wait for download to complete
 yield return www;

 // Get the byte data
 byte[] encryptedData = www.bytes;

 // Decrypt the AssetBundle data
 byte[] decryptedData = YourDecryptionMethod(encryptedData);

 // Create an AssetBundle from the bytes array
 AssetBundle bundle = AssetBundle.CreateFromMemory(decryptedData);

 // You can now use your AssetBundle. The AssetBundle is not cached.
}

The advantage of this latter approach over the first one is that you can use any method (except

AssetBundles.LoadFromCacheOrDownload) to transmit your bytes and the data is fully encrypted - for example sockets in a

plugin. The drawback is that it won't be Cached using Unity's automatic caching. You can in all players except the WebPlayer

store the file manually on disk and load it using AssetBundles.CreateFromFile

A third approach would combine the best of both approaches and store an AssetBundle itself as a TextAsset, inside another

normal AssetBundles. The unencrypted AssetBundle containing the encrypted one would be cached. The original AssetBundle

could then be loaded into memory, decrypted and instantiated using AssetBundle.CreateFromMemory.

string url = "http://www.mywebsite.com/mygame/assetbundles/assetbundle1.unity3d";
IEnumerator Start () {
 // Start a download of the encrypted assetbundle
 WWW www = new WWW.LoadFromCacheOrDownload (url, 1);

 // Wait for download to complete
 yield return www;

 // Load the TextAsset from the AssetBundle
 TextAsset textAsset = www.assetBundle.Load("EncryptedData", typeof(TextAsset));

 // Get the byte data
 byte[] encryptedData = textAsset.bytes;

 // Decrypt the AssetBundle data
 byte[] decryptedData = YourDecryptionMethod(encryptedData);

 // Create an AssetBundle from the bytes array
 AssetBundle bundle = AssetBundle.CreateFromMemory(decryptedData);

 // You can now use your AssetBundle. The wrapper AssetBundle is cached
}

back to AssetBundles Intro

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

419 of 1131 12/16/2012 10:12 PM

Page last updated: 2012-09-04

Managing Asset Dependencies

Any given asset in a bundle may depend on other assets. For example, a model may incorporate materials which in turn make

use of textures and shaders. It is possible to include all an asset's dependencies along with it in its bundle. However, several

assets from different bundles may all depend on a common set of other assets (eg, several different models of buildings may

use the same brick texture). If a separate copy of a shared dependency is included in each bundle that has objects using it,

then redundant instances of the assets will be created when the bundles are loaded. This will result in wasted memory.

To avoid such wastage, it is possible to separate shared dependencies out into a separate bundle and simply reference them

from any bundles with assets that need them. First, the referencing feature needs to be enabled with a call to

BuildPipeline.PushAssetDependencies. Then, the bundle containing the referenced dependencies needs to be built. Next,

another call to PushAssetDependencies should be made before building the bundles that reference the assets from the first

bundle. Additional levels of dependency can be introduced using further calls to PushAssetDependencies. The levels of

reference are stored on a stack, so it is possible to go back a level using the corresponding

BuildPipeline.PopAssetDependencies function. The push and pop calls need to be balanced including the initial push that

happens before building.

At runtime, you need to load a bundle containing dependencies before any other bundle that references them. For example,

you would need to load a bundle of shared textures before loading a separate bundle of materials that reference those

textures.

Note that if you anticipate needing to rebuild asset bundles that are part of a dependency chain then you should build them

with the BuildAssetBundleOptions.DeterministicAssetBundle option enabled. This guarantees that the internal ID values used

to identify assets will be the same each time the bundle is rebuilt.

back to AssetBundles Intro

Page last updated: 2012-05-11

Including scripts in AssetBundles

AssetBundles can contain scripts as TextAssets but as such they will not be actual executable code. If you want to include

code in your AssetBundles that can be executed in your application it needs to be pre-compiled into an assembly and loaded

using the Mono Reflection class (Note: Reflection is not available on iOS). You can create your assemblies in any normal C#

IDE (e.g. Monodevelop, Visual Studio) or any text editor using the mono/.net compilers.

string url = "http://www.mywebsite.com/mygame/assetbundles/assetbundle1.unity3d";
IEnumerator Start () {
 // Start a download of the given URL
 WWW www = WWW.LoadFromCacheOrDownload (url, 1);

 // Wait for download to complete
 yield return www;

 // Load and retrieve the AssetBundle
 AssetBundle bundle = www.assetBundle;

 // Load the TextAsset object
 TextAsset txt = bundle.Load("myBinaryAsText", typeof(TextAsset)) as TextAsset;

 // Load the assembly and get a type (class) from it
 var assembly = System.Reflection.Assembly.Load(txt.bytes);

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

420 of 1131 12/16/2012 10:12 PM

 var type = assembly.GetType("MyClassDerivedFromMonoBehaviour");

 // Instantiate a GameObject and add a component with the loaded class
 GameObject go = new GameObject();
 go.AddComponent(type);
}

back to AssetBundles Intro

Page last updated: 2012-05-11

Graphics Features

HDR (High Dynamic Range) Rendering in Unity

Rendering Paths

Linear Lighting (Pro Only)

Level of Detail (Pro Only)

Shaders

Shaders: ShaderLab & Fixed Function shaders

Shaders: Vertex and Fragment Programs

Using DirectX 11 in Unity 4

Compute Shaders

Graphics Emulation
Page last updated: 2012-09-04

HDR

In standard rendering, the red, green and blue values for a pixel are each represented by a fraction in the range 0..1, where 0

represents zero intensity and 1 represents the maximum intensity for the display device. While this is straightforward to use, it

doesn't accurately reflect the way that lighting works in a real life scene. The human eye tends to adjust to local lighting

conditions, so an object that looks white in a dimly lit room may in fact be less bright than an object that looks grey in full

daylight. Additionally, the eye is more sensitive to brightness differences at the low end of the range than at the high end.

More convincing visual effects can be achieved if the rendering is adapted to let the ranges of pixel values more accurately

reflect the light levels that would be present in a real scene. Although these values will ultimately need to be mapped back to

the range available on the display device, any intermediate calculations (such as Unity's image effects) will give more authentic

results. Allowing the internal representation of the graphics to use values outside the 0..1 range is the essence of High

Dynamic Range (HDR) rendering.

Working with HDR
HDR is enabled separately for each camera using a setting on the Camera component:-

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

421 of 1131 12/16/2012 10:12 PM

When HDR is active, the scene is rendered into an HDR image buffer which can accommodate pixel values outside the 0..1

range. This buffer is then postprocessed using image effects such as HDR bloom. The tonemapping image effect is what

converts the HDR image into the standard low dynamic range (LDR) image to be sent for display. The conversion to LDR must

be applied at some point in the image effect pipeline but it need not be the final step if LDR-only image effects are to be

applied afterwards. For convenience, some image effects can automatically convert to LDR after applying an HDR effect (see

Scripting below).

Tonemapping

Tonemapping is the process of mapping HDR values back into the LDR range. There are many different techniques, and what

is good for one project may not be the best for another. A variety of tonemapping image effects have been included in Unity. To

use them select Assets -> Import Package -> Image Effects (Pro Only) select the camera in the scene then select

Component -> Image Effects ->ToneMapping a detailed description of the tonemapping types can be found in the image

effects documentation.

An exceptionally bright scene rendered in HDR. Without tonemapping, most pixels seem out of range.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

422 of 1131 12/16/2012 10:12 PM

The same scene as above. But this time, the tonemapping effect is bringing most intensities into a more plausible range.

Note that adaptive tonemapping can even blend between above and this image thus simulating the adaptive nature of

capturing media (e.g. eyes, cameras).

HDR Bloom and Glow

Using HDR allows for much more control in post processing. LDR bloom has an unfortunate side effect of blurring many areas

of a scene even if their pixel intensity is less than 1.0. By using HDR it is possible to only bloom areas where the intensity is

greater than one. This leads to a much more desiarable outcome with only super bright elements of a scene bleeding into

neighboring pixels. The built in 'Bloom and Lens Flares' image effect now also supports HDR. To attach it to a camera select

Assets -> Import Package -> Image Effects (Pro Only) select the camera in the scene then select Component -> Image

Effects ->Bloom a detailed description of the 'Bloom' effect can be found in the image effects documentation.

The car window sun reflections in this scene have intensity values far bigger than 1.0. Bloom can only pick up and glow

these parts if the camera is HDR enabled thus capturing these intensities.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

423 of 1131 12/16/2012 10:12 PM

The car window will remain without glow if the camera is not HDR enabled. Only way to add glow is to lower the intensity

threshhold but then unwanted parts of the image will start glowing as well.

Advantages of HDR
Colors not being lost in high intensity areas

Better bloom and glow support

Reduction of banding in low frequency lighting areas

Disadvantages of HDR
Uses Floating Point buffers (rendering is slower and requires more VRAM)

No hardware anti-aliasing support (but you can use Anti-Aliasing image effect to smooth out the edges)

Not supported on all hardware

Usage notes

Forward Rendering

In forward rendering mode HDR is only supported if you have an image effect present. This is due to performance

considerations. If you have no image effect present then no tone mapping will exist and intensity truncation will occur. In this

situation the scene will be rendered directly to the backbuffer where HDR is not supported.

Deferred Rendering

In HDR mode the light prepass buffer is also allocated as a floating point buffer. This reduces banding in the lighting buffer.

HDR is supported in deferred rendering even if no image effects are present.

Scripting

The ImageEffectTransformsToLDR attribute can be added to an image effect script to indicate that the target buffer should

be in LDR instead of HDR. Essentially, this means that a script can automatically convert to LDR after applying its HDR image

effect.

Page last updated: 2012-09-05

RenderingPaths

Unity supports different Rendering Paths. You should choose which one you use depending on your game content and target

platform / hardware. Different rendering paths have different features and performance characteristics that mostly affect Lights

and Shadows.

The rendering Path used by your project is chosen in Player Settings. Additionally, you can override it for each Camera.

If the graphics card can't handle a selected rendering path, Unity will automatically use a lower fidelity one. So on a GPU that

can't handle Deferred Lighting, Forward Rendering will be used. If Forward Rendering is not supported, Vertex Lit will be used.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

424 of 1131 12/16/2012 10:12 PM

Deferred Lighting
Deferred Lighting is the rendering path with the most lighting and shadow fidelity. It is best used if you have many realtime

lights. It requires a certain level of hardware support, is for Unity Pro only and is not supported on Mobile Devices.

For more details see the Deferred Lighting page.

Forward Rendering
Forward is a shader-based rendering path. It supports per-pixel lighting (including normal maps & light Cookies) and realtime

shadows from one directional light. In the default settings, a small number of the brightest lights are rendered in per-pixel

lighting mode. The rest of the lights are calculated at object vertices.

For more details see the Forward Rendering page.

Vertex Lit
Vertex Lit is the rendering path with the lowest lighting fidelity and no support for realtime shadows. It is best used on old

machines or limited mobile platforms.

For more details see the Vertex Lit page.

Rendering Paths Comparison
 Deferred Lighting Forward Rendering Vertex Lit

Features

Per-pixel lighting (normal maps, light

cookies)

Yes Yes -

Realtime shadows Yes 1 Directional Light -

Dual Lightmaps Yes - -

Depth&Normals Buffers Yes Additional render passes -

Soft Particles Yes - -

Semitransparent objects - Yes Yes

Anti-Aliasing - Yes Yes

Light Culling Masks Limited Yes Yes

Lighting Fidelity All per-pixel Some per-pixel All per-vertex

Performance

Cost of a per-pixel Light Number of pixels it

illuminates

Number of pixels * Number of objects it

illuminates

-

Platform Support

PC (Windows/Mac) Shader Model 3.0+ Shader Model 2.0+ Anything

Mobile (iOS/Android) - OpenGL ES 2.0 OpenGL ES 2.0 &

1.1

Consoles 360, PS3 360, PS3 -
Page last updated: 2010-09-07

Linear Lighting

overview
Linear lighting refers to the process of illuminating a scene with all inputs being linear. Normally textures exist with gamma

pre-applied to them this means that when the textures are sampled in a material that they are non linear. If these textures are

used in the standard lighting equations it will lead to the result from the equation being incorrect as they expect all input to be

linearized before use.

Linear lighting refers to the process of ensuring that both inputs and outputs of a shader are in the correct color space, this

results in more correct lighting.

Existing (Gamma) Pipeline
In the existing rendering pipeline all colors and textures are sampled in gamma space, that is gamma correction is not removed

from images or colors before they are used in a shader. Due to this a situation arises where the inputs to the shader are in

gamma space, the lighting equation uses these inputs as if they were in linear space and finally no gamma correction is

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

425 of 1131 12/16/2012 10:12 PM

applied to the final pixel. Much of the time this looks acceptable as the two wrongs go some way to cancelling each other out.

But it is not correct.

Linear Lighting Pipeline
If linear lighting is enabled inputs to the shader program are supplied with the gamma correction removed from them. For

colors this conversion is applied implicitly if you are in linear space. Textures are sampled using hardware sRGB reads, the

source texture is supplied in gamma space and then on sampling in the graphics hardware the result is converted

automatically. These inputs are then supplied to the shader and lighting occurs as it normally would. The resultant value is

then written to the framebuffer. This value will either be gamma corrected and written to the framebuffer, of left in linear space

for later gamma correction; this depends on the current rendering configuration.

Differences Between Linear and Gamma Lighting
When using linear lighting input values to the lighting equations are different than in gamma space. This means that as lights

striking surfaces will have a different response curve to what the existing Unity rendering pipeline has.

Light Falloff

The falloff from distance and normal based lighting is changed in two ways. Firstly when rendering in linear mode the

additional gamma correct that is performed will make light radius' appear larger. Secondly lighting edges will also be harsher.

This more correctly models lighting intensity falloff on surfaces.

Linear Intensity Response

When you are using gamma space lighting the colors and textures that are supplied to a shader have a gamma correction

applied to them. When they are used in a shader the colors of high luminance are actually brighter then they should be for

linear lighting. This means that as light intensity increases the surface will get brighter in a non linear way. This leads to

lighting that can be too bright in many places, and can also give models and scenes a washed out feel. When you are using

linear lighting, as light intensity increases the response from the surface remains linear. This leads to much more realistic

surface shading and a much nicer color response in the surface.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

426 of 1131 12/16/2012 10:12 PM

Infinite, 3D Head Scan by Lee Perry-Smith is licensed under a Creative Commons Attribution 3.0 Unported License. Available from: http://www.ir-ltd.net

/infinite-3d-head-scan-released

Linear and Gamma Blending

When performing blending into the framebuffer the blending occurs in the color space or the framebuffer. When using gamma

rendering this means that non linear colors get blended together. This is incorrect. When using linear space rendering

blending occurs in linear space, this is correct and leads to expected results.

Using Linear Lighting
Linear lighting results in a different look to the rendered scene. If you author a project for linear lighting it will most likely not

look correct if you change to gamma lighting. Because of this if you move to linear lighting from gamma lighting it may take

some time to update the project so that it looks as good as before the switch. That being said enabling linear lighting in Unity is

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

427 of 1131 12/16/2012 10:12 PM

quite simple. The feature is implemented on a per project level and is exposed in the Player Settings which can be located at

Edit -> Project Settings -> Player -> Other Settings

Lightmapping

When you are using linear lighting all lighting and textures are linearized, this means that the values that are passed to the

lightmapper also need to be modified. When you switch between linear lighting and gamma lighting or back you will need to

rebake lightmaps. The Unity lightmapping interface will warn you when the lightmaps are in the incorrect color space.

Supported Platforms

Linear rendering is not supported on all platforms. The build targets that currently support the feature are:

Windows & Mac (editor, standalone, web player)

Xbox 360

PlayStation 3

Even though these targets support linear lighting, it is not guaranteed that the graphics hardware on the device will be able to

render the scene properly. You can check the desired color space and the active supported color space by looking at

QualitySettings.desiredColorSpace and QualitySettings.activeColorSpace if the desired color space is linear but the

active color space is gamma then the player has fallen back to gamma space. This can be used to show a warning box telling

the user that the application will not look correct for them or to force an exit from the player.

Linear and Non HDR

When not using HDR a special framebuffer type is used that supports sRGB read and sRGB write (Degamma on read,

Gamma on write). This means that just like a texture the values in the framebuffer are gamma corrected. When this framebuffer

is used for blending or bound as texture the values have the gamma removed before being used. When these buffers are

written to the value that is being written is converted from linear space to gamma space. If you are rendering in linear mode, all

post process effects will have their source and target buffers created with sRGB read and write enabled so that post process

and post process blending occurs in linear space.

Linear and HDR

When using HDR, rendering is performed into floating point buffers. These buffers have enough resolution to not require

conversion to an from gamma space whenever the buffer is accessed, this means that when rendering in linear mode the

render targets you use will store the colors in linear space. This means that all blending and post process effects will implicitly

be performed in linear space. When the the backbuffer is written to, gamma correction is applied.

GUI and Linear Authored Textures

When rendering Unity GUI we do not perform the rendering in linear space. This means that GUI textures should not have their

gamma removed on read. This can be achieved in two ways.

Set the texture type to GUI in the texture importer

Check the 'Bypass sRGB Sampling' checkbox int the advanced texture importer

It is also important that lookup textures and other textures which are authored to have their RGB values to mean something

specific should bypass sRGB sampling.

This will force the sampled texture to not have gamma removed before being used by the graphics hardware. This is also

useful for other texture types such as masks where you wish the value that is passed to the shader to be the exact same value

that is in the authored texture.

Page last updated: 2012-01-18

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

428 of 1131 12/16/2012 10:12 PM

Level Of Detail

As your scenes get larger, performance becomes a bigger consideration. One of the ways to manage this is to have meshes

with different levels of detail depending on how far the camera is from the object. This is called Level of Detail (abbreviated

as LOD).

Here's one of the ways to set up an object with different LODs.

Create an empty Game Object in the scene1.

Create 2 versions of the mesh, a high-res mesh (for L0D:0, when camera is the closest), and a low-res mesh (for

L0D:1, when camera is further away)

2.

Add a LODGroup component to this object (Component->Rendering->LOD Group)3.

Drag in the object with the high-res mesh onto the first Renderers box for L0D:0. Say yes to the "Reparent game

objects?" dialog

4.

Drag in the object with the low-res mesh onto the first Renderers box for LOD:1. Say yes to the "Reparent game

objects?" dialog

5.

Right Click on LOD:2 and remove it.6.

At this point the empty object should contain both versions of the mesh and "know" which mesh to show depending on how far

away the camera is.

You can preview the effect of this by dragging the camera icon left and right in the window for the LODGroup component.

camera at LOD 0

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

429 of 1131 12/16/2012 10:12 PM

camera at LOD 1

In the Scene View, you should be able to see

Percentage of the view this object occupies

What LOD is currently being displayed

The number of triangles

LOD-based naming conventions in the asset import pipeline
In order to simplify setup of LODs, Unity has a naming convention for models that are being imported.

Simply create your meshes in your modelling tool with names ending with _LOD0, _LOD1, _LOD2, etc., and the LOD group

with appropriate settings will be created for you.

Note that the convention assumes that the LOD 0 is the highest resolution model.

Setting up LODs for different platforms
You can tweak your LOD settings for each platform in Quality Settings, in particular the properties of LOD bias and Maximum

LOD Level.

Utilities
Here are some options that help you work with LODs

Recalculate

Bounds

If there is new geometry added to the LODGroup that is not reflected in the bounding volume then click this to

update the bounds. One example where this is needed is when one of the geometries is part of a prefab, and

new geometry is added to that prefab. Geometry added directly to the LODGroup will automatically update the

bounds.

Update

Lightmaps

Updates the Scale in Lightmap property in the lightmaps based on the LOD level boundaries.

Upload to

Importer

Uploads the LOD level boundaries to the importer.

Page last updated: 2012-02-01

Shaders

All rendering in Unity is done with Shaders - small scripts that let you configure the how the graphics hardware is set up for

rendering. Unity ships with 60+ built-in shaders (documented in the Built-in Shader Guide). You can extend this by making your

own shaders.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

430 of 1131 12/16/2012 10:12 PM

Shaders in Unity can be written in one of three different ways:

Surface Shaders

Surface Shaders are your best option if your shader needs to be affected by lights and shadows. Surface shaders make it

easy to write complex shaders in a compact way - it's a higher level of abstraction for interaction with Unity's lighting pipeline.

Most surface shaders automatically support both forward and deferred lighting. You write surface shaders in a couple of lines

of Cg/HLSL and a lot more code gets auto-generated from that.

Do not use surface shaders if your shader is not doing anything with lights. For Image Effects or many special-effect shaders,

surface shaders are a suboptimal option, since they will do a bunch of lighting calculations for no good reason!

Vertex and Fragment Shaders

Vertex and Fragment Shaders will be required, if your shader doesn't need to interact with lighting, or if you need some very

exotic effects that the surface shaders can't handle. Shader programs written this way are the most flexible way to create the

effect you need (even surface shaders are automatically converted to a bunch of vertex and fragment shaders), but that comes

at a price: you have to write more code and it's harder to make it interact with lighting. These shaders are written in Cg/HLSL

as well.

Fixed Function Shaders

Fixed Function Shaders need to be written for old hardware that doesn't support programmable shaders. You will probably

want to write fixed function shaders as an n-th fallback to your fancy fragment or surface shaders, to make sure your game still

renders something sensible when run on old hardware or simpler mobile platforms. Fixed function shaders are entirely written

in a language called ShaderLab, which is similar to Microsoft's .FX files or NVIDIA's CgFX.

ShaderLab
Regardless of which type you choose, the actual meat of the shader code will always be wrapped in ShaderLab, which is used

to organize the shader structure. It looks like this:

Shader "MyShader" {
 Properties {
 _MyTexture ("My Texture", 2D) = "white" { }
 // other properties like colors or vectors go here as well
 }
 SubShader {
 // here goes the 'meat' of your
 // - surface shader or
 // - vertex and fragment shader or
 // - fixed function shader
 }
 SubShader {
 // here goes a simpler version of the SubShader above that can run on older graphics cards
 }
}

We recommend that you start by reading about some basic concepts of the ShaderLab syntax in the ShaderLab reference and

then move on to the tutorials listed below.

The tutorials include plenty of examples for the different types of shaders. For even more examples of surface shaders in

particular, you can get the source of Unity's built-in shaders from the Resources section. Unity's Image Effects package

contains a lot of interesting vertex and fragment shaders.

Read on for an introduction to shaders, and check out the shader reference!

Tutorial: ShaderLab & Fixed Function Shaders

Tutorial: Vertex and Fragment Shaders

Surface Shaders
Page last updated: 2012-08-13

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

431 of 1131 12/16/2012 10:12 PM

ShaderTut1

This tutorial will teach you how you can create your own shaders and make your game look a lot better!

Unity is equipped with a powerful shading and material language called ShaderLab. In style it is similar to CgFX and Direct3D

Effects (.FX) languages - it describes everything needed to display a Material.

Shaders describe properties that are exposed in Unity's Material Inspector and multiple shader implementations (SubShaders)

targeted at different graphics hardware capabilities, each describing complete graphics hardware rendering state, fixed

function pipeline setup or vertex/fragment programs to use. Vertex and fragment programs are written in the high-level

Cg/HLSL programming language.

In this tutorial we describe how to write shaders in using both fixed function and programmable pipelines. We assume that the

reader has a basic understanding of OpenGL or Direct3D render states, fixed function and programmable pipelines and has

some knowledge of Cg, HLSL or GLSL programming languages. Some shader tutorials and documentation can be found on

NVIDIA and AMD developer sites.

Getting started
To create a new shader, either choose Assets->Create->Shader from the menubar, or duplicate an existing shader, and work

from that. The new shader can be edited by double-clicking it in the Project View.

We'll start with a very basic shader:

Shader "Tutorial/Basic" {
 Properties {
 _Color ("Main Color", Color) = (1,0.5,0.5,1)
 }
 SubShader {
 Pass {
 Material {
 Diffuse [_Color]
 }
 Lighting On
 }
 }
}

This simple shader demonstrates one of the most basic shaders possible. It defines a color property called Main Color and

assigns it a default value of rose-like color (red=100% green=50% blue=50% alpha=100%). It then renders the object by

invoking a Pass and in that pass setting the diffuse material component to the property _Color and turning on per-vertex

lighting.

To test this shader, create a new material, select the shader from the drop-down menu (Tutorial->Basic) and assign the

Material to some object. Tweak the color in the Material Inspector and watch the changes. Time to move onto more complex

things!

Basic Vertex Lighting
If you open an existing complex shader, it can be a bit hard to get a good overview. To get you started, we will dissect the

built-in VertexLit shader that ships with Unity. This shader uses fixed function pipeline to do standard per-vertex lighting.

Shader "VertexLit" {
 Properties {
 _Color ("Main Color", Color) = (1,1,1,0.5)
 _SpecColor ("Spec Color", Color) = (1,1,1,1)
 _Emission ("Emmisive Color", Color) = (0,0,0,0)
 _Shininess ("Shininess", Range (0.01, 1)) = 0.7
 _MainTex ("Base (RGB)", 2D) = "white" { }
 }

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

432 of 1131 12/16/2012 10:12 PM

 SubShader {
 Pass {
 Material {
 Diffuse [_Color]
 Ambient [_Color]
 Shininess [_Shininess]
 Specular [_SpecColor]
 Emission [_Emission]
 }
 Lighting On
 SeparateSpecular On
 SetTexture [_MainTex] {
 constantColor [_Color]
 Combine texture * primary DOUBLE, texture * constant
 }
 }
 }
}

All shaders start with the keyword Shader followed by a string that represents the name of the shader. This is the name that is

shown in the Inspector. All code for this shader must be put within the curly braces after it: { } (called a block).

The name should be short and descriptive. It does not have to match the .shader file name.

To put shaders in submenus in Unity, use slashes - e.g. MyShaders/Test would be shown as Test in a submenu called

MyShaders, or MyShaders->Test.

The shader is composed of a Properties block followed by SubShader blocks. Each of these is described in sections below.

Properties
At the beginning of the shader block you can define any properties that artists can edit in the Material Inspector. In the

VertexLit example the properties look like this:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

433 of 1131 12/16/2012 10:12 PM

The properties are listed on separate lines within the Properties block. Each property starts with the internal name (Color,

MainTex). After this in parentheses comes the name shown in the inspector and the type of the property. After that, the default

value for this property is listed:

The list of possible types are in the Properties Reference. The default value depends on the property type. In the example of a

color, the default value should be a four component vector.

We now have our properties defined, and are ready to start writing the actual shader.

The Shader Body
Before we move on, let's define the basic structure of a shader file.

Different graphic hardware has different capabilities. For example, some graphics cards support fragment programs and others

don't; some can lay down four textures per pass while the others can do only two or one; etc. To allow you to make full use of

whatever hardware your user has, a shader can contain multiple SubShaders. When Unity renders a shader, it will go over all

subshaders and use the first one that the hardware supports.

Shader "Structure Example" {
 Properties { /* ...shader properties... }
 SubShader {
 // ...subshader that uses vertex/fragment programs...
 }
 SubShader {
 // ...subshader that uses four textures per pass...

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

434 of 1131 12/16/2012 10:12 PM

 }
 SubShader {
 // ...subshader that uses two textures per pass...
 }
 SubShader {
 // ...subshader that might look ugly but runs on anything :)
 }
}

This system allows Unity to support all existing hardware and maximize the quality on each one. It does, however, result in

some long shaders.

Inside each SubShader block you set the rendering state shared by all passes; and define rendering passes themselves. A

complete list of available commands can be found in the SubShader Reference.

Passes
Each subshader is a collection of passes. For each pass, the object geometry is rendered, so there must be at least one pass.

Our VertexLit shader has just one pass:

// ...snip...
Pass {
 Material {
 Diffuse [_Color]
 Ambient [_Color]
 Shininess [_Shininess]
 Specular [_SpecColor]
 Emission [_Emission]
 }
 Lighting On
 SeparateSpecular On
 SetTexture [_MainTex] {
 constantColor [_Color]
 Combine texture * primary DOUBLE, texture * constant
 }
}
// ...snip...

Any commands defined in a pass configures the graphics hardware to render the geometry in a specific way.

In the example above we have a Material block that binds our property values to the fixed function lighting material settings.

The command Lighting On turns on the standard vertex lighting, and SeparateSpecular On enables the use of a separate

color for the specular highlight.

All of these command so far map very directly to the fixed function OpenGL/Direct3D hardware model. Consult OpenGL red

book for more information on this.

The next command, SetTexture, is very important. These commands define the textures we want to use and how to mix,

combine and apply them in our rendering. SetTexture command is followed by the property name of the texture we would like

to use (_MainTex here) This is followed by a combiner block that defines how the texture is applied. The commands in the

combiner block are executed for each pixel that is rendered on screen.

Within this block we set a constant color value, namely the Color of the Material, _Color. We'll use this constant color below.

In the next command we specify how to mix the texture with the color values. We do this with the Combine command that

specifies how to blend the texture with another one or with a color. Generally it looks like this:

 Combine ColorPart, AlphaPart

Here ColorPart and AlphaPart define blending of color (RGB) and alpha (A) components respectively. If AlphaPart is

omitted, then it uses the same blending as ColorPart.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

435 of 1131 12/16/2012 10:12 PM

In our VertexLit example:

 Combine texture * primary DOUBLE, texture * constant

Here texture is the color coming from the current texture (here _MainTex). It is multiplied (*) with the primary vertex color.

Primary color is the vertex lighting color, calculated from the Material values above. Finally, the result is multiplied by two to

increase lighting intensity (DOUBLE). The alpha value (after the comma) is texture multiplied by constant value (set with

constantColor above). Another often used combiner mode is called previous (not used in this shader). This is the result of

any previous SetTexture step, and can be used to combine several textures and/or colors with each other.

Summary
Our VertexLit shader configures standard vertex lighting and sets up the texture combiners so that the rendered lighting

intensity is doubled.

We could put more passes into the shader, they would get rendered one after the other. For now, though, that is not nessesary

as we have the desired effect. We only need one SubShader as we make no use of any advanced features - this particular

shader will work on any graphics card that Unity supports.

The VertexLit shader is one of the most basic shaders that we can think of. We did not use any hardware specific operations,

nor did we utilize any of the more special and cool commands that ShaderLab and Cg has to offer.

In the next chapter we'll proceed by explaining how to write custom vertex & fragment programs using Cg language.

Page last updated: 2010-09-25

ShaderTut2

This tutorial will teach you how to write custom vertex and fragment programs in Unity shaders. For a basic introduction to

ShaderLab see the Getting Started tutorial. If you want to write shaders that interact with lighting, read about Surface

Shaders instead.

Lets start with a small recap of the general structure of a shader:

Shader "MyShaderName" {
 Properties {
 // ... properties here ...
 }
 SubShader {
 // ... subshader for graphics hardware A ...
 Pass {
 // ... pass commands ...
 }
 // ... more passes if needed ...
 }
 SubShader {
 // ... subshader for graphics hardware B ...
 }
 // ... Optional fallback ...
 FallBack "VertexLit"
}

Here at the end we introduce a new command:

 FallBack "VertexLit"

The Fallback command can be used at the end of the shader; it tells which shader should be used if no SubShaders from the

current shader can run on user's graphics hardware. The effect is the same as including all SubShaders from the fallback

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

436 of 1131 12/16/2012 10:12 PM

shader at the end. For example, if you were to write a normal-mapped shader, then instead of writing a very basic non-normal-

mapped subshader for old graphics cards you can just fallback to built-in VertexLit shader.

The basic building blocks of the shader are introduced in the first shader tutorial while the full documentation of Properties,

SubShaders and Passes are also available.

A quick way of building SubShaders is to use passes defined in other shaders. The command UsePass does just that, so you

can reuse shader code in a neat fashion. As an example the following command uses the pass with the name "BASE" from the

built-in Specular shader:

 UsePass "Specular/BASE"

In order for UsePass to work, a name must be given to the pass one wishes to use. The Name command inside the pass

gives it a name:

 Name "MyPassName"

Vertex and fragment programs
We described a pass that used just a single texture combine instruction in the first tutorial. Now it is time to demonstrate how

we can use vertex and fragment programs in our pass.

When you use vertex and fragment programs (the so called "programmable pipeline"), most of the hardcoded functionality

("fixed function pipeline") in the graphics hardware is switched off. For example, using a vertex program turns off standard 3D

transformations, lighting and texture coordinate generation completely. Similarly, using a fragment program replaces any

texture combine modes that would be defined in SetTexture commands; thus SetTexture commands are not needed.

Writing vertex/fragment programs requires a thorough knowledge of 3D transformations, lighting and coordinate spaces -

because you have to rewrite the fixed functionality that is built into API's like OpenGL yourself. On the other hand, you can do

much more than what's built in!

Using Cg in ShaderLab
Shaders in ShaderLab are usually written in Cg programming language by embedding "Cg snippets" in the shader text. Cg

snippets are compiled into low-level shader assembly by the Unity editor, and the final shader that is included in your game's

data files only contains this low-level assembly. When you select a shader in the Project View, the Inspector shows shader

text after Cg compilation, which might help as a debugging aid. Unity automatically compiles Cg snippets for both Direct3D,

OpenGL, Flash and so on, so your shaders will just work on all platforms. Note that because Cg code is compiled by the

editor, you can't create Cg shaders from scripts at runtime.

In general, Cg snippets are placed inside Pass blocks. They look like this:

 Pass {

 // ... the usual pass state setup ...

 CGPROGRAM

 // compilation directives for this snippet, e.g.:

 #pragma vertex vert

 #pragma fragment frag

 // the Cg code itself

 ENDCG

 // ... the rest of pass setup ...

 }

The following example demonstrates a complete shader with Cg programs that renders object normals as colors:

Shader "Tutorial/Display Normals" {
SubShader {
 Pass {

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

437 of 1131 12/16/2012 10:12 PM

CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"

struct v2f {
 float4 pos : SV_POSITION;
 float3 color : COLOR0;
};

v2f vert (appdata_base v)
{
 v2f o;
 o.pos = mul (UNITY_MATRIX_MVP, v.vertex);
 o.color = v.normal * 0.5 + 0.5;
 return o;
}

half4 frag (v2f i) : COLOR
{
 return half4 (i.color, 1);
}
ENDCG

 }
}
Fallback "VertexLit"
}

When applied on an object it will result in an image like this (if your graphics card supports vertex & fragment programs of

course):

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

438 of 1131 12/16/2012 10:12 PM

Our "Display Normals" shader does not have any properties, contains a single SubShader with a single Pass that is empty

except for the Cg code. Finally, a fallback to the built-in VertexLit shader is defined. Let's dissect the Cg code part by part:

 CGPROGRAM

 #pragma vertex vert

 #pragma fragment frag

 // ... snip ...

 ENDCG

The whole Cg snippet is written between CGPROGRAM and ENDCG keywords. At the start compilation directives are given

as #pragma statements:

#pragma vertex name tells that the code contains a vertex program in the given function (vert here).

#pragma fragment name tells that the code contains a fragment program in the given function (frag here).

Following the compilation directives is just plain Cg code. We start by including a builtin Cg file:

 #include UnityCg.cginc

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

439 of 1131 12/16/2012 10:12 PM

The UnityCg.cginc file contains commonly used declarations and functions so that the shaders can be kept smaller (see

shader include files page for details). Here we'll use appdata_base structure from that file. We could just define them directly

in the shader and not include the file of course.

Next we define a "vertex to fragment" structure (here named v2f) - what information is passed from the vertex to the fragment

program. We pass the position and color parameters. The color will be computed in the vertex program and just output in the

fragment program.

We proceed by defining the vertex program - vert function. Here we compute the position and output input normal as a color:

 o.color = v.normal * 0.5 + 0.5;

Normal components are in -1..1 range, while colors are in 0..1 range, so we scale and bias the normal in the code above. Next

we define a fragment program - frag function that just outputs the calculated color and 1 as the alpha component:

 half4 frag (v2f i) : COLOR

 {

 return half4 (i.color, 1);

 }

That's it, our shader is finished! Even this simple shader is very useful to visualize mesh normals.

Of course, this shader does not respond to lights at all, and that's where things get a bit more interesting; read about Surface

Shaders for details.

Using shader properties in Cg code
When you define properties in the shader, you give them a name like _Color or _MainTex. To use them in Cg you just have to

define a variable of a matching name and type. Unity will automatically set Cg variables that have names matching with shader

properties.

Here is a complete shader that displays a texture modulated by a color. Of course, you could easily do the same in a texture

combiner call, but the point here is just to show how to use properties in Cg:

Shader "Tutorial/Textured Colored" {
Properties {
 _Color ("Main Color", Color) = (1,1,1,0.5)
 _MainTex ("Texture", 2D) = "white" { }
}
SubShader {
 Pass {

CGPROGRAM
#pragma vertex vert
#pragma fragment frag

#include "UnityCG.cginc"

float4 _Color;
sampler2D _MainTex;

struct v2f {
 float4 pos : SV_POSITION;
 float2 uv : TEXCOORD0;
};

float4 _MainTex_ST;

v2f vert (appdata_base v)
{
 v2f o;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

440 of 1131 12/16/2012 10:12 PM

 o.pos = mul (UNITY_MATRIX_MVP, v.vertex);
 o.uv = TRANSFORM_TEX (v.texcoord, _MainTex);
 return o;
}

half4 frag (v2f i) : COLOR
{
 half4 texcol = tex2D (_MainTex, i.uv);
 return texcol * _Color;
}
ENDCG

 }
}
Fallback "VertexLit"
}

The structure of this shader is the same as in the previous example. Here we define two properties, namely _Color and

_MainTex. Inside Cg code we define corresponding variables:

 float4 _Color;

 sampler2D _MainTex;

See Accessing Shader Properties in Cg for more information.

The vertex and fragment programs here don't do anything fancy; vertex program uses the TRANSFORM_TEX macro from

UnityCG.cginc to make sure texture scale&offset is applied correctly, and fragment program just samples the texture and

multiplies by the color property.

Note that because we're writing our own fragment program here, we don't need any SetTexture commands. How the textures

are applied in the shader is entirely controlled by the fragment program.

Summary
We have shown how custom shader programs can be generated in a few easy steps. While the examples shown here are very

simple, there's nothing preventing you to write arbitrarily complex shader programs! This can help you to take the full

advantage of Unity and achieve optimal rendering results.

The complete ShaderLab reference manual is here. We also have a forum for shaders at forum.unity3d.com so go there to get

help with your shaders! Happy programming, and enjoy the power of Unity and Shaderlab.

Page last updated: 2012-09-04

DirectX 11

Unity 4 introduces ability to use DirectX 11 graphics API, with all the goodies that you expect from it: compute shaders,

tessellation shaders, shader model 5.0 and so on.

Enabling DirectX 11
To enable DirectX 11 for your game builds and the editor, set "Use DX11" option in Player Settings. Unity editor needs to be

restarted for this to take effect.

Note that DX11 requires Windows Vista or later and at least a DX10-level GPU (preferably DX11-level). Unity editor window

title has "<DX11>" at the end when it is actually running in DX11 mode.

Image Effects that can take advantage of DX11
Depth of Field effect (optimized Bokeh texture splatting)

Noise and Grain effect (higher quality noise patterns)

Motion Blur effect (higher quality reconstruction filter)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

441 of 1131 12/16/2012 10:12 PM

Compute Shaders
Compute shaders allow using GPU as a massively parallel processor. See Compute Shaders page for mode details.

Tessellation & Geometry Shaders
Surface shaders have support for simple tessellation & displacement, see Surface Shader Tessellation page.

When manually writing shader programs, you can use full set of DX11 shader model 5.0 features, including geometry, hull &

domain shaders.

DirectX 11 Examples
The following screenshots show examples of what becomes possible with DirectX 11.

The volumetric explosion in these shots is rendered using raymarching which becomes plausible with shader model 5.0.

Moreover, as it generates and updates depth values, it becomes fully compatible with depth based image effects such as

depth of field or motion blur.

The hair in this shot is implemented via DirectX 11 tessellation & geometry shaders to dynamically generate and animate

individual strings of hair. Shading is based on a model proposed by Kajiya-Kai that enables a more believable diffuse and

specular behaviour.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

442 of 1131 12/16/2012 10:12 PM

Similar to the hair technique above, the shown slippers fur is also based on generating geometry emitted from a simple base

slippers mesh.

The blur effect in this image (known as Bokeh) is based on splatting a texture on top of very bright pixels. This can create

very believable camera lens blurs, especially when used in conjunction with HDR rendering.

Exaggerated lens blur similar to the screenshot above. This is a possible result using the new Depth of Field effect

Page last updated: 2012-10-30

Compute Shaders

Compute Shaders are programs that run on the graphics card, outside of the normal rendering pipeline. They can be used for

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

443 of 1131 12/16/2012 10:12 PM

massively parallel GPGPU algorithms, or to accelerate parts of game rendering. In order to efficiently use them, often an

in-depth knowledge of GPU architectures and parallel algorithms is needed; as well as knowledge of DirectCompute, OpenCL

or CUDA.

Compute shaders in Unity are built on top of DirectX 11 DirectCompute technology; and currently require Windows Vista or

later and a GPU capable of Shader Model 5.0.

Compute shader assets
Similar to normal shaders, Compute Shaders are asset files in your project, with *.compute file extension. They are written in

DirectX 11 style HLSL language, with minimal amount of #pragma compilation directives to indicate which functions to compile

as compute shader kernels.

Here's a minimal example of a compute shader file:

// test.compute
#pragma kernel FillWithRed

RWTexture2D<float4> res;

[numthreads(1,1,1)]
void FillWithRed (uint3 dtid : SV_DispatchThreadID)
{
 res[dtid.xy] = float4(1,0,0,1);
}

The example above does not do anything remotely interesting, just fills output texture with red color.

The language is standard DX11 HLSL, with the only exception of a #pragma kernel FillWithRed directive. One

compute shader asset file must contain at least one "compute kernel" that can be invoked, and that function is indicated by the

#pragma directive. There can be more kernels in the file; just add multiple #pragma kernel lines.

The #pragma kernel line can optionally be followed by a number of preprocessor macros to define while compiling that

kernel, for example:

#pragma kernel KernelOne SOME_DEFINE DEFINE_WITH_VALUE=1337
#pragma kernel KernelTwo OTHER_DEFINE
// ...

Invoking compute shaders
In your script, define a variable of ComputeShader type, assign a reference to the asset, and then you can invoke them with

ComputeShader.Dispatch function. See scripting reference of ComputeShader class for more details.

Closely related to compute shaders is a ComputeBuffer class, which defines arbitrary data buffer ("structured buffer" in DX11

lingo). Render Textures can also be written into from compute shaders, if they have "random access" flag set ("unordered

access view" in DX11), see RenderTexture.enableRandomWrite.

Page last updated: 2012-08-13

GraphicsEmulation

You can choose to emulate less capable graphics hardware when working in the Unity editor. This is very handy when writing

custom shaders and rendering effects, and is a quick way to test how your game will look on that eight year old graphics card

that someone might have.

To enable Graphics emulation, go to Edit->Graphics Emulation, and choose your desired emulation level.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

444 of 1131 12/16/2012 10:12 PM

Note: The available graphic emulation options change depending on the platform you are currently targeting. More information

can be found on the Publishing builds page.

Enabling Graphics Emulation

Technical Details
Graphics emulation limits the graphics capabilities that are supported, but it does not emulate the performance of graphics

hardware. Your game in the editor will still be rendered by your graphics card, more and more features will be disabled as you

reduce emulation quality.

While emulation is a quick way to check out graphics capabilities, you should still test your game on actual hardware. This will

reveal real performance and any peculiarities of the specific graphics card, operating system or driver version.

Emulation Levels
Graphics emulation levels are the following:

In web player or standalone mode:

No

Emulation

No emulation is performed.

Shader

Model 3

Emulates graphics card with Shader Model 3.0 level capabilities. Long vertex & fragment shader programs,

realtime shadows, HDR.

Shader

Model 2

Shader Model 2.0 capabilities. Vertex & fragment programs, realtime shadows. No HDR, maximum 4 texture

combiner stages.

Shader

Model 1

Shader Model 1.x capabilities. Vertex programs, 4 texture combiner stages. Not supported: fragment programs,

shadows, HDR, depth textures, multiple render targets.

DirectX 7 DirectX 7 level capabilities. Vertex programs (usually in software mode), two texture combiner stages. Not

supported: fragment programs, shadows, HDR, depth textures, 3D textures, min/max/sub blending.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

445 of 1131 12/16/2012 10:12 PM

In iOS or Android mode:

No Emulation No emulation is performed.

OpenGL ES

1.x

OpenGL ES 1.1: Four texture combiner stages. Not supported: vertex or fragment programs, shadows and

pretty much all other graphics features ;)

OpenGL ES

2.0

OpenGL ES 2.0: Vertex & fragment programs, four texture combiner stages. Not supported: HDR, 3D textures.

When your graphics card does not support all the capabilities of some emulation level, that level will be disabled. For example,

the Intel GMA950 (Intel 915/945/3000) card does not support Shader Model 3.0, so there's no way to emulate that level.

Page last updated: 2012-08-17

AssetDatabase

AssetDatabase is an API which allows you to access the assets contained in your project. Among other things, it provides

methods to find and load assets and also to create, delete and modify them. The Unity Editor uses the AssetDatabase

internally to keep track of asset files and maintain the linkage between assets and objects that reference them. Since Unity

needs to keep track of all changes to the project folder, you should always use the AssetDatabase API rather than the

filesystem if you want to access or modify asset data.

The AssetDatabase interface is only available in the editor and has no function in the built player. Like all other editor classes,

it is only available to scripts placed in the Editor folder (just create a folder named �Editor� in the main Assets folder of your

project if there isn't one already).

Importing an Asset
Unity normally imports assets automatically when they are dragged into the project but it is also possible to import them under

script control. To do this you can use the AssetDatabase.ImportAsset method as in the example below.

using UnityEngine;
using UnityEditor;

public class ImportAsset {
[MenuItem ("AssetDatabase/ImportExample")]
static void ImportExample ()
{

AssetDatabase.ImportAsset("Assets/Textures/texture.jpg", ImportAssetOptions.Default);
}

}

You can also pass an extra parameter of type AssetDatabase.ImportAssetOptions to the AssetDatabase.ImportAsset call. The

scripting reference page documents the different options and their effects on the function's behaviour.

Loading an Asset
The editor loads assets only as needed, say if they are added to the scene or edited from the Inspector panel. However, you

can load and access assets from a script using AssetDatabase.LoadAssetAtPath, AssetDatabase.LoadMainAssetAtPath,

AssetDatabase.LoadAllAssetRepresentationsAtPath and AssetDatabase.LoadAllAssetsAtPath. See the scripting

documentation for further details.

using UnityEngine;
using UnityEditor;

public class ImportAsset {
[MenuItem ("AssetDatabase/LoadAssetExample")]
static void ImportExample ()
{

Texture2D t = AssetDatabase.LoadAssetAtPath("Assets/Textures/texture.jpg", typeof(Texture2D)) as Texture2D;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

446 of 1131 12/16/2012 10:12 PM

}
}

File Operations using the AssetDatabase
Since Unity keeps metadata about asset files, you should never create, move or delete them using the filesystem. Instead, you

can use AssetDatabase.Contains, AssetDatabase.CreateAsset, AssetDatabase.CreateFolder, AssetDatabase.RenameAsset,

AssetDatabase.CopyAsset, AssetDatabase.MoveAsset, AssetDatabase.MoveAssetToTrash and AssetDatabase.DeleteAsset.

public class AssetDatabaseIOExample {
[MenuItem ("AssetDatabase/FileOperationsExample")]
static void Example ()
{

string ret;

// Create
Material material = new Material (Shader.Find("Specular"));
AssetDatabase.CreateAsset(material, "Assets/MyMaterial.mat");
if(AssetDatabase.Contains(material))

Debug.Log("Material asset created");

// Rename
ret = AssetDatabase.RenameAsset("Assets/MyMaterial.mat", "MyMaterialNew");
if(ret == "")

Debug.Log("Material asset renamed to MyMaterialNew");
else

Debug.Log(ret);

// Create a Folder
ret = AssetDatabase.CreateFolder("Assets", "NewFolder");
if(AssetDatabase.GUIDToAssetPath(ret) != "")

Debug.Log("Folder asset created");
else

Debug.Log("Couldn't find the GUID for the path");

// Move
ret = AssetDatabase.MoveAsset(AssetDatabase.GetAssetPath(material), "Assets/NewFolder/MyMaterialNew.mat")
if(ret == "")

Debug.Log("Material asset moved to NewFolder/MyMaterialNew.mat");
else

Debug.Log(ret);

// Copy
if(AssetDatabase.CopyAsset(AssetDatabase.GetAssetPath(material), "Assets/MyMaterialNew.mat"))

Debug.Log("Material asset copied as Assets/MyMaterialNew.mat");
else

Debug.Log("Couldn't copy the material");
// Manually refresh the Database to inform of a change
AssetDatabase.Refresh();
Material MaterialCopy = AssetDatabase.LoadAssetAtPath("Assets/MyMaterialNew.mat", typeof(Material)) as Mater

// Move to Trash
if(AssetDatabase.MoveAssetToTrash(AssetDatabase.GetAssetPath(MaterialCopy)))

Debug.Log("MaterialCopy asset moved to trash");

// Delete
if(AssetDatabase.DeleteAsset(AssetDatabase.GetAssetPath(material)))

Debug.Log("Material asset deleted");
if(AssetDatabase.DeleteAsset("Assets/NewFolder"))

Debug.Log("NewFolder deleted");

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

447 of 1131 12/16/2012 10:12 PM

// Refresh the AssetDatabase after all the changes
AssetDatabase.Refresh();

}
}

Using AssetDatabase.Refresh
When you have finished modifying assets, you should call AssetDatabase.Refresh to commit your changes to the database

and make them visible in the project.

Page last updated: 2012-06-27

BuildPlayerPipeline

When building a player, you sometimes want to modify the built player in some way. For example you might want to add a

custom icon, copy some documentation next to the player or build an Installer. Doing this manually can become tedious and if

you know how to write sh or perl scripts you can automate this task.

Mac OSX
After building a player Unity automatically looks for a sh or perl script called PostprocessBuildPlayer (without any extension)

in your Project's Assets/Editor folder. If the file is found, it is invoked when the player finishes building.

In this script you can post process the player in any way you like. For example build an installer out of the player.

You can use perl, sh or any other commandline compatible language.

Unity passes some useful command line arguments to the script, so you know what kind of player it is and where it is stored.

The current directory will be set to be the project folder, that is the folder containing the Assets folder.

#!/usr/bin/perl

my $installPath = $ARGV[0];

The type of player built:
"dashboard", "standaloneWin32", "standaloneOSXIntel", "standaloneOSXPPC", "standaloneOSXUniversal", "webplayer"
my $target = $ARGV[1];

What optimizations are applied. At the moment either "" or "strip" when Strip debug symbols is selected.
my $optimization = $ARGV[2];

The name of the company set in the project settings
my $companyName = $ARGV[3];

The name of the product set in the project settings
my $productName = $ARGV[4];

The default screen width of the player.
my $width = $ARGV[5];

The default screen height of the player
my $height = $ARGV[6];

print ("\n*** Building at '$installPath' with target: $target \n");

Note that some languages, such as Python, pass the name of the script as one of the command line arguments. If you are

using one of these languages then the arguments will effectively be shifted along one place in the array (so the install path will

be in ARGV[1], etc).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

448 of 1131 12/16/2012 10:12 PM

In order to see this feature in action please visit the Example Projects page on our website and download the

PostprocessBuildPlayer example package file and import it for use into your own project. It uses the Build Player Pipeline

feature to offer customized post-processing of web player builds in order to demonstrate the types of custom build behavior

you can implement in your own PostprocessBuildPlayer script.

Windows
On Windows, the PostprocessBuildPlayer script is not supported, but you can use editor scripting to achieve the same effect.

You can use BuildPipeline.BuildPlayer to run the build and then follow it with whatever postprocessing code you need:-

using UnityEditor;
using System.Diagnostics;

public class ScriptBatch : MonoBehaviour
{
 [MenuItem("MyTools/Windows Build With Postprocess")]
 public static void BuildGame ()
 {
 // Get filename.
 string path = EditorUtility.SaveFolderPanel("Choose Location of Built Game", "", "");

 // Build player.
 BuildPipeline.BuildPlayer(levels, path + "BuiltGame.exe", BuildTarget.StandaloneWindows, BuildOptions.None);

 // Copy a file from the project folder to the build folder, alongside the built game.
 FileUtil.CopyFileOrDirectory("Assets/WebPlayerTemplates/Readme.txt", path + "Readme.txt");

 // Run the game (Process class from System.Diagnostics).
 Process proc = new Process();
 proc.StartInfo.FileName = path + "BuiltGame.exe";
 proc.Start();
 }
}

Page last updated: 2012-05-04

Profiler

The Unity Profiler helps you to optimize your game. It reports for you how much time is spent in the various areas of your

game. For example, it can report the percentage of time spent rendering, animating or in your game logic.

You can play your game in the Editor with Profiling on, and it will record performance data. The Profiler window then displays

the data in a timeline, so you can see the frames or areas that spike (take more time) than others. By clicking anywhere in the

timeline, the bottom section of the Profiler window will display detailed information for the selected frame.

Note that profiling has to instrument your code. This instrumentation has a small impact on the performance of your game.

Typically this overhead is small enough to not affect the game framerate. When using profiling it is typical to consider only the

ratio (or percentage) of time spent in certain areas. Also, to improve performance focus on those parts of the game that

consume the most time. Compare profiling results before and after code changes and determine the improvements you

measure. Sometimes changes you make to improve performance might have a negative effect on frame rate; unexpected

consequences of code optimization should be expected.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

449 of 1131 12/16/2012 10:12 PM

Profiler window

Attaching to Unity players
To profile your game running on an other device or a player running on another computer, it is possible to connect the editor to

that other player. The dropdown Active Profiler will show all players running on the local network. These players are

identified by player type and the host name running the player "iPhonePlayer (Toms iPhone)". To be able to connect to a

player, the player must be launched with the Development Build checkbox found in the Build Settings dialog. From here it

is also possible to tick a checkbox to make the Editor and Player Autoconnect at startup.

Profiler Controls

Profiler controls are in the toolbar at the top of the window. Use these to turn profiling on and off, navigate through profiled

frames and so on. The transport controls are at the far right end of the toolbar. Note that when the game is running and the

profiler is collecting data clicking on any of these transport controls will pause the game. The controls go to the first recorded

frame, step one frame back, step one frame forward and go to the last frame respectively. The profiler does not keep all

recorded frames, so the notion of the first frame should really be though of as the oldest frame that is still kept in memory. The

"current" transport button causes the profile statistics window to display data collected in real-time. The Active Profiler popup

menu allows you to select whether profiling should be done in the editor or a separate player (for example, a game running on

an attached iOS device).

Deep Profiling

When you turn on Deep Profile, all your script code is profiled - that is, all function calls are recorded. This is useful to know

where exactly time is spent in your game code.

Note that Deep Profiling incurs a very large overhead and uses a lot of memory, and as a result your game will run

significantly slower while profiling. If you are using complex script code, Deep Profiling might not be possible at all. Deep

profiling should work fast enough for small games with simple scripting. If you find that Deep Profiling for your entire game

causes the frame rate to drop so much that the game barely runs, you should consider not using this approach, and instead

use the approach described below. You may find deep profiling more helpful as you are designing your game and deciding

how to best implement key features. Note that for large games deep profiling may cause Unity to run out of memory and so for

this reason deep profiling may not be possible.

Manually profiling blocks of your script code will have a smaller overhead than using Deep Profiling. Use Profiler.BeginSample

and Profiler.EndSample scripting functions to enable and disable profiling around sections of code.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

450 of 1131 12/16/2012 10:12 PM

View SyncTime

When running at a fixed framerate or running in sync with the vertical blank, Unity records the waiting time in "Wait For Target

FPS". By default this amount of time is not shown in the profiler. To view how much time is spent waiting, you can toggle "View

SyncTime". This is also a measure of how much headroom you have before losing frames.

Profiler Timeline

The upper part of the Profiler window displays performance data over time. When you run a game, data is recorded each

frame, and the history of the last several hundred frames is displayed. Clicking on a particular frame will display it's details in

the lower part of the window. Different details are displayed depending on which timeline area is currently selected.

The vertical scale of the timeline is managed automatically and will attempt to fill the vertical space of the window. Note that to

get more detail in say the CPU Usage area you can remove the Memory and Rendering areas. Also, the splitter between the

timeline and the statistics area can be selected and dragged downward to increase the screen area used for the timeline chart.

The timeline consists of several areas: CPU Usage, Rendering and Memory. These areas can be removed by clicking the

close button in the panel, and re-added again using the Add Area drop down in the Profile Controls bar.

CPU Usage Area

The CPU Usage area displays where time is spent in your game. When it is selected, the lower pane displays hierarchical time

data for the selected frame.

Hierarchy mode: Displays hierarchical time data.

Group Hierarchy mode: Groups time data into logical groups (Rendering, Physics, Scripts etc.). Because children of any

group can be in different group (e.g. some script might call rendering functions), the percentages of group times often add

up to more than 100%. (This is not a bug.)

The way the CPU chart is stacked can be reordered by simply dragging chart labels up & down.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

451 of 1131 12/16/2012 10:12 PM

When an item is selected in the lower pane, it's contribution to the CPU chart is highlighted (and the rest are dimmed). Clicking

on an item again de-selects it.

Shader.SetPass is selected and it's contribution is highlighted in the chart.

In the hierarchical time data the self time refers to the amount of time spent in a particular function not including the time spent

calling sub-functions. In the screenshot above, for example 51.2% of time is spent in the Camera.Render function. This

function does a lot of work and calls the various drawing and culling functions. Excluding all these functions only 0.8% of time

is spent actually in the Camera.Render function.

Rendering Area

The Rendering area displays rendering statistics. The Number of Draw Calls, Triangles and Vertices rendered is displayed

graphical in the timeline. The Lower pane displays more rendering statistics and these more closely match the ones shown in

the GameView Rendering Statistics window.

Memory Area

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

452 of 1131 12/16/2012 10:12 PM

The Memory area displays some memory usage data:

Total Allocated is the total RAM used by the application. Note that in the Unity Editor this is memory used by everything in

the editor; game builds will use much less.

Texture Memory is the amount of video memory used by the textures in the current frame.

Object Count is the total number of Objects that are created. If this number rises over time then it means your game is

creating some objects that are never destroyed.

Audio Area

The Audio area displays audio statistics:

Playing Sources is the total playing sources in the scene at a specific frame. Monitor this to see if audio is overloaded.

Paused Sources is the total paused sources in the scene at a specific frame.

Audio Voice is the actually number of audio (FMOD channels) voices used. PlayOneShot is using voices not shown in

Playing Sources.

Audio Memory is the total RAM used by the audio engine.

CPU usage can be seen in the bottom. Monitor this to see if Audio alone is taking up too much CPU.

Note: When an audio asset in Ogg Vorbis format is imported with the Compressed In Memory option, the memory usage

reported by the profiler may be unexpectedly low. This happens for platforms that use FMOD audio - FMOD doesn't support

Ogg Vorbis with the Compressed In Memory option, so the import setting is silently changed to Stream From Disk (which has

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

453 of 1131 12/16/2012 10:12 PM

much lower memory overheads).

Physics Area

The Physics area shows the following statistics about the physics in the scene:-

Active Rigidbodies is the number of rigidbodies that are not currently sleeping (ie, they are moving or just coming to

rest).

Sleeping Rigidbodies is the number of rigidbodies that are completely at rest and therefore don't need to be updated

actively by the physics engine (see Rigidbody Sleeping for further details).

Number of Contacts is the total number of points of contact between all colliders in the scene.

Static Colliders is the number of colliders attached to non-rigidbody objects (ie, objects which never move under physics).

Dynamic Colliders is the number of colliders attached to rigidbody objects (ie, objects which do move under physics).

GPU Area

The GPU profiler is similar to the CPU profiler with the various contributions to rendering time shown as a hierarchy in the

bottom panel. Selecting an item from the hierarchy will show a breakdown in the panel to the right.

Please note that on the Mac, GPU profiling is only available under OSX 10.7 Lion and later versions.

See Also

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

454 of 1131 12/16/2012 10:12 PM

Optimizing Graphics Performance page.

iOS
Remote profiling can be enabled on iOS devices by following these steps:

Connect your iOS device to your WiFi network (local/adhoc WiFi network is used by profiler to send profiling data from

device to the Unity Editor).

1.

Check "Autoconnect Profiler" checkbox in Unity's build settings dialog.2.

Attach your device to your Mac via cable and hit "Build & Run" in Unity Editor.3.

When app launches on device open profiler window in Unity Editor (Window->Profiler)4.

If you are using a firewall, you need to make sure that ports 54998 to 55511 are open in the firewall's outbound rules - these

are the ports used by Unity for remote profiling.

Note: Sometimes Unity Editor might not autoconnect to the device. In such cases profiler connection might be initiated from

Profiler Window Active Profiler drop down menu by select appropriate device.

Android
Remote profiling can be enabled on Android devices through two different paths : WiFi or ADB.

For WiFi profiling, follow these steps:

Make sure to disable Mobile Data on your Android device.1.

Connect your Android device to your WiFi network.2.

Check the "Autoconnect Profiler" checkbox in Unity's build settings dialog.3.

Attach your device to your Mac/PC via cable and hit "Build & Run" in Unity Editor.4.

When the app launches on the device, open the profiler window in Unity Editor (Window->Profiler)5.

If the Unity Editor fails to autoconnect to the device, select the appropriate device from the Profiler Window Active

Profiler drop down menu.

6.

Note: The Android device and host computer (running the Unity Editor) must both be on the same subnet for the device

detection to work.

For ADB profiling, follow these steps:

Attach your device to your Mac/PC via cable and make sure ADB recognizes the device (i.e. it shows in adb devices list).

Open a Terminal window / CMD prompt and enter
adb forward tcp:54999 localabstract:Unity-<insert bundle identifier here>

Check the "Development Build" checkbox in Unity's build settings dialog, and hit "Build & Run".

When the app launches on the device, open the profiler window in Unity Editor (Window->Profiler)

Select the AndroidProfiler(ADB@127.0.0.1:54999) from the Profiler Window Active Profiler drop down menu.

Note: The entry in the drop down menu is only visible when the selected target is Android.

If you are using a firewall, you need to make sure that ports 54998 to 55511 are open in the firewall's outbound rules - these

are the ports used by Unity for remote profiling.

Page last updated: 2012-10-31

Lightmapping

This an introductory description of lightmapping in Unity. For more advanced topics see in-depth description of lightmapping in

Unity

Unity has a built-in lightmapper: it's Beast by Illuminate Labs. Lightmapping is fully integrated in Unity. This means that Beast

will bake lightmaps for your scene based on how your scene is set up within Unity, taking into account meshes, materials,

textures and lights. It also means that lightmapping is now an integral part of the rendering engine - once your lightmaps are

created you don't need to do anything else, they will be automatically picked up by the objects.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

455 of 1131 12/16/2012 10:12 PM

Preparing the scene and baking the lightmaps
Selecting Window – Lightmapping from the menu will open the Lightmapping window:

Make sure any mesh you want to be lightmapped has proper UVs for lightmapping. The easiest way is to choose the

Generate Lightmap UVs option in mesh import settings.

1.

In the Object pane mark any Mesh Renderer, Skinned Mesh Renderer or Terrain as static – this will tell Unity, that

those objects won't move nor change and they can be lightmapped.

2.

To control the resolution of the lightmaps, go to the Bake pane and adjust the Resolution value. (To have a better

understanding on how you spend your lightmap texels, look at the small Lightmap Display window within the Scene

View and select Show Resolution).

3.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

456 of 1131 12/16/2012 10:12 PM

Press Bake4.

A progress bar appears in Unity Editor's status bar, in the bottom right corner.5.

When baking is done, you can see all the baked lightmaps at the bottom of the Lightmap Editor window.6.

Scene and game views will update - your scene is now lightmapped!

Tweaking Bake Settings
Final look of your scene depends a lot on your lighting setup and bake settings. Let's take a look at an example of some basic

settings that can improve lighting quality.

This is a basic scene with a couple of cubes and one point light in the centre. The light is casting hard shadows and the effect

is quite dull and artificial.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

457 of 1131 12/16/2012 10:12 PM

Selecting the light and opening the Object pane of the Lightmapping window exposes Shadow Radius and Shadow

Samples properties. Setting Shadow Radius to 1.2, Shadow Samples to 100 and re-baking produces soft shadows with wide

penumbra - our image already looks much better.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

458 of 1131 12/16/2012 10:12 PM

With Unity Pro we can take the scene one step further by enabling Global Illumination and adding a Sky Light. In the Bake

pane we set the number of Bounces to 1 and the Sky Light Intensity to 0.5. The result is much softer lighting with subtle

diffuse interreflection effects (color bleeding from the green and blue cubes) - much nicer and it's still only 3 cubes and a light!

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

459 of 1131 12/16/2012 10:12 PM

Lightmapping In-Depth
For more information about the various lightmapping-related settings, please refer to the in-depth description of lightmapping in

Unity.

Page last updated: 2012-10-30

LightmappingInDepth

If you are about to lightmap your first scene in Unity, this Quickstart Guide might help you out.

Lightmapping is fully integrated in Unity, so that you can build entire levels from within the Editor, lightmap them and have your

materials automatically pick up the lightmaps without you having to worry about it. Lightmapping in Unity means that all your

lights' properties will be mapped directly to the Beast lightmapper and baked into textures for great performance. Unity Pro

extends this functionality by Global Illumination, allowing for baking realistic and beautiful lighting, that would otherwise be

impossible in realtime. Additionally Unity Pro brings you sky lights and emissive materials for even more interesting scene

lighting.

In this page you will find a more in-depth description of all the attributes that you can find in the Lightmapping window. To open

the Lightmapping window select Window – Lightmapping.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

460 of 1131 12/16/2012 10:12 PM

Scene filters
At the top of the inspector are three Scene Filter buttons that enable you to apply the operation to all objects or to restrict it to

lights or renderers.

Object
Per-object bake settings for lights, mesh renderers and terrains - depending on the current selection.

Mesh Renderers and Terrains:

Lightmap Static Mesh Renderers and Terrains have to marked as static to be lightmapped.

Scale In Lightmap (Mesh Renderers only) Bigger value will result in more resolution to be dedicated to the give mesh

renderer. The final resolution will be proportional (Scale in lightmap)*(Object's word-space surface

area)*(Global bake settings Resolution value). A value of 0 will result in the object not being

lightmapped (it will still affect other lightmapped objects).

Lightmap Size (Terrains only) Lightmap size for this terrain instance. Terrains are not atlased as other objects - they

get their individual lightmaps instead.

Atlas Atlasing information – will be updated automatically, if Lock Atlas is disabled. If Lock Atlas is

enabled, those parameters won't be modified automatically and can be edited manually.

Lightmap Index An index into the lightmap array.

Tiling (Mesh Renderers only) Tiling of object's lightmap UVs.

Offset (Mesh Renderers only) Offset of object's lightmap UVs.

Lights:

Lightmapping The Lightmapping mode: Realtime Only, Auto or Baked Only. See Dual Lightmaps description below.

Color The color of the light. Same property is used for realtime rendering.

Intensity The intensity of the light. Same property is used for realtime rendering.

Bounce Intensity A multiplier to the intensity of indirect light emitted from this particular light source.

Baked Shadows Controls whether shadows are casted from objects lit by this light (controls realtime shadows at the

same time in case of Auto lights).

Shadow Radius (Point and Spot lights only) Increase this value for soft direct shadows - it increases the size of the

light for the shadowing (but not lighting) calculations.

Shadow Angle (Directional lights only) Increase this value for soft direct shadows - it increases the angular coverage

of the light for the shadowing (but not lighting) calculations.

Shadow Samples If you've set Shadow Radius or Angle above zero, increase the number of Shadow Samples as well.

Higher sample numbers remove noise from the shadow penumbra, but might increase rendering

times.

Bake

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

461 of 1131 12/16/2012 10:12 PM

Global bake settings.

Mode Controls both offline lightmap baking and runtime lightmap rendering modes. In Dual Lightmaps mode

both near and far lightmaps will be baked; only deferred rendering path supports rendering dual

lightmaps. Single Lightmaps mode results in only the far lightmap being baked; can also be used to

force single lightmaps mode for the deferred rendering path.

Use in forward

rendering

(Dual lightmaps only) Enables dual lightmaps in forward rendering. Note that this will require you to

create your own shaders for the purpose.

Quality Presets for high (good-looking) and low (but fast) quality bakes. They affect the number of final

gather rays, contrast threshold and some other final gather and anti-aliasing settings.

Bounces The number of light bounces in the Global Illumination simulation. At least one bounce is needed to

give a soft, realistic indirect lighting. 0 means only direct light will be computed.

Sky Light Color Sky light simulates light emitted from the sky from all the directions - great for outdoor scenes.

Sky Light Intensity The intensity of the sky light - a value of 0 disables the sky light.

Bounce Boost Boosts indirect light, can be used to increase the amount of bounced light within the scene without

burning out the render too quickly.

Bounce Intensity A multiplier to the intensity of the indirect light.

Final Gather Rays The number of rays shot from every final gather point - higher values give better quality.

Contrast Threshold Color contrast threshold, above which new final gather points will be created by the adaptive

sampling algorithm. Higher values make Beast be more tolerant about illumination changes on the

surface, thus producing smoother but less-detailed lightmaps. Lower numbers of final gather rays

might need higher contrast threshold values not to force additional final gather points to be created.

Interpolation Controls the way the color from final gather points will be interpolated. 0 for linear interpolation, 1 for

advanced, gradient-based interpolation. In some cases the latter might introduce artifacts.

Interpolation Points The number of final gather points to interpolate between. Higher values give more smooth results,

but can also smooth out details in the lighting.

Ambient Occlusion The amount of ambient occlusion to be baked into the lightmaps. Ambient occlusion is the visibility

function integrated over the local hemisphere of size Max Distance, so doesn't take into account any

lighting information.

Lock Atlas When Lock Atlas is enabled, automatic atlasing won't be run and lightmap index, tiling and offset on

the objects won't be modified.

Resolution The resolution of the lightmaps in texels per world unit, so a value of 50 and a 10unit by 10unit plane

will result in the plane occupying 500x500 pixels in the lightmap.

Padding The blank space left between individual items on the atlas, given in texel units (0..1).

Maps
The editable array of all the lightmaps.

Compressed Toggles compression on all lightmap assets for this scene.

Array Size Size of the lightmaps array (0 to 254).

Lightmaps Array The editable array of all the lightmaps in the current scene. Unassigned slots are treated as black

lightmaps. Indices correspond to the Lightmap Index value on Mesh Renderers and Terrains. Unless

Lock Atlas is enabled, this array will get auto-resized and populated whenever you bake lightmaps.

Lightmap Display
Utilities for controlling how lightmaps are displayed in the editor. Lightmap Display is a sub window of the Scene View, visible

whenever the Lightmapping window is visible.

Use Lightmaps Whether to use the lightmaps during the rendering or not.

Shadow Distance The distance at which Auto lights and Close By lightmaps fade out to just Far Away lightmaps. This

setting overrides but not overwrites the QualitySettings.shadowDistance setting.

Show Resolution Toggles the scene view Lightmap Resolution mode, which allows you to preview how you spend your

lightmap texels on objects marked as static.

Details

Dual Lightmaps

Dual lightmaps is Unity's approach to make lightmapping work with specular, normal mapping and proper blending of baked

and realtime shadows. It's also a way to make your lightmaps look good even if the lightmap resolution is low.

Dual lightmaps by default can only be used in the Deferred Lighting rendering path. In Forward rendering path, it's possible to

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

462 of 1131 12/16/2012 10:12 PM

enable Dual Lightmaps by writing custom shaders (use dualforward surface shader directive).

Dual lightmaps use two sets of lightmaps:

Far: Contains full illumination

Near: Contains indirect illumination from lights marked as Auto, full illumination from lights marked as Bake Only,

emissive materials and sky lights.

Realtime Only lights are never baked. The Near lightmap set is used within the distance from the camera smaller than the

Shadow Distance quality setting.

Within this distance Auto lights are rendered as realtime lights with specular bump and realtime shadows (this makes their

shadows blend correctly with shadows from Realtime Only lights) and their indirect light is taken from the lightmap. Outside

Shadow Distance Auto lights no longer render in realtime and full illumination is taken from the Far lightmap (Realtime Only

lights are still there, but with disabled shadows).

The scene below contains one directional light with lightmapping mode set to the default Auto, a number of static lightmapped

objects (buildings, obstacles, immovable details) and some dynamic moving or movable objects (dummies with guns, barrels).

The scene is baked and rendered in dual lightmaps mode: behind the shadow distance buildings are fully lit only by lightmaps,

while the two dummies are dynamically lit but don't cast shadows anymore; in front of the shadow distance both the dummy

and static lightmapped buildings and ground are lit in realtime and cast realtime shadows, but the soft indirect light comes from

the near lightmap.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

463 of 1131 12/16/2012 10:12 PM

Single Lightmaps

Single Lightmaps is a much simpler technique, but it can be used in any rendering path. All static illumination (i.e. from baked

only and auto lights, sky lights and emissive materials) gets baked into one set of lightmaps. These lightmaps are used on all

lightmapped objects regardless of shadow distance.

To match the strength of dynamic shadows to baked shadows, you need to manually adjust the Shadow Strength property of

your light:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

464 of 1131 12/16/2012 10:12 PM

Adjusting Shadow Strength of a light from the original value of 1.0 to 0.7.

Lightmapped Materials

Unity doesn't require you to select special materials to use lightmaps. Any shader from the built-in shaders (and any Surface

Shader you write, for that matter) already supports lightmaps out of box, without you having to worry about it - it just works.

Lightmap Resolution

With the Resolution bake setting you control how many texels per unit are needed for your scene to look good. If there's a 1x1

unit plane in your scene and the resolution is set to 10 texels per unit, your plane will take up 10x10 texels in the lightmap.

Resolution bake setting is a global setting. If you want to modify it for a special object (make it very small or very big in the

lightmap) you can use Scale in Lightmap property of Mesh Renderers. Setting Scale in Lightmap to 0 will result in the object

not being lightmapped at all (it will still influence lightmaps on other objects). Use the Lightmap Resolution scene view render

mode to preview how you spend your lightmap texels.

Lightmap Resolution scene view mode visualising how the lightmap texels are spent (each square is one texel).

UVs

A mesh that you're about to lightmap needs to have UVs suitable for lightmapping. The easiest way to ensure that is to enable

the Generate Lightmap UVs option in Mesh Import Settings for a given mesh.

For more information see the Lightmap UVs page.

Material Properties

The following material properties are mapped to Beast's internal scene representation:

Color

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

465 of 1131 12/16/2012 10:12 PM

Main Texture

Specular Color

Shininess

Transparency

Alpha-based: when using a transparent shader, main texture's alpha channel will control the transparency

Color-based: Beast's RGB transparency can be enabled by adding a texture property called _TransparencyLM to the

shader. Bear in mind that this transparency is defined in the opposite way compared to the alpha-based transparency:

here a pixel with value (1, 0, 0) will be fully transparent to red light component and fully opaque to green and blue

component, which will result in a red shadow; for the same reason white texture will be fully transparent, while black

texture - fully opaque.

Emission

Self Illuminated materials will emit light tinted by the Color and Main Texture and masked by the Illum texture. The

intensity of emitted light is proportional to the Emission property (0 disables emission).

Generally large and dim light sources can be modeled as objects with emissive materials. For small and intense lights

normal light types should be used, since emissive materials might introduce noise in the rendering.

Note: When mapping materials to Beast, Unity detects the 'kind' of the shader by the shader's properties and path/name

keywords such as: 'Specular', 'Transparent', 'Self-Illumin', etc.

Skinned Mesh Renderers

Having skinned meshes that are static makes your content more flexible, since the shape of those meshes can be changed in

Unity after import and can be tweaked per level. Skinned Mesh Renderers can be lightmapped in exactly the same way as

Mesh Renderers and are sent to the lightmapper in their current pose.

Lightmapping can also be used if the vertices of a mesh are moved at runtime a bit -- the lighting won't be completely accurate,

but in a lot of cases it will match well enough.

Advanced

Automatic Atlasing

Atlasing (UV-packing) is performed automatically every time you perform a bake and normally you don't have to worry about it -

it just works.

Object's world-space surface area is multiplied by the per-object Scale In Lightmap value and by the global Resolution and the

result determines the size of the object's UV set (more precisely: the size of the [0,1]x[0,1] UV square) in the lightmap. Next, all

objects are packed into as few lightmaps as possible, while making sure each of them occupies the amount of space

calculated in the previous step. If a UV set for a given object occupies only part of the [0,1]x[0,1] square, in many cases

atlasing will move neighboring UV sets closer, to make use of the empty space.

As a result of atlasing, every object to be lightmapped has it's place in one of the lightmaps and that space doesn't overlap with

any other object's space. The atlasing information is stored as three values: Lightmap Index, Tiling (scale) and Offset in Mesh

Renderers and as one value: Lightmap Index in Terrains and can be viewed and modified via the Object pane of the

lightmapping window.

Right-clicking a lightmap lets you select all game objects that use the chosen lightmap. Lightmaps of the active object from

the current selection are highlighted in yellow.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

466 of 1131 12/16/2012 10:12 PM

Atlasing can only modify per-object data which is Lightmap Index, Tiling and Offset and can not modify the UV set of an object,

as the UV set is stored as part of the shared mesh. Lightmap UVs for a mesh can only be created at import time using Unity's

built-in auto-unwrapper or in an external 3D package before importing to Unity.

Lock Atlas

When Lock Atlas is enabled, automatic atlasing won't be run and Lightmap Index, Tiling and Offset on the objects won't be

modified. Beast will rely on whatever is the current atlasing, so it's the user's responsibility to maintain correct atlasing (e.g. no

overlapping objects in the lightmaps, no objects referencing a lightmap slot past the lightmap array end, etc.).

Lock Atlas opens up the possibility for alternative workflows when sending your object's for lightmapping. You can then perform

atlasing manually or via scripting to fit you specific needs; you can also lock the automatically generated atlasing if you are

happy with the current atlasing, have baked more sets of lightmaps for your scene and want to make sure, that after adding

one more object to the scene the atlasing won't change making the scene incompatible with other lightmap sets.

Remember that Lock Atlas locks only atlasing, not the mesh UVs. If you change your source mesh and the mesh importer is set

to generate lightmap UVs, the UVs might be generated differently and your current lightmap will look incorrectly on the object -

to fix this you will need to re-bake the lightmap.

Custom Beast bake settings

If you need even more control over the bake process, see the custom Beast settings page.

Page last updated: 2012-10-31

LightmappingCustomSettings

If you need a different baking setup than the one Unity is using by default, you can specify it by using custom Beast settings.

Beast reads bake settings defined in XML format. Normally Unity generates the XML file based on the configuration you have

chosen in Bake pane of the Lightmap Editor window and a number of other internal settings. You can override those settings

by specifying your own settings in Beast's XML format.

To have Unity automatically generate the XML file for you, click the tab menu in the upper-right corner of the Lightmap Editor

window and select Generate Beast settings file. You will notice that the BeastSettings.xml file appeared in the project next to

your lightmaps and that the Lightmap Editor informs you, that your XML settings will override Unity's settings during the next

bake. Click the open button to edit your custom settings.

A sample Beast configuration file is given below:-

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

467 of 1131 12/16/2012 10:12 PM

<?xml version="1.0" encoding="ISO-8859-1"?>
<ILConfig>
 <AASettings>
 <samplingMode>Adaptive</samplingMode>
 <clamp>false</clamp>
 <contrast>0.1</contrast>
 <diagnose>false</diagnose>
 <minSampleRate>0</minSampleRate>
 <maxSampleRate>2</maxSampleRate>
 <filter>Gauss</filter>
 <filterSize>
 <x>2.2</x>
 <y>2.2</y>
 </filterSize>
 </AASettings>
 <RenderSettings>
 <bias>0</bias>
 <maxShadowRays>10000</maxShadowRays>
 <maxRayDepth>6</maxRayDepth>
 </RenderSettings>
 <EnvironmentSettings>
 <giEnvironment>SkyLight</giEnvironment>
 <skyLightColor>
 <r>0.86</r>
 <g>0.93</g>
 1
 <a>1
 </skyLightColor>
 <giEnvironmentIntensity>0</giEnvironmentIntensity>
 </EnvironmentSettings>
 <FrameSettings>
 <inputGamma>1</inputGamma>
 </FrameSettings>
 <GISettings>
 <enableGI>true</enableGI>
 <fgPreview>false</fgPreview>
 <fgRays>1000</fgRays>
 <fgContrastThreshold>0.05</fgContrastThreshold>
 <fgGradientThreshold>0</fgGradientThreshold>
 <fgCheckVisibility>true</fgCheckVisibility>
 <fgInterpolationPoints>15</fgInterpolationPoints>
 <fgDepth>1</fgDepth>
 <primaryIntegrator>FinalGather</primaryIntegrator>
 <primaryIntensity>1</primaryIntensity>
 <primarySaturation>1</primarySaturation>
 <secondaryIntegrator>None</secondaryIntegrator>
 <secondaryIntensity>1</secondaryIntensity>
 <secondarySaturation>1</secondarySaturation>
 <fgAOInfluence>0</fgAOInfluence>
 <fgAOMaxDistance>0.223798</fgAOMaxDistance>
 <fgAOContrast>1</fgAOContrast>
 <fgAOScale>2.0525</fgAOScale>
 </GISettings>
 <SurfaceTransferSettings>
 <frontRange>0.0</frontRange>
 <frontBias>0.0</frontBias>
 <backRange>2.0</backRange>
 <backBias>-1.0</backBias>
 <selectionMode>Normal</selectionMode>
 </SurfaceTransferSettings>

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

468 of 1131 12/16/2012 10:12 PM

 <TextureBakeSettings>
 <bgColor>
 <r>1</r>
 <g>1</g>
 1
 <a>1
 </bgColor>
 <bilinearFilter>true</bilinearFilter>
 <conservativeRasterization>true</conservativeRasterization>
 <edgeDilation>3</edgeDilation>
 </TextureBakeSettings>
</ILConfig>

The toplevel XML elements are described in the sections below along with their subelements.

Adaptive Sampling (<AASettings> element)
Beast uses an adaptive sampling scheme when sampling light maps. The light must differ more than a user set contrast

threshold for Beast to place additional samples in an area. The sample area is defined by a Min and Max sample rate. The

user sets the rate in the -4..4 range which means that Beast samples from 1/256 sample per pixel to 256 samples per pixel (the

formula is: 4 to the power of samplerate). It is recommended to use at least one sample per pixel for production use (Min

sample rate = 0). Undersampling is most useful when doing camera renders or baking textures with big UV-patches. When

Beast has taken all necessary samples for an area, the final pixel value is weighed together using a filter. The look the filter

produces is dependent on the filter type used and the size of the filter kernel. The available filters are:

Box: Each sample is treated as equally important. The fastest filter to execute but it gives blurry results.

Triangle: The filter kernel is a tent which means that distant samples are consideredless important.

Gauss: Uses the Gauss function as filter kernel. This gives the best results (removes noise, preserves details).

There are more filters available, but these three are the most useful. The kernel (filter) size is given in pixels in the range 1..3.

Beast actually uses all sub pixels when filtering, which yields better results than doing it afterwards in Photoshop.

AASettings

samplingMode The sampling strategy to use. Default is Adaptive. Adaptive: Adaptive anti-aliasing scheme for

under/over sampling (from 1/256 up to 256 samples per pixel). SuperSampling: Anti-aliasing scheme

for super sampling (from 1 up to 128 samples per pixel).

minSampleRate Sets the min sample rate, default is 0 (ie one sample per pixel).

maxSampleRate Sets the max sample rate, the formula used is 4^maxSampleRate (1, 4, 16, 64, 256 samples per pixel)

contrast The contrast value which controls if more samples are necessary - a lower value forces more

samples.

filter Sets which filter type to use. Most useful ones for Baking are Box, Triangle and Gauss.

filterSize Sets the filter size in pixels, from 1 to 3.

diagnose Enable to diagnose the sampling. The brighter a pixel is, the more samples were taken at that

position.

Texture Bake (<TextureBakeSettings> element)
These settings help getting rid of any artifacts that are purely related to how lightmaps are rasterized and read from a texture.

TextureBakeSettings

edgeDilation Expands the rendered region with the number of pixels specified. This is needed to prevent

the artifacts occurring when GPU filters in empty pixels from around the rendered region.

Should be set to 0 though, since a better algorithm is part of the import pipeline.

bilinearFilter Is used to make sure that the data in the lightmap is "correct" when the GPU applies bilinear

filtering. This is most noticable when the atlases are tightly packed. If there is only one pixel

between two different UV patches, the bilinear functionality in Beast will make sure the that

pixel is filled with the color from the correct patch. This minimizes light seams.

conservativeRasterizationIs used when the UV-chart does not cover the entire pixel. If such a layout is used, Beast may

miss the texel by mistake. If conservative rasterization is used Beast will guarantee that it will

find a UV-layout if present. Note that Beast will pick any UV-layout in the pixel. Conservative

Rasterization often needs to be turned on if the UV atlases are tightly packed in low

resolutions or if there are very thin objects present.

bgColor The background color of the lightmap. Should be set to white (1,1,1,1).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

469 of 1131 12/16/2012 10:12 PM

Environment (<EnvironmentSettings> element)
The environment settings in Beast control what happens if a ray misses all geometry in the scene. The environment can either

be a constant color or an HDR image in lat-long format for Image Based Lighting (IBL). Note that environments should only be

used for effects that can be considered to be infinitely far away, meaning that only the directional component matters.

Defining an environment is usually a very good way to get very pleasing outdoor illumination results, but might also increase

bake times.

EnvironmentSettings

giEnvironment The type of Environment: None, Skylight or IBL.

giEnvironmentIntensityA scale factor for the intensity, used for avoiding gamma correction errors and to scale HDR

textures to something that fits your scene. (in Unity: Sky Light Intensity)

skyLightColor A constant environment color. Used if type is Skylight. It is often a good idea to keep the color

below 1.0 in intensity to avoid boosting by gamma correction. Boost the intensity instead with the

giEnvironmentIntensity setting. (in Unity: Sky Light Color)

iblImageFile High-dynamic range IBL background image in Long-Lat format, .HDR or .EXR, absolute path.

Render Settings/Shadows (<RenderSettings> element)
Settings for ray-traced shadows.

RenderSettings

bias An error threshold to avoid double intersections of shadow rays. For example, a shadow ray should

not intersect the same triangle as the primary ray did, but because of limited numerical precision

this can happen. The bias value moves the intersection point to eliminate this problem. If set to zero

this value is computed automatically depending on the scene size.

maxShadowRays The maximum number of shadow rays per point that will be used to generate a soft shadow for any

light source. Use this to shorten render times at the price of soft shadow quality. This will lower the

maximum number of rays sent for any light sources that have a shadowSamples setting higher than

this value, but will not raise the number if shadowSamples is set to a lower value.

maxRayDepth The maximum amount of bounces a ray can have before being considered done. A bounce can be

a reflection or a refraction. Increase the value if a ray goes through many transparent triangles

before hitting an opaque object and you get light in areas that should be in the shadow. Common

failure case: trees with alpha-tested leaves placed in a shadow of a mountain.

giTransparencyDepthMaximum transparency depth for global illumination rays, i.e. the number of transparent surfaces

the ray can go through, before you can assume it has been absorbed. Lower values speed up

rendering, in scenes with, e.g. dense foliage, but may cause overlapping transparent objects to cast

too much shadow. The default is 2.

Global Illumination (<GISettings> element)
The Global Illumination system allows you to use two separate algorithms to calculate indirect lighting. You can for instance

calculate multiple levels of light bounces with a fast algorithm like the Path Tracer, and still calculate the final bounce with Final

Gather to get a fast high-quality global illumination render. Both subsystems have individual control of Intensity and Saturation

to boost the effects if necessary.

It's recommended to use FinalGather as the primary integrator and either None or PathTracer as the secondary integrator.

Unity uses the first option (so final gather only) as the default, since it produces the best quality renders in most cases. Path

Tracer should be used if many indirect bounces are needed and Final Gather-only solution with acceptable quality would take

to much time to render.

GISettings

enableGI Setting to true enables Global Illumination.

primaryIntegrator The integrator used for the final calculations of indirect light. FinalGather is default.

secondaryIntegrator The integrator used for initial bounces of indirect light. Default is None, PathTracer is optional.

primaryIntensity As a post process, converts the color of the primary integrator result from RGB to HSV and scales

the V value. (in Unity: Bounce Intensity)

primarySaturation As a post process, converts the color of the primary integrator result from RGB to HSV and scales

the S value.

secondaryIntensity As a post process, converts the color of the secondary integrator result from RGB to HSV and

scales the V value.

secondarySaturationAs a post process, converts the color of the secondary integrator result from RGB to HSV and

scales the S value.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

470 of 1131 12/16/2012 10:12 PM

diffuseBoost This setting can be used to exaggerate light bouncing in dark scenes. Setting it to a value larger

than 1 will push the diffuse color of materials towards 1 for GI computations. The typical use case is

scenes authored with dark materials, this happens easily when doing only direct lighting since it is

easy to compensate dark materials with strong light sources. Indirect light will be very subtle in these

scenes since the bounced light will fade out quickly. Setting a diffuse boost will compensate for this.

Note that values between 0 and 1 will decrease the diffuse setting in a similar way making light

bounce less than the materials says, values below 0 is invalid. The actual computation taking place

is a per component pow(colorComponent, (1.0 / diffuseBoost)). (in Unity: Bounce Boost)

fgPreview Enable for a quick preview of the final image lighting.

Final Gather

The settings below control the quality or correctness of the Final Gather solution. The normal usage scenario is this:

For each baking set up Contrast Threshold and Number of Rays may be adjusted. There are no perfect settings for

these since they depend on the complexity of the geometry and light setup.

1.

Check Visibility and Light Leakage reduction are expensive operations and should only be used to remedy actual light

leakage problems. These settings will only help if the light leakage is caused by the Global Illumination calculations. A

very common light leakage situation occurs with a wall as a single plane with no thickness. The light leaking through in

that situation does not come from GI.

2.

Gradient threshold should only be changed if there are white halos around corners.3.

Steps 2 and 3 should not need much tweaking in most scenes.

GISettings

fgContrastThreshold Controls how sensitive the final gather should be for contrast differences between the points

during precalculation. If the contrast difference is above this threshold for neighbouring points,

more points will be created in that area. This tells the algorithmto place points where they are

really needed, e.g. at shadow boundaries or in areas where the indirect light changes quickly.

Hence this threshold controls the number of points created in the scene adaptively. Note that if a

low number of final gather rays are used, the points will have high variance and hence a high

contrast difference. In that the case contrast threshold needs to be raised to prevent points from

clumping together or using more rays per sample. (in Unity: Contrast Threshold)

fgRays The maximum number of rays taken in each Final Gather sample. More rays gives better results

but take longer to evaluate. (in Unity: Final Gather Rays)

fgCheckVisibility Turn this on to reduce light leakage through walls. When points are collected to interpolate

between, some of them can be located on the other side of geometry. As a result light will bleed

through the geometry. To prevent this Beast can reject points that are not visible.

fgCheckVisibilityDepthControls for how many bounces the visibility checks should be performed. Adjust this only if

experiencing light leakage when using multi bounce Final Gather.

fgLightLeakReduction This setting can be used to reduce light leakage through walls when using final gather as primary

GI and path tracing as secondary GI. Leakage, which can happen when e.g. the path tracer filters

in values on the other side of a wall, is reduced by using final gather as a secondary GI fallback

when sampling close to walls or corners. When this is enabled a final gather depth of 3 will be

used automatically, but the higher depths will only be used close to walls or corners. Note that this

is only usable when path tracing is used as secondary GI.

fgLightLeakRadius Controls how far away from walls the final gather will be called again, instead of the secondary GI.

If 0.0 is used Beast will try to estimate a good value. If this does not eliminate the leakage it can

be set to a higher value manually.

fgGradientThreshold Controls how the irradiance gradient is used in the interpolation. Each point stores its irradiance

gradient which can be used to improve the interpolation. In some situations using the gradient can

result in white "halos" and other artifacts. This threshold can be used to reduce those artifacts (set

it low or to 0). (in Unity: Interpolation)

fgInterpolationPoints Sets the number of final gather points to interpolate between. A higher value will give a smoother

result, but can also smooth out details. If light leakage is introduced through walls when this value

is increased, checking the sample visibility solves that problem. (in Unity: Interpolation Points)

fgNormalThreshold Controls how sensitive the final gather should be for differences in the points normals. A lower

value will give more points in areas of high curvature.

fgDepth Controls the number of indirect light bounces. A higher value gives a more correct result, but the

cost is increased rendering time. For cheaper multi bounce GI, use Path Tracer as the secondary

integrator instead of increasing depth. (in Unity: Bounces)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

471 of 1131 12/16/2012 10:12 PM

fgAttenuationStart The distance where attenuation is started. There is no attenuation before this distance. This can

be used to add a falloff effect to the final gather lighting. When fgAttenuationStop is set higher

than 0.0 this is enabled.

fgAttenuationStop Sets the distance where attenuation is stopped (fades to zero). There is zero intensity beyond this

distance. To enable attenuation set this value higher than 0.0. The default value is 0.0.

fgFalloffExponent This can be used to adjust the rate by which lighting falls off by distance. A higher exponent gives

a faster falloff.

fgAOInfluence Blend the Final Gather with Ambient Occlusion. Range between 0..1. 0 means no occlusion, 1 is

full occlusion. If Final Gather is used with multiple depths or with Path Tracing as Secondary GI

the result can become a bit "flat". A great way to get more contrast into the lighting is to factor in a

bit of ambient occlusion into the calculation. This Ambient Occlusion algorithm affects only final

gather calculations. The Ambient Occlusion exposed in the Lightmapping window is calculated

differently - by a separate, geometry-only pass.

fgAOMaxDistance Max distance for the occlusion rays. Beyond this distance a ray is considered to be unoccluded.

Can be used to avoid full occlusion for closed scenes such as rooms or to limit the AO

contribution to creases.

fgAOContrast Can be used to adjust the contrast for ambient occlusion.

fgAOScale A scaling of the occlusion values. Can be used to increase or decrease the shadowing effect.

Path Tracer

Use path tracing to get fast multi bounce global illumination. It should not be used as primary integrator for baking since the

results are quite noisy which does not look good in light maps. It can be used as primary integrator to adjust the settings, to

make sure the cache spacing and accuracy is good. The intended usage is to have it set as secondary integrator and have

single bounce final gather as primary integrator. Accuracy and Point Size can be adjusted to make sure that the cache is

sufficiently fine grained.

GISettings

ptAccuracy Sets the number of paths that are traced for each sample element (pixel, texel or vertex). For preview

renderings, a low value like 0.5 to 0.1 can be used. This means that 1/2 to 1/10 of the pixels will

generate a path. For production renderings values above 1.0 may be used, if necessary to get good

quality.

ptPointSize Sets the maximum distance between the points in the path tracer cache. If set to 0 a value will be

calculated automatically based on the size of the scene. The automatic value will be printed out

during rendering, which is a good starting value if the point size needs to be adjusted.

ptCacheDirectLight When this is enabled the path tracer will also cache direct lighting from light sources. This increases

performance since fewer direct light calculations are needed. It gives an approximate result, and

hence can affect the quality of the lighting. For instance indirect light bounces from specular

highlights might be lost.

ptCheckVisibility Turn this on to reduce light leakage through walls. When points are collected to interpolate between,

some of them can be located on the other side of geometry. As a result light will bleed through the

geometry. To prevent this Beast can reject points that are not visible. Note: If using this turn off light

leakage reduction for Final Gather.

Frame Settings (<FrameSettings> element)
Allow to control the amount of threads Beast uses and also the gamma correction of the input and output.

FrameSettings

inputGamma Keep at 1, as this setting is set appropriately per texture.

Surface Transfer (<SurfaceTransferSettings> element)
SurfaceTransferSettings are used to allow for transferring the lighting from LOD0 (the level of detail that is shown when the

camera is close to an object) to LOD's with lower fidelity. Keep the settings at their defaults.

Page last updated: 2012-10-31

LightmappingUV

Unity will use UV2 for lightmaps, if the channel is present. Otherwise it will use primary UVs.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

472 of 1131 12/16/2012 10:12 PM

Unity can unwrap your mesh for you to generate lightmap UVs. Just use the Generate Lightmap UVs setting in Mesh Import

Settings.

Advanced Options for Generate Lightmap UVs:

Pack Margin The margin between neighboring patches, assuming the mesh will take entire 1024x1024 lightmap

measured in pixels. That has great effect: to allow filtering, Lightmap will contain lighting information

in texels near patch border. So to avoid light bleeding when applying Lightmap there should be some

margin between patches.

Hard Angle The angle between neighboring triangles, after which the edge between them will be considered hard

edge and seam will be created. If you set it to 180 degrees all edges will be considered smooth: this

is useful for organic models. The default value 88 degrees: this is useful for mechanical models

Angle Error Maximum possible deviation of UVs angles from source geometry angles, in percentage. Basically it

controls how similar triangles in uv space will be to triangles in original geometry (the value, the more

similar triangles will be). Usually you wants it pretty low to avoid artifacts when applying Lightmap.

Default is 8 percent. (This value goes from 0 to 100)

Area Error Maximum possible deviation of UVs areas from source geometry areas, in percentage. Basically it

controls how good relative triangle areas are preserved. Usually that is not very critical, and moving

that up can allow to create less patches; although you should recheck that distortion do not

deteriorate Lightmap quality, as that way triangles may have different resolution. Default is 15

percent. (This value goes from 0 to 100)

If you prefer to provide your own UVs for lightmapping, remember that a good UV set for lightmapping:

Is contained within the [0,1]x[0,1] space

Has no overlapping faces.

Has low angle distortion, that is deviation of angles in UVs and in source geometry.

Has low area distortion, that is, relative scale of triangles is mostly preserved, unless you really want some areas to have

bigger Lightmap Resolution.

Has enough margin between individual patches.

Some examples of the hints suggested above:

Angle distortion
These screenshots were made for equal resolution, but with different uvs. Look at artefacts, and how the shape of light was

slightly changed. There are only 4 triangles, actually, so shape distortion can be far uglier.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

473 of 1131 12/16/2012 10:12 PM

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

474 of 1131 12/16/2012 10:12 PM

Area distortion
There are 2 spotlight with same parameters, the difference being only pointing to areas with different lightmap resolution, due

to relative triangle scale being not preserved

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

475 of 1131 12/16/2012 10:12 PM

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

476 of 1131 12/16/2012 10:12 PM

Page last updated: 2010-07-01

LightProbes

Although lightmapping adds greatly to the realism of a scene, it has the disadvantage that non-static objects in the scene are

less realistically rendered and can look disconnected as a result. It isn't possible to calculate lightmapping for moving objects in

real time but it is possible to get a similar effect using light probes. The idea is that the lighting is sampled at strategic points

in the scene, denoted by the positions of the probes. The lighting at any position can then be approximated by interpolating

between the samples taken by the nearest probes. The interpolation is fast enough to be used during gameplay and helps

avoid the disconnection between the lighting of moving objects and static lightmapped objects in the scene.

Adding Light probes
The Light Probe Group component (menu: Component -> Rendering -> Light Probe Group) can be added to any available

object in the scene. The inspector can be used to add new probes to the group. The probes appear in the scene as yellow

spheres which can be positioned in the same manner as GameObjects. Selected probes can also be duplicated with the usual

keyboard shortcut (ctrl+d/cmd+d).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

477 of 1131 12/16/2012 10:12 PM

Choosing Light Probe positions
Remember to place probes where you want to sample light or sample darkness. The probes need to form a volume

within the scene for the space subdivision to work properly.

The simplest approach to positioning is to arrange them in a regular 3D grid pattern. While this setup is simple and effective, it

is likely to consume a lot of memory (each light probe is essentially a spherical, panoramic HDR image of the view from the

sample point). It is worth noting that probes are only needed for regions that players, NPCs or other dynamic objects can

actually move to. Also, since lighting conditions are interpolated for positions between probes, it is not necessary to use lots of

them across areas where the light doesn't change very much. For example, a large area of uniform shadow would not need a

large number of probes and neither would a brightly lit area far away from reflective objects. Probes are generally needed

where the lighting conditions change abruptly, for instance at the edge of a shadow area or in places where pieces of scenery

have different colors.

In some cases, the infrastructure of the game can be useful in choosing light probe positions. For example, a racing game

typically uses waypoints around the track for AI and other purposes. These are likely to be good candidates for probe positions

and it would likely be straightforward to set these positions from an editor script. Similarly, navigation meshes typically define

the areas that can be reached by players and these also lend themselves to automated positioning of probes.

Here light probes have been baked over surfaces where our characters can walk on, but only where there are interesting

lighting changes to capture:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

478 of 1131 12/16/2012 10:12 PM

Flat 2D levels
As it is now, the light probe system can't bake a completely flat probe cloud. So even if all your characters move only on a

plane, you still have to take care to position at least some probes in a higher layer, so that a volume is formed and interpolation

can work properly.

Good: This is the original probe placement. The characters can move up the ramps and up onto the boxes, so it's good to

sample lighting up there as well.

Good: Here we assume the characters can only move on the plane. Still, there's a couple of probes placed a little bit higher,

so that a volume is formed and thin cell are avoided.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

479 of 1131 12/16/2012 10:12 PM

Bad: The probes are placed too flat, which creates really long and thin cells and produces unintuitive interpolation results.

Using Light Probes
To allow a mesh to receive lighting from the probe system, you should enable the Use Light Probes option on its Mesh

Renderer:

The probe interpolation requires a point in space to represent the position of the mesh that is receiving light. By default, the

centre of the mesh's bounding box is used but it is possible to override this by dragging a Transform to the Mesh Renderer's

Light Probe Anchor property (this Transform's position will be used as the interpolation point instead). This may be useful

when an object contains two separate adjoining meshes; if both meshes are lit individually according to their bounding box

positions then the lighting will be discontinuous at the place where they join. This can be prevented by using the same

Transform (for example the parent or a child object) as the interpolation point for both Mesh Renderers.

When an object using light probes is the active selected object in the Light Probes Scene View mode, its interpolated probe

will be rendered on top of it for preview. The interpolated probe is the one used for rendering the object and is connected with

4 thin blue lines (3 when outside of the probe volume) to the probes it is being interpolated between:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

480 of 1131 12/16/2012 10:12 PM

Dual Lightmaps vs. Single Lightmaps mode
In Single Lightmaps mode all static lighting (including lights set to 'Auto' lightmapping mode) is baked into the light probes.

In Dual Lightmaps mode light probes will store lighting in the same configuration as 'Near' lightmaps, i.e. full illumination from

sky lights, emissive materials, area lights and 'Baked Only' lights, but only indirect illumination from 'Auto' lights. Thanks to that

the object can be lit in real-time with the 'Auto' lights and take advantage of dynamic elements such as real-time shadows, but

at the same time receive indirect lighting added to the scene by these lights.

Page last updated: 2012-10-16

Occlusion Culling

Occlusion Culling is a feature that disables rendering of objects when they are not currently seen by the camera because they

are obscured by other objects. This does not happen automatically in 3D computer graphics since most of the time objects

farthest away from the camera are drawn first and closer objects are drawn over the top of them (this is called "overdraw").

Occlusion Culling is different from Frustum Culling. Frustum Culling only disables the renderers for objects that are outside the

camera's viewing area but does not disable anything hidden from view by overdraw. Note that when you use Occlusion Culling

you will still benefit from Frustum Culling.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

481 of 1131 12/16/2012 10:12 PM

The scene rendered without Occlusion Culling

The same scene rendered with Occlusion Culling

The occlusion culling process will go through the scene using a virtual camera to build a hierarchy of potentially visible sets of

objects. This data is used at runtime by each camera to identify what is visible and what is not. Equipped with this information,

Unity will ensure only visible objects get sent to be rendered. This reduces the number of draw calls and increases the

performance of the game.

The data for occlusion culling is composed of cells. Each cell is a subdivision of the entire bounding volume of the scene. More

specifically the cells form a binary tree. Occlusion Culling uses two trees, one for View Cells (Static Objects) and the other for

Target Cells (Moving Objects). View Cells map to a list of indices that define the visible static objects which gives more

accurate culling results for static objects.

It is important to keep this in mind when creating your objects because you need a good balance between the size of your

objects and the size of the cells. Ideally, you shouldn't have cells that are too small in comparison with your objects but equally

you shouldn't have objects that cover many cells. You can sometimes improve the culling by breaking large objects into smaller

pieces. However, you can still merge small objects together to reduce draw calls and, as long as they all belong to the same

cell, occlusion culling will not be affected. The collection of cells and the visibility information that determines which cells are

visible from any other cell is known as a PVS (Potentially Visible Set).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

482 of 1131 12/16/2012 10:12 PM

Setting up Occlusion Culling
In order to use Occlusion Culling, there is some manual setup involved. First, your level geometry must be broken into sensibly

sized pieces. It is also helpful to lay out your levels into small, well defined areas that are occluded from each other by large

objects such as walls, buildings, etc. The idea here is that each individual mesh will be turned on or off based on the occlusion

data. So if you have one object that contains all the furniture in your room then either all or none of the entire set of furniture

will be culled. This doesn't make nearly as much sense as making each piece of furniture its own mesh, so each can

individually be culled based on the camera's view point.

You need to tag all scene objects that you want to be part of the occlusion to Occlusion Static in the Inspector. The fastest

way to do this is to multi-select the objects you want to be included in occlusion calculations, and mark them as Occlusion

Static and Occludee Static.

Marking an object for Occlusion

When should I use Occludee Static? Transparent objects that do not occlude, as well as small objects that are unlikely to

occlude other things, should be marked as Occludees, but not Occluders. This means they will be considered in occlusion

by other objects, but will not be considered as occluders themselves, which will help reduce computation.

Occlusion Culling Window
For most operations dealing with Occlusion Culling, we recommend you use the Occlusion Culling Window

(Window->Occlusion Culling)

In the Occlusion Culling Window, you can work with occluder meshes, and Occlusion Areas.

If you are in the Object tab of the Occlusion Culling Window and have some Mesh Renderer selected in the scene, you can

modify the relevant Static flags:

Occlusion Culling Window for a Mesh Renderer

If you are in the Object tab of the Occlusion Culling Window and have an Occlusion Area selected, you can work with

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

483 of 1131 12/16/2012 10:12 PM

relevant OcclusionArea properties (for more details go to the Occlusion Area section)

Occlusion Culling Window for the Occlusion Area

NOTE: By default if you don't create any occlusion areas, occlusion culling will be applied to the whole scene.

NOTE: Whenever your camera is outside occlusion areas, occlusion culling will not be applied. It is important to set up your

Occlusion Areas to cover the places where the camera can potentially be, but making the areas too large, incurs a cost during

baking.

Occlusion Culling - Bake

Occlusion culling inspector bake tab.

Properties
Technique Select between the types of occlusion culling baking

PVS only Only static objects will be occlusion culled. Dynamic objects will be culled based on the view frustrum

only. this technique has the smallest overhead on the CPU, but since dynamic objects are not culled,

it is only recommended for games with few moving objects and characters. Since all visibility is

precomputed, you cannot open or close portals at runtime.

PVS and dynamic

objects

Static objects are culled using precomputed visibility. Dynamic objects are culled using portal culling.

this technique is a good balance between runtime overhead and culling efficiency. Since all visibility

is precomputed, you cannot open or close a portal at runtime

Automatic Portal

Generation

Portals are generated automatically. Static and dynamic objects are culled through portals. This

allows you to open and close portals at runtime. This technique will cull objects most accurately, but

also has the most performance overhead on the CPU.

View Cell Size Size of each view area cell. A smaller value produces more accurate occlusion culling. The value is a

tradeoff between occlusion accuracy and storage size

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

484 of 1131 12/16/2012 10:12 PM

Near Clip Plane Near clip plane should be set to the smallest near clip plane that will be used in the game of all the

cameras.

Far Clip Plane Far Clip Plane used to cull the objects. Any object whose distance is greater than this value will be

occluded automatically.(Should be set to the largest far clip planed that will be used in the game of all

the cameras)

Memory limit This is a hint for the PVS-based baking, not available in Automatic Portal Generation mode

When you have finished tweaking these values you can click on the Bake Button to start processing the Occlusion Culling

data. If you are not satisfied with the results, you can click on the Clear button to remove previously calculated data.

Occlusion Culling - Visualization

Occlusion culling inspector visualization tab.

The near and far planes define a virtual camera that is used to calculate the occlusion data. If you have several cameras with

different near or far planes, you should use the smallest near plane and the largest far plane distance of all cameras for correct

inclusion of objects.

All the objects in the scene affect the size of the bounding volume so try to keep them all within the visible bounds of the

scene.

When you're ready to generate the occlusion data, click the Bake button. Remember to choose the Memory Limit in the

Bake tab. Lower values make the generation quicker and less precise, higher values are to be used for production quality

closer to release.

Bear in mind that the time taken to build the occlusion data will depend on the cell levels, the data size and the quality you

have chosen. Unity will show the status of the PVS generation at the bottom of the main window.

After the processing is done, you should see some colorful cubes in the View Area. The colored areas are regions that share

the same occlusion data.

Click on Clear if you want to remove all the pre-calculated data for Occlusion Culling.

Occlusion Area (Pro Only)

To apply occlusion culling to moving objects you have to create an Occlusion Area and then modify its size to fit the space

where the moving objects will be located (of course the moving objects cannot be marked as static). You can create Occlusion

Areas is by adding the Occlusion Area component to an empty game object (Component->Rendering->Occlusion Area in

the menus)

After creating the Occlusion Area, just check the Is Target Volume checkbox to occlude moving objects.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

485 of 1131 12/16/2012 10:12 PM

Occlusion Area properties for moving objects.

Size Defines the size of the Occlusion Area.

Center Sets the center of the Occlusion Area. By default this is 0,0,0 and is located in the center of the box.

Is View Volume Defines where the camera can be. Check this in order to occlude static objects that are inside this

Occlusion Area.

Is Target Volume Select this when you want to occlude moving objects.

Target Resolution Determines how accurate the occlusion culling inside the area will be. This affects the size of the

cells in an Occlusion Area. NOTE: This only affects Target Areas.

Low This takes less time to calculate but is less accurate.

Medium This gives a balance between accuracy and time taken to process the occlusion culling data.

High This takes longer to calculate but has better accuracy.

Very High Use this value when you want to have more accuracy than high resolutions, be aware it takes more

time.

Extremely High Use this value when you want to have almost exact occlusion culling on your moveable objects. Note:

This setting takes a lot of time to calculate.

After you have added the Occlusion Area, you need to see how it divides the box into cells. To see how the occlusion area will

be calculated, Select Edit and toggle the View button in the Occlusion Culling Preview Panel.

Testing the generated occlusion
After your occlusion is set up, you can test it by enabling the Occlusion Culling (in the Occlusion Culling Preview Panel in

Visualize mode) and moving the Main Camera around in the scene view.

The Occlusion View mode in Scene View

As you move the Main Camera around (whether or not you are in Play mode), you'll see various objects disable themselves.

The thing you are looking for here is any error in the occlusion data. You'll recognize an error if you see objects suddenly

popping into view as you move around. If this happens, your options for fixing the error are either to change the resolution (if

you are playing with target volumes) or to move objects around to cover up the error. To debug problems with occlusion, you

can move the Main Camera to the problematic position for spot-checking.

When the processing is done, you should see some colorful cubes in the View Area. The blue cubes represent the cell

divisions for Target Volumes. The white cubes represent cell divisions for View Volumes. If the parameters were set

correctly you should see some objects not being rendered. This will be because they are either outside of the view frustum of

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

486 of 1131 12/16/2012 10:12 PM

the camera or else occluded from view by other objects.

After occlusion is completed, if you don't see anything being occluded in your scene then try breaking your objects into smaller

pieces so they can be completely contained inside the cells.

Occlusion Portals

In order to create occlusion primitive which are openable and closable at runtime, Unity uses Occlusion Portals.

Open Indicates if the portal is open (scriptable)

Center Sets the center of the Occlusion Area. By default this is 0,0,0 and is located in the center of the box.

Size Defines the size of the Occlusion Area.
Page last updated: 2012-02-14

CameraTricks

It is useful to understand how the camera works when designing certain visual effects or interactions with objects in the scene.

This section explains the nature of the camera's view and how it can be used to enhance gameplay.

UnderstandingFrustum

The Size of the Frustum at a Given Distance from the Camera

Dolly Zoom (AKA the "Trombone" Effect)

Rays from the Camera

Using an Oblique Frustum

Creating an Impression of Large or Small Size
Page last updated: 2011-09-06

UnderstandingFrustum

Understanding the View Frustum

The word frustum refers to a solid shape that looks like a pyramid with the top cut off parallel to the base. This is the shape of

the region that can be seen and rendered by a perspective camera. The following thought experiment should help to explain

why this is the case.

Imagine holding a straight rod (a broom handle or a pencil, say) end-on to a camera and then taking a picture. If the rod were

held in the centre of the picture, perpendicular to the camera lens, then only its end would be visible as a circle on the picture;

all other parts of it would be obscured. If you moved it upward, the lower side would start to become visible but you could hide

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

487 of 1131 12/16/2012 10:12 PM

it again by angling the rod upward. If you continued moving the rod up and angling it further upward, the circular end would

eventually reach the top edge of the picture. At this point, any object above the line traced by the rod in world space would not

be visible on the picture.

The rod could just as easily be moved and rotated left, right, or down or any combination of horizontal and vertical. The angle

of the "hidden" rod simply depends on its distance from the centre of the screen in both axes.

The meaning of this thought experiment is that any point in a camera's image actually corresponds to a line in world space and

only a single point along that line is visible in the image. Everything behind that position on the line is obscured.

The outer edges of the image are defined by the diverging lines that correspond to the corners of the image. If those lines

were traced backwards towards the camera, they would all eventually converge at a single point. In Unity, this point is located

exactly at the camera's transform position and is known as the centre of perspective. The angle subtended by the lines

converging from the top and bottom centres of the screen at the centre of perspective is called the field of view (often

abbreviated to FOV).

As stated above, anything that falls outside the diverging lines at the edges of the image will not be visible to the camera, but

there are also two other restrictions on what it will render. The near and far clipping planes are parallel to the camera's XY

plane and each set at a certain distance along its centre line. Anything closer to the camera than the near clipping plane and

anything farther away than the far clipping plane will not be rendered.

The diverging corner lines of the image along with the two clipping planes define a truncated pyramid - the view frustum.

Page last updated: 2011-09-06

FrustumSizeAtDistance

A cross-section of the view frustum at a certain distance from the camera defines a rectangle in world space that frames the

visible area. It is sometimes useful to calculate the size of this rectangle at a given distance, or find the distance where the

rectangle is a given size. For example, if a moving camera needs to keep an object (such as the player) completely in shot at

all times then it must not get so close that part of that object is cut off.

The height of the frustum at a given distance (both in world units) can be obtained with the following formula:-

var frustumHeight = 2.0 * distance * Mathf.Tan(camera.fieldOfView * 0.5 * Mathf.Deg2Rad);

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

488 of 1131 12/16/2012 10:12 PM

...and the process can be reversed to calculate the distance required to give a specified frustum height:-

var distance = frustumHeight * 0.5 / Mathf.Tan(camera.fieldOfView * 0.5 * Mathf.Deg2Rad);

It is also possible to calculate the FOV angle when the height and distance are known:-

var camera.fieldOfView = 2 * Mathf.Atan(frustumHeight * 0.5 / distance) * Mathf.Rad2Deg;

Each of these calculations involves the height of the frustum but this can be obtained from the width (and vice versa) very

easily:-

var frustumWidth = frustumHeight * camera.aspect;
var frustumHeight = frustumWidth / camera.aspect;

Page last updated: 2011-09-06

DollyZoom

Dolly Zoom is the well-known visual effect where the camera simultaneously moves towards a target object and zooms out

from it. The result is that the object appears roughly the same size but all the other objects in the scene change perspective.

Done subtly, dolly zoom has the effect of highlighting the target object, since it is the only thing in the scene that isn't shifting

position in the image. Alternatively, the zoom can be deliberately performed quickly to create the impression of disorientation.

An object that just fits within the frustum vertically will occupy the whole height of the view as seen on the screen. This is true

whatever the object's distance from the camera and whatever the field of view. For example, you can move the camera closer

to the object but then widen the field of view so that the object still just fits inside the frustum's height. That particular object will

appear the same size onscreen but everything else will change size as the distance and FOV change. This is the essence of

the dolly zoom effect.

Creating the effect in code is a matter of saving the height of the frustum at the object's position at the start of the zoom. Then,

as the camera moves, its new distance is found and the FOV adjusted to keep it the same height at the object's position. This

can be accomplished with the following code:-

var target: Transform;

private var initHeightAtDist: float;
private var dzEnabled: boolean;

// Calculate the frustum height at a given distance from the camera.
function FrustumHeightAtDistance(distance: float) {

return 2.0 * distance * Mathf.Tan(camera.fieldOfView * 0.5 * Mathf.Deg2Rad);
}

// Calculate the FOV needed to get a given frustum height at a given distance.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

489 of 1131 12/16/2012 10:12 PM

function FOVForHeightAndDistance(height: float, distance: float) {
return 2 * Mathf.Atan(height * 0.5 / distance) * Mathf.Rad2Deg;

}

// Start the dolly zoom effect.
function StartDZ() {

var distance = Vector3.Distance(transform.position, target.position);
initHeightAtDist = FrustumHeightAtDistance(distance);
dzEnabled = true;

}

// Turn dolly zoom off.
function StopDZ() {

dzEnabled = false;
}

function Start() {
StartDZ();

}

function Update () {
if (dzEnabled) {

// Measure the new distance and readjust the FOV accordingly.
var currDistance = Vector3.Distance(transform.position, target.position);
camera.fieldOfView = FOVForHeightAndDistance(initHeightAtDist, currDistance);

}

// Simple control to allow the camera to be moved in and out using the up/down arrows.
transform.Translate(Input.GetAxis("Vertical") * Vector3.forward * Time.deltaTime * 5);

}

Page last updated: 2011-09-06

CameraRays

In the section Understanding the View Frustum, it was explained that any point in the camera's view corresponds to a line in

world space. It is sometimes useful to have a mathematical representation of that line and Unity can provide this in the form of

a Ray object. The Ray always corresponds to a point in the view, so the Camera class provides the ScreenPointToRay and

ViewportPointToRay functions. The difference between the two is that ScreenPointToRay expects the point to be provided as

a pixel coordinate, while ViewportPointToRay takes normalized coordinates in the range 0..1 (where 0 represents the bottom or

left and 1 represents the top or right of the view). Each of these functions returns a Ray which consists of a point of origin and

a vector which shows the direction of the line from that origin. The Ray originates from the near clipping plane rather than the

Camera's transform.position point.

Raycasting
The most common use of a Ray from the camera is to perform a raycast out into the scene. A raycast sends an imaginary

"laser beam" along the ray from its origin until it hits a collider in the scene. Information is then returned about the object and

the point that was hit in a RaycastHit object. This is a very useful way to locate an object based on its onscreen image. For

example, the object at the mouse position can be determined with the following code:-

var hit: RaycastHit;
var ray: Ray = camera.ScreenPointToRay(Input.mousePosition);

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

490 of 1131 12/16/2012 10:12 PM

if (Physics.Raycast(ray, hit)) {
var objectHit: Transform = hit.transform;

// Do something with the object that was hit by the raycast.
}

Moving the Camera Along a Ray
It is sometimes useful to get a ray corresponding to a screen position and then move the camera along that ray. For example,

you may want to allow the user to select an object with the mouse and then zoom in on it while keeping it "pinned" to the same

screen position under the mouse (this might be useful when the camera is looking at a tactical map, say). The code to do this

is fairly straightforward:-

var zooming: boolean;
var zoomSpeed: float;

if (zooming) {
var ray: Ray = camera.ScreenPointToRay(Input.mousePosition);
zoomDistance = zoomSpeed * Input.GetAxis("Vertical") * Time.deltaTime;
camera.transform.Translate(ray.direction * zoomDistance, Space.World);

}

Page last updated: 2011-09-06

ObliqueFrustum

By default, the view frustum is arranged symmetrically around the camera's centre line but it doesn't necessarily need to be.

The frustum can be made "oblique", which means that one side is at a smaller angle to the centre line than the opposite side.

The effect is rather like taking a printed photograph and cutting one edge off. This makes the perspective on one side of the

image seem more condensed giving the impression that the viewer is very close to the object visible at that edge. An example

of how this can be used is a car racing game where the frustum might be flattened at its bottom edge. This would make the

viewer seem closer to the road, accentuating the feeling of speed.

While the camera class doesn't have functions to set the obliqueness of the frustum, it can be done quite easily by altering the

projection matrix:-

function SetObliqueness(horizObl: float, vertObl: float;) {
var mat: Matrix4x4 = camera.projectionMatrix;
mat[0, 2] = horizObl;
mat[1, 2] = vertObl;
camera.projectionMatrix = mat;

}

Mercifully, it is not necessary to understand how the projection matrix works to make use of this. The horizObl and vertObl

values set the amount of horizontal and vertical obliqueness, respectively. A value of zero indicates no obliqueness. A positive

value shifts the frustum rightwards or upwards, thereby flattening the left or bottom side. A negative value shifts leftwards or

downwards and consequently flattens the right or top side of the frustum. The effect can be seen directly if this script is added

to a camera and the game is switched to the scene view while the game runs; the wireframe depiction of the camera's frustum

will change as you vary the values of horizObl and vertObl in the inspector. A value of 1 or -1 in either variable indicates that

one side of the frustum is completely flat against the centreline. It is possible although seldom necessary to use values outside

this range.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

491 of 1131 12/16/2012 10:12 PM

Page last updated: 2011-09-06

ImpressionOfSize

From the graphical point of view, the units of distance in Unity are arbitrary and don't correspond to real world measurements.

Although this gives flexibility and convenience for design, it is not always easy to convey the intended size of the object. For

example, a toy car looks different to a full size car even though it may be an accurate scale model of the real thing.

A major element in the impression of an object's size is the way the perspective changes over the object's length. For example,

if a toy car is viewed from behind then the front of the car will only be a short distance farther away than the back. Since the

distance is small, perspective will have relatively little effect and so the front will appear little different in size to the back. With a

full size car, however, the front will be several metres farther away from the camera than the back and the effect of perspective

will be much more noticeable.

For an object to appear small, the lines of perspective should diverge only very slightly over its depth. You can achieve this by

using a narrower field of view than the default 60� and moving the camera farther away to compensate for the increased

onscreen size. Conversely, if you want to make an object look big, use a wide FOV and move the camera in close. When these

perspective alterations are used with other obvious techniques (like looking down at a "small" object from higher-than-normal

vantage point) the result can be quite convincing.

Page last updated: 2011-09-06

Loading Resources at Runtime

In some situations, it is useful to make an asset available to a project without loading it in as part of a scene. For example,

there may be a character or other object that can appear in any scene of the game but which will only be used infrequently

(this might be a "secret" feature, an error message or a highscore alert, say). Furthermore, you may even want to load assets

from a separate file or URL to reduce initial download time or allow for interchangeable game content.

Unity supports Resource Folders in the project to allow content to be supplied in the main game file yet not be loaded until

requested. In Unity Pro, Unity iOS Advanced and Unity Android Advanced, you can also create Asset Bundles. These are

files completely separate from the main game file which contain assets to be accessed by the game on demand from a file or

URL.

Asset Bundles (Unity Pro-only/iOS Advanced/Android Advanced licenses only)
An Asset Bundle is an external collection of assets. You can have many Asset Bundles and therefore many different external

collections of assets. These files exist outside of the built Unity player, usually sitting on a web server for end-users to access

dynamically.

To build an Asset Bundle, you call BuildPipeline.BuildAssetBundle() from inside an Editor script. In the arguments, you specify

an array of Objects to be included in the built file, along with some other options. This will build a file that you can later load

dynamically in the runtime by using AssetBundle.Load().

Resource Folders
Resource Folders are collections of assets that are included in the built Unity player, but are not necessarily linked to any

GameObject in the Inspector.

To put anything into a Resource Folder, you simply create a new folder inside the Project View, and name the folder

"Resources". You can have multiple Resource Folders organized differently in your Project. Whenever you want to load an

asset from one of these folders, you call Resources.Load().

If your target deployable is a Streaming Web Player, you can define which scene will include everything in your Resource

Folders. You do this in the Player Settings, accessible via Edit->Project Settings->Player. Stream queue is determined by

Build Settings' scene order.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

492 of 1131 12/16/2012 10:12 PM

Note:

All assets found in the Resources folders and their dependencies are stored in a file called resources.assets. If an asset is

already used by another level it is stored in the .sharedAssets file for that level. The Edit -> PlayerSettings First Streamed

Level setting determines the level at which the resources.assets will be collected and included in the build.

If a level prior to "First streamed Level" is including an asset in a Resource folder, the asset will be stored in assets for that

level. if it is included afterwards, the level will reference the asset from the "resources.assets" file.

Only assets that are in the Resources folder can be accessed through Resources.Load. However many more assets might

end up in the "resources.assets" file since they are dependencies. (For example a Material in the Resources folder might

reference a Texture outside of the Resources folder)

Resource Unloading
You can unload resources of an AssetBundle by calling AssetBundle.Unload(). If you pass true for the

unloadAllLoadedObjects parameter, both the objects held internally by the AssetBundle and the ones loaded from the

AssetBundle using AssetBundle.Load() will be destroyed and memory used by the bundle will be released.

Sometimes you may prefer to load an AssetBundle, instantiate the objects desired and release the memory used up by the

bundle while keeping the objects around. The benefit is that you free up memory for other tasks, for instance loading another

AssetBundle. In this scenario you would pass false as the parameter. After the bundle is destroyed you will not be able to load

objects from it any more.

If you want to destroy scene objects loaded using Resources.Load() prior to loading another level, call Object.Destroy() on

them. To release assets, use Resources.UnloadUnusedAssets().

Page last updated: 2012-11-28

Modifying Source Assets Through Scripting

Automatic Instantiation
Usually when you want to make a modification to any sort of game asset, you want it to happen at runtime and you want it to

be temporary. For example, if your character picks up an invincibility power-up, you might want to change the shader of the

material for the player character to visually demonstrate the invincible state. This action involves modifying the material that's

being used. This modification is not permanent because we don't want the material to have a different shader when we exit

Play Mode.

However, it is possible in Unity to write scripts that will permanently modify a source asset. Let's use the above material

example as a starting point.

To temporarily change the material's shader, we change the shader property of the material component.

private var invincibleShader = Shader.Find ("Specular");

function StartInvincibility {

renderer.material.shader = invincibleShader;

}

When using this script and exiting Play Mode, the state of the material will be reset to whatever it was before entering Play

Mode initially. This happens because whenever renderer.material is accessed, the material is automatically instantiated and

the instance is returned. This instance is simultaneously and automatically applied to the renderer. So you can make any

changes that your heart desires without fear of permanence.

Direct Modification

IMPORTANT NOTE

The method presented below will modify actual source asset files used within Unity. These modifications are not undoable.

Use them with caution.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

493 of 1131 12/16/2012 10:12 PM

Now let's say that we don't want the material to reset when we exit play mode. For this, you can use renderer.sharedMaterial.

The sharedMaterial property will return the actual asset used by this renderer (and maybe others).

The code below will permanently change the material to use the Specular shader. It will not reset the material to the state it

was in before Play Mode.

private var invincibleShader = Shader.Find ("Specular");

function StartInvincibility {

renderer.sharedMaterial.shader = invincibleShader;

}

As you can see, making any changes to a sharedMaterial can be both useful and risky. Any change made to a sharedMaterial

will be permanent, and not undoable.

Applicable Class Members
The same formula described above can be applied to more than just materials. The full list of assets that follow this convention

is as follows:

Materials: renderer.material and renderer.sharedMaterial

Meshes: meshFilter.mesh and meshFilter.sharedMesh

Physic Materials: collider.material and collider.sharedMaterial

Direct Assignment
If you declare a public variable of any above class: Material, Mesh, or Physic Material, and make modifications to the asset

using that variable instead of using the relevant class member, you will not receive the benefits of automatic instantiation

before the modifications are applied.

Assets that are not automatically instantiated

 Desktop

There are two different assets that are never automatically instantiated when modifying them.

Texture2D

TerrainData

Any modifications made to these assets through scripting are always permanent, and never undoable. So if you're changing

your terrain's heightmap through scripting, you'll need to account for instantiating and assigning values on your own. Same

goes for Textures. If you change the pixels of a texture file, the change is permanent.

 iOS

Texture2D assets are never automatically instantiated when modifying them. Any modifications made to these assets through

scripting are always permanent, and never undoable. So if you change the pixels of a texture file, the change is permanent.

 Android

Texture2D assets are never automatically instantiated when modifying them. Any modifications made to these assets through

scripting are always permanent, and never undoable. So if you change the pixels of a texture file, the change is permanent.

Page last updated: 2011-02-22

Generating Mesh Geometry Procedurally

The Mesh class gives script access to an object's mesh geometry, allowing meshes to be created or modified at runtime. This

technique is useful for graphical effects (eg, stretching or squashing an object) but can also be useful in level design and

optimisation. The following sections explain the basic details of how a mesh is constructed along with an exploration of the API

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

494 of 1131 12/16/2012 10:12 PM

and an example.

Anatomy of a Mesh

Using the Mesh Class

Example - Creating a Billboard Plane
Page last updated: 2011-07-15

Anatomy of a Mesh

A mesh consists of triangles arranged in 3D space to create the impression of a solid object. A triangle is defined by its three

corner points or vertices. In the Mesh class, the vertices are all stored in a single array and each triangle is specified using

three integers that correspond to indices of the vertex array. The triangles are also collected together into a single array of

integers; the integers are taken in groups of three from the start of this array, so elements 0, 1 and 2 define the first triangle, 3,

4 and 5 define the second, and so on. Any given vertex can be reused in as many triangles as desired but there are reasons

why you may not want to do this, as explained below.

Lighting and Normals
The triangles are enough to define the basic shape of the object but extra information is needed to display the mesh in most

cases. To allow the object to be shaded correctly for lighting, a normal vector must be supplied for each vertex. A normal is a

vector that points outward, perpendicular to the mesh surface at the position of the vertex it is associated with. During the

shading calculation, each vertex normal is compared with the direction of the incoming light, which is also a vector. If the two

vectors are perfectly aligned, then the surface is receiving light head-on at that point and the full brightness of the light will be

used for shading. A light coming exactly side-on to the normal vector will give no illumination to the surface at that position.

Typically, the light will arrive at an angle to the normal and so the shading will be somewhere in between full brightness and

complete darkness, depending on the angle.

Since the mesh is made up of triangles, it may seem that the normals at corners will simply be perpendicular to the plane of

their triangle. However, normals are actually interpolated across the triangle to give the surface direction of the intermediate

positions between the corners. If all three normals are pointing in the same direction then the triangle will be uniformly lit all

over. The effect of having separate triangles uniformly shaded is that the edges will be very crisp and distinct. This is exactly

what is required for a model of a cube or other sharp-edged solid but the interpolation of the normals can be used to create

smooth shading to approximate a curved surface.

To get crisp edges, it is necessary to double up vertices at each edge since both of the two adjacent triangles will need their

own separate normals. For curved surfaces, vertices will usually be shared along edges but a bit of intuition is often required

to determine the best direction for the shared normals. A normal might simply be the average of the normals of the planes of

the surrounding triangles. However, for an object like a sphere, the normals should just be pointing directly outward from the

sphere's centre.

By calling Mesh.RecalculateNormals, you can get Unity to work out the normals' directions for you by making some

assumptions about the "meaning" of the mesh geometry; it assumes that vertices shared between triangles indicate a smooth

surface while doubled-up vertices indicate a crisp edge. While this is not a bad approximation in most cases,

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

495 of 1131 12/16/2012 10:12 PM

RecalculateNormals will be tripped up by some texturing situations where vertices must be doubled even though the surface is

smooth.

Texturing
In addition to the lighting, a model will also typically make use of texturing to create fine detail on its surface. A texture is a bit

like an image printed on a stretchable sheet of rubber. For each mesh triangle, a triangular area of the texture image is defined

and that texture triangle is stretched and "pinned" to fit the mesh triangle. To make this work, each vertex needs to store the

coordinates of the image position that will be pinned to it. These coordinates are two dimensional and scaled to the 0..1 range

(0 means the bottom/left of the image and 1 means the right/top). To avoid confusing these coordinates with the Cartesian

coordinates of the 3D world, they are referred to as U and V rather than the more familiar X and Y, and so they are commonly

called UV coordinates.

Like normals, texture coordinates are unique to each vertex and so there are situations where you need to double up vertices

purely to get different UV values across an edge. An obvious example is where two adjacent triangles use discontinuous parts

of the texture image (eyes on a face texture, say). Also, most objects that are fully enclosed volumes will need a "seam" where

an area of texture wraps around and joins together. The UV values at one side of the seam will be different from those at the

other side.

Page last updated: 2011-07-15

Using the Mesh Class

The Mesh class is the basic script interface to an object's mesh geometry. It uses arrays to represent the vertices, triangles,

normals and texture coordinates and also supplies a number of other useful properties and functions to assist mesh

generation.

Accessing an Object's Mesh
The mesh data is attached to an object using the Mesh Filter component (and the object will also need a Mesh Renderer to

make the geometry visible). This component is accessed using the familiar GetComponent function:-

var mf: MeshFilter = GetComponent(MeshFilter);
// Use mf.mesh to refer to the mesh itself.

Adding the Mesh Data
The Mesh object has properties for the vertices and their associated data (normals and UV coordinates) and also for the

triangle data. The vertices may be supplied in any order but the arrays of normals and UVs must be ordered so that the indices

all correspond with the vertices (ie, element 0 of the normals array supplies the normal for vertex 0, etc). The vertices are

Vector3s representing points in the object's local space. The normals are normalised Vector3s representing the directions,

again in local coordinates. The UVs are specified as Vector2s, but since the Vector2 type doesn't have fields called U and V,

you must mentally convert them to X and Y respectively.

The triangles are specified as triples of integers that act as indices into the vertex array. Rather than use a special class to

represent a triangle the array is just a simple list of integer indices. These are taken in groups of three for each triangle, so the

first three elements define the first triangle, the next three define the second triangle, and so on. An important detail of the

triangles is the ordering of the corner vertices. They should be arranged so that the corners go around clockwise as you look

down on the visible outer surface of the triangle, although it doesn't matter which corner you start with.

Page last updated: 2011-07-15

Example - Creating a Billboard Plane

Unity comes with a Plane primitive object but a simpler plane may be useful in 2D games or GUI, and in any case makes a

good starting example. A minimal plane will consist of four vertices to define the corners along with two triangles.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

496 of 1131 12/16/2012 10:12 PM

The first thing is to set the vertices array. We'll assume that the plane lies in the X and Y axes and let its width and height be

determined by parameter variables. We'll supply the vertices in the order bottom-left, bottom-right, top-left, top-right.

var vertices: Vector3[] = new Vector3[4];

vertices[0] = new Vector3(0, 0, 0);
vertices[1] = new Vector3(width, 0, 0);
vertices[2] = new Vector3(0, height, 0);
vertices[3] = new Vector3(width, height, 0);

mesh.vertices = vertices;

(Since the Mesh data properties execute code behind the scenes, it is much more efficient to set up the data in your own array

and then assign this to a property rather than access the property array element by element.)

Next come the triangles. Since we want two triangles, each defined by three integers, the triangles array will have six elements

in total. Remembering the clockwise rule for ordering the corners, the lower left triangle will use 0, 2, 1 as its corner indices,

while the upper right one will use 2, 3, 1.

var tri: int[] = new int[6];

// Lower left triangle.
tri[0] = 0;
tri[1] = 2;
tri[2] = 1;

// Upper right triangle.
tri[3] = 2;
tri[4] = 3;
tri[5] = 1;

mesh.triangles = tri;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

497 of 1131 12/16/2012 10:12 PM

A mesh with just the vertices and triangles set up will be visible in the editor but will not look very convincing since it is not

correctly shaded without the normals. The normals for the flat plane are very simple - they are all identical and point in the

negative Z direction in the plane's local space. With the normals added, the plane will be correctly shaded but remember that

you need a light in the scene to see the effect.

var normals: Vector3[] = new Vector3[4];

normals[0] = -Vector3.forward;
normals[1] = -Vector3.forward;
normals[2] = -Vector3.forward;
normals[3] = -Vector3.forward;

mesh.normals = normals;

Finally, adding texture coordinates to the mesh will enable it to display a material correctly. Assuming we want to show the

whole image across the plane, the UV values will all be 0 or 1, corresponding to the corners of the texture.

var uv: Vector2[] = new Vector2[4];

uv[0] = new Vector2(0, 0);
uv[1] = new Vector2(1, 0);
uv[2] = new Vector2(0, 1);
uv[3] = new Vector2(1, 1);

mesh.uv = uv;

The complete script might look a bit like this:-

var width: float;
var height: float;

function Start() {
var mf: MeshFilter = GetComponent(MeshFilter);
var mesh = new Mesh();
mf.mesh = mesh;

var vertices: Vector3[] = new Vector3[4];

vertices[0] = new Vector3(0, 0, 0);
vertices[1] = new Vector3(width, 0, 0);
vertices[2] = new Vector3(0, height, 0);
vertices[3] = new Vector3(width, height, 0);

mesh.vertices = vertices;

var tri: int[] = new int[6];

tri[0] = 0;
tri[1] = 2;
tri[2] = 1;

tri[3] = 2;
tri[4] = 3;
tri[5] = 1;

mesh.triangles = tri;

var normals: Vector3[] = new Vector3[4];

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

498 of 1131 12/16/2012 10:12 PM

normals[0] = -Vector3.forward;
normals[1] = -Vector3.forward;
normals[2] = -Vector3.forward;
normals[3] = -Vector3.forward;

mesh.normals = normals;

var uv: Vector2[] = new Vector2[4];

uv[0] = new Vector2(0, 0);
uv[1] = new Vector2(1, 0);
uv[2] = new Vector2(0, 1);
uv[3] = new Vector2(1, 1);

mesh.uv = uv;
}

Note that the if the code is executed once in the Start function then the mesh will stay the same throughout the game.

However, you can just as easily put the code in the Update function to allow the mesh to be changed each frame (although this

will increase the CPU overhead considerably).

Page last updated: 2011-08-15

StyledText

The text for GUI elements and text meshes can incorporate multiple font styles and sizes. The GUIStyle, GUIText and

TextMesh classes have a Rich Text setting which instructs Unity to look for markup tags within the text. These tags are not

displayed but indicate style changes to be applied to the text.

Markup format
The markup system is inspired by HTML but isn't intended to be strictly compatible with standard HTML. The basic idea is that

a section of text can be enclosed inside a pair of matching tags:-

We are not amused

As the example shows, the tags are just pieces of text inside the "angle bracket" characters, < and >. The text inside the tag

denotes its name (which in this case is just b). Note that the tag at the end of the section has the same name as the one at the

start but with the slash / character added. The tags are not displayed to the user directly but are interpreted as instructions for

styling the text they enclose. The b tag used in the example above applies boldface to the word "not", so the text will appear

onscreen as:-

We are not amused

A marked up section of text (including the tags that enclose it) is referred to as an element.

Nested elements

It is possible to apply more than one style to a section of text by "nesting" one element inside another

We are <i>definitely not</i> amused

The i tag applies italic style, so this would be presented onscreen as

We are definitely not amused

Note the ordering of the ending tags, which is in reverse to that of the starting tags. The reason for this is perhaps clearer

when you consider that the inner tags need not span the whole text of the outermost element

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

499 of 1131 12/16/2012 10:12 PM

We are absolutely <i>definitely</i> not amused

which gives

We are absolutely definitely not amused

Tag parameters

Some tags have a simple all-or-nothing effect on the text but others might allow for variations. For example, the color tag

needs to know which colour to apply. Information like this is added to tags by the use of parameters:-

We are <color=green>green</color> with envy

Note that the ending tag doesn't include the parameter value. Optionally, the value can be surrounded by quotation marks but

this isn't required.

Supported tags
The following list describes all the styling tags supported by Unity.

b

Renders the text in boldface.

We are not amused

i

Renders the text in italics.

We are <i>usually</i> not amused

size

Sets the size of the text according to the parameter value, given in pixels.

We are <size=50>largely</size> unaffected

color

Sets the colour of the text according to the parameter value. The colour can be specified in the traditional HTML format

#rrggbbaa

...where the letters correspond to pairs of hexadecimal digits denoting the red, green, blue and alpha (transparency) values for

the colour. For example, cyan at full opacity would be specified by

<color=#00ffffff>...

Another option is to use the name of the colour. This is easier to understand but naturally, the range of colours is limited and

full opacity is always assumed.

<color=cyan>...

The available colour names are given in the table below.

Colour name Hex value Swatch
aqua (same as cyan) #00ffffff

black #000000ff

blue #0000ffff

brown #a52a2aff

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

500 of 1131 12/16/2012 10:12 PM

cyan (same as aqua) #00ffffff

darkblue #0000a0ff

fuchsia (same as magenta) #ff00ffff

green #008000ff

grey #808080ff

lightblue #add8e6ff

lime #00ff00ff

magenta (same as fuchsia) #ff00ffff

maroon #800000ff

navy #000080ff

olive #808000ff

orange #ffa500ff

purple #800080ff

red #ff0000ff

silver #c0c0c0ff

teal #008080ff

white #ffffffff

yellow #ffff00ff

material

This is only useful for text meshes and renders a section of text with a material specified by the parameter. The value is an

index into the text mesh's array of materials as shown by the inspector.

We are <material=2>texturally</material> amused

quad

This is only useful for text meshes and renders an image inline with the text. It takes parameters that specify the material to

use for the image, the image height in pixels, and a further four that denote a rectangular area of the image to display. Unlike

the other tags, quad does not surround a piece of text and so there is no ending tag - the slash character is placed at the end

of the initial tag to indicate that it is "self-closing".

<quad material=1 size=20 x=0.1 y=0.1 width=0.5 height=0.5 />

This selects the material at position in the renderer's material array and sets the height of the image to 20 pixels. The

rectangular area of image starts at given by the x, y, width and height values, which are all given as a fraction of the unscaled

width and height of the texture.

Page last updated: 2012-07-01

UsingDLL

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

501 of 1131 12/16/2012 10:12 PM

Usually, scripts are kept in a project as source files and compiled by Unity whenever the source changes. However, it is also

possible to compile a script to a dynamically linked library (DLL) using an external compiler. The resulting DLL can then be

added to the project and the classes it contains can be attached to objects just like normal scripts.

It is generally much easier to work with scripts than DLLs in Unity. However, you may have access to third party Mono code

which is supplied in the form of a DLL. When developing your own code, you may be able to use compilers not supported by

Unity (F#, for example) by compiling the code to a DLL and adding it to your Unity project. Also, you may want to supply Unity

code without the source (for an Asset Store product, say) and a DLL is an easy way to do this.

Creating a DLL
To create a DLL, you will first need a suitable compiler. Not all compilers that produce .NET code are guaranteed to work with

Unity, so it may be wise to test the compiler with some available code before doing significant work with it. If the DLL contains

no code that depends on the Unity API then you can simply compile it to a DLL using the appropriate compiler options. If you

do want to use the Unity API then you will need to make Unity's own DLLs available to the compiler. On a Mac, these are

contained in the application bundle (you can see the internal structure of the bundle by using the Show Package Contents

command from the contextual menu; right click or ctrl-click the Unity application):-

The path to the Unity DLLs will typically be

/Applications/Unity/Unity.app/Contents/Frameworks/Managed/

...and the two DLLs are called UnityEngine.dll and UnityEditor.dll.

On Windows, the DLLs can be found in the folders that accompany the Unity application. The path will typically be

C:\Program Files (x86)\Unity\Editor\Data\Managed

...while the names of the DLLs are the same as for Mac OS.

The exact options for compiling the DLL will vary depending on the compiler used. As an example, the command line for the

Mono C# compiler, mcs, might look like this on Mac OS:-

mcs -r:/Applications/Unity/Unity.app/Contents/Frameworks/Managed/UnityEngine.dll -target

Here, the -r option specifies a path to a library to be included in the build, in this case the UnityEngine library. The -target

option specifies which type of build is required; the word "library" is used to select a DLL build. Finally, the name of the source

file to compile is ClassesForDLL.cs (it is assumed that this file is in the current working folder, but you could specify the file

using a full path if necessary). Assuming all goes well, the resulting DLL file will appear shortly in the same folder as the

source file.

Using the DLL
Once compiled, the DLL file can simply be dragged into the Unity project like any other asset. The DLL asset has a foldout

triangle which can be used to reveal the separate classes inside the library. Classes that derive from MonoBehaviour can be

dragged onto Game Objects like ordinary scripts. Non-MonoBehaviour classes can be used directly from other scripts in the

usual way.

A folded-out DLL with the classes visible
Page last updated: 2011-11-30

Execution Order

In Unity scripting, there are a number of event functions that get executed in a predetermined order as a script executes. This

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

502 of 1131 12/16/2012 10:12 PM

execution order is described below:

First Scene Load
These functions get called when a scene starts (once for each object in the scene).

Awake: This function is always called before any Start functions and also just after a prefab is instantiated. (If a

GameObject is in-active during start up Awake is not called until it is made active, or a function in any script attached to it is

called.)

OnEnable: (only called if the Object is active): This function is called just after the object is enabled. This happens when a

MonoBehaviour is instance is created, such as when a level is loaded or a GameObject with the script component is

instantiated.

Before the first frame update
Start: Start is called before the first frame update only if the script instance is enabled.

In between frames
OnApplicationPause: This is called at the end of the frame where the pause is detected, effectively between the normal

frame updates. One extra frame will be issued after OnApplicationPause is called to allow the game to show graphics

that indicate the paused state.

Update Order
When you're keeping track of game logic and interactions, animations, camera positions, etc., there are a few different events

you can use. The common pattern is to perform most tasks inside the Update() function, but there are also other functions you

can use.

FixedUpdate: FixedUpdate() is often called more frequently than Update(). It can be called multiple times per frame, if

the frame rate is low and it may not be called between frames at all if the frame rate is high. All physics calculations and

updates occur immediately after FixedUpdate(). When applying movement calculations inside FixedUpdate(), you do not

need to multiply your values by Time.deltaTime. This is because FixedUpdate() is called on a reliable timer, independent

of the frame rate.

Update: Update() is called once per frame. It is the main workhorse function for frame updates.

LateUpdate: LateUpdate() is called once per frame, after Update() has finished. Any calculations that are performed in

Update() will have completed when LateUpdate() begins. A common use for LateUpdate() would be a following third-

person camera. If you make your character move and turn inside Update(), you can perform all camera movement and

rotation calculations in LateUpdate(). This will ensure that the character has moved completely before the camera tracks

its position.

Rendering
OnPreCull: Called before the camera culls the scene. Culling determines which objects are visible to the camera.

OnPreCull is called just before culling takes place.

OnBecameVisible/OnBecameInvisible: Called when an object becomes visible/invisible to any camera.

OnWillRenderObject: Called once for each camera if the object is visible.

OnPreRender: Called before the camera starts rendering the scene.

OnRenderObject: Called after all regular scene rendering is done. You can use GL class or Graphics.DrawMeshNow to

draw custom geometry at this point.

OnPostRender: Called after a camera finishes rendering the scene.

OnRenderImage(Pro only): Called after scene rendering is complete to allow postprocessing of the screen image.

OnGUI: Called multiple times per frame in response to GUI events. The Layout and Repaint events are processed first,

followed by a Layout and keyboard/mouse event for each input event.

OnDrawGizmos Used for drawing Gizmos in the scene view for visualisation purposes.

Coroutine
Normal coroutine updates are run after the Update function returns. A coroutine is function that can suspend its execution

(yield) until the given given YieldInstruction finishes. Different uses of Coroutines:

yield; The coroutine will continue after all Update functions have been called on the next frame.

yield WaitForSeconds(2); Continue after a specified time delay, after all Update functions have been called for the frame

yield WaitForFixedUpdate(); Continue after all FixedUpdate has been called on all scripts

yield WWW Continue after a WWW download has completed.

yield StartCoroutine(MyFunc); Chains the coroutine, and will wait for the MyFunc coroutine to complete first.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

503 of 1131 12/16/2012 10:12 PM

When the Object is Destroyed
OnDestroy: This function is called after all frame updates for the last frame of the object's existence (the object might be

destroyed in response to Object.Destroy or at the closure of a scene).

When Quitting
These functions get called on all the active objects in your scene, :

OnApplicationQuit: This function is called on all game objects before the application is quit. In the editor it is called when

the user stops playmode. In the web player it is called when the web view is closed.

OnDisable: This function is called when the behaviour becomes disabled or inactive.

So in conclusion, this is the execution order for any given script:

All Awake calls

All Start Calls

while (stepping towards variable delta time)

All FixedUpdate functions

Physics simulation

OnEnter/Exit/Stay trigger functions

OnEnter/Exit/Stay collision functions

Rigidbody interpolation applies transform.position and rotation

OnMouseDown/OnMouseUp etc. events

All Update functions

Animations are advanced, blended and applied to transform

All LateUpdate functions

Rendering

Hints
Coroutines are executed after all Update functions.

Page last updated: 2012-10-10

iphone-PracticalGuide

This guide is for developers new to mobile game development, who are probably feeling overwhelmed, and are either planning

and prototyping a new mobile game or porting an existing project to run smoothly on a mobile device. It should also be useful

as a reference for anyone making mobile games or browser games which target old PCs and netbooks.

Optimization is a broad topic, and how you do it depends a lot on your game, so this guide is best read as an introduction or

reference rather than a step-by-step guide that guarantees a smooth product.

All mobile devices are not created equal
The information here assumes hardware around the level of the Apple A4 chipset, which is used on the original iPad, the

iPhone 3GS, and the 3rd generation iPod Touch. On the Android side, that would mean an Android phone such as the Nexus

One, or most phones that run Android 2.3 Gingerbread. On average, these devices were released in early 2010. Out of the

app-hungry market, these devices are the older, slower portion. But they should be supported, because they represent a large

portion of the market.

There are much slower, and much faster phones out there as well. The computational capability of mobile devices is

increasing at an alarming rate. It's not unheard of for a new generation of a mobile GPU to be five times faster than its

predecessor. That's fast, when compared to the PC industry.

For an overview of Apple mobile device tech specs, see the Hardware page.

If you want to develop for mobile devices which will be popular in the future, or exclusively for high end devices right now, you

will be able to get away with doing more. See Future Mobile Devices.

The very low end, such as the iPhone 3G and the first and second generation iPod touches, are extremely limited and even

more care must be taken to optimize for them. However, there is some question to whether consumers who have not upgraded

their device will be buying apps. So unless you are making a free app, it might not be worthwhile to support the old hardware.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

504 of 1131 12/16/2012 10:12 PM

Make optimization a design consideration, not a final step
British computer scientist Michael A. Jackson is often quoted for his Rules of Program Optimization:

The First Rule of Program Optimization: Don't do it. The Second Rule of Program Optimization (for experts only!): Don't do it

yet.

His rationale was that, considering how fast computers are, and how quickly their speed is increasing, there is a good chance

that if you program something it will run fast enough. Besides that, if you try to optimize too heavily, you might over-complicate

things, limit yourself, or create tons of bugs.

However, if you are developing mobile games, there is another consideration: The hardware that is on the market right now is

very limited compared to the computers we are used to working with, so the risk of creating something that simply won't run on

the device balances out the risk of over-complication that comes with optimizing from the start.

Throughout this guide we will try to point out situations where an optimization would help a lot, versus situations where it would

be frivolous.

Optimization: Not just for programmers

Artists also need to know the limitations of the platform and the methods that are used to get around them, so they can make

creative choices that will pay off, and don't have to redo work.

More responsibility can fall on the artist if the game design calls for atmosphere and lighting to be drawn into textures

instead of being baked.

Whenever anything can be baked, artists can produce content for baking, instead of real-time rendering. This allows them

to ignore technical limitations and work freely.

Design your game to make a smooth runtime fall into your lap

These two pages detail general trends in game performance, and will explain how you can best design your game to be

optimized, or how you can intuitively figure out which things need to be optimized if you've already gone into production.

Practical Methods for Optimized Rendering

Practical Methods for Optimized Scripting and Gameplay

Profile early and often
Profiling is important because it helps you discern which optimizations will pay off with big performance increases and which

ones are a waste of your time. Because of the way that rendering is handled on a separate chip (GPU), the time it takes to

render a frame is not the time that the CPU takes plus the time that the time that the GPU takes, instead it is the longer of the

two. That means that if the CPU is slowing things down, optimizing your shaders won't increase the frame rate at all, and if the

GPU is slowing things down, optimizing physics and scripts won't help at all.

Often different parts of the game and different situations perform differently as well, so one part of the game might cause 100

millisecond frames entirely due to a script, and another part of the game might cause the same slowdown, but because of

something that is being rendered. So, at very least, you need to know where all the bottlenecks are if you are going to optimize

your game.

Unity Profiler (Pro only)

The main Profiler in Unity can be used when targeting iOS or Android. See the Profiler guide for basic instructions on how to

use it.

Internal Profiler

The internal profiler spews out text every 30 frames. It can help you figure out which aspects of your game are slowing things

down, be it physics, scripts, or rendering, but it doesn't go into much detail, for example, which script or which renderer is the

culprit.

See the Internal Profiler page for more details on how it works and how to turn it on.

Profiler indicates most of time spent rendering

Rendering Optimizations

Profiler indicates most of time spent outside of rendering

Scripting Optimizations

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

505 of 1131 12/16/2012 10:12 PM

Table of Contents

Practical Guide to Optimization for Mobiles - Future & High End Devices

Practical Guide to Optimization for Mobiles - Graphics Methods

Practical Guide to Optimization for Mobiles - Scripting and Gameplay Methods

Practical Guide to Optimization for Mobiles - Rendering Optimizations

Practical Guide to Optimization for Mobiles - Optimizing Scripts
Page last updated: 2012-11-02

iphone-FutureDevices

The graphical power of next-generation mobile devices is

approaching that of the current generation of consoles (Wii, Xbox

360, and PS3). What will the consumer smartphone market look

like in two years? It's hard to say for sure, but considering how

things have been going, the average smartphone on the market

will have a chipset about as fast as NVIDIA's Tegra 3 (Asus

Transformer Prime, Google Nexus 7"), or Apple's A5X (iPad 3),

and high-end tablets will pack graphical performance to rival

today's consoles and consumer laptops.

What can these new devices do?
Bumpmaps everywhere

Reflective water & simple image effects

Realtime shadows (Unity 4.0 feature)

HD video playback

Faster script execution

To get a sense of what is already being done for this coming generation of phones & tablets, watch NVIDIA's promotional video

for Tegra 3. Bladeslinger and Shadowgun are Unity titles.

Page last updated: 2012-11-06

iphone-OptimizedGraphicsMethods

What are mobile devices capable of? How should you plan your game accordingly? If your game runs slow, and the profiler

indicates that it's a rendering bottleneck, how do you know what to change, and how to make your game look good but still run

fast? This page is dedicated to a general and non-technical exposition of the methods. If you are looking for the specifics, see

the Rendering Optimizations page.

What you can reasonably expect to run on current consumer mobiles:
Lightmapped static geometry. But beware of:

Using a lot of alpha-test shaders

Bumpmapping, especially using built-in shaders.

High polygon count

Animated characters, even with fancy shaders! But beware of:

Massive crowds or high-poly characters

2D games with sprites. But beware of:

Overdraw, or, lots of layers drawn on top of eachother.

Particle effects. But beware of:

High density on large particles. (Lots of particles drawn on top of each other. This is another overdraw situation)

Ridiculous numbers of particles, or particle colliders.

Physics. But beware of:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

506 of 1131 12/16/2012 10:12 PM

Mesh colliders.

Lots of active bodies.

What you CANNOT reasonably expect to run on
current consumer mobiles:

Fullscreen screen image effects like glow and depth of field.

Dynamic per-pixel lighting (multiple lights marked Important and

not baked into the lightmap)

Every affected object is drawn an additional time for every

dynamic light you use, and this gets slow quickly.

Real time shadows on everything

Unity 4 offers native support for real time shadows on

mobile platforms, but their use must be very judicious, and

likely limited to higher-end devices.

Examples - How top-notch mobile games are made

Shadowgun

Shadowgun is an impressive example of what can be done on current mobile hardware. But more specifically, it's a good

example of what cannot be done, and how to get around the limitations. Especially because a small part of the game has been

made publicly available in this blog post.

Here's a basic rundown of things that Shadowgun does in order to keep performance up:

Dynamic lighting - barely used.

Blob shadows and Lightmaps are used instead of any real shadows.

Lightprobes, instead of real lights, are used on their characters.

Muzzle flashes added into the lightprobe data via script.

The only dynamic per-pixel lighting is an arbitrary light direction used to calculate a BRDF on the characters.

Bumpmapping - barely used.

Real bumpmapping only used on characters.

As much contrast and detail as possible is baked into the diffuse texture maps. Lighting information from bumpmaps is

baked in.

A good example is their statue texture, or their shiny wall, as seen on the right. No bumpmaps are used to render

these, the specularity is faked by baking it into the texture. Lightmapping is combined with a vertex-lighting-based

specular highlight to give these models a shiny look.

If you want to learn how to create textures like this one, check out the Rendering Optimizations page.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

507 of 1131 12/16/2012 10:12 PM

Dense particles - avoided.

UV-scrolling textures used instead of dense particle effects.

Fog effects - avoided.

Their god rays are hand-modeled.

Single planes that fade in and out are used to achieve

cinematic fog effects without actually rendering any fog.

This is faster because the planes are few and far

between, and it means that fog doesn't have to be

calculated on every pixel and in every shader.

Glow - avoided.

Blended sprite planes are used to give the appearance of a

glow on certain objects.

Sky Castle Demo

This demo was designed to show what Unity is capable of on

high-end Android devices.

Dynamic lighting - not used.

Lightmaps only.

Bumpmapping - used

The bricks are all bumpmapped, lit by directional lightmaps.

This is where the "high-end devices" part comes into play.

Real time reflections - limited.

They carefully placed their real-time reflecting surfaces

separately and in isolated areas, so that only one runs at a

time, and the environment that needs to be rendered twice can be easily culled.

Bottom line - What this means for your game
The more you respect and understand the limitations of the mobile devices, the better your game will look, and the smoother it

will perform. If you want to make a high-class game for mobile, you will benefit from understanding Unity's graphics pipeline

and being able to write your own shaders. But if you want something to grab to use right away, ShadowGun's shaders,

available here, are a good place to start.

Don't Simulate It, Bake It !

There is no question that games attempt to follow the laws of nature. The movement of every parabolic projectile and the color

of every pixel of shiny chrome is derived by formulas first written to mimic observations of the real world. But a game is one

part scientific simulation and one part painting. You can't compete in the mobile market with physically accurate rendering; the

hardware simply isn't there yet, if you try to imitate the real world all the way, your game will end up limited, drab, and laggy.

You have to pick up your polygons and your blend modes like they're paintbrushes.

The baked bumpmaps shown in Shadowgun are great examples of this. There are specular highlights already in the texture -

the human eye doesn't notice that they don't actually line up with the reflected light and view directions - they are simply

high-contrast details on the texture, completely faked, yet they end up looking great. This is a common cheating technique

which has been used in many successful games. Compare the visor in the first Halo screenshot ever released with the visor

from this release screenshot. It appears that the armor protrusions from the top of the helmet are reflected in the visor, but the

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

508 of 1131 12/16/2012 10:12 PM

reflection is actually baked into the visor texture. In League of Legends, a spell effect appears to have a pixel-light attached to

it, but it actually is a blended plane with a texture that was probably generated by taking a screenshot of a pixel light shining on

the ground.

What works well:

Lightmapped static geometry

Dramatic lighting and largely dynamic environments don't mix. Pick one or the other.

Lightprobes for moving objects

Current mobile hardware is not really cut out for lots of dynamic lights, and it can't do shadows. Lightprobes are a really

neat solution for complex game worlds with static lighting.

Specialized shaders and detailed, high-contrast textures

The shaders in ShadowGun minimize per-pixel calculations and exploit complex and high-quality textures. See our

Rendering Optimizations page for information on how to make textures that look great even when the shader is simple.

Cartoon Graphics

Who says your game has to look like a photo? If you make lighting and atmosphere the responsibility of the texture

artist, not the engine, you hardly even have to worry about optimizing rendering.

What does not work:

Glow and other Post processing effects

Approximate such effects when possible by using blended quads, check out the Shadowgun project for an example of

this.

Bumpmapping, especially with the built-in shaders

Use it sparingly, only on the most important characters or objects. Anything that can take up the whole screen probably

shouldn't be bumpmapped.

Instead of using bump maps, bake more detail and contrast into the diffuse texture. The effect from League of Legends

is an interesting example of this being used successfully in the industry.

But how do I actually do it?

See our Rendering Optimizations page.

Page last updated: 2012-11-06

iphone-OptimizedScriptingMethods

This section demonstrates ways that mobile developers write code and structure their games so that they run fast. The core

idea here is that game design and optimization aren't really separate processes; decisions you make when you are designing

your game can make it both fun and fast.

A historical example

You may remember old games where the player was only allowed one shot on the screen at a time, and reload speed was

controlled by whether the bullet missed or not, instead of a timer. This technique is called object pooling, and it simplifies

memory management, making programs run smoother.

The creators of space invaders only had a small amount of RAM, and they had to ensure that their program would never need

to allocate more than was available. If they let the player fire once every second, and they offered a powerup that decreased

the reload time to a half a second, they would have to ensure that there was enough memory space to allocate a lot of

projectiles in the case where the player fires as fast as possible and all of the shots live for the longest possible time. That

would probably pose a problem for them, so instead, they just allocated one projectile and left it at that. As soon as the

projectile dies, it is simply deactivated, and repositioned and activated when it is fired again. But it always lives in the same

space in memory and doesn't have to move around or be constantly deleted and recreated.

An optimization, or a gameplay gem?

This is hardly realistic, but it happens to be fun. Tension is released in a climactic moment when the alien invaders approach

the ground, similar to a climax in film or literature. The invaders' close proximity gives the adept player near-instantaneous

reload time, allowing them to miraculously defend earth by mashing the fire key in perfect time. Good game designs live in a

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

509 of 1131 12/16/2012 10:12 PM

bizarre space between the interactive narrative and the background

technology that powers it all. It's hard to plan out awesome, fun,

efficient stuff like this, because code logistics and user interaction are

two wildly different and deeply finicky things, and using them together

to synthesize something fresh and fun takes a lot of thought and

experimentation.

You probably can't plan out every aspect of your game in terms of

interaction and playing nice with mobile hardware simultaneously. It's

more likely that these "gems" where the two meet in harmony will pop

up as accidents while you're experimenting. But having a solid

understanding of the way your code runs on the hardware you intend

to deploy on will help. If you want to see the detailed technical

explanation of why object pooling is better, and learn about memory

allocation, see our Scripting Optimizations page.

Will X run fast on Mobiles?
Say you are beginning to work on a game, and you want to impress

your players with lots of action and flashy stuff happening at once.

How do you plan those things out? How do you know where the limits

are, in game terms like how many coins, how many zombies, how many opponent cars, etc? It all depends on how you code

your game.

Generally, if you write your game code the easy way, or the most general and versatile way, you will run into performance

issues a lot sooner. The more you rely on specific structures and tricks to run your game, the more horizons will expand, and

you will be able to cram more stuff on screen.

Easy and versatile, but slow

Rigidbodies limited to 2 dimensions in a 2D game.

Rigidbodies on projectiles.

Using Instantiate and Destroy a lot.

Lots of individual 3D objects for collectables or characters.

Performing calculations every frame.

Using OnGUI for your GUI or HUD.

Complicated and limited, but faster

Writing your own physics code for a 2D game.

Handling collision detection for projectiles yourself.

Using Object Pooling instead of Instantiate and Destroy.

Using animated sprites on particles to represent simple objects.

Performing expensive calculations every few frames and caching the results.

A custom GUI solution.

Examples

Hundreds of rotating, dynamically lit, collectable

coins onscreen at once

NO: Each coin is a separate object with a rigidbody

and a script that rotates it and allows it to be picked

up.

YES: The coins are a particle system with an animated

texture, one script does the collision testing for all the

coins and sets their color according to distance from a

light.

This example is implemented in the Scripting

Optimization page.

Your custom-built soft-body simulation

NO: The world has pillows lying around everywhere, which you can throw around and make piles of.

YES: Your character is a pillow, there is only one of them, and the situations it will be in are somewhat predictable (It only

collides with spheres and axis-aligned cubes). You can probably code something which isn't a full-featured softbody

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

510 of 1131 12/16/2012 10:12 PM

simulation, but looks really impressive and runs fast.

30 enemy characters shooting at the player at once

NO: Each enemy has his own skinned mesh, a separate object for his weapon, and instantiates a rigidbody-based

projectile every time he fires. Each enemy takes the state of all of his compatriots into account in a complicated AI script

that runs every frame.

YES: Most of the enemies are far away, and are represented by single sprites, or, the enemies are 2D and are just a

couple sprites anyway. Every enemy bullet is drawn by the same particle system and simulated by a script which does only

rudimentary physics. Each enemy updates his AI state twice per second according to the state of the other enemies in his

sector.

The how and why of script optimization
See our page on Optimizing Scripts.

Page last updated: 2012-11-06

iphone-PracticalRenderingOptimizations

This section introduces the technicalities of rendering optimization. It shows how to bake lighting results for better

performance, and how the developers of Shadowgun levered high-contrast textures, with lighting baked-in, to make their game

look great. If you are looking for general information on what a mobile-optimized game looks like, check out the Graphics

Methods page.

Get Artsy!
Sometimes optimizing the rendering in your game requires some dirty work. All of the structure that Unity provides makes it

easy to get something working fast, but if you require top notch fidelity on limited hardware, doing things yourself and

sidestepping that structure is the way to go, provided that you can introduce a key structural change that makes things a lot

faster. Your tools of choice are editor scripts, simple shaders, and good old-fashioned art production.

Note for Unity Indie users: The editor scripts referenced here use RenderTextures to make production smooth, so they wont

work for you right away, but the principles behind them work with screenshotting as well, so nothing is stopping you from using

these techniques for a few texture bakes of your own.

How to Dive Under the Hood

First of all, check out this introduction to how shaders are written.

Built in shaders

Examine the source code of the built in shaders. Often, if you want to make a new shader that does something

different, you can achieve it by taking parts of two already-existing shaders and putting them together.

Surface Shader Debugging (#pragma debug)

A CG Shader is generated from every surface shader, and then fully compiled from there. If you add #pragma debug

to the top of your surface shader, when you open the compiled shader via the inspector, you can see the intermediate

CG code. This is useful for inspecting how a specific part of a shader is actually calculated, and it can also be useful

for grabbing certain aspects you want from a surface shader and applying them to a CG shader.

Shader Include Files

A lot of shader helper code is included in every shader, and usually it isn't used, but this is why you will sometimes see

shaders calling functions like WorldReflectionVector which don't seem to be defined anywhere. Unity has several

built-in shader include files that contain these helper definitions. To find a specific function, you will need to search

through all of the different includes.

These files are a major part of internal structure that Unity uses to make it easy to write shaders; the files provide

things like real time shadows, different light types, lightmaps, and multiple platform support.

Hardware documentation

Take your time to study Apple documentations on

hardware and best practices for writing shaders. Note that we would suggest to be more aggressive with floating point

precision hints however.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

511 of 1131 12/16/2012 10:12 PM

Reflective Bumped Specular Baked Light with Reflection

Shadowgun in-depth
Shadowgun is a great graphical achievement considering the hardware it runs on. While the art quality seems to be the key to

the puzzle, there are a couple tricks to achieving such quality that programmers can pull off to maximize their artists' potential.

In the Graphics Methods page we used the golden statue in Shadowgun as an example of a great optimization; instead of

using a normal map to give their statue some solid definition, they just baked lighting detail into the texture. Here, we will show

you how and why you should use a similar technique in your own game.

+ Show [Shader code for Real-Time vs Baked Golden Statue] +

Render to Texel

The real-time light is definitely higher quality, but the performance gain from the baked version is massive. So how was this

done? An editor tool called Render to Texel was created for this purpose. It bakes the light into the texture through the

following process:

Transform the tangent space normal map to world space via script.

Create a world space position map via script.

Render to Texture a fullscreen pass of a the entire texture using the two previous maps, with one additional pass per light.

Average results from several different vantage points to yield something which looks plausible all around, or at least from

common viewing angles in your game.

This is how the best graphics optimizations work. They sidestep tons of calculations by preforming them in the editor or before

the game runs. In general, this is what you want to do:

Create something that looks great, don't worry about performance.

Use tools like Unity's lightmapper and editor extensions like Render to Texel and Sprite Packer to bake it down to

something which is very simple to render.

Making your own tools is the best way to do this, you can create the perfect tool suited for whatever problem your

game presents.

Create shaders and scripts which modulate your baked output to give it some sort of "shine"; an eye-catching effect to

create an illusion of dynamic light.

Concept of Light Frequency

Just like the Bass and Treble of an audio track, images also have high-frequency and low-frequency components, and when

you're rendering, it's best to handle them in different ways, similar to how stereos use subwoofers and tweeters to produce a

full body of sound. One way to visualize the different frequencies of an image is to use the "High Pass" filter in Photoshop.

Filters->Other->High Pass. If you have done audio work before, you will recognize the name High Pass. Essentially what it

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

512 of 1131 12/16/2012 10:12 PM

does is cut off all frequencies lower than X, the parameter you pass to the filter. For images, Gaussian Blur is the equivalent of

a Low Pass.

This applies to realtime graphics because frequency is a good way to separate things out and determine how to handle what.

For example, in a basic lightmapped environment, the final image is obtained by composite of the lightmap, which is low

frequency, and the textures, which are high-frequency. In Shadowgun, low frequency light is applied to characters quickly with

light probes, high frequency light is faked through the use of a simple bumpmapped shader with an arbitrary light direction.

In general, by using different methods to render different frequencies of light, for example, baked vs dynamic, per-object vs

per-level, per pixel vs per-vertex, etc, you can create full bodied images on limited hardware. Stylistic choices aside, it's

generally a good idea to try to have strong variation colors or values at both high and low frequencies.

Frequency in Practice: Shadowgun Decomposition

Top Row

Ultra-Low-Frequency Specular Vertex Light (Dynamic) | High Frequency Alpha Channel | Low Frequency Lightmap |

High Frequency Albedo

Mid Row

Specular Vertex Light * Alpha | High Frequency Additive Details | Lightmap * Color Channel

Bottom

Final Sum

Note: Usually these decompositions refer to steps in a deferred renderer, but that's not the case here. All of this is done in just

one pass. These are the two relevant shaders which this composition was based on:

+ Show [Lightmapped with Virtual Gloss Per-Vertex Additive] +

+ Show [Lightprobes with Virtual Gloss Per-Vertex Additive] +

Best Practices

GPU optimization: Alpha-Testing

Some GPUs, particularly ones found in mobile devices, incur a high performance overhead for alpha-testing (or use of the

discard and clip operations in pixel shaders). You should replace alpha-test shaders with alpha-blended ones if possible.

Where alpha-testing cannot be avoided, you should keep the overall number of visible alpha-tested pixels to a minimum.

iOS Texture Compression

Some images, especially if using iOS/Android PVR texture compression, are prone to visual artifacts in the alpha channel. In

such cases, you might need to tweak the PVRT compression parameters directly in your imaging software. You can do that by

installing the PVR export plugin or using PVRTexTool from Imagination Tech, the creators of the PVRTC format. The

resulting compressed image file with a .pvr extension will be imported by the Unity editor directly and the specified

compression parameters will be preserved. If PVRT-compressed textures do not give good enough visual quality or you need

especially crisp imaging (as you might for GUI textures) then you should consider using 16-bit textures instead of 32-bit. By

doing so, you will reduce the memory bandwidth and storage requirements by half.

Android Texture Compression

All Android devices with support for OpenGL ES 2.0 also support the ETC1 compression format; it's therefore encouraged to

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

513 of 1131 12/16/2012 10:12 PM

whenever possible use ETC1 as the prefered texture format.

If targeting a specific graphics architecture, such as the Nvidia Tegra or Qualcomm Snapdragon, it may be worth considering

using the proprietary compression formats available on those architectures. The Android Market also allows filtering based on

supported texture compression format, meaning a distribution archive (.apk) with for example DXT compressed textures can be

prevented for download on a device which doesn't support it.

An Exercise

Download Render to Texel.

Bake lighting on your model.

Run the High Pass filter on the result in Photoshop.

Edit the "Mobile/Cubemapped" shader, included in the Render to Texel package, so that the missing low-frequency light

details are replaced by vertex light.

Page last updated: 2012-11-06

iphone-PracticalScriptingOptimizations

This section demonstrates how you would go about optimizing the actual scripts and methods your game uses, and it also

goes into detail about the reasons why the optimizations work, and why applying them will benefit you in certain situations.

Profiler is King (Unity Pro)
There is no such thing as a list of boxes to check that will ensure your project runs smoothly. To optimize a slow project, you

have to profile to find specific offenders that take up a disproportionate amount of time. Trying to optimize without profiling or

without thoroughly understanding the results that the profiler gives is like trying to optimize with a blindfold on.

So, if you want to make a technologically demanding game that runs on mobile platforms, you probably need Unity Pro for the

Profiler.

What About Indie?

You can use the internal profiler to figure out what kind of process is slowing your game down, be it physics, scripts, or

rendering, but you can't drill down into specific scripts and methods to find the actual offenders. However, by building switches

into your game which enable and disable certain functionality, you can narrow down the worst offenders significantly. For

example, if you remove the enemy characters' AI script and the framerate doubles, you know that the script, or something that

it brings into the game, has to be optimized. The only problem is that you may have to try a lot of different things before you

find the problem.

For more about profiling on mobile devices, see the profiling section.

Optimized by Design
Attempting to develop something which is fast from the beginning is risky, because there is a trade-off between wasting time

making things that would be just as fast if they weren't optimized and making things which will have to be cut or replaced later

because they are too slow. It takes intuition and knowledge of the hardware to make good decisions in this regard, especially

because every game is different and what might be a crucial optimization for one game may be a flop in another.

Object Pooling

We gave object pooling as an example of the intersection between good gameplay and good code design in our introduction to

optimized scripting methods. Using object pooling for ephemeral objects is faster than creating and destroying them, because it

makes memory allocation simpler and removes dynamic memory allocation overhead and Garbage Collection, or GC.

Memory Allocation
+ Show [Simple Explanation of what Automatic Memory Management is] +

Read more about Automatic Memory Management and the Garbage Collector.

How to Avoid Allocating Memory

Every time an object is created, memory is allocated. Very often in code, you are creating objects without even knowing it.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

514 of 1131 12/16/2012 10:12 PM

Debug.Log("boo" + "hoo"); creates an object.

Use System.String.Empty instead of "" when dealing with lots of strings.

Immediate Mode GUI (UnityGUI) is slow and should not be used at any time when performance is an issue.

Difference between class and struct:
+ Show [Class vs Struct] +

Objects which stick around for a long time should be classes, and objects which are ephemeral should be structs. Vector3

is probably the most famous struct. If it were a class, everything would be a lot slower.

Why Object Pooling is Faster

The upshot of this is that using Instantiate and Destroy a lot gives the Garbage Collector a lot to do, and this can cause

a "hitch" in gameplay. As the Automatic Memory Management page explains, there are other ways to get around the common

performance hitches that surround Instantiate and Destroy, such as triggering the Garbage Collector manually when nothing is

going on, or triggering it very often so that a large backlog of unused memory never builds up.

Another reason is that, when a specific prefab is instantiated for the first time, sometimes additional things have to be loaded

into RAM, or textures and meshes need to be uploaded to the GPU. This can cause a hitch as well, and with object pooling,

this happens when the level loads instead of during gameplay.

Imagine a puppeteer who has an infinite box of puppets, where every time the script calls for a character to appear, he gets a

new copy of its puppet out of the box, and every time the character exits the stage, he tosses the current copy. Object pooling

is the equivalent of getting all the puppets out of the box before the show starts, and leaving them on the table behind the

stage whenever they are not supposed to be visible.

Why Object Pooling can be Slower

One issue is that the creation of a pool reduces the amount of heap memory available for other purposes; so if you keep

allocating memory on top of the pools you just created, you might trigger garbage collection even more often. Not only that,

every collection will be slower, because the time taken for a collection increases with the number of live objects. With these

issues in mind, it should be apparent that performance will suffer if you allocate pools that are too large or keep them active

when the objects they contain will not be needed for some time. Furthermore, many types of objects don't lend themselves well

to object pooling. For example, the game may include spell effects that persist for a considerable time or enemies that appear

in large numbers but which are only killed gradually as the game progresses. In such cases, the performance overhead of an

object pool greatly outweighs the benefits and so it should not be used.

Implementation

Here's a simple side by side comparison of a script for a simple projectile, one using Instantiation, and one using Object

Pooling.

+ Show [Object Pooling Example] +

Of course, for a large, complicated game, you will want to make a generic solution that works for all your prefabs.

Another Example: Coin Party!
The example of "Hundreds of rotating, dynamically lit, collectable coins onscreen at once" which was given in the Scripting

Methods section will be used to demonstrate how script code, Unity components like the Particle System, and custom shaders

can be used to create a stunning effect without taxing the weak mobile hardware.

Imagine that this effect lives in the context of a 2D sidescrolling game with tons of coins that fall, bounce, and rotate. The coins

are dynamically lit by point lights. We want to capture the light glinting off the coins to make our game more impressive.

If we had powerful hardware, we could use a standard approach to this problem. Make every coin an object, shade the object

with either vertex-lit, forward, or deferred lighting, and then add glow on top as an image effect to get the brightly reflecting

coins to bleed light onto the surrounding area.

But mobile hardware would choke on that many objects, and a glow effect is totally out of the question. So what do we do?

Animated Sprite Particle System

If you want to display a lot of objects which all move in a similar way and can never be carefully inspected by the player, you

might be able to render large amounts of them in no time using a particle system. Here are a few stereotypical applications of

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

515 of 1131 12/16/2012 10:12 PM

this technique:

Collectables or Coins

Flying Debris

Hordes or Flocks of Simple Enemies

Cheering Crowds

Hundreds of Projectiles or Explosions

There is a free editor extension called Sprite Packer that facilitates the creation of animated sprite particle systems. It renders

frames of your object to a texture, which can then be used as an animated sprite sheet on a particle system. For our use case,

we would use it on our rotating coin.

Reference Implementation

Included in the Sprite Packer project is an example that demonstrates a solution to this exact problem.

It uses a family of assets of all different kinds to achieve a dazzling effect on a low computing budget:

A control script

Specialized textures created from the output of the SpritePacker

A specialized shader which is intimately connected with both the control script and the texture.

A readme file is included with the example which attempts to explain why and how the system works, outlining the process that

was used to determine what features were needed and how they were implemented. This is that file:

+ Show [Coin Party README] +

The end goal of this example or "moral of the story" is that if there is something which your game really needs, and it causes

lag when you try to achieve it through conventional means, that doesn't mean that it is impossible, it just means that you have

to put in some work on a system of your own that runs much faster.

Techniques for Managing Thousands of Objects

These are specific scripting optimizations which are applicable in situations where hundreds or thousands of dynamic objects

are involved. Applying these techniques to every script in your game is a terrible idea; they should be reserved as tools and

design guidelines for large scripts which handle tons of objects or data at run time.

Avoid or minimize O(n2) operations on large data sets
+ Show [Order N Squared] +

Cache references instead of performing unnecessary searches
+ Show [Reference Caching] +

Minimize expensive math functions
+ Show [Expensive Math Functions] +

Only execute expensive operations occasionally, e.g. Physics.Raycast()
+ Show [Infrequent Calling] +

Minimize callstack overhead in inner loops
+ Show [Callstack Overhead] +

Optimizing Physics Performance

The NVIDIA PhysX physics engine used by Unity is available on mobiles, but the performance limits of the hardware will be

reached more easily on mobile platforms than desktops.

Here are some tips for tuning physics to get better performance on mobiles:-

You can adjust the Fixed Timestep setting (in the Time manager) to reduce the time spent on physics updates. Increasing

the timestep will reduce the CPU overhead at the expense of the accuracy of the physics. Often, lower accuracy is an

acceptable tradeoff for increased speed.

Set the Maximum Allowed Timestep in the Time manager in the 8-10fps range to cap the time spent on physics in the

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

516 of 1131 12/16/2012 10:12 PM

worst case scenario.

Mesh colliders have a much higher performance overhead than primitive colliders, so use them sparingly. It is often

possible to approximate the shape of a mesh by using child objects with primitive colliders. The child colliders will be

controlled collectively as a single compound collider by the rigidbody on the parent.

While wheel colliders are not strictly colliders in the sense of solid objects, they nonetheless have a high CPU overhead.

Page last updated: 2012-08-24

Optimizing Graphics Performance

Good performance is critical to the success of many games. Below are some simple guidelines for maximizing the speed of

your game's graphical rendering.

Where are the graphics costs
The graphical parts of your game can primarily cost on two systems of the computer: the GPU or the CPU. The first rule of any

optimization is to find where the performance problem is; because strategies for optimizing for GPU vs. CPU are quite

different (and can even be opposite - it's quite common to make GPU do more work while optimizing for CPU, and vice versa).

Typical bottlenecks and ways to check for them:

GPU is often limited by fillrate or memory bandwidth.

Does running the game at lower display resolution make it faster? If so, you're most likely limited by fillrate on the GPU.

CPU is often limited by the number of things that need to be rendered, also known as "draw calls".

Check "draw calls" in Rendering Statistics window; if it's more than several thousand (for PCs) or several hundred (for

mobile), then you might want to optimize the object count.

Of course, these are only the rules of thumb; the bottleneck could as well be somewhere else. Less typical bottlenecks:

Rendering is not a problem, neither on the GPU nor the CPU! For example, your scripts or physics might be the actual

problem. Use Profiler to figure this out.

GPU has too many vertices to process. How many vertices are "ok" depends on the GPU and the complexity of vertex

shaders. Typical figures are "not more than 100 thousand" on mobile, and "not more than several million" on PC.

CPU has too many vertices to process, for things that do vertex processing on the CPU. This could be skinned meshes,

cloth simulation, particles etc.

CPU optimization - draw call count
In order to render any object on the screen, the CPU has some work to do - things like figuring out which lights affect that

object, setting up the shader & shader parameters, sending drawing commands to the graphics driver, which then prepares the

commands to be sent off to the graphics card. All this "per object" CPU cost is not very cheap, so if you have lots of visible

objects, it can add up.

So for example, if you have a thousand triangles, it will be much, much cheaper if they are all in one mesh, instead of having a

thousand individual meshes one triangle each. The cost of both scenarios on the GPU will be very similar, but the work done

by the CPU to render a thousand objects (instead of one) will be significant.

In order to make CPU do less work, it's good to reduce the visible object count:

Combine close objects together, either manually or using Unity's draw call batching.

Use less materials in your objects, by putting separate textures into a larger texture atlas and so on.

Use less things that cause objects to be rendered multiple times (reflections, shadows, per-pixel lights etc., see below).

Combine objects together so that each mesh has at least several hundred triangles and uses only one Material for the entire

mesh. It is important to understand that combining two objects which don't share a material does not give you any performance

increase at all. The most common reason for having multiple materials is that two meshes don't share the same textures, so to

optimize CPU performance, you should ensure that any objects you combine share the same textures.

However, when using many pixel lights in the Forward rendering path, there are situations where combining objects may not

make sense, as explained below.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

517 of 1131 12/16/2012 10:12 PM

GPU: Optimizing Model Geometry
When optimizing the geometry of a model, there are two basic rules:

Don't use any more triangles than necessary

Try to keep the number of UV mapping seams and hard edges (doubled-up vertices) as low as possible

Note that the actual number of vertices that graphics hardware has to process is usually not the same as the number reported

by a 3D application. Modeling applications usually display the geometric vertex count, i.e. the number of distinct corner points

that make up a model. For a graphics card, however, some geometric vertices will need to be split into two or more logical

vertices for rendering purposes. A vertex must be split if it has multiple normals, UV coordinates or vertex colors.

Consequently, the vertex count in Unity is invariably higher than the count given by the 3D application.

While the amount of geometry in the models is mostly relevant for the GPU, some features in Unity also process models on the

CPU, for example mesh skinning.

Lighting Performance
Lighting which is not computed at all is always the fastest! Use Lightmapping to "bake" static lighting just once, instead of

computing it each frame. The process of generating a lightmapped environment takes only a little longer than just placing a

light in the scene in Unity, but:

It is going to run a lot faster (2-3 times for 2 per-pixel lights)

And it will look a lot better since you can bake global illumination and the lightmapper can smooth the results

In a lot of cases there can be simple tricks possible in shaders and content, instead of adding more lights all over the place.

For example, instead of adding a light that shines straight into the camera to get "rim lighting" effect, consider adding a

dedicated "rim lighting" computation into your shaders directly.

Lights in forward rendering

Per-pixel dynamic lighting will add significant rendering overhead to every affected pixel and can lead to objects being

rendered in multiple passes. On less powerful devices, like mobile or low-end PC GPUs, avoid having more than one Pixel

Light illuminating any single object, and use lightmaps to light static objects instead of having their lighting calculated every

frame. Per-vertex dynamic lighting can add significant cost to vertex transformations. Try to avoid situations where multiple

lights illuminate any given object.

If you use pixel lighting then each mesh has to be rendered as many times as there are pixel lights illuminating it. If you

combine two meshes that are very far apart, it will increase the effective size of the combined object. All pixel lights that

illuminate any part of this combined object will be taken into account during rendering, so the number of rendering passes that

need to be made could be increased. Generally, the number of passes that must be made to render the combined object is the

sum of the number of passes for each of the separate objects, and so nothing is gained by combining. For this reason, you

should not combine meshes that are far enough apart to be affected by different sets of pixel lights.

During rendering, Unity finds all lights surrounding a mesh and calculates which of those lights affect it most. The Quality

Settings are used to modify how many of the lights end up as pixel lights and how many as vertex lights. Each light calculates

its importance based on how far away it is from the mesh and how intense its illumination is. Furthermore, some lights are

more important than others purely from the game context. For this reason, every light has a Render Mode setting which can

be set to Important or Not Important; lights marked as Not Important will typically have a lower rendering overhead.

As an example, consider a driving game where the player's car is driving in the dark with headlights switched on. The

headlights are likely to be the most visually significant light sources in the game, so their Render Mode would probably be set

to Important. On the other hand, there may be other lights in the game that are less important (other cars' rear lights, say) and

which don't improve the visual effect much by being pixel lights. The Render Mode for such lights can safely be set to Not

Important so as to avoid wasting rendering capacity in places where it will give little benefit.

Optimizing per-pixel lighting saves both CPU and the GPU: the CPU has less draw calls to do, and the GPU has less vertices

to process and pixels to rasterize for all these additional object renders.

GPU: Texture Compression and Mipmaps
Using Compressed Textures will decrease the size of your textures (resulting in faster load times and smaller memory footprint)

and can also dramatically increase rendering performance. Compressed textures use only a fraction of the memory bandwidth

needed for uncompressed 32bit RGBA textures.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

518 of 1131 12/16/2012 10:12 PM

Use Texture Mip Maps

As a rule of thumb, always have Generate Mip Maps enabled for textures used in a 3D scene. In the same way Texture

Compression can help limit the amount of texture data transfered when the GPU is rendering, a mip mapped texture will enable

the GPU to use a lower-resolution texture for smaller triangles.

The only exception to this rule is when a texel (texture pixel) is known to map 1:1 to the rendered screen pixel, as with UI

elements or in a 2D game.

LOD and Per-Layer Cull Distances
In some games, it may be appropriate to cull small objects more aggressively than large ones, in order to reduce both the CPU

and GPU load. For example, small rocks and debris could be made invisible at long distances while large buildings would still

be visible.

This can be either achieved by Level Of Detail system, or by setting manual per-layer culling distances on the camera. You

could put small objects into a separate layer and setup per-layer cull distances using the Camera.layerCullDistances script

function.

Realtime Shadows
Realtime shadows are nice, but they can cost quite a lot of performance, both in terms of extra draw calls for the CPU, and

extra processing on the GPU. For further details, see the Shadows page.

GPU: Tips for writing high-performance shaders
A high-end PC GPU and a low-end mobile GPU can be literally hundreds of times performance difference apart. Same is true

even on a single platform. On a PC, a fast GPU is dozens of times faster than a slow integrated GPU; and on mobile platforms

you can see just as large difference in GPUs.

So keep in mind that GPU performance on mobile platforms and low-end PCs will be much lower than on your development

machines. Typically, shaders will need to be hand optimized to reduce calculations and texture reads in order to get good

performance. For example, some built-in Unity shaders have their "mobile" equivalents that are much faster (but have some

limitations or approximations - that's what makes them faster).

Below are some guidelines that are most important for mobile and low-end PC graphics cards:

Complex mathematical operations

Transcendental mathematical functions (such as pow, exp, log, cos, sin, tan, etc) are quite expensive, so a good rule of

thumb is to have no more than one such operation per pixel. Consider using lookup textures as an alternative where

applicable.

It is not advisable to attempt to write your own normalize, dot, inversesqrt operations, however. If you use the built-in ones

then the driver will generate much better code for you.

Keep in mind that alpha test (discard) operation will make your fragments slower.

Floating point operations

You should always specify the precision of floating point variables when writing custom shaders. It is critical to pick the

smallest possible floating point format in order to get the best performance. Precision of operations is completely ignored on

many desktop GPUs, but is critical for performance on many mobile GPUs.

If the shader is written in Cg/HLSL then precision is specified as follows:

float - full 32-bit floating point format, suitable for vertex transformations but has the slowest performance.

half - reduced 16-bit floating point format, suitable for texture UV coordinates and roughly twice as fast as highp.

fixed - 10-bit fixed point format, suitable for colors, lighting calculation and other high-performance operations and roughly

four times faster than highp.

If the shader is written in GLSL ES then the floating point precision is specified specified as highp, mediump, lowp

respectively.

For further details about shader performance, please read the Shader Performance page.

Simple Checklist to make Your Game Faster

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

519 of 1131 12/16/2012 10:12 PM

Keep vertex count below 200K..3M per frame when targetting PCs, depending on the target GPU

If you're using built-in shaders, pick ones from Mobile or Unlit category. They work on non-mobile platforms as well; but are

simplified and approximated versions of the more complex shaders.

Keep the number of different materials per scene low - share as many materials between different objects as possible.

Set Static property on a non-moving objects to allow internal optimizations like static batching.

Do not use Pixel Lights when it is not necessary - choose to have only a single (preferably directional) pixel light affecting

your geometry.

Do not use dynamic lights when it is not necessary - choose to bake lighting instead.

Use compressed texture formats when possible, otherwise prefer 16bit textures over 32bit.

Do not use fog when it is not necessary.

Learn benefits of Occlusion Culling and use it to reduce amount of visible geometry and draw-calls in case of complex

static scenes with lots of occlusion. Plan your levels to benefit from ccclusion culling.

Use skyboxes to "fake" distant geometry.

Use pixel shaders or texture combiners to mix several textures instead of a multi-pass approach.

If writing custom shaders, always use smallest possible floating point format:

fixed / lowp - for colors, lighting information and normals,

half / mediump - for texture UV coordinates,

float / highp - avoid in pixel shaders, fine to use in vertex shader for position calculations.

Minimize use of complex mathematical operations such as pow, sin, cos etc. in pixel shaders.

Choose to use less textures per fragment.

See Also
Draw Call Batching

Modeling Characters for Optimal Performance

Rendering Statistics Window

Page last updated: 2012-07-29

Draw Call Batching

To draw an object on the screen, the engine has to issue a draw call to the graphics API (e.g. OpenGL or Direct3D). Every

single draw call requires a significant amount of work on the part of the graphics API, causing significant performance

overhead on the CPU side.

Unity combines a number of objects at runtime and draws them together with a single draw call. This operation is called

"batching". The more objects Unity can batch together, the better rendering performance you will get.

Built-in batching support in Unity has significant benefit over simply combining geometry in the modeling tool (or using the

CombineChildren script from the Standard Assets package). Batching in Unity happens after visibility determination step.

The engine does culling on each object individually, and the amount of rendered geometry is going to be the same as without

batching. Combining geometry in the modeling tool, on the other hand, prevents effecient culling and results in much higher

amount of geometry being rendered.

Materials
Only objects sharing the same material can be batched together. Therefore, if you want to achieve good batching, you need to

share as many materials among different objects as possible.

If you have two identical materials which differ only in textures, you can combine those textures into a single big texture - a

process often called texture atlasing. Once textures are in the same atlas, you can use single material instead.

If you need to access shared material properties from the scripts, then it is important to note that modifying Renderer.material

will create a copy of the material. Instead, you should use Renderer.sharedMaterial to keep material shared.

Dynamic Batching
Unity can automatically batch moving objects into the same draw call if they share the same material.

Dynamic batching is done automatically and does not require any additional effort on your side.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

520 of 1131 12/16/2012 10:12 PM

Tips:

Batching dynamic objects has certain overhead per vertex, so batching is applied only to meshes containing less than

900 vertex attributes in total.

If your shader is using Vertex Position, Normal and single UV, then you can batch up to 300 verts and if your shader is

using Vertex Position, Normal, UV0, UV1 and Tangent, then only 180 verts.

Please note: attribute count limit might be changed in future

Don't use scale. Objects with scale (1,1,1) and (2,2,2) won't batch.

Uniformly scaled objects won't be batched with non-uniformly scaled ones.

Objects with scale (1,1,1) and (1,2,1) won't be batched. On the other hand (1,2,1) and (1,3,1) will be.

Using different material instances will cause batching to fail.

Objects with lightmaps have additional (hidden) material parameter: offset/scale in lightmap, so lightmapped objects won't

be batched (unless they point to same portions of lightmap)

Multi-pass shaders will break batching. E.g. Almost all unity shaders supports several lights in forward rendering,

effectively doing additional pass for them

Using instances of a prefab automatically are using the same mesh and material.

Static Batching
Static batching, on the other hand, allows the engine to reduce draw calls for geometry of any size (provided it does not move

and shares the same material). Static batching is significantly more efficient than dynamic batching. You should choose static

batching as it will require less CPU power.

In order to take advantage of static batching, you need explicitly specify that certain objects are static and will not move, rotate

or scale in the game. To do so, you can mark objects as static using the Static checkbox in the Inspector:

Using static batching will require additional memory for storing the combined geometry. If several objects shared the same

geometry before static batching, then a copy of geometry will be created for each object, either in the Editor or at runtime. This

might not always be a good idea - sometimes you will have to sacrifice rendering performance by avoiding static batching for

some objects to keep a smaller memory footprint. For example, marking trees as static in a dense forest level can have serious

memory impact.

Static batching is only available in Unity Pro for each platform.

Page last updated: 2012-10-22

Modeling Optimized Characters

Below are some tips for designing character models to give optimal rendering speed.

Use a Single Skinned Mesh Renderer
You should use only a single skinned mesh renderer for each character. Unity optimizes animation using visibility culling and

bounding volume updates and these optimizations are only activated if you use one animation component and one skinned

mesh renderer in conjunction. The rendering time for a model could roughly double as a result of using two skinned meshes in

place of a single mesh and there is seldom any practical advantage in using multiple meshes.

Use as Few Materials as Possible
You should also keep the number of materials on each mesh as low as possible. The only reason why you might want to have

more than one material on a character is that you need to use different shaders for different parts (eg, a special shader for the

eyes). However, two or three materials per character should be sufficient in almost all cases.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

521 of 1131 12/16/2012 10:12 PM

Use as Few Bones as Possible
A bone hierarchy in a typical desktop game uses somewhere between fifteen and sixty bones. The fewer bones you use, the

better the performance will be. You can achieve very good quality on desktop platforms and fairly good quality on mobile

platforms with about thirty bones. Ideally, keep the number below thirty for mobile devices and don't go too far above thirty for

desktop games.

Polygon Count
The number of polygons you should use depends on the quality you require and the platform you are targeting. For mobile

devices, somewhere between 300 and 1500 polygons per mesh will give good results, whereas for desktop platforms the ideal

range is about 1500 to 4000. You may need to reduce the polygon count per mesh if the game can have lots of characters

onscreen at any given time. As an example, Half Life 2 used 2500-5000 triangles per character. Current AAA games running on

the PS3 or Xbox 360 usually have characters with 5000-7000 triangles.

Keep Forward and Inverse Kinematics Separate
When animations are imported, a model's inverse kinematic (IK) nodes are baked into forward kinematics (FK) and as a result,

Unity doesn't need the IK nodes at all. However, if they are left in the model then they will have a CPU overhead even though

they don't affect the animation. You can delete the redundant IK nodes in Unity or in the modeling tool, according to your

preference. Ideally, you should keep separate IK and FK hierarchies during modeling to make it easier to remove the IK nodes

when necessary.

Page last updated: 2011-11-04

RenderingStatistics

The Game View has a Stats button in the top right corner. When the button is pressed, an overlay window is displayed which

shows realtime rendering statistics, which are useful for optimizing performance. The exact statistics displayed vary according

to the build target.

Rendering Statistics Window.

The Statistics window contains the following information:-

Time per

frame and FPS

The amount of time taken to process and render one game frame (and its reciprocal, frames per second).

Note that this number only includes the time taken to do the frame update and render the game view; it does

not include the time taken in the editor to draw the scene view, inspector and other editor-only processing.

Draw Calls The total number of meshes drawn after batching was applied. Note that where objects are rendered multiple

times (for example, objects illuminated by pixel lights), each rendering results in a separate draw call.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

522 of 1131 12/16/2012 10:12 PM

Batched (Draw

Calls)

The number of initially separate draw calls that were added to batches. "Batching" is where the engine

attempts to combine the rendering of multiple objects into one draw call in order to reduce CPU overhead. To

ensure good batching, you should share materials between different objects as often as possible.

Tris and Verts The number of triangles and vertices drawn. This is mostly important when optimizing for low-end hardware

Used Textures The number of textures used to draw this frame and their memory usage.

Render

Textures

The number of Render Textures and their memory usage. The number of times the active Render Texture

was switched each frame is also displayed.

Screen The size of the screen, along with its anti-aliasing level and memory usage.

VRAM usage Approximate bounds of current video memory (VRAM) usage. This also shows how much video memory your

graphics card has.

VBO total The number of unique meshes (Vertex Buffers Objects or VBOs) that are uploaded to the graphics card. Each

different model will cause a new VBO to be created. In some cases scaled objects will cause additional VBOs

to be created. In the case of a static batching, several different objects can potentially share the same VBO.

Visible

Skinned

Meshes

The number of skinned meshes rendered.

Animations The number of animations playing.
Page last updated: 2012-01-18

Reducing File size

Unity post-processes all imported assets
Unity always post-processes imported files, thus storing a file as a multi-layered psd file instead of a jpg will make absolutely

zero difference in the size of the player you will deploy. Save your files in the format you are working with (eg. .mb files, .psd

files, .tiff files) to make your life easier.

Unity strips out unused assets
The amount of assets in your project folder does not influence the size of your built player. Unity is very smart about detecting

which assets are used in your game and which are not. Unity follows all references to assets before building a game and

generates a list of assets that need to be included in the game. Thus you can safely keep unused assets in your project folder.

Unity prints an overview of the used file size
After Unity has completed building a player, it prints an overview of what type of asset took up the most file size, and it prints

which assets were included in the build. To see it just open the editor console log: Open Editor Log button in the Console

window (Window -> Console).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

523 of 1131 12/16/2012 10:12 PM

An overview of what took up space

Optimizing texture size
Often textures take up most space in the build. The first to do is to use compressed texture formats (DXT(Desktop platforms)

or PVRTC) where you can.

If that doesn't get the size down, try to reduce the size of the textures. The trick here is that you don't need to modfiy the actual

source content. Simply select the texture in the Project view and set Max Texture Size in Import Settings. It is a good idea to

zoom in on an object that uses the texture, then adjust the Max Texture Size until it starts looking worse in the Scene View.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

524 of 1131 12/16/2012 10:12 PM

Changing the Maximum Texture Size will not affect your texture asset, just its resolution in the game

How much memory does my texture take up?

 Desktop

Compression Memory consumption

RGB Compressed DXT1 0.5 bpp (bytes/pixel)

RGBA Compressed DXT5 1 bpp

RGB 16bit 2 bpp

RGB 24bit 3 bpp

Alpha 8bit 1 bpp

RGBA 16bit 2 bpp

RGBA 32bit 4 bpp

 iOS

Compression Memory consumption

RGB Compressed PVRTC 2 bits 0.25 bpp (bytes/pixel)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

525 of 1131 12/16/2012 10:12 PM

RGBA Compressed PVRTC 2 bits 0.25 bpp

RGB Compressed PVRTC 4 bits 0.5 bpp

RGBA Compressed PVRTC 4 bits 0.5 bpp

RGB 16bit 2 bpp

RGB 24bit 3 bpp

Alpha 8bit 1 bpp

RGBA 16bit 2 bpp

RGBA 32bit 4 bpp

 Android

Compression Memory consumption

RGB Compressed DXT1 0.5 bpp (bytes/pixel)

RGBA Compressed DXT5 1 bpp

RGB Compressed ETC1 0.5 bpp

RGB Compressed PVRTC 2 bits 0.25 bpp (bytes/pixel)

RGBA Compressed PVRTC 2 bits 0.25 bpp

RGB Compressed PVRTC 4 bits 0.5 bpp

RGBA Compressed PVRTC 4 bits 0.5 bpp

RGB 16bit 2 bpp

RGB 24bit 3 bpp

Alpha 8bit 1 bpp

RGBA 16bit 2 bpp

RGBA 32bit 4 bpp

To figure out total texture size: width * height * bpp. Add 33% if you have Mipmaps.

By default Unity compresses all textures when importing. This can be turned off in the Preferences for faster workflow. But

when building a game, all not-yet-compressed textures will be compressed.

Optimizing mesh and animation size
Meshes and imported Animation Clips can be compressed so they take up less space in your game file. Compression can be

turned on in Mesh Import Settings.

Mesh and Animation compression uses quantization, which means it takes less space but the compression can introduce some

inaccuracies. Experiment with what level of compression is still acceptable for your models.

Note that mesh compression only produces smaller data files, and does not use less memory at run time. Animation Keyframe

reduction produces smaller data files and uses less memory at run time, and generally you should always use keyframe

reduction.

Additionally, you can choose not to store normals and/or tangents in your Meshes, to save space both in the game builds and

memory at run time. This can be set in Tangent Space Generation drop down in Mesh Import Settings. Rules of thumb:

Tangents are used for normal-mapping. If you don't use normal-mapping, you probably don't need to store tangents in

those meshes.

Normals are used for lighting. If you don't use realtime lighting on some of your meshes, you probably don't need to store

normals in them.

Reducing included dlls in the Players
When building a player (Desktop, Android or iOS) it is important to not depend on System.dll or System.Xml.dll. Unity does

not include System.dll or System.Xml.dll in the players installation. That means, if you want to use Xml or some Generic

containers which live in System.dll then the required dlls will be included in the players. This usually adds 1mb to the

download size, obviously this is not very good for the distribution of your players and you should really avoid it. If you need to

parse some Xml files, you can use a smaller xml library like this one Mono.Xml.zip. While most Generic containers are

contained in mscorlib, Stack<> and few others are in System.dll. So you really want to avoid those.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

526 of 1131 12/16/2012 10:12 PM

As you can see, Unity is including System.Xml.dll and System.dll, when building a player

Unity includes the following DLLs with the players distribution mscorlib.dll, Boo.Lang.dll, UnityScript.Lang.dll and

UnityEngine.dll.

Page last updated: 2012-07-26

Understanding Automatic Memory Management

When an object, string or array is created, the memory required to store it is allocated from a central pool called the heap.

When the item is no longer in use, the memory it once occupied can be reclaimed and used for something else. In the past, it

was typically up to the programmer to allocate and release these blocks of heap memory explicitly with the appropriate function

calls. Nowadays, runtime systems like Unity's Mono engine manage memory for you automatically. Automatic memory

management requires less coding effort than explicit allocation/release and greatly reduces the potential for memory leakage

(the situation where memory is allocated but never subsequently released).

Value and Reference Types
When a function is called, the values of its parameters are copied to an area of memory reserved for that specific call. Data

types that occupy only a few bytes can be copied very quickly and easily. However, it is common for objects, strings and arrays

to be much larger and it would be very inefficient if these types of data were copied on a regular basis. Fortunately, this is not

necessary; the actual storage space for a large item is allocated from the heap and a small "pointer" value is used to remember

its location. From then on, only the pointer need be copied during parameter passing. As long as the runtime system can locate

the item identified by the pointer, a single copy of the data can be used as often as necessary.

Types that are stored directly and copied during parameter passing are called value types. These include integers, floats,

booleans and Unity's struct types (eg, Color and Vector3). Types that are allocated on the heap and then accessed via a

pointer are called reference types, since the value stored in the variable merely "refers" to the real data. Examples of reference

types include objects, strings and arrays.

Allocation and Garbage Collection
The memory manager keeps track of areas in the heap that it knows to be unused. When a new block of memory is requested

(say when an object is instantiated), the manager chooses an unused area from which to allocate the block and then removes

the allocated memory from the known unused space. Subsequent requests are handled the same way until there is no free

area large enough to allocate the required block size. It is highly unlikely at this point that all the memory allocated from the

heap is still in use. A reference item on the heap can only be accessed as long as there are still reference variables that can

locate it. If all references to a memory block are gone (ie, the reference variables have been reassigned or they are local

variables that are now out of scope) then the memory it occupies can safely be reallocated.

To determine which heap blocks are no longer in use, the memory manager searches through all currently active reference

variables and marks the blocks they refer to as "live". At the end of the search, any space between the live blocks is

considered empty by the memory manager and can be used for subsequent allocations. For obvious reasons, the process of

locating and freeing up unused memory is known as garbage collection (or GC for short).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

527 of 1131 12/16/2012 10:12 PM

Optimization
Garbage collection is automatic and invisible to the programmer but the collection process actually requires significant CPU

time behind the scenes. When used correctly, automatic memory management will generally equal or beat manual allocation

for overall performance. However, it is important for the programmer to avoid mistakes that will trigger the collector more often

than necessary and introduce pauses in execution.

There are some infamous algorithms that can be GC nightmares even though they seem innocent at first sight. Repeated

string concatenation is a classic example:-

 function ConcatExample(intArray: int[]) {

 var line = intArray[0].ToString();

 for (i = 1; i < intArray.Length; i++) {

 line += ", " + intArray[i].ToString();

 }

 return line;

 }

The key detail here is that the new pieces don't get added to the string in place, one by one. What actually happens is that

each time around the loop, the previous contents of the line variable become dead - a whole new string is allocated to contain

the original piece plus the new part at the end. Since the string gets longer with increasing values of i, the amount of heap

space being consumed also increases and so it is easy to use up hundreds of bytes of free heap space each time this function

is called. If you need to concatenate many strings together then a much better option is the Mono library's

System.Text.StringBuilder class.

However, even repeated concatenation won't cause too much trouble unless it is called frequently, and in Unity that usually

implies the frame update. Something like:-

 var scoreBoard: GUIText;

 var score: int;

 function Update() {

 var scoreText: String = "Score: " + score.ToString();

 scoreBoard.text = scoreText;

 }

...will allocate new strings each time Update is called and generate a constant trickle of new garbage. Most of that can be

saved by updating the text only when the score changes:-

 var scoreBoard: GUIText;

 var scoreText: String;

 var score: int;

 var oldScore: int;

 function Update() {

 if (score != oldScore) {

 scoreText = "Score: " + score.ToString();

 scoreBoard.text = scoreText;

 oldScore = score;

 }

 }

Another potential problem occurs when a function returns an array value:-

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

528 of 1131 12/16/2012 10:12 PM

 function RandomList(numElements: int) {

 var result = new float[numElements];

 for (i = 0; i < numElements; i++) {

 result[i] = Random.value;

 }

 return result;

 }

This type of function is very elegant and convenient when creating a new array filled with values. However, if it is called

repeatedly then fresh memory will be allocated each time. Since arrays can be very large, the free heap space could get used

up rapidly, resulting in frequent garbage collections. One way to avoid this problem is to make use of the fact that an array is a

reference type. An array passed into a function as a parameter can be modified within that function and the results will remain

after the function returns. A function like the one above can often be replaced with something like:-

 function RandomList(arrayToFill: float[]) {

 for (i = 0; i < arrayToFill.Length; i++) {

 arrayToFill[i] = Random.value;

 }

 }

This simply replaces the existing contents of the array with new values. Although this requires the initial allocation of the array

to be done in the calling code (which looks slightly inelegant), the function will not generate any new garbage when it is called.

Requesting a Collection
As mentioned above, it is best to avoid allocations as far as possible. However, given that they can't be completely eliminated,

there are two main strategies you can use to minimise their intrusion into gameplay:-

Small heap with fast and frequent garbage collection

This strategy is often best for games that have long periods of gameplay where a smooth framerate is the main concern. A

game like this will typically allocate small blocks frequently but these blocks will be in use only briefly. The typical heap size

when using this strategy on iOS is about 200KB and garbage collection will take about 5ms on an iPhone 3G. If the heap

increases to 1MB, the collection will take about 7ms. It can therefore be advantageous sometimes to request a garbage

collection at a regular frame interval. This will generally make collections happen more often than strictly necessary but they

will be processed quickly and with minimal effect on gameplay:-

 if (Time.frameCount % 30 == 0)

 {

 System.GC.Collect();

 }

However, you should use this technique with caution and check the profiler statistics to make sure that it is really reducing

collection time for your game.

Large heap with slow but infrequent garbage collection

This strategy works best for games where allocations (and therefore collections) are relatively infrequent and can be handled

during pauses in gameplay. It is useful for the heap to be as large as possible without being so large as to get your app killed

by the OS due to low system memory. However, the Mono runtime avoids expanding the heap automatically if at all possible.

You can expand the heap manually by preallocating some placeholder space during startup (ie, you instantiate a "useless"

object that is allocated purely for its effect on the memory manager):-

 function Start() {

 var tmp = new System.Object[1024];

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

529 of 1131 12/16/2012 10:12 PM

 // make allocations in smaller blocks to avoid them to be treated in a special way, whi

 for (var i : int = 0; i < 1024; i++)

 tmp[i] = new byte[1024];

 // release reference

 tmp = null;

 }

A sufficiently large heap should not get completely filled up between those pauses in gameplay that would accommodate a

collection. When such a pause occurs, you can request a collection explicitly:-

 System.GC.Collect();

Again, you should take care when using this strategy and pay attention to the profiler statistics rather than just assuming it is

having the desired effect.

Reusable Object Pools
There are many cases where you can avoid generating garbage simply by reducing the number of objects that get created and

destroyed. There are certain types of objects in games, such as projectiles, which may be encountered over and over again

even though only a small number will ever be in play at once. In cases like this, it is often possible to reuse objects rather than

destroy old ones and replace them with new ones.

See here for more information on Object Pools and their implementation.

Further Information
Memory management is a subtle and complex subject to which a great deal of academic effort has been devoted. If you are

interested in learning more about it then memorymanagement.org is an excellent resource, listing many publications and online

articles. Further information about object pooling can be found on the Wikipedia page and also at Sourcemaking.com.

Page last updated: 2012-07-30

Platform Dependent Compilation

Unity includes a feature named "Platform Dependent Compilation". This consists of some preprocessor directives that let you

partition your scripts to compile and execute a section of code exclusively for one of the supported platforms.

Furthermore, you can run this code within the Editor, so you can compile the code specifically for your mobile/console and test

it in the Editor!

Platform Defines
The platform defines that Unity supports for your scripts are:

UNITY_EDITOR Define for calling Unity Editor scripts from your game code.

UNITY_STANDALONE_OSX Platform define for compiling/executing code specifically for Mac OS (This includes Universal,

PPC and Intel architectures).

UNITY_DASHBOARD_WIDGETPlatform define when creating code for Mac OS dashboard widgets.

UNITY_STANDALONE_WIN Use this when you want to compile/execute code for Windows stand alone applications.

UNITY_STANDALONE_LINUX Use this when you want to compile/execute code for Linux stand alone applications.

UNITY_WEBPLAYER Platform define for web player content (this includes Windows and Mac Web player

executables).

UNITY_WII Platform define for compiling/executing code for the Wii console.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

530 of 1131 12/16/2012 10:12 PM

UNITY_IPHONE Platform define for compiling/executing code for the iPhone platform.

UNITY_ANDROID Platform define for the Android platform.

UNITY_PS3 Platform define for running PlayStation 3 code.

UNITY_XBOX360 Platform define for executing Xbox 360 code.

UNITY_NACL Platform define when compiling code for Google native client (this will be set additionally to

UNITY_WEBPLAYER).

UNITY_FLASH Platform define when compiling code for Adobe Flash.

Also you can compile code selectively depending on the version of the engine you are working on. Currently the supported

ones are:

UNITY_2_6 Platform define for the major version of Unity 2.6.

UNITY_2_6_1 Platform define for specific version 1 from the major release 2.6.

UNITY_3_0 Platform define for the major version of Unity 3.0.

UNITY_3_0_0 Platform define for the specific version 0 of Unity 3.0.

UNITY_3_1 Platform define for major version of Unity 3.1.

UNITY_3_2 Platform define for major version of Unity 3.2.

UNITY_3_3 Platform define for major version of Unity 3.3.

UNITY_3_4 Platform define for major version of Unity 3.4.

UNITY_3_5 Platform define for major version of Unity 3.5.

UNITY_4_0 Platform define for major version of Unity 4.0.

Note: For versions before 2.6.0 there are no platform defines as this feature was first introduced in that version.

Testing precompiled code.
We are going to show a small example of how to use the precompiled code. This will simply print a message that depends on

the platform you have selected to build your target.

First of all, select the platform you want to test your code against by clicking on File -> Build Settings. This will bring the build

settings window to select your target platform.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

531 of 1131 12/16/2012 10:12 PM

Build Settings window with the WebPlayer Selected as Target platform.

Select the platform you want to test your precompiled code against and press the Switch Editor button to tell Unity which

platform you are targeting.

Create a script and copy/paste this code:

JavaScript Example:

function Awake() {
 #if UNITY_EDITOR
 Debug.Log("Unity Editor");
 #endif

 #if UNITY_IPHONE
 Debug.Log("Iphone");
 #endif

 #if UNITY_STANDALONE_OSX
 Debug.Log("Stand Alone OSX");
 #endif

 #if UNITY_STANDALONE_WIN
 Debug.Log("Stand Alone Windows");
 #endif
}

C# Example:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

532 of 1131 12/16/2012 10:12 PM

using UnityEngine;
using System.Collections;

public class PlatformDefines : MonoBehaviour {
 void Start () {

 #if UNITY_EDITOR
 Debug.Log("Unity Editor");
 #endif

 #if UNITY_IPHONE
 Debug.Log("Iphone");
 #endif

 #if UNITY_STANDALONE_OSX
Debug.Log("Stand Alone OSX");

 #endif

 #if UNITY_STANDALONE_WIN
 Debug.Log("Stand Alone Windows");
 #endif

 }
}

Boo Example:

import UnityEngine

class PlatformDefines (MonoBehaviour):

def Start ():
ifdef UNITY_EDITOR:

Debug.Log("Unity Editor")

ifdef UNITY_IPHONE:
Debug.Log("IPhone")

ifdef UNITY_STANDALONE_OSX:
Debug.Log("Stand Alone OSX")

ifdef not UNITY_IPHONE:
Debug.Log("not an iPhone")

Then, depending on which platform you selected, one of the messages will get printed on the Unity console when you press

play.

In addition to the basic #if compiler directive, you can also use a multiway test in C# and JavaScript:-

#if UNITY_EDITOR
 Debug.Log("Unity Editor");
#elif UNITY_IPHONE
 Debug.Log("Unity iPhone");
#else
 Debug.Log("Any other platform");
#endif

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

533 of 1131 12/16/2012 10:12 PM

However, Boo currently supports only the ifdef directive.

Page last updated: 2012-11-27

Generic Functions

Some functions in the script reference (for example, the various GetComponent functions) are listed with a variant that has a

letter T or a type name in angle brackets after the function name:-

function FuncName.<T>(): T;

These are known as generic functions. The significance they have for scripting is that you get to specify the types of

parameters and/or the return type when you call the function. In JavaScript, this can be used to get around the limitations of

dynamic typing:-

// The type is correctly inferred since it is defined in the function call.
var obj = GetComponent.<Rigidbody>();

In C#, it can save a lot of keystrokes and casts:-

Rigidbody rb = go.GetComponent<Rigidbody>();

// ...as compared with:-

Rigidbody rb = (Rigidbody) go.GetComponent(typeof(Rigidbody));

Any function that has a generic variant listed on its script reference page will allow this special calling syntax.

Page last updated: 2011-08-05

Debugging

When creating a game, unplanned and undesired behaviors can (and inevitably will) appear due to errors in scripts or scene

setup. Such undesired behaviors are commonly referred to as bugs, and the process of fixing them as debugging. Unity

offers several methods you can use to debug your game. Read about them on the following pages.

Console

Debugger

Log Files

Accessing hidden folders
Page last updated: 2010-09-03

Console

Double-clicking an error in the Status Bar or choosing Window->Console will bring up the Console.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

534 of 1131 12/16/2012 10:12 PM

Console in the editor.

The Console shows messages, warnings, errors, or debug output from your game. You can define your own messages to be

sent to the Console using Debug.Log(), Debug.LogWarning, or Debug.LogError(). You can double-click any message to be

taken to the script that caused the message. You also have a number of options on the Console Toolbar.

Console control toolbar helps your filter your debug output.

Pressing Clear will remove all current messages from the Console.

When Collapse is enabled, identical messages will only be shown once.

When Clear on play is enabled, all messages will be removed from the Console every time you go into Play mode.

When Error Pause is enabled, Debug.LogError() will cause the pause to occur but Debug.Log() will not.

Pressing Open Player Log will open the Player Log in a text editor (or using the Console app on Mac if set as the default

app for .log files).

Pressing Open Editor Log will open the Editor Log in a text editor (or using the Console app on Mac if set as the default

app for .log files).

Page last updated: 2012-09-06

Debugger

The Unity Debugger lets you inspect your code at runtime. For example, it can help you determine when a function is called

and with which values. Furthermore, it allows you to look at the value of scripts' variables at a given time while running your

game. You can locate bugs or logic problems in your scripts by executing them step by step.

Unity uses the MonoDevelop IDE to debug the scripts in your game. You can debug all the languages supported by the engine

(JavaScript, C#, and Boo).

Note that the debugger has to load all your code and all symbols, so bear in mind that this can have a small impact on the

performance of your game during execution. Typically, this overhead is not large enough to affect the game framerate.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

535 of 1131 12/16/2012 10:12 PM

MonoDevelop window debugging a script in unity.

Debugging in Unity.
On Windows, users must choose to install MonoDevelop as part of the Unity installation (selected by default).

If you haven't used MonoDevelop with your project before, synchronize your MonoDevelop project. This will open your

project inside MonoDevelop.

Set the necessary breakpoints on your scripts by clicking the lines that you want to analyze.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

536 of 1131 12/16/2012 10:12 PM

Launch Unity or your player.

Unity: Ensure you have "Editor Attaching" checked in the Preferences window.

Players: Ensure that you have built your player with the "Development build" and "Allow script debugging" options

enabled. For webplayers, additionally check that the development release channel setting is enabled on the player's

context menu (right click on Windows or cmd-click on Mac OSX)

Enabling debugging in the webplayer

Open your project in MonoDevelop.

In MonoDevelop, click the Attach button in the toolbar, or choose Attach from the Run menu.

From the dialog that appears, choose the item you wish to debug.

Notes:

Currently supported debugging targets: Unity editors, desktop standalone players, Android and iOS players

If your player is set not to run in the background (the default), you may need to focus your player for a few seconds in

order for it to appear in the list.

Android and iOS players need to have networking enabled when script debugging is enabled. All players need to be on

the same network subnet as the computer running MonoDevelop.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

537 of 1131 12/16/2012 10:12 PM

When you enter play mode, your script code will execute in the debugger.

When a breakpoint occurs, script execution will stop, and you will be able to use MonoDevelop to step over, into,

and out of your script methods, inspect your variables, examine the call stack, etc.

Note: When you're done debugging a toplevel method (e.g. Update()), or you just want to jump to the next

breakpoint, you will experience better debugger performance by using the Continue command instead of

stepping out or over the end of your function.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

538 of 1131 12/16/2012 10:12 PM

When you're done debugging, click the Detach or Stop buttons in the toolbar, or choose Detach or Stop from the Run

menu.

Hints.
If you add a watch to the this object, you can inspect the internal values (position, scale, rotation...) of the GameObject to

which the script is attached.

iOS remote debugging instructions
In addition to the instructions described above, Unity iOS applications require some additional steps for successful debugging:

Attach your iDevice to your WiFi network (the same requirement as for remote profiling).1.

Hit build & run in the Unity editor.2.

When the application builds, installs & launches via Xcode, click Stop in Xcode.3.

Manually find & launch your application on your iDevice. (Note: if the application is launched via Xcode you won't be

able to resume after reaching a breakpoint).

4.

When the app is running on the device, switch to MonoDevelop and click on the attach icon in the debugging toolbar.

Select your device from the available instances list (if there are several instances shown, then select the bottom one).

5.

Page last updated: 2012-10-30

Log Files

There might be times during the development when you need to obtain information from the logs of the webplayer you've built,

your standalone player, the target device or the editor. Usually you need to see these files when you have experienced a

problem and you have to know where exactly the problem occurred.

On Mac the webplayer, player and editor logs can be accessed uniformly through the standard Console.app utility.

On Windows the webplayer and editor logs are place in folders there are not shown in the Windows Explorer by default.

Please see the Accessing hidden folders page to resolve that situation.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

539 of 1131 12/16/2012 10:12 PM

Editor
Editor log can be brought up through the Open Editor Log button in Unity's Console window.

Mac OS X ~/Library/Logs/Unity/Editor.log

Windows XP * C:\Documents and Settings\username\Local Settings\Application Data\Unity\Editor\Editor.log

Windows Vista/7 * C:\Users\username\AppData\Local\Unity\Editor\Editor.log

(*) On Windows the Editor log file is stored in the local application data folder: %LOCALAPPDATA%\Unity\Editor\Editor.log,

where LOCALAPPDATA is defined by CSIDL_LOCAL_APPDATA.

 Desktop

On Mac all the logs can be accessed uniformly through the standard Console.app utility.

Webplayer
Mac OS X ~/Library/Logs/Unity/WebPlayer.log

Windows XP * C:\Documents and Settings\username\Local Settings\Temp\UnityWebPlayer

\log\log_UNIQUEID.txt

Windows Vista/7 * C:\Users\username\AppData\Local\Temp\UnityWebPlayer\log\log_UNIQUEID.txt

Windows Vista/7 + IE7 + UAC

*

C:\Users\username\AppData\Local\Temp\Low\UnityWebPlayer\log\log_UNIQUEID.txt

(*) On Windows the webplayer log is stored in a temporary folder: %TEMP%\UnityWebPlayer\log\log_UNIQUEID.txt, where

TEMP is defined by GetTempPath.

Player
Mac OS X ~/Library/Logs/Unity/Player.log

Windows * EXECNAME_Data\output_log.txt

(*) EXECNAME_Data is a folder next to the executable with your game.

Note that on Windows standalones the location of the log file can be changed (or logging suppressed.) See the command line

page for further details.

 iOS

The device log can be accessed in XCode via GDB console or the Organizer Console. The latter is useful for getting crashlogs

when your application was not running through the XCode debugger.

Please see Debugging Applications in the iOS Development Guide. Also our Troubleshooting and Bugreporting guides may be

useful for you.

 Android

The device log can be viewed by using the logcat console. Use the adb application found in Android SDK/platform-tools

directory with a trailing logcat parameter:

$ adb logcat

Another way to inspect the LogCat is to use the Dalvik Debug Monitor Server (DDMS). DDMS can be started either from

Eclipse or from inside the Android SDK/tools. DDMS also provides a number of other debug related tools.

Page last updated: 2012-06-15

Accessing Hidden Folders

On Windows the logs are stored in locations that are hidden by default. To enable navigating to them in the Windows Explorer

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

540 of 1131 12/16/2012 10:12 PM

please perform the steps below.

Show hidden folders on Windows XP
The Local Settings folder is hidden by default. In order to see it, you have to enable viewing of hidden folders in Windows

Explorer from Tools->Folder Options...->View (tab).

Enabling viewing of hidden folders in Windows XP

Show hidden folders on Windows Vista/7
The AppData folder is hidden by default. In order to see it, you have to enable viewing of hidden folders in Windows Explorer

from Tools->Folder Options...->View (tab). The Tools menu is hidden by default, but can be displayed by pressing the Alt

key once.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

541 of 1131 12/16/2012 10:12 PM

Enabling viewing of hidden folders in Windows Vista
Page last updated: 2010-09-17

Plugins

Unity has extensive support for Plugins, which are libraries of native code written in C, C++, Objective-C, etc. Plugins allow

your game code (written in Javascript, C# or Boo) to call functions from these libraries. This feature allows Unity to integrate

with middleware libraries or existing C/C++ game code.

Note: On the desktop platforms, plugins are a pro-only feature. For security reasons, plugins are not usable with webplayers.

In order to use a plugin you need to do two things:-

Write functions in a C-based language and compile them into a library.

Create a C# script which calls functions in the library.

The plugin should provide a simple C interface which the C# script then exposes to other user scripts. It is also possible for

Unity to call functions exported by the plugin when certain low-level rendering events happen (for example, when a graphics

device is created), see the Native Plugin Interface page for details.

Here is a very simple example:

C File of a Minimal Plugin:
float FooPluginFunction () { return 5.0F; }

C# Script that Uses the Plugin:

using UnityEngine;
using System.Runtime.InteropServices;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

542 of 1131 12/16/2012 10:12 PM

class SomeScript : MonoBehaviour {

 #if UNITY_IPHONE || UNITY_XBOX360

 // On iOS and Xbox 360 plugins are statically linked into
 // the executable, so we have to use __Internal as the
 // library name.
 [DllImport ("__Internal")]

 #else

 // Other platforms load plugins dynamically, so pass the name
 // of the plugin's dynamic library.
 [DllImport ("PluginName")]

 #endif

 private static extern float FooPluginFunction ();

 void Awake () {
 // Calls the FooPluginFunction inside the plugin
 // And prints 5 to the console
 print (FooPluginFunction ());
 }
}

Note that when using Javascript you will need to use the following syntax, where DLLName is the name of the plugin you have

written, or "__Internal" if you are writing statically linked native code:

@DllImport (DLLName)
static private function FooPluginFunction () : float {};

Creating a Plugin
In general, plugins are built with native code compilers on the target platform. Since plugin functions use a C-based call

interface, you must avoid name mangling issues when using C++ or Objective-C.

For further details and examples, see the following pages:-

Building Plugins for Desktop Platforms

Building Plugins for iOS

Building Plugins for Android

Further Information
Native Plugin Interface - this is needed if you want to do rendering in your plugin.

Mono Interop with native libraries.

P-invoke documentation on MSDN.
Page last updated: 2012-02-02

PluginsForDesktop

This page describes Native Code Plugins for desktop platforms (Windows/Mac OS X/Linux). Note that plugins are intentionally

disabled in webplayers for security reasons.

Building a Plugin for Mac OS X
On Mac OSX, plugins are deployed as bundles. You can create the bundle project with XCode by selecting

File->NewProject... and then selecting Bundle - Carbon/Cocoa Loadable Bundle.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

543 of 1131 12/16/2012 10:12 PM

If you are using C++ (.cpp) or Objective-C (.mm) to implement the plugin then you must ensure the functions are declared with

C linkage to avoid name mangling issues.

extern "C" {
 float FooPluginFunction ();
}

Building a Plugin for Windows
Plugins on Windows are DLL files with exported functions. Practically any language or development environment that can

create DLL files can be used to create plugins.

As with Mac OSX, you should declare any C++ functions with C linkage to avoid name mangling issues.

Building a Plugin for Linux
Plugins on Linux are .so files with exported functions. These libraries are typically written in C or C++, but any language can

be used.

As with the other platforms, you should declare any C++ functions with C linkage in order to avoid name mangling issues.

32-bit and 64-bit libraries

Currently, plugins for 32-bit and 64-bit players need to be managed manually, e.g, before building a 64-bit player, you need to

copy the 64-bit library into the Assets/Plugins folder, and before building a 32-bit player, you need to copy the 32-bit

library into the Assets/Plugins folder.

Using your plugin from C#
Once built, the bundle should be placed in the Assets->Plugins folder in the Unity project. Unity will then find it by name

when you define a function like this in the C# script:-

[DllImport ("PluginName")]
private static extern float FooPluginFunction ();

Please note that PluginName should not include the library prefix nor file extension. For example, the actual name of the

plugin file would be PluginName.dll on Windows and libPluginName.so on Linux.

Be aware that whenever you change code in the Plugin you will need to recompile scripts in your project or else the plugin will

not have the latest compiled code.

Deployment
For cross platform plugins you must include the .bundle (for Mac), .dll (for Windows), and .so (for Linux) files in the Plugins

folder.

No further work is then required on your side - Unity automatically picks the right plugin for the target platform and includes it

with the player.

Examples

Simplest Plugin

This plugin project implements only some very basic operations (print a number, print a string, add two floats, add two

integers). This example may be helpful if this is your first Unity plugin.

The project can be found here and includes Windows, Mac, and Linux project files.

Rendering from C++ code

An example multiplatform plugin that works with multithreaded rendering in Unity can be found on the Native Plugin Interface

page.

Midi Plugin

A complete example of the Plugin interface can be found here.

This is a complete Midi plugin for OS X which uses Apple's CoreMidi API. It provides a simple C API and a C# class to access

it from Unity. The C# class contains a high level API, with easy access to NoteOn and NoteOff events and their velocity.

Texture Plugin

An example of how to assign image data to a texture directly in OpenGL (note that this will only work when Unity is using an

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

544 of 1131 12/16/2012 10:12 PM

OpenGL renderer). This example includes both XCode and Visual Studio project files. The plugin, along with an accompanying

Unity project, can be found here.

Page last updated: 2012-11-16

PluginsForIOS

This page describes Native Code Plugins for the iOS platform.

Building an Application with a Native Plugin for iOS

Define your extern method in the C# file as follows:

[DllImport ("__Internal")]
private static extern float FooPluginFunction ();

1.

Set the editor to the iOS build target2.

Add your native code source files to the generated XCode project's "Classes" folder (this folder is not overwritten when

the project is updated, but don't forget to backup your native code).

3.

If you are using C++ (.cpp) or Objective-C (.mm) to implement the plugin you must ensure the functions are declared with C

linkage to avoid name mangling issues.

extern "C" {
 float FooPluginFunction ();
}

Using Your Plugin from C#
iOS native plugins can be called only when deployed on the actual device, so it is recommended to wrap all native code

methods with an additional C# code layer. This code should check Application.platform and call native methods only when the

app is running on the device; dummy values can be returned when the app runs in the Editor. See the Bonjour browser sample

application for an example.

Calling C# / JavaScript back from native code
Unity iOS supports limited native-to-managed callback functionality via UnitySendMessage:

UnitySendMessage("GameObjectName1", "MethodName1", "Message to send");

This function has three parameters : the name of the target GameObject, the script method to call on that object and the

message string to pass to the called method.

Known limitations:

Only script methods that correspond to the following signature can be called from native code: function

MethodName(message:string)

1.

Calls to UnitySendMessage are asynchronous and have a delay of one frame.2.

Automated plugin integration
Unity iOS supports automated plugin integration in a limited way. All files with extensions .a,.m,.mm,.c,.cpp located in the

Assets/Plugins/iOS folder will be merged into the generated Xcode project automatically. However, merging is done by

symlinking files from Assets/Plugins/iOS to the final destination, which might affect some workflows. The .h files are not

included in the Xcode project tree, but they appear on the destination file system, thus allowing compilation of .m/.mm/.c/.cpp

files.

Note: subfolders are currently not supported.

iOS Tips

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

545 of 1131 12/16/2012 10:12 PM

Managed-to-unmanaged calls are quite processor intensive on iOS. Try to avoid calling multiple native methods per

frame.

1.

As mentioned above, wrap your native methods with an additional C# layer that calls native code on the device and

returns dummy values in the Editor.

2.

String values returned from a native method should be UTF-8 encoded and allocated on the heap. Mono marshaling

calls are free for strings like this.

3.

As mentioned above, the XCode project's "Classes" folder is a good place to store your native code because it is not

overwritten when the project is updated.

4.

Another good place for storing native code is the Assets folder or one of its subfolders. Just add references from the

XCode project to the native code files: right click on the "Classes" subfolder and choose "Add->Existing files...".

5.

Examples

Bonjour Browser Sample

A simple example of the use of a native code plugin can be found here

This sample demonstrates how objective-C code can be invoked from a Unity iOS application. This application implements a

very simple Bonjour client. The application consists of a Unity iOS project (Plugins/Bonjour.cs is the C# interface to the native

code, while BonjourTest.js is the JS script that implements the application logic) and native code (Assets/Code) that should be

added to the built XCode project.

Page last updated: 2011-11-01

PluginsForAndroid

This page describes Native Code Plugins for Android.

Building a Plugin for Android
To build a plugin for Android, you should first obtain the Android NDK and familiarize yourself with the steps involved in

building a shared library.

If you are using C++ (.cpp) to implement the plugin you must ensure the functions are declared with C linkage to avoid name

mangling issues.

extern "C" {
 float FooPluginFunction ();
}

Using Your Plugin from C#
Once built, the shared library should be copied to the Assets->Plugins->Android folder. Unity will then find it by name when

you define a function like the following in the C# script:-

[DllImport ("PluginName")]
private static extern float FooPluginFunction ();

Please note that PluginName should not include the prefix ('lib') nor the extension ('.so') of the filename. It is advisable to wrap

all native code methods with an additional C# code layer. This code should check Application.platform and call native methods

only when the app is running on the actual device; dummy values can be returned from the C# code when running in the

Editor. You can also use platform defines to control platform dependent code compilation.

Deployment
For cross platform deployment, your project should include plugins for each supported platform (ie, libPlugin.so for Android,

Plugin.bundle for Mac and Plugin.dll for Windows). Unity automatically picks the right plugin for the target platform and

includes it with the player.

Using Java Plugins

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

546 of 1131 12/16/2012 10:12 PM

The Android plugin mechanism also allows Java to be used to enable interaction with the Android OS.

Building a Java Plugin for Android

There are several ways to create a Java plugin but the result in each case is that you end up with a .jar file containing the

.class files for your plugin. One approach is to download the JDK, then compile your .java files from the command line with

javac. This will create .class files which you can then package into a .jar with the jar command line tool. Another option is to

use the Eclipse IDE together with the ADT.

Using Your Java Plugin from Native Code

Once you have built your Java plugin (.jar) you should copy it to the Assets->Plugins->Android folder in the Unity project.

Unity will package your .class files together with the rest of the Java code and then access the code using the Java Native

Interface (JNI). JNI is used both when calling native code from Java and when interacting with Java (or the JavaVM) from

native code.

To find your Java code from the native side you need access to the Java VM. Fortunately, that access can be obtained easily

by adding a function like this to your C/C++ code:

jint JNI_OnLoad(JavaVM* vm, void* reserved) {
 JNIEnv* jni_env = 0;
 vm->AttachCurrentThread(&jni_env, 0);
}

This is all that is needed to start using Java from C/C++. It is beyond the scope of this document to explain JNI completely.

However, using it usually involves finding the class definition, resolving the constructor (<init>) method and creating a new

object instance, as shown in this example:-

jobject createJavaObject(JNIEnv* jni_env) {
 jclass cls_JavaClass = jni_env->FindClass("com/your/java/Class"); // find class definition
 jmethodID mid_JavaClass = jni_env->GetMethodID (cls_JavaClass, "<init>", "()V"); // find constructor method
 jobject obj_JavaClass = jni_env->NewObject(cls_JavaClass, mid_JavaClass); // create object instance
 return jni_env->NewGlobalRef(obj_JavaClass); // return object with a global reference
}

Using Your Java Plugin with helper classes

AndroidJNIHelper and AndroidJNI can be used to ease some of the pain with raw JNI.

AndroidJavaObject and AndroidJavaClass automate a lot of tasks and also use cacheing to make calls to Java faster. The

combination of AndroidJavaObject and AndroidJavaClass builds on top of AndroidJNI and AndroidJNIHelper, but also

has a lot of logic in its own right (to handle the automation). These classes also come in a 'static' version to access static

members of Java classes.

You can choose whichever approach you prefer, be it raw JNI through AndroidJNI class methods, or AndroidJNIHelper

together with AndroidJNI and eventually AndroidJavaObject/AndroidJavaClass for maximum automation and convenience.

UnityEngine.AndroidJNI is a wrapper for the JNI calls available in C (as described above). All methods in this class are static

and have a 1:1 mapping to the Java Native Interface. UnityEngine.AndroidJNIHelper provides helper functionality used by the

next level, but is exposed as public methods because they may be useful for some special cases.

Instances of UnityEngine.AndroidJavaObject and UnityEngine.AndroidJavaClass have a 1:1 mapping to an instance of

java.lang.Object and java.lang.Class (or subclasses thereof) on the Java side, respectively. They essentially provide 3 types

of interaction with the Java side:

Call a method

Get the value of a field

Set the value of a field

The Call is separated into two categories: Call to a 'void' method, and Call to a method with non-void return type. A generic

type is used to represent the return type of those methods which return a non-void type. The Get and Set always take a

generic type representing the field type.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

547 of 1131 12/16/2012 10:12 PM

Example 1

//The comments describe what you would need to do if you were using raw JNI
 AndroidJavaObject jo = new AndroidJavaObject("java.lang.String", "some_string");
 // jni.FindClass("java.lang.String");
 // jni.GetMethodID(classID, "<init>", "(Ljava/lang/String;)V");
 // jni.NewStringUTF("some_string");
 // jni.NewObject(classID, methodID, javaString);
 int hash = jo.Call<int>("hashCode");
 // jni.GetMethodID(classID, "hashCode", "()I");
 // jni.CallIntMethod(objectID, methodID);

Here, we're creating an instance of java.lang.String, initialized with a string of our choice and retrieving the hash value for that

string.

The AndroidJavaObject constructor takes at least one parameter, the name of class for which we want to construct an

instance. Any parameters after the class name are for the constructor call on the object, in this case the string "some_string".

The subsequent Call to hashCode() returns an 'int' which is why we use that as the generic type parameter to the Call

method.

Note: You cannot instantiate a nested Java class using dotted notation. Inner classes must use the $ separator, and it should

work in both dotted and slashed format. So android.view.ViewGroup$LayoutParams or android/view

/ViewGroup$LayoutParams can be used, where a LayoutParams class is nested in a ViewGroup class.

Example 2

One of the plugin samples above shows how to get the cache directory for the current application. This is how you would do

the same thing from C# without any plugins:-

 AndroidJavaClass jc = new AndroidJavaClass("com.unity3d.player.UnityPlayer");
 // jni.FindClass("com.unity3d.player.UnityPlayer");
 AndroidJavaObject jo = jc.GetStatic<AndroidJavaObject>("currentActivity");
 // jni.GetStaticFieldID(classID, "Ljava/lang/Object;");
 // jni.GetStaticObjectField(classID, fieldID);
 // jni.FindClass("java.lang.Object");

 Debug.Log(jo.Call<AndroidJavaObject>("getCacheDir").Call<string>("getCanonicalPath"));
 // jni.GetMethodID(classID, "getCacheDir", "()Ljava/io/File;"); // or any baseclass thereof!
 // jni.CallObjectMethod(objectID, methodID);
 // jni.FindClass("java.io.File");
 // jni.GetMethodID(classID, "getCanonicalPath", "()Ljava/lang/String;");
 // jni.CallObjectMethod(objectID, methodID);
 // jni.GetStringUTFChars(javaString);

In this case, we start with AndroidJavaClass instead of AndroidJavaObject because we want to access a static member of

com.unity3d.player.UnityPlayer rather than create a new object (an instance is created automatically by the Android

UnityPlayer). Then we access the static field "currentActivity" but this time we use AndroidJavaObject as the generic

parameter. This is because the actual field type (android.app.Activity) is a subclass of java.lang.Object, and any non-primitive

type must be accessed as AndroidJavaObject. The exceptions to this rule are strings, which can be accessed directly even

though they don't represent a primitive type in Java.

After that it is just a matter of traversing the Activity through getCacheDir() to get the File object representing the cache

directory, and then calling getCanonicalPath() to get a string representation.

Of course, nowadays you don't need to do that to get the cache directory since Unity provides access to the application's

cache and file directory with Application.temporaryCachePath and Application.persistentDataPath.

Example 3

Finally, here is a trick for passing data from Java to script code using UnitySendMessage.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

548 of 1131 12/16/2012 10:12 PM

using UnityEngine;
public class NewBehaviourScript : MonoBehaviour {

void Start () {
JNIHelper.debug = true;
using (JavaClass jc = new JavaClass("com.unity3d.player.UnityPlayer")) {

jc.CallStatic("UnitySendMessage", "Main Camera", "JavaMessage", "whoowhoo");
}

}

void JavaMessage(string message) {
Debug.Log("message from java: " + message);

}
}

The Java class com.unity3d.player.UnityPlayer now has a static method UnitySendMessage, equivalent to the iOS

UnitySendMessage on the native side. It can be used in Java to pass data to script code.

Here though, we call it directly from script code, which essentially relays the message on the Java side. This then calls back to

the native/Unity code to deliver the message to the object named "Main Camera". This object has a script attached which

contains a method called "JavaMessage".

Best practice when using Java plugins with Unity

As this section is mainly aimed at people who don't have comprehensive JNI, Java and Android experience, we assume that

the AndroidJavaObject/AndroidJavaClass approach has been used for interacting with Java code from Unity.

The first thing to note is that any operation you perform on an AndroidJavaObject or AndroidJavaClass is computationally

expensive (as is the raw JNI approach). It is highly advisable to keep the number of transitions between managed and

native/Java code to a minimum, for the sake of performance and also code clarity.

You could have a Java method to do all the actual work and then use AndroidJavaObject / AndroidJavaClass to

communicate with that method and get the result. However, it is worth bearing in mind that the JNI helper classes try to cache

as much data as possible to improve performance.

//The first time you call a Java function like
AndroidJavaObject jo = new AndroidJavaObject("java.lang.String", "some_string"); // somewhat expensive
int hash = jo.Call<int>("hashCode"); // first time - expensive
int hash = jo.Call<int>("hashCode"); // second time - not as expensive as we already know the java method and can call it d

The Mono garbage collector should release all created instances of AndroidJavaObject and AndroidJavaClass after use,

but it is advisable to keep them in a using(){} statement to ensure they are deleted as soon as possible. Without this, you

cannot be sure when they will be destroyed. If you set AndroidJNIHelper.debug to true, you will see a record of the garbage

collector's activity in the debug output.

//Getting the system language with the safe approach
void Start () {

using (AndroidJavaClass cls = new AndroidJavaClass("java.util.Locale")) {
using(AndroidJavaObject locale = cls.CallStatic<AndroidJavaObject>("getDefault")) {

Debug.Log("current lang = " + locale.Call<string>("getDisplayLanguage"));

}
}

}

You can also call the .Dispose() method directly to ensure there are no Java objects lingering. The actual C# object might live

a bit longer, but will be garbage collected by mono eventually.

Extending the UnityPlayerActivity Java Code

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

549 of 1131 12/16/2012 10:12 PM

With Unity Android it is possible to extend the standard UnityPlayerActivity class (the primary Java class for the Unity Player

on Android, similar to AppController.mm on Unity iOS).

An application can override any and all of the basic interaction between Android OS and Unity Android. You can enable this by

creating a new Activity which derives from UnityPlayerActivity (UnityPlayerActivity.java can be found at /Applications/Unity

/Unity.app/Contents/PlaybackEngines/AndroidPlayer/src/com/unity3d/player on Mac and usually at C:\Program

Files\Unity\Editor\Data\PlaybackEngines\AndroidPlayer\src\com\unity3d\player on Windows).

To do this, first locate the classes.jar shipped with Unity Android. It is found in the installation folder (usually C:\Program

Files\Unity\Editor\Data (on Windows) or /Applications/Unity (on Mac)) in a sub-folder called

PlaybackEngines/AndroidPlayer/bin. Then add classes.jar to the classpath used to compile the new Activity. The resulting

.class file(s) should be compressed into a .jar file and placed in the Assets->Plugins->Android folder. Since the manifest

dictates which activity to launch it is also necessary to create a new AndroidManifest.xml. The AndroidManifest.xml file should

also be placed in the Assets->Plugins->Android folder.

The new activity could look like the following example, OverrideExample.java:

package com.company.product;

import com.unity3d.player.UnityPlayerActivity;

import android.os.Bundle;
import android.util.Log;

public class OverrideExample extends UnityPlayerActivity {

 protected void onCreate(Bundle savedInstanceState) {

 // call UnityPlayerActivity.onCreate()
 super.onCreate(savedInstanceState);

 // print debug message to logcat
 Log.d("OverrideActivity", "onCreate called!");
 }

 public void onBackPressed()
 {
 // instead of calling UnityPlayerActivity.onBackPressed() we just ignore the back button event
 // super.onBackPressed();
 }
}

And this is what the corresponding AndroidManifest.xml would look like:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com.company.product">
 <application android:icon="@drawable/app_icon" android:label="@string/app_name">

<activity android:name=".OverrideExample"
 android:label="@string/app_name"
 android:configChanges="fontScale|keyboard|keyboardHidden|locale|mnc|mcc|navigation|orientation|screen

 <intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

 </application>
</manifest>

UnityPlayerNativeActivity

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

550 of 1131 12/16/2012 10:12 PM

It is also possible to create your own subclass of UnityPlayerNativeActivity. This will have much the same effect as

subclassing UnityPlayerActivity but with improved input latency. Be aware, though, that NativeActivity was introduced in

Gingerbread and does not work with older devices. Since touch/motion events are processed in native code, Java views would

normally not see those events. There is, however, a forwarding mechanism in Unity which allows events to be propagated to

the DalvikVM. To access this mechanism, you need to modify the manifest file as follows:-

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android" package="com.company.product">
 <application android:icon="@drawable/app_icon" android:label="@string/app_name">

<activity android:name=".OverrideExampleNative"
 android:label="@string/app_name"
 android:configChanges="fontScale|keyboard|keyboardHidden|locale|mnc|mcc|navigation|orientation|screen

 <meta-data android:name="android.app.lib_name" android:value="unity" />
 <meta-data android:name="unityplayer.ForwardNativeEventsToDalvik" android:value="true" />
 <intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

 </application>
</manifest>

Note the ".OverrideExampleNative" attribute in the activity element and the two additional meta-data elements. The first

meta-data is an instruction to use the Unity library libunity.so. The second enables events to be passed on to your custom

subclass of UnityPlayerNativeActivity.

Examples

Native Plugin Sample

A simple example of the use of a native code plugin can be found here

This sample demonstrates how C code can be invoked from a Unity Android application. The package includes a scene which

displays the sum of two values as calculated by the native plugin. Please note that you will need the Android NDK to compile

the plugin.

Java Plugin Sample

An example of the use of Java code can be found here

This sample demonstrates how Java code can be used to interact with the Android OS and how C++ creates a bridge

between C# and Java. The scene in the package displays a button which when clicked fetches the application cache directory,

as defined by the Android OS. Please note that you will need both the JDK and the Android NDK to compile the plugins.

Here is a similar example but based on a prebuilt JNI library to wrap the native code into C#.

Page last updated: 2012-09-25

NativePluginInterface

In addition to the basic script interface, Native Code Plugins in Unity can receive callbacks when certain events happen. This

is mostly used to implement low-level rendering in your plugin and enable it to work with Unity's multithreaded rendering.

Note: The rendering callbacks to plugins are not currently supported on mobile platforms.

Access to the Graphics Device
A plugin can receive notification about events on the graphics device by exporting a UnitySetGraphicsDevice function.

This will be called when the graphics device is created, before it is destroyed, and also before and after the device is "reset"

(this only happens with Direct3D 9). The function has parameters which will receive the device pointer, device type and the

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

551 of 1131 12/16/2012 10:12 PM

kind of event that is taking place.

 // If exported by a plugin, this function will be called when graphics device is created, de

 // and before and after it is reset (ie, resolution changed).

 extern "C" void EXPORT_API UnitySetGraphicsDevice (void* device, int deviceType, int event

Possible values for deviceType:

 enum GfxDeviceRenderer {

 kGfxRendererOpenGL = 0, // OpenGL

 kGfxRendererD3D9 = 1, // Direct3D 9

 kGfxRendererD3D11 = 2, // Direct3D 11

 kGfxRendererGCM = 3, // Sony PlayStation 3 GCM

 kGfxRendererNull = 4, // "null" device (used in batch mode)

 kGfxRendererHollywood = 5, // Nintendo Wii

 kGfxRendererXenon = 6, // Xbox 360

 kGfxRendererOpenGLES = 7, // OpenGL ES 1.1

 kGfxRendererOpenGLES20Mobile = 8, // OpenGL ES 2.0 mobile variant

 kGfxRendererMolehill = 9, // Flash 11 Stage3D

 kGfxRendererOpenGLES20Desktop = 10, // OpenGL ES 2.0 desktop variant (i.e. NaCl)

 };

Possible values for eventType:

 enum GfxDeviceEventType {

 kGfxDeviceEventInitialize = 0,

 kGfxDeviceEventShutdown = 1,

 kGfxDeviceEventBeforeReset = 2,

 kGfxDeviceEventAfterReset = 3,

 };

Plugin Callbacks on the Rendering Thread
Rendering in Unity can be multithreaded if the platform and number of available CPUs will allow for it. When multithreaded

rendering is used, the rendering API commands happen on a thread which is completely separate from the one that runs

MonoBehaviour scripts. Consequently, it is not always possible for your plugin to start doing some rendering immediately,

since might interfere with whatever the render thread is doing at the time.

In order to do any rendering from the plugin, you should call GL.IssuePluginEvent from your script, which will cause your

plugin to be called from the render thread. For example, if you call GL.IssuePluginEvent from the camera's OnPostRender

function, you get a plugin callback immediately after the camera has finished rendering.

 // If exported by a plugin, this function will be called for GL.IssuePluginEvent script call

 // The function will be called on a rendering thread; note that when multithreaded rendering

 // the render thread WILL BE DIFFERENT from the main thread, on which all scripts & other ga

 // You have responsibility for ensuring any necessary synchronization with other plugin scri

 extern "C" void EXPORT_API UnityRenderEvent (int eventID);

Example
An example of a low-level rendering plugin can be downloaded here. It demonstrates two things:

Renders a rotating triangle from C++ code after all regular rendering is done.

Fills a procedural texture from C++ code, using Texture.GetNativeTexturePtr to access it.

The project works with Windows (Visual Studio 2008) and Mac OS X (Xcode 3.2) and uses Direct3D 9, Direct3D 11 or

OpenGL depending on the platform. Direct3D 9 code part also demonstrates how to handle "lost" devices.

Page last updated: 2012-11-16

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

552 of 1131 12/16/2012 10:12 PM

TextualSceneFormat

As well as the default binary format, Unity also provides a textual format for scene data. This can be useful when working with

version control software, since textual files generated separately can be merged more easily than binary files. Also, the text

data can be generated and parsed by tools, making it possible to create and analyze scenes automatically. The pages in this

section provide some reference material for working with the format.

Description of the Format

YAMLSceneExample

YAML Class ID Reference
Page last updated: 2011-10-13

FormatDescription

Unity's scene format is implemented with the YAML data serialization language. While we can't cover YAML in depth here, it is

an open format and its specification is available for free at the YAML website. Each object in the scene is written to the file as a

separate YAML document, which is introduced in the file by the --- sequence. Note that in this context, the term "object" refers

to GameObjects, Components and other scene data collectively; each of these items requires its own YAML document in the

scene file. The basic structure of a serialized object can be understood from an example:-

--- !u!1 &6
GameObject:
 m_ObjectHideFlags: 0
 m_PrefabParentObject: {fileID: 0}
 m_PrefabInternal: {fileID: 0}
 importerVersion: 3
 m_Component:
 - 4: {fileID: 8}
 - 33: {fileID: 12}
 - 65: {fileID: 13}
 - 23: {fileID: 11}
 m_Layer: 0
 m_Name: Cube
 m_TagString: Untagged
 m_Icon: {fileID: 0}
 m_NavMeshLayer: 0
 m_StaticEditorFlags: 0
 m_IsActive: 1

The first line contains the string "!u!1 &6" after the document marker. The first number after the "!u!" part indicates the class of

the object (in this case, it is a GameObject). The number following the ampersand is an object ID number which is unique

within the file, although the number is assigned to each object arbitrarily. Each of the object's serializable properties is denoted

by a line like the following:-

m_Name: Cube

Properties are typically prefixed with "m_" but otherwise follow the name of the property as defined in the script reference. A

second object, defined further down in the file, might look something like this:-

--- !u!4 &8
Transform:
 m_ObjectHideFlags: 0
 m_PrefabParentObject: {fileID: 0}
 m_PrefabInternal: {fileID: 0}
 m_GameObject: {fileID: 6}
 m_LocalRotation: {x: 0.000000, y: 0.000000, z: 0.000000, w: 1.000000}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

553 of 1131 12/16/2012 10:12 PM

 m_LocalPosition: {x: -2.618721, y: 1.028581, z: 1.131627}
 m_LocalScale: {x: 1.000000, y: 1.000000, z: 1.000000}
 m_Children: []
 m_Father: {fileID: 0}

This is a Transform component attached to the GameObject defined by the YAML document above. The attachment is

denoted by the line:-

m_GameObject: {fileID: 6}

...since the GameObject's object ID within the file was 6.

Floating point numbers can be represented in a decimal representation or as a hexadecimal number in IEE 754 format

(denoted by a 0x prefix). The IEE 754 representation is used for lossless encoding of values, and is used by Unity when

writing floating point values which don't have a short decimal representation. When Unity writes numbers in hexadecimal, it will

always also write the decimal format in parentheses for debugging purposes, but only the hex is actually parsed when loading

the file. If you wish to edit such values manually, simply remove the hex and enter only a decimal number. Here are some valid

representations of floating point values (all representing the number one):

myValue: 0x3F800000
myValue: 1
myValue: 1.000
myValue: 0x3f800000(1)
myValue: 0.1e1

Page last updated: 2012-01-05

YAMLSceneExample

An Example of a YAML Scene File

An example of a simple but complete scene is given below. The scene contains just a camera and a cube object. Note that the

file must start with the two lines

%YAML 1.1
%TAG !u! tag:unity3d.com,2011:

...in order to be accepted by Unity. Otherwise, the import process is designed to be tolerant of omissions - default values will

be supplied for missing property data as far as possible.

%YAML 1.1
%TAG !u! tag:unity3d.com,2011:
--- !u!header
SerializedFile:
 m_TargetPlatform: 4294967294
 m_UserInformation:
--- !u!29 &1
Scene:
 m_ObjectHideFlags: 0
 m_PVSData:
 m_QueryMode: 1
 m_PVSObjectsArray: []
 m_PVSPortalsArray: []
 m_ViewCellSize: 1.000000
--- !u!104 &2

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

554 of 1131 12/16/2012 10:12 PM

RenderSettings:
 m_Fog: 0
 m_FogColor: {r: 0.500000, g: 0.500000, b: 0.500000, a: 1.000000}
 m_FogMode: 3
 m_FogDensity: 0.010000
 m_LinearFogStart: 0.000000
 m_LinearFogEnd: 300.000000
 m_AmbientLight: {r: 0.200000, g: 0.200000, b: 0.200000, a: 1.000000}
 m_SkyboxMaterial: {fileID: 0}
 m_HaloStrength: 0.500000
 m_FlareStrength: 1.000000
 m_HaloTexture: {fileID: 0}
 m_SpotCookie: {fileID: 0}
 m_ObjectHideFlags: 0
--- !u!127 &3
GameManager:
 m_ObjectHideFlags: 0
--- !u!157 &4
LightmapSettings:
 m_ObjectHideFlags: 0
 m_LightProbeCloud: {fileID: 0}
 m_Lightmaps: []
 m_LightmapsMode: 1
 m_BakedColorSpace: 0
 m_UseDualLightmapsInForward: 0
 m_LightmapEditorSettings:
 m_Resolution: 50.000000
 m_LastUsedResolution: 0.000000
 m_TextureWidth: 1024
 m_TextureHeight: 1024
 m_BounceBoost: 1.000000
 m_BounceIntensity: 1.000000
 m_SkyLightColor: {r: 0.860000, g: 0.930000, b: 1.000000, a: 1.000000}
 m_SkyLightIntensity: 0.000000
 m_Quality: 0
 m_Bounces: 1
 m_FinalGatherRays: 1000
 m_FinalGatherContrastThreshold: 0.050000
 m_FinalGatherGradientThreshold: 0.000000
 m_FinalGatherInterpolationPoints: 15
 m_AOAmount: 0.000000
 m_AOMaxDistance: 0.100000
 m_AOContrast: 1.000000
 m_TextureCompression: 0
 m_LockAtlas: 0
--- !u!196 &5
NavMeshSettings:
 m_ObjectHideFlags: 0
 m_BuildSettings:
 cellSize: 0.200000
 cellHeight: 0.100000
 agentSlope: 45.000000
 agentClimb: 0.900000
 ledgeDropHeight: 0.000000
 maxJumpAcrossDistance: 0.000000
 agentRadius: 0.400000
 agentHeight: 1.800000
 maxEdgeLength: 12
 maxSimplificationError: 1.300000
 regionMinSize: 8
 regionMergeSize: 20

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

555 of 1131 12/16/2012 10:12 PM

 tileSize: 500
 detailSampleDistance: 6.000000
 detailSampleMaxError: 1.000000
 accuratePlacement: 0
 m_NavMesh: {fileID: 0}
--- !u!1 &6
GameObject:
 m_ObjectHideFlags: 0
 m_PrefabParentObject: {fileID: 0}
 m_PrefabInternal: {fileID: 0}
 importerVersion: 3
 m_Component:
 - 4: {fileID: 8}
 - 33: {fileID: 12}
 - 65: {fileID: 13}
 - 23: {fileID: 11}
 m_Layer: 0
 m_Name: Cube
 m_TagString: Untagged
 m_Icon: {fileID: 0}
 m_NavMeshLayer: 0
 m_StaticEditorFlags: 0
 m_IsActive: 1
--- !u!1 &7
GameObject:
 m_ObjectHideFlags: 0
 m_PrefabParentObject: {fileID: 0}
 m_PrefabInternal: {fileID: 0}
 importerVersion: 3
 m_Component:
 - 4: {fileID: 9}
 - 20: {fileID: 10}
 - 92: {fileID: 15}
 - 124: {fileID: 16}
 - 81: {fileID: 14}
 m_Layer: 0
 m_Name: Main Camera
 m_TagString: MainCamera
 m_Icon: {fileID: 0}
 m_NavMeshLayer: 0
 m_StaticEditorFlags: 0
 m_IsActive: 1
--- !u!4 &8
Transform:
 m_ObjectHideFlags: 0
 m_PrefabParentObject: {fileID: 0}
 m_PrefabInternal: {fileID: 0}
 m_GameObject: {fileID: 6}
 m_LocalRotation: {x: 0.000000, y: 0.000000, z: 0.000000, w: 1.000000}
 m_LocalPosition: {x: -2.618721, y: 1.028581, z: 1.131627}
 m_LocalScale: {x: 1.000000, y: 1.000000, z: 1.000000}
 m_Children: []
 m_Father: {fileID: 0}
--- !u!4 &9
Transform:
 m_ObjectHideFlags: 0
 m_PrefabParentObject: {fileID: 0}
 m_PrefabInternal: {fileID: 0}
 m_GameObject: {fileID: 7}
 m_LocalRotation: {x: 0.000000, y: 0.000000, z: 0.000000, w: 1.000000}
 m_LocalPosition: {x: 0.000000, y: 1.000000, z: -10.000000}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

556 of 1131 12/16/2012 10:12 PM

 m_LocalScale: {x: 1.000000, y: 1.000000, z: 1.000000}
 m_Children: []
 m_Father: {fileID: 0}
--- !u!20 &10
Camera:
 m_ObjectHideFlags: 0
 m_PrefabParentObject: {fileID: 0}
 m_PrefabInternal: {fileID: 0}
 m_GameObject: {fileID: 7}
 m_Enabled: 1
 importerVersion: 2
 m_ClearFlags: 1
 m_BackGroundColor: {r: 0.192157, g: 0.301961, b: 0.474510, a: 0.019608}
 m_NormalizedViewPortRect:
 importerVersion: 2
 x: 0.000000
 y: 0.000000
 width: 1.000000
 height: 1.000000
 near clip plane: 0.300000
 far clip plane: 1000.000000
 field of view: 60.000000
 orthographic: 0
 orthographic size: 100.000000
 m_Depth: -1.000000
 m_CullingMask:
 importerVersion: 2
 m_Bits: 4294967295
 m_RenderingPath: -1
 m_TargetTexture: {fileID: 0}
 m_HDR: 0
--- !u!23 &11
Renderer:
 m_ObjectHideFlags: 0
 m_PrefabParentObject: {fileID: 0}
 m_PrefabInternal: {fileID: 0}
 m_GameObject: {fileID: 6}
 m_Enabled: 1
 m_CastShadows: 1
 m_ReceiveShadows: 1
 m_LightmapIndex: 255
 m_LightmapTilingOffset: {x: 1.000000, y: 1.000000, z: 0.000000, w: 0.000000}
 m_Materials:
 - {fileID: 10302, guid: 0000000000000000e000000000000000, type: 0}
 m_SubsetIndices:
 m_StaticBatchRoot: {fileID: 0}
 m_LightProbeAnchor: {fileID: 0}
 m_UseLightProbes: 0
 m_ScaleInLightmap: 1.000000
--- !u!33 &12
MeshFilter:
 m_ObjectHideFlags: 0
 m_PrefabParentObject: {fileID: 0}
 m_PrefabInternal: {fileID: 0}
 m_GameObject: {fileID: 6}
 m_Mesh: {fileID: 10202, guid: 0000000000000000e000000000000000, type: 0}
--- !u!65 &13
BoxCollider:
 m_ObjectHideFlags: 0
 m_PrefabParentObject: {fileID: 0}
 m_PrefabInternal: {fileID: 0}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

557 of 1131 12/16/2012 10:12 PM

 m_GameObject: {fileID: 6}
 m_Material: {fileID: 0}
 m_IsTrigger: 0
 m_Enabled: 1
 importerVersion: 2
 m_Size: {x: 1.000000, y: 1.000000, z: 1.000000}
 m_Center: {x: 0.000000, y: 0.000000, z: 0.000000}
--- !u!81 &14
AudioListener:
 m_ObjectHideFlags: 0
 m_PrefabParentObject: {fileID: 0}
 m_PrefabInternal: {fileID: 0}
 m_GameObject: {fileID: 7}
 m_Enabled: 1
--- !u!92 &15
Behaviour:
 m_ObjectHideFlags: 0
 m_PrefabParentObject: {fileID: 0}
 m_PrefabInternal: {fileID: 0}
 m_GameObject: {fileID: 7}
 m_Enabled: 1
--- !u!124 &16
Behaviour:
 m_ObjectHideFlags: 0
 m_PrefabParentObject: {fileID: 0}
 m_PrefabInternal: {fileID: 0}
 m_GameObject: {fileID: 7}
 m_Enabled: 1
--- !u!1026 &17
HierarchyState:
 m_ObjectHideFlags: 0
 expanded: []
 selection: []
 scrollposition_x: 0.000000
 scrollposition_y: 0.000000

Page last updated: 2011-10-13

ClassIDReference

A reference of common class ID numbers used by the YAML file format is given below, both in numerical order of class IDs and

alphabetical order of class names. Note that some ranges of numbers are intentionally omitted from the sequence - these may

represent classes that have been removed from the API or may be reserved for future use. Classes defined from scripts will

always have class ID 114 (MonoBehaviour).

Classes Ordered by ID Number
1 GameObject

2 Component

3 LevelGameManager

4 Transform

5 TimeManager

6 GlobalGameManager

8 Behaviour

9 GameManager

11 AudioManager

12 ParticleAnimator

13 InputManager

15 EllipsoidParticleEmitter

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

558 of 1131 12/16/2012 10:12 PM

17 Pipeline

18 EditorExtension

20 Camera

21 Material

23 MeshRenderer

25 Renderer

26 ParticleRenderer

27 Texture

28 Texture2D

29 Scene

30 RenderManager

33 MeshFilter

41 OcclusionPortal

43 Mesh

45 Skybox

47 QualitySettings

48 Shader

49 TextAsset

52 NotificationManager

54 Rigidbody

55 PhysicsManager

56 Collider

57 Joint

59 HingeJoint

64 MeshCollider

65 BoxCollider

71 AnimationManager

74 AnimationClip

75 ConstantForce

76 WorldParticleCollider

78 TagManager

81 AudioListener

82 AudioSource

83 AudioClip

84 RenderTexture

87 MeshParticleEmitter

88 ParticleEmitter

89 Cubemap

92 GUILayer

94 ScriptMapper

96 TrailRenderer

98 DelayedCallManager

102 TextMesh

104 RenderSettings

108 Light

109 CGProgram

111 Animation

114 MonoBehaviour

115 MonoScript

116 MonoManager

117 Texture3D

119 Projector

120 LineRenderer

121 Flare

122 Halo

123 LensFlare

124 FlareLayer

125 HaloLayer

126 NavMeshLayers

127 HaloManager

128 Font

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

559 of 1131 12/16/2012 10:12 PM

129 PlayerSettings

130 NamedObject

131 GUITexture

132 GUIText

133 GUIElement

134 PhysicMaterial

135 SphereCollider

136 CapsuleCollider

137 SkinnedMeshRenderer

138 FixedJoint

140 RaycastCollider

141 BuildSettings

142 AssetBundle

143 CharacterController

144 CharacterJoint

145 SpringJoint

146 WheelCollider

147 ResourceManager

148 NetworkView

149 NetworkManager

150 PreloadData

152 MovieTexture

153 ConfigurableJoint

154 TerrainCollider

155 MasterServerInterface

156 TerrainData

157 LightmapSettings

158 WebCamTexture

159 EditorSettings

160 InteractiveCloth

161 ClothRenderer

163 SkinnedCloth

164 AudioReverbFilter

165 AudioHighPassFilter

166 AudioChorusFilter

167 AudioReverbZone

168 AudioEchoFilter

169 AudioLowPassFilter

170 AudioDistortionFilter

180 AudioBehaviour

181 AudioFilter

182 WindZone

183 Cloth

184 SubstanceArchive

185 ProceduralMaterial

186 ProceduralTexture

191 OffMeshLink

192 OcclusionArea

193 Tree

194 NavMesh

195 NavMeshAgent

196 NavMeshSettings

197 LightProbeCloud

198 ParticleSystem

199 ParticleSystemRenderer

205 LODGroup

220 LightProbeGroup

1001 Prefab

1002 EditorExtensionImpl

1003 AssetImporter

1004 AssetDatabase

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

560 of 1131 12/16/2012 10:12 PM

1005 Mesh3DSImporter

1006 TextureImporter

1007 ShaderImporter

1020 AudioImporter

1026 HierarchyState

1027 GUIDSerializer

1028 AssetMetaData

1029 DefaultAsset

1030 DefaultImporter

1031 TextScriptImporter

1034 NativeFormatImporter

1035 MonoImporter

1037 AssetServerCache

1038 LibraryAssetImporter

1040 ModelImporter

1041 FBXImporter

1042 TrueTypeFontImporter

1044 MovieImporter

1045 EditorBuildSettings

1046 DDSImporter

1048 InspectorExpandedState

1049 AnnotationManager

1050 MonoAssemblyImporter

1051 EditorUserBuildSettings

1052 PVRImporter

1112 SubstanceImporter

Classes Ordered Alphabetically
Animation 111

AnimationClip 74

AnimationManager 71

AnnotationManager 1049

AssetBundle 142

AssetDatabase 1004

AssetImporter 1003

AssetMetaData 1028

AssetServerCache 1037

AudioBehaviour 180

AudioChorusFilter 166

AudioClip 83

AudioDistortionFilter 170

AudioEchoFilter 168

AudioFilter 181

AudioHighPassFilter 165

AudioImporter 1020

AudioListener 81

AudioLowPassFilter 169

AudioManager 11

AudioReverbFilter 164

AudioReverbZone 167

AudioSource 82

Behaviour 8

BoxCollider 65

BuildSettings 141

Camera 20

CapsuleCollider 136

CGProgram 109

CharacterController 143

CharacterJoint 144

Cloth 183

ClothRenderer 161

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

561 of 1131 12/16/2012 10:12 PM

Collider 56

Component 2

ConfigurableJoint 153

ConstantForce 75

Cubemap 89

DDSImporter 1046

DefaultAsset 1029

DefaultImporter 1030

DelayedCallManager 98

EditorBuildSettings 1045

EditorExtension 18

EditorExtensionImpl 1002

EditorSettings 159

EditorUserBuildSettings 1051

EllipsoidParticleEmitter 15

FBXImporter 1041

FixedJoint 138

Flare 121

FlareLayer 124

Font 128

GameManager 9

GameObject 1

GlobalGameManager 6

GUIDSerializer 1027

GUIElement 133

GUILayer 92

GUIText 132

GUITexture 131

Halo 122

HaloLayer 125

HaloManager 127

HierarchyState 1026

HingeJoint 59

InputManager 13

InspectorExpandedState 1048

InteractiveCloth 160

Joint 57

LensFlare 123

LevelGameManager 3

LibraryAssetImporter 1038

Light 108

LightmapSettings 157

LightProbeCloud 197

LightProbeGroup 220

LineRenderer 120

LODGroup 205

MasterServerInterface 155

Material 21

Mesh 43

Mesh3DSImporter 1005

MeshCollider 64

MeshFilter 33

MeshParticleEmitter 87

MeshRenderer 23

ModelImporter 1040

MonoAssemblyImporter 1050

MonoBehaviour 114

MonoImporter 1035

MonoManager 116

MonoScript 115

MovieImporter 1044

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

562 of 1131 12/16/2012 10:12 PM

MovieTexture 152

NamedObject 130

NativeFormatImporter 1034

NavMesh 194

NavMeshAgent 195

NavMeshLayers 126

NavMeshSettings 196

NetworkManager 149

NetworkView 148

NotificationManager 52

OcclusionArea 192

OcclusionPortal 41

OffMeshLink 191

ParticleAnimator 12

ParticleEmitter 88

ParticleRenderer 26

ParticleSystem 198

ParticleSystemRenderer 199

PhysicMaterial 134

PhysicsManager 55

Pipeline 17

PlayerSettings 129

Prefab 1001

PreloadData 150

ProceduralMaterial 185

ProceduralTexture 186

Projector 119

PVRImporter 1052

QualitySettings 47

RaycastCollider 140

Renderer 25

RenderManager 30

RenderSettings 104

RenderTexture 84

ResourceManager 147

Rigidbody 54

Scene 29

ScriptMapper 94

Shader 48

ShaderImporter 1007

SkinnedCloth 163

SkinnedMeshRenderer 137

Skybox 45

SphereCollider 135

SpringJoint 145

SubstanceArchive 184

SubstanceImporter 1112

TagManager 78

TerrainCollider 154

TerrainData 156

TextAsset 49

TextMesh 102

TextScriptImporter 1031

Texture 27

Texture2D 28

Texture3D 117

TextureImporter 1006

TimeManager 5

TrailRenderer 96

Transform 4

Tree 193

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

563 of 1131 12/16/2012 10:12 PM

TrueTypeFontImporter 1042

WebCamTexture 158

WheelCollider 146

WindZone 182

WorldParticleCollider 76

Page last updated: 2012-01-05

StreamingAssets

Most assets in Unity are combined into the project when it is built. However, it is sometimes useful to place files into the normal

filesystem on the target machine to make them accessible via a pathname. An example of this is the deployment of a movie file

on iOS devices; the original movie file must be available from a location in the filesystem to be played by the PlayMovie

function.

Any files placed in a folder called StreamingAssets in a Unity project will be copied verbatim to a particular folder on the target

machine. On a desktop computer (Mac OS or Windows) the location of the files can be obtained with the following code:-

 path = = Application.dataPath + "/StreamingAssets";

On iOS, you should use:-

 path = Application.dataPath + "/Raw";

...while on Android, you should use:-

 path = "jar:file://" + Application.dataPath + "!/assets/";

Note that on Android, the files are contained within a compressed .jar file (which is essentially the same format as standard

zip-compressed files). This means that if you do not use Unity's WWW class to retrieve the file then you will need to use

additional software to see inside the .jar archive and obtain the file.

Page last updated: 2012-01-18

Command Line Arguments

Typically, Unity will be launched by double-clicking its icon from the desktop but it is also possible to run it from the command

line (ie, the MacOS Terminal or the Windows Command Prompt). When launched in this way, Unity can receive commands

and information on startup, which can be very useful for test suites, automated builds and other production tasks.

Under MacOS, you can launch Unity from the Terminal by typing:-

/Applications/Unity/Unity.app/Contents/MacOS/Unity

...while under Windows, you should type

"C:\Program Files (x86)\Unity\Editor\Unity.exe"

...at the command prompt.

Standalone Unity games can be launched in a similar way.

Command Line Arguments
As mentioned above, the editor and also built games can optionally be supplied with additional commands and information on

startup. This is done using the following command line arguments:-

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

564 of 1131 12/16/2012 10:12 PM

-batchmode

Run Unity in batch mode. This should always be used in conjunction with the other command line arguments as it

ensures no pop up windows appear and eliminates the need for any human intervention. When an exception occurs

during execution of script code, asset server updates fail or other operations fail Unity will immediately exit with return

code 1. Note that in batch mode, Unity will send a minimal version of its log output to the console. However, the Log

Files still contain the full log information.

-quit

Quit the Unity editor after other commands have finished executing. Note that this can cause error messages to be

hidden (but they will show up in the Editor.log file).

-buildWindowsPlayer <pathname>

Build a standalone Windows player (eg, -buildWindowsPlayer path/to/your/build.exe).

-buildOSXPlayer <pathname>

Build a standalone Mac OSX player (eg, -buildOSXPlayer path/to/your/build.app).

-buildLinux32Player <pathname>

Build a 32-bit standalone Linux player (eg, -buildLinux32Player path/to/your/build).

-buildLinux64Player <pathname>

Build a 64-bit standalone Linux player (eg, -buildLinux64Player path/to/your/build).

-importPackage <pathname>

Import the given package. No import dialog is shown.

-createProject <pathname>

Create an empty project at the given path.

-projectPath <pathname>

Open the project at the given path.

-logFile <pathname>

Specify where the Editor or Windows standalone log file will be written.

-assetServerUpdate <IP[:port] projectName username password [r <revision>]>

Force an update of the project in the Asset Server given by IP:port. The port is optional and if not given it is assumed

to be the standard one (10733). It is advisable to use this command in conjunction with the -projectPath argument to

ensure you are working with the correct project. If no project name is given then the last project opened by Unity is

used. If no project exists at the path given by -projectPath then one is created automatically.

-exportPackage <exportAssetPath1 exportAssetPath2 ExportAssetPath3 exportFileName>

Exports a package given a path (or set of given paths). exportAssetPath is a folder (relative to to the Unity project

root) to export from the Unity project and exportFileName is the package name. Currently, this option can only export

whole folders at a time. This command normally needs to be used with the -projectPath argument.

-nographics (Windows only)

When running in batch mode, do not initialize graphics device at all. This makes it possible to run your automated

workflows on machines that don't even have a GPU (automated workflows only work, when you have a window in

focus, otherwise you can't send simulated input commands). A standalone player generated with this option will not

feature any graphics.

-executeMethod <ClassName.MethodName>

Execute the static method as soon as Unity is started, the project is open and after the optional asset server update

has been performed. This can be used to do continous integration, perform Unit Tests, make builds, prepare some

data, etc. If you want to return an error from the commandline process you can either throw an exception which will

cause Unity to exit with 1 or else call EditorApplication.Exit with a non-zero code. If you want to pass parameters you

can add them to the command line and retrieve them inside the method using

System.Environment.GetCommandLineArgs.

To use -executeMethod you need to have a script in an Editor folder and a static function in the class.

// C# example
using UnityEditor;
class MyEditorScript
{

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

565 of 1131 12/16/2012 10:12 PM

 static void PerformBuild ()
 {
 string[] scenes = { "Assets/MyScene.unity" };
 BuildPipeline.BuildPlayer(scenes, ...);
 }
}

// JavaScript example
static void PerformBuild ()
{
 string[] scenes = { "Assets/MyScene.unity" };
 BuildPipeline.BuildPlayer(scenes, ...);
}

Example usage

Execute Unity in batch mode, execute MyEditorScript.MyMethod method, and quit upon completion.

Windows:
C:\program files\Unity\Editor>Unity.exe -quit -batchmode -executeMethod

MyEditorScript.MyMethod

Mac OS:
/Applications/Unity/Unity.app/Contents/MacOS/Unity -quit -batchmode -executeMethod

MyEditorScript.MyMethod

Execute Unity in batch mode. Use the project path given and update from the asset server. Execute the given method after all

assets have been downloaded and imported from the asset server. After the method has finished execution, automatically quit

Unity.

/Applications/Unity/Unity.app/Contents/MacOS/Unity -batchmode -projectPath ~/UnityProjects

/AutobuildProject -assetServerUpdate 192.168.1.1 MyGame AutobuildUser l33tpa33

-executeMethod MyEditorScript.PerformBuild -quit

Unity Standalone Player command line arguments
Standalone players built with Unity also understand some command line arguments:

-batchmode

Run the game in "headless" mode. The game will not display anything or accept user input. This is mostly useful for

running servers for networked games.

-force-opengl (Windows only)

Make the game use OpenGL for rendering, even if Direct3D is available. Normally Direct3D is used but OpenGL is

used if Direct3D 9.0c is not available.

-force-d3d9 (Windows only)

Make the game use Direct3D 9 for rendering. This is the default, so normally there's no reason to pass it.

-force-d3d11 (Windows only)

Make the game use Direct3D 11 for rendering.

-single-instance (Linux & Windows only)

Allow only one instance of the game to run at the time. If another instance is already running then launching it again

with -single-instance will just focus the existing one.

-nolog (Windows only)

Do not produce output log. Normally output_log.txt is written in the *_Data folder next to the game executable,

where Debug.Log output is printed.

-force-d3d9-ref (Windows only)

Make the game run using Direct3D's "Reference" software renderer. The DirectX SDK has to be installed for this to

work. This is mostly useful for building automated test suites, where you want to ensure rendering is exactly the same

no matter what graphics card is being used.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

566 of 1131 12/16/2012 10:12 PM

-adapter N (Windows only)

Allows the game to run full-screen on another display, where N denotes the display number.

-popupwindow (Windows only)

The window will be created as a a pop-up window (without a frame).

-screen-width (Linux & Windows only)

Overrides the default screen width. This must be an integer from a supported resolution.

-screen-height (Linux & Windows only)

Overrides the default screen height. This must be an integer from a supported resolution.

-screen-quality (Linux only)

Overrides the default screen quality. Example usage would be: /path/to/myGame -screen-quality

Beautiful

Editor Installer
The following options can be used when installing the Unity Editor from command line:

/S (Windows only)

Performs a silent (no questions asked) install.

/D=PATH (Windows only)

Sets the default install directory. Useful when combined with the silent install option.

Example usage

Install Unity silently to E:\Development\Unity.

Windows:
UnitySetup.exe /S /D=E:\Development\Unity

Page last updated: 2012-11-28

RunningEditorCodeOnLaunch

Sometimes, it is useful to be able to run some editor script code in a project as soon as Unity launches without requiring action

from the user. You can do this by applying the InitializeOnLoad attribute to a class which has a static constructor. A static

constructor is a function with the same name as the class, declared static and without a return type or parameters (see here

for more information):-

using UnityEngine;
using UnityEditor;

[InitializeOnLoad]
public class Startup {
 static Startup()
 {
 Debug.Log("Up and running");
 }
}

A static constructor is always guaranteed to be called before any static function or instance of the class is used, but the

InitializeOnLoad attribute ensures that it is called as the editor launches.

An example of how this technique can be used is in setting up a regular callback in the editor (its "frame update", as it were).

The EditorApplication class has a delegate called update which is called many times a second while the editor is running. To

have this delegate enabled as the project launches, you could use code like the following:-

using UnityEditor;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

567 of 1131 12/16/2012 10:12 PM

using UnityEngine;

[InitializeOnLoad]
class MyClass
{
 static MyClass ()
 {
 EditorApplication.update += Update;
 }

 static void Update ()
 {
 Debug.Log("Updating");
 }
}

Page last updated: 2011-09-01

NetworkEmulation

As part of Unity's Networking feature set, you can choose to emulate slower internet connection speeds to test out your game

experience for users in low-bandwidth areas.

To enable Network emulation, go to Edit->Network Emulation, and choose your desired connection speed emulation.

Enabling Network Emulation

Technical Details
Network emulation delays the sending of packets in networking traffic for the Network and NetworkView classes. The ping is

artificially inflated for all options, the inflation value increasing as emulated connection speed gets slower. On the Dial-Up

setting, packet dropping and variance is also introduced to simulate the worst possible connection ever. Emulation will persist

whether you are serving the role of Server or Client.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

568 of 1131 12/16/2012 10:12 PM

Network emulation only affects the Network and NetworkView classes, and will not alter or emulate specialized networking

code written using .NET sockets.

Page last updated: 2008-04-30

Security Sandbox

 Desktop

In Unity 3.0, the webplayer implements a security model very similar to the one used by the Adobe Flash player�. This

security restrictions apply only to the webplayer, and to the editor when the active build target is WebPlayer. The security

model has several parts:

Restrictions on accessing data on a domain other than the one hosting your .unity3d file.

Some limitation on the usage of the Sockets.

Disallowing invocation of any method we deemed off limits. (things like File.Delete, etc).

Disallowing the usage of System.Reflection.* to call private/internal methods in classes you did not write yourself.

Currently only the first two parts of the security model are emulated in the Editor. Look here for a detailed list of which methods

/ classes are available in the webplayer.

The builtin mutiplayer networking functionality of Unity (UnityEngine.Network, UnityEngine.NetworkView classes

etc) is not affected.

This document describes how to make sure your content keeps working with version 3.0 of the
Unity webplayer.

See the Unity API reference for information about the WWW class.

See the .NET API reference for information about the .NET Socket class.

The WWW class and sockets use the same policy schema but besides that they are completely separate systems. The WWW

policy only defines permissions on the web service where the policy is hosted but socket policies apply to all TCP/UDP socket

connections.

The Unity editor comes with an "Emulate Web Security" feature, that imposes the webplayer's security model. This makes it

easy to detect problems from the comfort of the editor. You can find this setting in Edit->Project Settings->Editor.

Implications for usage of the WWW class

The Unity webplayer expects a http served policy file named "crossdomain.xml" to be available on the domain you want to

access with the WWW class, (although this is not needed if it is the same domain that is hosting the unity3d file).

For example, imagine a tetris game, hosted at the following url:

http://gamecompany.com/games/tetris.unity3d

needs to access a highscore list from the following url:

http://highscoreprovider.net/gethighscore.php

In this case, you would need to place a crossdomain.xml file at the root of the highscoreprovider.net domain like this:

http://highscoreprovider.net/crossdomain.xml

The contents of the crossdomain.xml file are in the format used by the Flash player. It is very likely that you'll find the

crossdomain.xml file already in place. The policy in the file look like this:

<?xml version="1.0"?>

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

569 of 1131 12/16/2012 10:12 PM

<cross-domain-policy>
<allow-access-from domain="*"/>
</cross-domain-policy>

When this file is placed at http://highscoreprovider.net/crossdomain.xml, the owner of that domain declares that the contents of

the webserver may be accessed by any webplayer coming from any domain.

The Unity webplayer does not support the <allow-http-request-headers-from domain> and <site-control

permitted-cross-domain-policies> tags. Note that crossdomain.xml should be an ASCII file.

Implications for usage of Sockets:

A Unity webplayer needs a socket served policy in order to connect to a particular host. This policy is by default hosted by the

target host on port 843 but it can be hosted on other ports as well. The functional difference with a non-default port is that it

must be manually fetched with Security.PrefetchSocketPolicy() API call and if it is hosted on a port higher than 1024 the policy

can only give access to other ports higher than 1024.

When using the default port it works like this: A Unity webplayer tries to make a TCP socket connection to a host, it first

checks that the host server will accept the connection. It does this by opening a TCP socket on port 843, issues a request, and

expects to receive a socket policy over the new connection. The Unity webplayer then checks that the host's policy permits the

connection to go ahead and it will proceed without error if so. This process happens transparently to the user's code, which

does not need to be modified to use this security model. An example of a socket policy look like this:

<?xml version="1.0"?>
<cross-domain-policy>
 <allow-access-from domain="*" to-ports="1200-1220"/>
</cross-domain-policy>"

This policy effectively says "Content from any domain is free to make socket connections at ports 1200-1220". The Unity

webplayer will respect this, and reject any attempted socket connection using a port outside that range (a SecurityException

will be thrown).

When using UDP connections the policy can also be auto fetched when they need to be enforced in a similar manner as with

TCP. The difference is that auto fetching with TCP happens when you Connect to something (ensures you are allowed to

connect to a server), but with UDP, since it's connectionless, it also happens when you call any API point which sends or

receives data (ensures you are allowed to send/receive traffic to/from a server).

The format used for the socket policy is the same as that used by the Flash player except some tags are not supported. The

Unity webplayer only supports "*" as a valid value for the domain setting and the "to-ports" setting is mandatory.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!ELEMENT cross-domain-policy (allow-access-from*)>

<!ELEMENT allow-access-from EMPTY>
<!ATTLIST allow-access-from domain CDATA #REQUIRED>
<!ATTLIST allow-access-from to-ports CDATA #REQUIRED>

The socket policy applies to both TCP and UDP connection types so both UDP and TCP traffic can be controlled by one

policy server.

For your convenience, we provide a small program which simply listens at port 843; when on a connection it receives a

request string, it will reply with a valid socket policy. The server code can be found inside the Unity install folder, in Data/Tools

/SocketPolicyServer on Windows or /Unity.app/Contents/Tools/SocketPolicyServer on OS X. Note that the pre-built executable

can be run on Mac since it is a Mono executable. Just type "mono sockpol.exe" to run it. Note that this example code shows

the correct behaviour of a socket policy server. Specifically the server expects to receive a zero-terminated string that contains

<policy-file-request/>. It only sends to the client the socket policy xml document when this string (and exactly this

string) has been received. Further, it is required that the xml header and xml body are sent with a single socket write. Breaking

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

570 of 1131 12/16/2012 10:12 PM

the header and body into separate socket write operations can cause security exceptions due to Unity receiving an incomplete

policy. If you experience any problems with your own server please consider using the example that we provide. This should

help you diagnose whether you have server or network issues.

Third party networking libraries, commonly used for multiplayer game networking, should be able to work with these

requirements as long as they do not depend on peer 2 peer functionality (see below) but utilize dedicated servers. These

sometimes even come out of the box with support for hosting policies.

Note: Whilst the crossdomain.xml and socket policy files are both xml documents and are broadly similar, the way that

these documents are served are very different. Crossdomain.xml (which applied to http requests) is fetched using http on

port 80, where-as the socket policy is fetched from port 843 using a trivial server that implements the <policy-

file-request/>. You cannot use an http server to issue the socket policy file, nor set up a server that simply sends the

socket policy file in response to a socket connection on port 843. Note also that each server you connect to requires its own

socket policy server.

Debugging

You can use telnet to connect to the socket policy server. An example session is shown below:

host$ telnet localhost 843
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
<policy-file-request/>
<?xml version='1.0'?>
<cross-domain-policy>
 <allow-access-from domain="*" to-ports="*" />
</cross-domain-policy>Connection closed by foreign host.
host$

In this example session, telnet is used to connect to the localhost on port 843. Telnet responds with the first three lines, and

then sits waiting for the user to enter something. The user has entered the policy request string <policy-

file-request/>, which the socket policy server receives and responds with the socket policy. The server then disconnects

causing telnet to report that the connection has been closed.

Listening sockets
You cannot create listening sockets in the webplayer, it cannot act as a server. Therefore webplayers cannot communicate

with each other directly (peer 2 peer). When using TCP sockets you can only connect to remote endpoints provided it is

allowed through the socket policy system. For UDP it works the same but the concept is a little bit different as it is a

connectionless protocol, you don't have to connect/listen to send/receive packets. It works by enforcing that you can only

receive packets from a server if he has responded first with a valid policy with the allow-access-from domain tag.

This is all just so annoying, why does all this stuff exist?
The socket and WWW security features exist to protect people who install the Unity Web Player. Without these restrictions, an

attack such as the following would be possible:

Bob works at the white house.

Frank is evil. He writes a unity webgame that pretends to be a game, but in the background does a WWW request to

http://internal.whitehouse.gov/LocationOfNuclearBombs.pdf. internal.whitehouse.gov is a server that is not reachable from

the internet, but is reachable from Bob's workstation because he works at the white house.

Frank sends those pdf bytes to http://frank.com/secretDataUploader.php

Frank places this game on http://www.frank.com/coolgame.unity3d

Frank somehow convinces Bob to play the game.

Bob plays the game.

Game silently downloads the secret document, and sends it to Frank.

With the WWW and socket security features, this attack will fail, because before downloading the pdf, unity checks

http://internal.whitehouse.gov/crossdomain.xml, with the intent to ask that server: "is the data you have on your server

available for public usage?". Placing a crossdomain.xml on a webserver can be seen as the response to that question. In the

case of this example, the system operator of internal.whitehouse.gov will not place a crossdomain.xml on its server, which will

lead Unity to not download the pdf.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

571 of 1131 12/16/2012 10:12 PM

Unfortunately, in order to protect the people who install the Unity Web Player, people who develop in Unity need to take these

security measures into account when developing content. The same restrictions are present in all major plugin technologies.

(Flash, Silverlight, Shockwave)

Exceptions
In order to find the right balance between protecting Web Player users and making life of content developers easy, we have

implemented an exception to the security mechanism described above:

- You are allowed to download images from servers that do not have a crossdomain.xml file. However, the only thing you are

allowed to do with these images is use them as textures in your scene. You are not allowed to use GetPixel() on them. You are

also no longer allowed to read back from the screen. Both attempts will result in a SecurityException being thrown. The

reasoning is here is that it's okay to download the image, as long as the content developer gets no access to it. So you can

display it to the user, but you cannot send the bytes of the image back to some other server.

Page last updated: 2012-07-25

VisualStudioIntegration

What does this feature get me?
A more sophisticated C# development environment.

Think smart autocompletion, computer-assisted changes to source files, smart syntax highlighting and more.

What's the difference between Express and Pro?
VisualStudio C# 2010 is a product from Microsoft. It comes in an Express and a Profesional edition.

The Express edition is free, and you can download it from here: http://www.microsoft.com/express/vcsharp/

The Professional edition is not free, you can find out more information about it here: http://www.microsoft.com/visualstudio

/en-us/products/professional/default.mspx

Unity's VisualStudio integration has two components:

1) Unity creating and maintaining VisualStudio project files. Works with Express and with Profesional.

2) Unity automatically opening VisualStudio when you doubleclick on a script, or error in Unity. Works with Professional

only.

I've got Visual Studio Express, how do I use it?
In Unity, select from the menu Assets->Sync VisualStudio Project

Find the newly created .sln file in your Unity project (one folder up from your Assets folder)

Open that file with Visual Studio Express.

You can now edit all your script files, and switch back to Unity to use them.

I've got Visual Studio Profesional, how do I use it?
In Unity, go to Edit->Preferences, and make sure that Visual Studio is selected as your preferred external editor.

Doubleclick a C# file in your project. Visual Studio should automatically open that file for you.

You can edit the file, save, and switch back to Unity.

A few things to watch out for:
Even though Visual Studio comes with its own C# compiler, and you can use it to check if you have errors in your c#

scripts, Unity still uses its own C# compiler to compile your scripts. Using the Visual Studio compiler is still quite useful,

because it means you don't have to switch to Unity all the time to check if you have any errors or not.

Visual Studio's C# compiler has some more features than Unity's C# compiler currently has. This means that some code

(especially newer c# features) will not give an error in Visual Studio but will give an error in Unity.

Unity automatically creates and maintains a Visual Studio .sln and .csproj file. Whenever somebody adds/renames/moves

/deletes a file from within Unity, Unity regenerates the .sln and .csproj files. You can add files to your solution from Visual

Studio as well. Unity will then import those new files, and the next time Unity creates the project files again, it will create

them with this new file included.

Unity does not regenerate the Visual Studio project files after an AssetServer update, or a SVN update. You can manually

ask Unity to regenerate the Visual Studio project files trough the menu: Assets->Sync VisualStudio Project

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

572 of 1131 12/16/2012 10:12 PM

Page last updated: 2011-08-03

ExternalVersionControlSystemSupport

Unity offers an Asset Server add-on product for easy integrated versioning of your projects. If you for some reason are not able

use the Unity Asset Server, it is possible to store your project in any other version control system, such as Subversion,

Perforce or Bazaar. This requires some initial manual setup of your project.

Before checking your project in, you have to tell Unity to modify the project structure slightly to make it compatible with storing

assets in an external version control system. This is done by selecting Edit->Project Settings->Editor in the application

menu and enabling External Version Control support by selecting Metafiles in the dropdown for Version Control. This will

create a text file for every asset in the Assets directory containing the necessary bookkeeping information required by Unity.

The files will have a .meta file extension with the first part being the full file name of the asset it is associated with. Moving

and renaming assets within Unity should also update the relevant .meta files. However, if you move or rename assets from an

external tool, make sure to syncronize the relevant .meta files as well.

When checking the project into a version control system, you should add the Assets and the ProjectSettings directories

to the system. The Library directory should be completely ignored - when using external version control, it's only a local

cache of imported assets.

When creating new assets, make sure both the asset itself and the associated .meta file is added to version control.

Example: Creating a new project and importing it to a Subversion repository.
First, let's assume that we have a subversion repository at svn://my.svn.server.com/ and want to create a project at

svn://my.svn.server.com/MyUnityProject. Then follow these steps to create the initial import in the system:

Create a new project inside Unity and lets call it InitialUnityProject. You can add any initial assets here or add

them later on.

1.

Enable Meta files in Edit->Project Settings->Editor2.

Quit Unity (We do this to assure that all the files are saved).3.

Delete the Library directory inside your project directory.4.

Import the project directory into Subversion. If you are using the command line client, this is done like this from the

directory where your initial project is located:
svn import -m"Initial project import" InitialUnityProject svn://my.svn.server.com

/MyUnityProject

If successful, the project should now be imported into subversion and you can delete the InitialUnityProject

directory if you wish.

5.

Check out the project back from subversion
svn co svn://my.svn.server.com/MyUnityProject

And check that the Assets and ProjectSettings directory are versioned.

6.

Open the checked out project with Unity by launching it while holding down the Option or the left Alt key. Opening the

project will recreate the Library directory in step 4 above.

7.

Optional: Set up an ignore filter for the unversioned Library directory:

svn propedit svn:ignore MyUnityProject/

Subversion will open a text editor. Add the Library directory.

8.

Finally commit the changes. The project should now be set up and ready:

svn ci -m"Finishing project import" MyUnityProject

9.

Page last updated: 2012-09-18

Analytics

The Unity editor is configured to send anonymous usage data back to Unity. This information is used to help improve the

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

573 of 1131 12/16/2012 10:12 PM

features of the editor. The analytics are collected using Google Analytics. Unity makes calls to a URI hosted by Google. The

URN part of the URI contains details that describe what editor features or events have been used.

Examples of collected data
The following are examples of data that Unity might collect.

Which menu items have been used. If some menu items are used rarely or not at all we could in the future simplify the

menuing system.

Build times. By collecting how long builds take to make we can focus engineering effort on optimizing the correct code.

Lightmap baking. Again, timing and reporting how long it takes for light maps to bake can help us decide how much effort to

spend on optimizing this area.

Disabling Analytics
If you do not want to send anonymous data to Unity then the sending of Analytics can be disabled. To do this untick the box in

the Unity Preferences General tab.

Editor analytics in the preferences pane.

Page last updated: 2010-09-10

Version Check

Unity checks whether updates are available. This check happens either when Unity is started, or when you choose the

Help->Check for Updates menu item. The update check sends the current Unity revision number (the five digit number that

appears in brackets after the version name in the About Unity dialog) to the update server where is it compared with the

most-up-to-date released version. If a newer version of Unity is available the following dialog is shown:

Window displayed when there is a newer version of Unity available for download.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

574 of 1131 12/16/2012 10:12 PM

If the version in use is the most up-to-date then the following dialog is shown:

Window displayed when Unity is updated to the latest version.

Click the Download new version button to be taken to the website where you can download the new version.

Update Check Frequency
The response from the server also contains a time interval which suggests when the next update check should be made. This

allows the update check to be made less frequently when Unity is not expecting updates to be made available.

Skipping Update Versions
If you are in the middle of a project you may not want to update to a new version of Unity. Ticking the Skip this version button

on the Unity Editor Update Check dialog will prevent Unity from telling you about this update.

Disabling the Update Check
It is not possible to disable the check for updates. The Check For Updates tick box on the dialog controls whether you are

notified of updates (if they are available) when Unity starts. Even if you have unticked the Check for Updates option you can

still check for updates by using the Help->Check for Updates menu item.

Page last updated: 2010-09-07

Installing Multiple Versions of Unity

You can install more than one version of Unity on your machine as long as you follow the correct naming conventions for your

folders. You need to rename each of the Unity folders themselves, so that the hierarchy looks like:

Unity_3.4.0
---Editor
---MonoDevelop
Unity_4.0b7
---Editor
---MonoDevelop

PC
Install Unity 4.0 (www.unity3d.com/download)

When you install on PC it will select the previously installed directory - do not install here

Create a new directory named sensibly e.g. Unity_4

Name any shortcuts so you know which version you are launching

Hold alt when you launch the beta to force unity to let you choose which project to open (otherwise it will try and upgrade

the last opened project)

Choose your projectname_4 directory to open your backed up project

Do not rename each Editor folder inside a single Unity folder! You will overwrite the MonoDevelop folder and this will cause

serious stability problems and unexpected crashes.

Mac

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

575 of 1131 12/16/2012 10:12 PM

Find your existing Unity application folder and rename appropriately e.g Unity35

Install the Unity 4.0 (www.unity3d.com/download)

Name any shortcuts so you know which version you are launching

Hold alt when you launch the beta to force unity to let you choose which project to open (otherwise it will try and upgrade

the last opened project)

Choose your projectname_4 directory to open your backed up project

Page last updated: 2012-11-16

TroubleShooting

This section addresses common problems that can arise when using Unity. Each platform is dealt with separately below.

 Desktop

In MonoDevelop, the Debug button is greyed out!
This means that MonoDevelop was unable to find the Unity executable. In the MonoDevelop preferences, go to the

Unity/Debugger section and then browse to where your Unity executable is located.

Is there a way to get rid of the welcome page in MonoDevelop?
Yes. In the MonoDevelop preferences, go to the Visual Style section, and uncheck "Load welcome page on startup".

Geforce 7300GT on OSX 10.6.4
Deferred rendering is disabled because materials are not displayed correctly for Geforce 7300GT on OX 10.6.4; This

happens because of buggy video drivers.

On Windows x64, Unity crashes when my script throws a NullReferenceException
Please apply Windows Hotfix #976038.

Graphics

Slow framerate and/or visual artifacts.

This may occur if your video card drivers are not up to date. Make sure you have the latest official drivers from your card

vendor.

Shadows

I see no shadows at all!

Shadows are a Unity Pro only feature, so without Unity Pro you won't get shadows. Simpler shadow methods, like using a

Projector, are still possible, of course.

Shadows also require certain graphics hardware support. See Shadows page for details.

Check if shadows are not completely disabled in Quality Settings.

Shadows are currently not supported for Android and iOS mobile platforms.

Some of my objects do not cast or receive shadows

An object's Renderer must have Receive Shadows enabled for shadows to be rendered onto it. Also, an object must have

Cast Shadows enabled in order to cast shadows on other objects (both are on by default).

Only opaque objects cast and receive shadows. This means that objects using the built-in Transparent or Particle shaders will

not cast shadows. In most cases it is possible to use Transparent Cutout shaders for objects like fences, vegetation, etc. If you

use custom written Shaders, they have to be pixel-lit and use the Geometry render queue. Objects using VertexLit shaders

do not receive shadows but are able to cast them.

Only Pixel lights cast shadows. If you want to make sure that a light always casts shadows no matter how many other lights

are in the scene, then you can set it to Force Pixel render mode (see the Light reference page).

 iOS

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

576 of 1131 12/16/2012 10:12 PM

Troubleshooting on iOS devices

There are some situations with iOS where your game can work perfectly in the Unity editor but then doesn't work or maybe

doesn't even start on the actual device. The problems are often related to code or content quality. This section describes the

most common scenarios.

The game stops responding after a while. Xcode shows "interrupted" in the status bar.
There are a number of reasons why this may happen. Typical causes include:

Scripting errors such as using uninitialized variables, etc.1.

Using 3rd party Thumb compiled native libraries. Such libraries trigger a known problem in the iOS SDK linker and

might cause random crashes.

2.

Using generic types with value types as parameters (eg, List<int>, List<SomeStruct>, List<SomeEnum>, etc) for

serializable script properties.

3.

Using reflection when managed code stripping is enabled.4.

Errors in the native plugin interface (the managed code method signature does not match the native code function

signature).

5.

Information from the XCode Debugger console can often help detect these problems (Xcode menu: View > Debug Area >

Activate Console).

The Xcode console shows "Program received signal: “SIGBUS” or EXC_BAD_ACCESS error.
This message typically appears on iOS devices when your application receives a NullReferenceException. There two ways to

figure out where the fault happened:

Managed stack traces

Since version 3.4 Unity includes software-based handling of the NullReferenceException. The AOT compiler includes quick

checks for null references each time a method or variable is accessed on an object. This feature affects script performance

which is why it is enabled only for development builds (for basic license users it is enough to enable the "development build"

option in the Build Settings dialog, while iOS pro license users additionally need to enable the "script debugging" option). If

everything was done right and the fault actually is occurring in .NET code then you won't see EXC_BAD_ACCESS anymore.

Instead, the .NET exception text will be printed in the Xcode console (or else your code will just handle it in a "catch"

statement). Typical output might be:

Unhandled Exception: System.NullReferenceException: A null value was found where an object instance was required.
 at DayController+$handleTimeOfDay$121+$.MoveNext () [0x0035a] in DayController.js:122

This indicates that the fault happened in the handleTimeOfDay method of the DayController class, which works as a coroutine.

Also if it is script code then you will generally be told the exact line number (eg, "DayController.js:122"). The offending line

might be something like the following:

 Instantiate(_imgwww.assetBundle.mainAsset);

This might happen if, say, the script accesses an asset bundle without first checking that it was downloaded correctly.

Native stack traces

Native stack traces are a much more powerful tool for fault investigation but using them requires some expertise. Also, you

generally can't continue after these native (hardware memory access) faults happen. To get a native stack trace, type bt all

into the Xcode Debugger Console. Carefully inspect the printed stack traces - they may contain hints about where the error

occurred. You might see something like:

...
Thread 1 (thread 11523):
#0 0x006267d0 in m_OptionsMenu_Start ()
#1 0x002e4160 in wrapper_runtime_invoke_object_runtime_invoke_void__this___object_intptr_intptr_intptr ()
#2 0x00a1dd64 in mono_jit_runtime_invoke (method=0x18b63bc, obj=0x5d10cb0, params=0x0, exc=0x2fffdd34) at /Users/m
#3 0x0088481c in MonoBehaviour::InvokeMethodOrCoroutineChecked ()
...

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

577 of 1131 12/16/2012 10:12 PM

First of all you should find the stack trace for "Thread 1", which is the main thread. The very first lines of the stack trace will

point to the place where the error occurred. In this example, the trace indicates that the NullReferenceException happened

inside the "OptionsMenu" script's "Start" method. Looking carefully at this method implementation would reveal the cause of

the problem. Typically, NullReferenceExceptions happen inside the Start method when incorrect assumptions are made about

initialization order. In some cases only a partial stack trace is seen on the Debugger Console:

Thread 1 (thread 11523):
#0 0x0062564c in start ()

This indicates that native symbols were stripped during the Release build of the application. The full stack trace can be

obtained with the following procedure:

Remove application from device.

Clean all targets.

Build and run.

Get stack traces again as described above.

EXC_BAD_ACCESS starts occurring when an external library is linked to the Unity iOS application.
This usually happens when an external library is compiled with the ARM Thumb instruction set. Currently such libraries are not

compatible with Unity. The problem can be solved easily by recompiling the library without Thumb instructions. You can do this

for the library's Xcode project with the following steps:

in Xcode, select "View" > "Navigators" > "Show Project Navigator" from the menu

select the "Unity-iPhone" project, activate "Build Settings" tab

in the search field enter : "Other C Flags"

add -mno-thumb flag there and rebuild the library.

If the library source is not available you should ask the supplier for a non-thumb version of the library.

The Xcode console shows "WARNING -> applicationDidReceiveMemoryWarning()" and the
application crashes immediately afterwards
(Sometimes you might see a message like Program received signal: �0�.) This warning message is often not fatal and

merely indicates that iOS is low on memory and is asking applications to free up some memory. Typically, background

processes like Mail will free some memory and your application can continue to run. However, if your application continues to

use memory or ask for more, the OS will eventually start killing applications and yours could be one of them. Apple does not

document what memory usage is safe, but empirical observations show that applications using less than 50% MB of all device

RAM (like ~200-256 MB for 2nd generation ipad) do not have major memory usage problems. The main metric you should rely

on is how much RAM your application uses. Your application memory usage consists of three major components:

application code (the OS needs to load and keep your application code in RAM, but some of it might be discarded if really

needed)

native heap (used by the engine to store its state, your assets, etc. in RAM)

managed heap (used by your Mono runtime to keep C# or JavaScript objects)

GLES driver memory pools: textures, framebuffers, compiled shaders, etc.

Your application memory usage can be tracked by two Xcode Instruments tools: Activity Monitor, Object Allocations and

VM Tracker. You can start from the Xcode Run menu: Product > Profile and then select specific tool. Activity Monitor tool

shows all process statistics including Real memory which can be regarded as the total amount of RAM used by your

application. Note: OS and device HW version combination might noticeably affect memory usage numbers, so you should be

careful when comparing numbers obtained on different devices.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

578 of 1131 12/16/2012 10:12 PM

Note: The internal profiler shows only the heap allocated by .NET scripts. Total memory usage can be determined via Xcode

Instruments as shown above. This figure includes parts of the application binary, some standard framework buffers, Unity

engine internal state buffers, the .NET runtime heap (number printed by internal profiler), GLES driver heap and some other

miscellaneous stuff.

The other tool displays all allocations made by your application and includes both native heap and managed heap statistics

(don't forget to check the Created and still living box to get the current state of the application). The important statistic is the

Net bytes value.

To keep memory usage low:

Reduce the application binary size by using the strongest iOS stripping options (Advanced license feature), and avoid

unnecessary dependencies on different .NET libraries. See the player settings and player size optimization manual pages

for further details.

Reduce the size of your content. Use PVRTC compression for textures and use low poly models. See the manual page

about reducing file size for more information.

Don't allocate more memory than necessary in your scripts. Track mono heap size and usage with the internal profiler

Note: with Unity 3.0, the scene loading implementation has changed significantly and now all scene assets are preloaded.

This results in fewer hiccups when instantiating game objects. If you need more fine-grained control of asset loading and

unloading during gameplay, you should use Resources.Load and Object.Destroy.

Querying the OS about the amount of free memory may seem like a good idea to evaluate how well your application is

performing. However, the free memory statistic is likely to be unreliable since the OS uses a lot of dynamic buffers and caches.

The only reliable approach is to keep track of memory consumption for your application and use that as the main metric. Pay

attention to how the graphs from the tools described above change over time, especially after loading new levels.

The game runs correctly when launched from Xcode but crashes while loading the first level when
launched manually on the device.
There could be several reasons for this. You need to inspect the device logs to get more details. Connect the device to your

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

579 of 1131 12/16/2012 10:12 PM

Mac, launch Xcode and select Window > Organizer from the menu. Select your device in the Organizer's left toolbar, then

click on the "Console" tab and review the latest messages carefully. Additionally, you may need to investigate crash reports.

You can find out how to obtain crash reports here: http://developer.apple.com/iphone/library/technotes/tn2008/tn2151.html.

The Xcode Organizer console contains the message "killed by SpringBoard".
There is a poorly-documented time limit for an iOS application to render its first frames and process input. If your application

exceeds this limit, it will be killed by SpringBoard. This may happen in an application with a first scene which is too large, for

example. To avoid this problem, it is advisable to create a small initial scene which just displays a splash screen, waits a frame

or two with yield and then starts loading the real scene. This can be done with code as simple as the following:

function Start () {
 yield;
 Application.LoadLevel("Test");
}

Type.GetProperty() / Type.GetValue() cause crashes on the device
Currently Type.GetProperty() and Type.GetValue() are supported only for the .NET 2.0 Subset profile. You can select the

.NET API compatibility level in the Player Settings.

Note: Type.GetProperty() and Type.GetValue() might be incompatible with managed code stripping and might need to be

excluded (you can supply a custom non-strippable type list during the stripping process to accomplish this). For further details,

see the iOS player size optimization guide.

The game crashes with the error message "ExecutionEngineException: Attempting to JIT compile
method 'SometType`1<SomeValueType>:.ctor ()' while running with --aot-only."
The Mono .NET implementation for iOS is based on AOT (ahead of time compilation to native code) technology, which has its

limitations. It compiles only those generic type methods (where a value type is used as a generic parameter) which are

explicitly used by other code. When such methods are used only via reflection or from native code (ie, the serialization system)

then they get skipped during AOT compilation. The AOT compiler can be hinted to include code by adding a dummy method

somewhere in the script code. This can refer to the missing methods and so get them compiled ahead of time.

void _unusedMethod()
{
 var tmp = new SomeType<SomeValueType>();
}

Note: value types are basic types, enums and structs.

Various crashes occur on the device when a combination of System.Security.Cryptography and
managed code stripping is used
.NET Cryptography services rely heavily on reflection and so are not compatible with managed code stripping since this

involves static code analysis. Sometimes the easiest solution to the crashes is to exclude the whole

System.Security.Crypography namespace from the stripping process.

The stripping process can be customized by adding a custom link.xml file to the Assets folder of your Unity project. This

specifies which types and namespaces should be excluded from stripping. Further details can be found in the iOS player size

optimization guide.

link.xml

<linker>
 <assembly fullname="mscorlib">
 <namespace fullname="System.Security.Cryptography" preserve="all"/>
 </assembly>
</linker>

Application crashes when using System.Security.Cryptography.MD5 with managed code stripping

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

580 of 1131 12/16/2012 10:12 PM

You might consider advice listed above or can work around this problem by adding extra reference to specific class to your

script code:

object obj = new MD5CryptoServiceProvider();

"Ran out of trampolines of type 1/2" runtime error
This error usually happens if you use lots of recursive generics. You can hint to the AOT compiler to allocate more trampolines

of type 1 or type 2. Additional AOT compiler command line options can be specified in the "Other Settings" section of the

Player Settings. For type 1 trampolines, specify nrgctx-trampolines=ABCD, where ABCD is the number of new trampolines

required (i.e. 4096). For type 2 trampolines specify nimt-trampolines=ABCD.

After upgrading Xcode Unity iOS runtime fails with message "You are using Unity iPhone Basic. You
are not allowed to remove the Unity splash screen from your game"
With some latest Xcode releases there were changes introduced in PNG compression and optimization tool. These changes

might cause false positives in Unity iOS runtime checks for splash screen modifications. If you encounter such problems try

upgrading Unity to the latest publicly available version. If it does not help you might consider following workaround:

Replace your Xcode project from scratch when building from Unity (instead of appending it)

Delete already installed project from device

Clean project in Xcode (Product->Clean)

Clear Xcode's Derived Data folders (Xcode->Preferences->Locations)

If this still does not help try disabling PNG re-compression in Xcode:

Open your Xcode project

Select "Unity-iPhone" project there

Select "Build Settings" tab there

Look for "Compress PNG files" option and set it to NO

App Store submission fails with "iPhone/iPod Touch: application executable is missing a required
architecture. At least one of the following architecture(s) must be present: armv6" message
You might get such message when updating already existing application, which previously was submitted with armv6 support.

Unity 4.x and Xcode 4.5 does not support armv6 platform anymore. To solve submission problem just set Target OS Version

in Unity Player Settings to 4.3 or higher.

WWW downloads are working fine in Unity Editor and on Android, but not on iOS
Most common mistake is to assume that WWW downloads are always happening on separate thread. On some platforms this

might be true, but you should not take it for granted. Best way to track WWW status is either to use yield statement or check

status in Update method. You should not use busy while loops for that.

"PlayerLoop called recursively!" error occurs when using Cocoa via a native function called from a
script
Some operations with the UI will result in iOS redrawing the window immediately (the most common example is adding a

UIView with a UIViewController to the main UIWindow). If you call a native function from a script, it will happen inside Unity's

PlayerLoop, resulting in PlayerLoop being called recursively. In such cases, you should consider using the

performSelectorOnMainThread method with waitUntilDone set to false. It will inform iOS to schedule the operation to run

between Unity's PlayerLoop calls.

Profiler or Debugger unable to see game running on iOS device
Check that you have built a Development build, and ticked the "Enable Script Debugging" and "Autoconnect profiler" boxes

(as appropriate).

The application running on the device will make a multicast broadcast to 225.0.0.222 on UDP port 54997. Check that your

network settings allow this traffic. Then, the profiler will make a connection to the remote device on a port in the range

55000 - 55511 to fetch profiler data from the device. These ports will need to be open for UDP access.

Missing DLLs
If your application runs ok in editor but you get errors in your iOS project this may be caused by missing DLLs (e.g. I18N.dll,

I19N.West.dll). In this case, try copying those dlls from within the Unity.app to your project's Assets/Plugins folder. The location

of the DLLs within the unity app is:

 Unity.app/Contents/Frameworks/Mono/lib/mono/unity

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

581 of 1131 12/16/2012 10:12 PM

You should then also check the stripping level of your project to ensure the classes in the DLLs aren't being removed when the

build is optimised. Refer to the iOS Optimisation Page for more information on iOS Stripping Levels.

Xcode Debugger console reports: ExecutionEngineException: Attempting to JIT compile method
'(wrapper native-to-managed) Test:TestFunc (int)' while running with --aot-only
Typically such message is received when managed function delegate is passed to the native function, but required wrapper

code wasn't generated when building application. You can help AOT compiler by hinting which methods will be passed as

delegates to the native code. This can be done by adding "MonoPInvokeCallbackAttribute" custom attribute. Currently only

static methods can be passed as delegates to the native code.

Sample code:

using UnityEngine;
using System.Collections;
using System;
using System.Runtime.InteropServices;
using AOT;

public class NewBehaviourScript : MonoBehaviour {

[DllImport ("__Internal")]
private static extern void DoSomething (NoParamDelegate del1, StringParamDelegate del2);

delegate void NoParamDelegate ();
delegate void StringParamDelegate (string str);

[MonoPInvokeCallback (typeof (NoParamDelegate))]
public static void NoParamCallback()
{

Debug.Log ("Hello from NoParamCallback");
}

[MonoPInvokeCallback (typeof (StringParamDelegate))]
public static void StringParamCallback(string str)
{

Debug.Log (string.Format ("Hello from StringParamCallback {0}", str));
}

// Use this for initialization
void Start () {

DoSomething(NoParamCallback, StringParamCallback);
}

}

 Android

Troubleshooting Android development

Unity fails to install your application to your device

Verify that your computer can actually see and communicate with the device. See the Publishing Builds page for further

details.

1.

Check the error message in the Unity console. This will often help diagnose the problem.2.

If you get an error saying "Unable to install APK, protocol failure" during a build then this indicates that the device is connected

to a low-power USB port (perhaps a port on a keyboard or other peripheral). If this happens, try connecting the device to a

USB port on the computer itself.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

582 of 1131 12/16/2012 10:12 PM

Your application crashes immediately after launch.

Ensure that you are not trying to use NativeActivity with devices that do not support it.1.

Try removing any native plugins you have.2.

Try disabling stripping.3.

Use adb logcat to get the crash report from your device.4.

Building DEX Failed
This an error which will produce a message like the following:-

Building DEX Failed!
G:\Unity\JavaPluginSample\Temp/StagingArea> java -Xmx1024M
-Djava.ext.dirs="G:/AndroidSDK/android-sdk_r09-windows\platform-tools/lib/"
-jar "G:/AndroidSDK/android-sdk_r09-windows\platform-tools/lib/dx.jar"
--dex --verbose --output=bin/classes.dex bin/classes.jar plugins
Error occurred during initialization of VM
Could not reserve enough space for object heap
Could not create the Java virtual machine.

This is usually caused by having the wrong version of Java installed on your machine. Updating your Java installation to the

latest version will generally solve this issue.

The game crashes after a couple of seconds when playing video
Make sure Settings->Developer Options->Don't keep activities isn't enabled on the phone. The video player

is its own activity and therefore the regular game activity will be destroyed if the video player is activated.

My game quits when I press the sleep button
Change the <activity> tag in the AndroidManifest.xml to contain <android:configChanges> tag as described

here.

An example activity tag might look something like this:-

<activity android:name=".AdMobTestActivity"
 android:label="@string/app_name"
 android:configChanges="fontScale|keyboard|keyboardHidden|locale|mnc|mcc|navigation|orientation|screenLayou
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

Page last updated: 2012-11-26

Shadows

Unity Pro makes it possible to use real-time shadows on any light. Objects can cast shadows onto each other and onto parts

of themselves ("self shadowing"). All types of Lights - Directional, Spot and Point - support shadows.

Using shadows can be as simple as choosing Hard Shadows or Soft Shadows on a Light. However, if you want optimal

shadow quality and performance, there are some additional things to consider.

The Shadow Troubleshooting page contains solutions to common shadowing problems.

Curiously enough, the best shadows are non-realtime ones! Whenever your game level geometry and lighting is static, just

precompute lightmaps in your 3D application. Computing shadows offline will always result in better quality and performance

than displaying them in real time. Now onto the realtime ones...

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

583 of 1131 12/16/2012 10:12 PM

Tweaking shadow quality
Unity uses so called shadow maps to display shadows. Shadow mapping is a texture based approach, it's easiest to think of it

as "shadow textures" projecting out from lights onto the scene. Thus much like regular texturing, quality of shadow mapping

mostly depends on two factors:

The resolution (size) of the shadow maps. The larger the shadow maps, the better the shadow quality.

The filtering of the shadows. Hard shadows take the nearest shadow map pixel. Soft shadows average several shadow

map pixels, resulting in smoother looking shadows (but soft shadows are more expensive to render).

Different Light types use different algorithms to calculate shadows.

For Directional lights, the crucial settings for shadow quality are Shadow Distance and Shadow Cascades, found in

Quality Settings. Shadow Resolution is also taken into account, but the first thing to try to improve directional shadow

quality is reducing shadow distance. All the details about directional light shadows can be found here: Directional Shadow

Details.

For Spot and Point lights, Shadow Resolution determines shadow map size. Additionally, for lights that cover small area

on the screen, smaller shadow map resolutions are used.

Details on how shadow map sizes are computed are in Shadow Size Details page.

Shadow performance
Realtime shadows are quite performance hungry, so use them sparingly. For each light to render its shadows, first any

potential shadow casters must be rendered into the shadow map, then all shadow receivers are rendered with the shadow

map. This makes shadow casting lights even more expensive than Pixel lights, but hey, computers are getting faster as well!

Soft shadows are more expensive to render than Hard shadows. The cost is entirely on the graphics card though (it's only

longer shaders), so Hard vs. Soft shadows don't make any impact on the CPU or memory.

Quality Settings contains a setting called Shadow Distance - this is how far from the camera shadows are drawn. Often it

makes no sense to calculate and display shadows that are 500 meters away from the camera, so use as low shadow distance

as possible for your game. This will help performance (and will improve quality of directional light shadows, see above).

Hardware support for shadows
Built-in shadows require a fragment program (pixel shader 2.0) capable graphics card. This is the list of supported cards:

On Windows:

ATI Radeon 9500 and up, Radeon X series, Radeon HD series.

NVIDIA GeForce 6xxx, 7xxx, 8xxx, 9xxx, GeForce GT, GTX series.

Intel GMA X3000 (965) and up.

On Mac OS X:

Mac OS X 10.4.11 or later.

ATI Radeon 9500 and up, Radeon X, Radeon HD series.

NVIDIA GeForce FX, 6xxx, 7xxx, 8xxx, 9xxx, GT, GTX series.

Intel GMA 950 and later.

Soft shadows are disabled because of driver bugs (hard shadows will be used instead).

Mobile (iOS & Android):

OpenGL ES 2.0

GL_OES_depth_texture support. Most notably, Tegra-based Android devices do not have it, so shadows are not

supported there.

Notes
Forward rendering path supports only one directional shadow casting light. Vertex Lit rendering path does not support

realtime shadows.

Vertex-lit lights don't have shadows.

Vertex-lit materials won't receive shadows (but do cast shadows).

Transparent objects don't cast or receive shadows. Transparent Cutout objects do cast and receive shadows.
Page last updated: 2012-11-16

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

584 of 1131 12/16/2012 10:12 PM

DirectionalShadowDetails

This page explains shadows from Directional lights in detail.

Note on Mobile platforms: realtime shadows for directional lights always use 1 shadow cascade, and are always "hard

shadows".

Directional lights are mostly used as a key light - sunlight or moonlight - in an outdoor game. Viewing distances can be huge,

especially in first and third person games, and shadows often require some tuning to get the best quality vs. performance

balance for your situation.

Let's start out with a good looking shadow setup for a 3rd person game:

Shadows here look pretty good!

Here, visible distance is about 50 game units, so Shadow Distance was set to 50 in Quality Settings. Also, Shadow

Cascades was set to 4, Shadow Resolution to High, and the light uses Soft Shadows.

Chapters below dissect each aspect of directional light shadows:

Hard versus Soft shadows

Shadow Cascade count

Shadow Distance is Important!

Hard versus Soft shadows
Using the same light setup, if we switch Shadow Type to Hard Shadows, then the transition from lit to shadowed regions is

"hard" - either something is 100% in shadow, or 100% lit. Hard shadows are faster to render but often they look less realistic.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

585 of 1131 12/16/2012 10:12 PM

Hard shadows with distance of 50 and four cascades.

Shadow Cascade count
For Directional lights Unity can use so called Cascaded Shadow Maps (alternatively called "Parallel Split Shadow Maps")

which give very good shadow quality, especially for long viewing distances. Cascaded shadows work by dividing viewing area

into progressively larger portions and using the same size shadow map on each. The result is that objects close to the viewer

get more shadow map pixels than objects far away.

In the images below we'll use Hard shadows because shadow pixels are better visible there.

If no cascaded shadow maps were used, the entire shadow distance (still 50 units in our case) must be covered by the shadow

texture uniformly. Hard shadows would look like this with no cascades:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

586 of 1131 12/16/2012 10:12 PM

Hard shadows with distance of 50 and no cascades.

The pixels of the shadow texture are the same size everywhere, and while they look good in distance, the quality is not stellar

up close. The shadow texture covers the entire viewing area, and if visualized it would look like this:

With no cascades, shadow texture covers viewing area uniformly.

When two shadow cascades are used, the entire shadow distance is divided into a smaller chunk near the viewer and a larger

chunk far away. Hard shadows would look like this with two cascades:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

587 of 1131 12/16/2012 10:12 PM

Hard shadows with distance of 50 and two cascades.

In exchange for some performance, we get better shadow resolution up close.

With two cascades, two shadow textures cover different sized portions of viewing area.

And finally when four shadow cascades are used, the shadow distance is divided into four progressively larger portions. Hard

shadows would look like this with four cascades:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

588 of 1131 12/16/2012 10:12 PM

Hard shadows with distance of 50 and four cascades. Hey, we've seen this already!

With four cascades, four shadow textures cover different sized portions of viewing area.

Shadow Distance is Important!
Shadow Distance is extremely important for both quality and performance of directional light shadows. Just like shadow

cascade count, shadow distance can be set in Quality Settings and allows an easy way to scale shadows down on less

performant hardware.

Shadows fade out at the end of shadow distance, and further than that objects are not shadowed. In most situations shadows

further than some distance in the game would not be noticeable anyway!

With no shadow cascades, hard shadows and shadow distance set to 20 units our shadows look like picture below. Note that

shadows do fade out in the distance, but at the same time shadow quality is much better than it was with no cascades and a

distance of 50 units.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

589 of 1131 12/16/2012 10:12 PM

Hard shadows with distance of 20 and no cascades.

If on the other hand we set shadow distance too high, shadows won't look good at all. Setting distance to 100 here only

decreases both performance and quality and does not make much sense - no objects in the scene are further than about 50

meters anyway!

Hard shadows with distance of 100 and no cascades. Ouch!

Shadow maps with cascades scale with distance much better. For example, four cascade soft shadows with covering 300 units

in front of the camera look like picture below. It's somewhat worse than the picture at the top of this page, but not very bad

either for a 6x increase in shadowing distance (of course in this scene that high shadow distance does not make much sense).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

590 of 1131 12/16/2012 10:12 PM

Soft shadows with distance of 300 and four cascades.

Page last updated: 2012-11-16

Shadow Troubleshooting

This page lists solutions to common shadow problems.

I see no shadows at all!

Shadows are a Unity Pro only feature, so without Unity Pro you won't get shadows. Simpler shadow methods, like using a

Projector, are still possible of course.

Shadows also require certain graphics hardware support. See Shadows page for details.

Check if shadows are not completely disabled in Quality Settings.

Some of my objects do not cast or receive shadows

First, the Renderer has to have Receive Shadows on to have shadows on itself; and Cast Shadows on to cast shadows on

other objects (both are on by default).

Next, only opaque objects cast and receive shadows; that means if you use built-in Transparent or Particle shaders then you'll

get no shadows. In most cases it's possible to Transparent Cutout shaders (for objects like fences, vegetation etc.). If you use

custom written Shaders, they have to be pixel-lit and use Geometry render queue. Objects using VertexLit shaders do not

receive shadows either (but can cast shadows just fine).

Finally, in Forward rendering path, only the brightest directional light can cast shadows. If you want to have many shadow

casting lights, you need to use Deferred Lighting rendering path.

Page last updated: 2012-08-17

Shadow Size Details

Unity computes shadow map sizes this way:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

591 of 1131 12/16/2012 10:12 PM

First light's "coverage box" on the screen is computed. This is what rectangle on the screen the light possibly illuminates:

For Directional lights that is the whole screen.

For Spot lights it's the bounding rectangle of light's pyramid projected on the screen.

For Point lights it's the bounding rectangle of light's sphere projected on the screen.

Then the larger value of this box' width & height is chosen; call that pixel size.

At "High" shadow resolution, the size of the shadow map then is:

Directional lights: NextPowerOfTwo(pixel size * 1.9), but no more than 2048.

Spot lights: NextPowerOfTwo(pixel size), but no more than 1024.

Point lights: NextPowerOfTwo(pixel size * 0.5), but no more than 512.

When graphics card has 512MB or more video memory, the upper shadow map limits are increased (4096 for Directional, 2048

for Spot, 1024 for Point lights).

At "Medium" shadow resolution, shadow map size is 2X smaller than at "High" resolution. And at "Low" resolution, it's 4X

smaller than at "High" resolution.

The seemingly low limit on Point lights is because they use cubemaps for shadows. That means six cubemap faces at this

resolution must be in video memory. They are also quite expensive to render, as potential shadow casters must be rendered

into up to six cubemap faces.

Shadow size computation when running close to memory limits
When running close to video memory limits, Unity will automatically drop shadow map resolution computed above.

Generally memory for the screen (backbuffer, frontbuffer, depth buffer) has to be in video memory; and memory for render

textures has to be in video memory, Unity will use both to determine allowed memory usage of shadow maps. When allocating

a shadow map according to size computed above, it's size will be reduced until it fits into (TotalVideoMemory -

ScreenMemory - RenderTextureMemory) / 3.

Assuming all regular textures, vertex data and other graphics objects can be swapped out of video memory, maximum VRAM

that could be used by a shadow map would be (TotalVideoMemory-ScreenMemory-RenderTextureMemory). But

exact amounts of memory taken by screen and render textures can never be determined, and some objects can not be

swapped out, and performance would be horrible if all textures would be constantly swapping in and out. So Unity does not

allow a shadow map to exceed one third of "generally available" video memory, which works quite well in practice.

Page last updated: 2012-08-17

IME Input

What is Input Method Editor (IME)?
An input method is an operating system component or program that allows users to enter characters and symbols not found on

their input device. For instance, on the computer, this allows the user of 'Western' keyboards to input Chinese, Japanese,

Korean and Indic characters. On many hand-held devices, such as mobile phones, it enables using the numeric keypad to

enter Latin alphabet characters.

The term input method generally refers to a particular way to use the keyboard to input a particular language, for example the

Cangjie method, the pinyin method, or the use of dead keys.

IME and Unity

 Desktop

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

592 of 1131 12/16/2012 10:12 PM

Unity provides IME support, which means that you can write non-ASCII characters in all your graphical user interfaces. This

Input Method is fully integrated with the engine so you do not need to do anything to activate it. In order to test it, just change

your keyboard language to a non-ASCII language (e.g. Japanese) and just start writing your interface.

For more info and optimization when writting non-ASCII characters, check the character option in the font properties.

Note: IME on Unity is not supported on mac webplayers at the moment.

 iOS

This feature is not supported on iOS devices yet.

 Android

This feature is not supported on Android devices yet.

Page last updated: 2012-03-14

OptimizeForIntegratedCards

Polygon count matters
On most graphics cards today, polygon count does not really matter. The common knowledge is that object count and fillrate is

much more important. Unfortunately, not so on the majority of older integrated chips (Intel 945 / GMA 950 and similar). How

much it matters depends on the complexity of the vertex shaders or lighting and the speed of the CPU (thats right, most

integrated cards transform & light vertices on the CPU).

Big Bang Brain Games never went above 25 thousand triangles in a scene using 1-2 per-vertex lights and no pixel lights

(essentially a VertexLit rendering path). Quality Settings were used to speed up performance automatically when frame rate

drops. So on higher end machines a higher quality setting was used which had pixel lights enabled.

What slows things down is drawing objects multiple times, using complex vertex shaders and lots of polygons. This means:

Use VertexLit rendering path if possible. This will draw each object just once, no matter how many lights are in the scene.

Try not to use lights at all, even vertex lights. Lights make sense if your geometry moves, or if your lights move. Otherwise

bake the illumination using Lightmapper, it will run faster and look better.

Optimize your geometry (see section below).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

593 of 1131 12/16/2012 10:12 PM

Use Rendering Statistics window and Profiler!

Optimize model geometry
When optimizing the geometry of a model, there are two basic rules:

Don't use excessive amount of faces if you don't have to.

Keep the number of UV mapping seams and hard edges as low as possible.

Note that the actual number of vertices that graphics hardware has to process is usually not the same as displayed in a 3D

application. Modeling applications usually display the geometric vertex count, i.e. number of points that make up a model.

For a graphics card however, some vertices have to be split into separate ones. If a vertex has multiple normals (it's on a "hard

edge"), or has multiple UV coordinates, or multiple vertex colors, it has to be split. So the vertex count you see in Unity is

almost always different from the one displayed in 3D application.

Bake lighting.
Bake ligthing either into lightmaps or vertex colors. Unity has a great Lightmapper built-in; also you can bake lightmaps in

many 3D modeling packages.

The process of generating a lightmapped environment takes only a little longer than just placing a light in the scene in Unity,

but:

It usually will run a lot faster; especially if you have many lights.

And look a lot better since you can bake global illumination.

Even next-gen games still rely on lightmapping a lot. Usually they use lightmapped environments and only use one or two

realtime dynamic lights.

Page last updated: 2012-10-12

Web Player Deployment

When building a Web Player, Unity automatically generates an HTML file next to the player data file. It contains the default

HTML code to load the web player data file.

It is possible to further tweak and customize the generated HTML file to make it fit better with the containing site's design, to

add more HTML content, etc. The following pages discuss the related subjects in depth:

HTML code to load Unity content

Working with UnityObject2

Customizing the Unity Web Player loading screen

Customizing the Unity Web Player's Behavior

Unity Web Player and browser communication

Using web player templates

Web Player Streaming

Webplayer Release Channels
Page last updated: 2012-10-12

HTML code to load Unity Web Player content

Unity content is loaded in the browser by the Unity Web Player plugin. HTML code usually does not communicate with this

plugin directly but via the script called UnityObject2. Its primary task is to make Unity content embedding very simple by

shielding the user from various browser- and platform-specific issues. It also enables easy Web Player installation.

The HTML file generated by Unity when building a web player contains all the commonly required functionality. In most cases

you don't have to modify the HTML file at all. The rest of the document explains the inner workings of this file.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

594 of 1131 12/16/2012 10:12 PM

The UnityObject2 script has to be loaded before it can be used. This is done at the top of the <head> section.

<script type="text/javascript">
<!--
var unityObjectUrl = "http://webplayer.unity3d.com/download_webplayer-3.x/3.0/uo/UnityObject2.js";
if (document.location.protocol == 'https:')

unityObjectUrl = unityObjectUrl.replace("http://", "https://ssl-");
document.write('<script type="text/javascript" src="' + unityObjectUrl + '"></script>');
-->
</script>

You can now instantiate the UnityObject2 class to assist you in various Unity-related tasks, the most important one being

embedding Unity content. This is performed by instantiating UnityObject2 and calling initPlugin on the new instance.

initPlugin accepts several parameters. The first one specifies the id of the HTML element that will be replaced by Unity

content. It could be any HTML element with <div> being the most common. Think of it as a temporary placeholder where Unity

should be placed. The second parameter specifies the path to the web player data file to be displayed. See

UnityObject2.initPlugin for more info.

var u = new UnityObject2();
u.initPlugin(jQuery("#unityPlayer")[0], "Example.unity3d");

Finally, the HTML placeholder is placed inside the <body> section. It could be as simple as <div id="unityPlayer" />.

However for maximum compatibility it's best to place some warning message in case the browser doesn't support JavaScript

and the placeholder isn't replaced by UnityObject.

<div id="unityPlayer">
<div class="missing">

<img alt="Unity Web Player. Install now!" src="http://webplayer.unity3d.com/installation/getunity.png" wid

</div>

</div>

Page last updated: 2012-11-16

Working with UnityObject

UnityObject2 is a JavaScript script that simplifies Unity content embedding into HTML and allows you to customize the install

process. Having a custom install UI that matches your game and website, will create a more engaging and pleasurable

experience for the end-user. It has functions to detect the Unity Web Player plugin, initiate Web Player installation and embed

Unity content. Although it's possible to deploy UnityObject2.js file on the web server alongside the HTML file it's best to load

it directly from the Unity server at http://webplayer.unity3d.com/download_webplayer-3.x/3.0/uo/UnityObject2.js. That

way you will always reference the most up to date version of UnityObject2. Please note that the UnityObject2.js file hosted

on the Unity server is minified to make it smaller and save traffic. If you want to explore the source code you can find the

original file in the Data\Resources folder on Windows and the Contents/Resources folder on Mac OS X. UnityObject2 by

default sends anonymous data to GoogleAnalytics which is used to help us identify installation type and conversion rate.

UnityObject2 depends on jQuery.

Constructor
You will need to create a new instance of the unityObject2 for each Unity content present on the page.

Parameters:

configuration - A object containing the configuration for this instance. Those are the available members:

width - Default: 100%, Width of Unity content. Can be specified in pixel values (i.e. 600, "450") or in percentage values

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

595 of 1131 12/16/2012 10:12 PM

(i.e. "50%", "100%"). Note that percentage values are relative to the parent element.

height - Default: 100%, Height of Unity content. Can be specified in pixel values (i.e. 600, "450") or in percentage

values (i.e. "50%", "100%"). Note that percentage values are relative to the parent element.

fullInstall - Default: false, Installs the full Web Player if not available. Normally only a small part of the Web Player is

installed and the remaining files are automatically downloaded later.

enableJava - Default: true, Enables Java based installation. Some platforms doesn't support this feature.

enableClickOnce - Default: true, Enables ClickOnce based installation. Only works on Internet Explorer browsers.

enableUnityAnalytics - Default: true, Notifies Unity about Web Player installation. This doesn't do anything if the Web

Player is already installed.

enableGoogleAnalytics -Default: true, Notifies Unity about Web Player installation using Google Analytics. This

doesn't do anything if the Web Player is already installed.

params - Default: {}, Extra parameters to be used when embedding the Player. Those are usefull to customize the

Unity experience:

backgroundcolor - Default: "FFFFFF", The background color of the web player content display region during

loading, the default is white. Pro Only

bordercolor - Default: "FFFFFF", The color of the one pixel border drawn around the web player content display

region during loading. Pro Only

textcolor - Default: "000000", The color of error message text (when data file fails to load for example). Pro Only

logoimage - Default: unity Logo, The path to a custom logo image, the logo image is drawn centered within the

web player content display region during loading. Pro Only

progressbarimage - The path to a custom image used as the progress bar during loading. The progress bar

image width is clipped based on the amount of file loading completed, therefore it starts with a zero pixel width and

animates to its original width when the loading is complete. The progress bar is drawn beneath the logo image. Pro

Only

progressframeimage - The path to a custom image used to frame the progress bar during loading. Pro Only

disableContextMenu - This parameter controls whether or not the Unity Web Player displays a context menu

when the user right- or control-clicks on the content. Setting it to true prevents the context menu from appearing

and allows content to utilize right-mouse behavior. To enable the context menu don't include this parameter.

disableExternalCall - This parameter controls whether or not the Unity Web Player allows content to

communicate with browser-based JavaScript. Setting it to true prevents browser communication and so content

cannot call or execute JavaScript in the browser, the default is false.

disableFullscreen - This parameter controls whether or not the Unity Web Player allows content to be viewed in

fullscreen mode. Setting it to true prevents fullscreen viewing and removes the "Go Fullscreen" entry from the

context menu, the default is false.

attributes - Default: {}, Object containing list of attributes. These will be added to underlying <object> or <embed>

tag depending on the browser.

debugLevel - Default: 0, Enables/Disables logging, useful when developing to be able to see the progress on the

browser console. Set it greater to 0 to enable.

Notes: All color values provided must be 6-digit hexidecimal colors, (eg. FFFFFF, 020F16, etc.). The image paths provided can

be either relative or absolute links and all image files must be RGB (without transparency) or RGBA (with transparency)

8-bit/channel PNG files. Finally, the progressframeimage and the progressbarimage should be the same height.

Functions

observeProgress

You can register a callback that will receive notifications during the plugin installation and/or initialization.

Parameters:

callback - Callback function that will receive information about the plugin installation/initialization. This callback will receive

an progress object.

progress - It contains information about the current step of the plugin installation/initialization.

pluginStatus - Will contain a string identifying the plugin status, can be one of those:

unsupported` - The current Browser/OS is not supported

missing - Supported platform, but the plugin haven't be installed yet.

installed - The plugin have finished installing, or was already installed.

first - called after the plugin have been installed at the first frame of the game is played (This will not be called

if the plugin was already installed previously)

targetEl - The DOM Element serving as a container for the webplayer (This is the same element you pass to

UnityObject2.initPlugin)

bestMethod - If the plugin is missing will contain the best installation path for the current platform, can be one of

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

596 of 1131 12/16/2012 10:12 PM

the following strings:

JavaInstall - It will use our "One Click" Java Applet to install the plugin

ClickOnceIE - It will use Internet Explorer's Click Once install

Manual - It will ask the user to download a file and install it manually.

unityObj- A reference to the previously created unityObject2 instance responsible for this callback

ua - Contains some User Agent information used to decide the pluginStatus and bestMethod.

initPlugin

This will actually try to start up your game. And call the callback you previously registered at the appropriated moments. Note

that

Parameters:

containerElement - The DOM Element serving as a container for the webplayer

gameURL - URL to the web player data file (.unity3d). Can be relative or absolute.

Notes: This function should be called after the containerElement is present on the DOM, to be safe, you could wait for the

DOM to load completely before calling it.

installPlugin

Tries to install the plugin using the specified method. If no method is passed, it will try to use this.getBestInstallMethod().

Parameters:

method - Default: this.getBestInstallMethod(). A string specifying which method to use for installation. It can be one of

the following values: JavaInstall, ClickOnceIE, Manual.

Notes: Not all methods are available in every platform/browser. Manual will download an exe/dmg installer and the user will

need to perform a manual installation.

getUnity

This will return a reference to the player, so you can Call SendMessage from it for instance.

Notes: Will return null if the WebPlayer has not been initialized yet.

Example: This exemplifies a very simple UnityObject2 usage. If the user already has the plugin installed, the WebPlayer will

load normally, otherwise it will reveal a hidden div.missing and attach a click event to the install button. After installation is

succeeded, the screen is hidden, and the webplayer is loaded normally.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Unity Web Player | "Sample"</title>

<script type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"></script>
<script type="text/javascript">

<!--
var unityObjectUrl = "http://webplayer.unity3d.com/download_webplayer-3.x/3.0/uo/UnityObject2.js";
if (document.location.protocol == 'https:')

unityObjectUrl = unityObjectUrl.replace("http://", "https://ssl-");
document.write('<script type="text\/javascript" src="' + unityObjectUrl + '"><\/script>');
-->

</script>
 <script type="text/javascript">

var u = new UnityObject2();
u.observeProgress(function (progress) {

var $missingScreen = jQuery(progress.targetEl).find(".missing");
switch(progress.pluginStatus) {

case "unsupported":
showUnsupported();

break;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

597 of 1131 12/16/2012 10:12 PM

case "broken":
alert("You will need to restart your browser after installation.");

break;
case "missing":

$missingScreen.find("a").click(function (e) {
e.stopPropagation();
e.preventDefault();
u.installPlugin();
return false;

});
$missingScreen.show();

break;
case "installed":

$missingScreen.remove();
break;
case "first":
break;

}
});
jQuery(function(){

u.initPlugin(jQuery("#unityPlayer")[0], "Example.unity3d");
});

 </script>
 </head>

<body>
<p class="header">

Unity Web Player | WebPlayer
</p>
<div class="content">

<div id="unityPlayer">
<div class="missing">

<img alt="Unity Web Player. Install now!" src="http://webplayer.unity3d.com/installation/g

</div>

</div>
</div>
<p class="footer">« created with Unity

</body>
</html>

Page last updated: 2012-11-16

Customizing the Unity Web Player loading screen

By default the Unity Web Player displays a small Unity logo and a progress bar while loading web player content. It is

possible to customize the appearance of that loading screen, including both the logo and progress bar display.

Please note that modifying the loader images is only possible with Unity Pro.

There are six optional parameters that can be passed to UnityObject, which can be used to customize the appearance of the

Unity Web Player loading screen. Those optional parameters are:

backgroundcolor: The background color of the web player content display region during loading, the default is white.

bordercolor: The color of the one pixel border drawn around the web player content display region during loading, the

default is white.

textcolor: The color of error message text (when data file fails to load for example). The default is black or white,

depending on the background color.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

598 of 1131 12/16/2012 10:12 PM

logoimage: The path to a custom logo image, the logo image is drawn centered within the web player content display

region during loading.

progressbarimage: The path to a custom image used as the progress bar during loading. The progress bar image's width

is clipped based on the amount of file loading completed, therefore it starts with a zero pixel width and animates to its

original width when the loading is complete. The progress bar is drawn beneath the logo image.

progressframeimage: The path to a custom image used to frame the progress bar during loading.

All color values provided must be 6-digit hexadecimal colors, (eg. FFFFFF, 020F16, etc.). The image paths provided can be

either relative or absolute links. All images must be PNG files in RGB format (without transparency) or RGBA format (with

transparency) stored at eight bits per channel. Finally, the progressframeimage and the progressbarimage should be the

same height.

Here is an example script that customizes the appearance of the Unity Web Player loading screen. The background color is

set to light gray (A0A0A0), border color to black (000000), text color to white (FFFFFF) and loader images to MyLogo.png,

MyProgressBar.png and MyProgressFrame.png. All parameters are grouped into single params object and passed to

UnityObject2 Constructor.

var params = {
backgroundcolor: "A0A0A0",
bordercolor: "000000",
textcolor: "FFFFFF",
logoimage: "MyLogo.png",
progressbarimage: "MyProgressBar.png",
progressframeimage: "MyProgressFrame.png"

};
var u = UnityObject2({ params: params });
u.initPlugin(jQuery("#unityPlayer")[0], "Example.unity3d");

See UnityObject2 for more details.

Example using the above snippet:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Unity Web Player | "Sample"</title>

<script type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"></script>
<script type="text/javascript">

<!--
var unityObjectUrl = "http://webplayer.unity3d.com/download_webplayer-3.x/3.0/uo/UnityObject2.js";
if (document.location.protocol == 'https:')

unityObjectUrl = unityObjectUrl.replace("http://", "https://ssl-");
document.write('<script type="text\/javascript" src="' + unityObjectUrl + '"><\/script>');
-->

</script>
 <script type="text/javascript">

var params = {
backgroundcolor: "A0A0A0",
bordercolor: "000000",
textcolor: "FFFFFF",
logoimage: "MyLogo.png",
progressbarimage: "MyProgressBar.png",
progressframeimage: "MyProgressFrame.png"

};
var u = new UnityObject2({ params: params });
u.observeProgress(function (progress) {

var $missingScreen = jQuery(progress.targetEl).find(".missing");
switch(progress.pluginStatus) {

case "unsupported":

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

599 of 1131 12/16/2012 10:12 PM

showUnsupported();
break;
case "broken":

alert("You will need to restart your browser after installation.");
break;
case "missing":

$missingScreen.find("a").click(function (e) {
e.stopPropagation();
e.preventDefault();
u.installPlugin();
return false;

});
$missingScreen.show();

break;
case "installed":

$missingScreen.remove();
break;
case "first":
break;

}
});
jQuery(function(){

u.initPlugin(jQuery("#unityPlayer")[0], "Example.unity3d");
});

 </script>
 </head>

<body>
<p class="header">

Unity Web Player | WebPlayer
</p>
<div class="content">

<div id="unityPlayer">
<div class="missing">

<img alt="Unity Web Player. Install now!" src="http://webplayer.unity3d.com/installation/g

</div>

</div>
</div>
<p class="footer">« created with Unity

</body>

Page last updated: 2012-11-16

WebPlayerBehaviorTags

The Unity Web Player allows developers to use a few optional parameters to easily control its behavior in a few ways:

disableContextMenu: This parameter controls whether or not the Unity Web Player displays a context menu when the

user right- or control-clicks on the content. Setting it to true prevents the context menu from appearing and allows content

to utilize right-mouse behavior. To enable the context menu don't include this parameter.

disableExternalCall: This parameter controls whether or not the Unity Web Player allows content to communicate with

browser-based JavaScript. Setting it to true prevents browser communication and so content cannot call or execute

JavaScript in the browser, the default is false.

disableFullscreen: This parameter controls whether or not the Unity Web Player allows content to be viewed in fullscreen

mode. Setting it to true prevents fullscreen viewing and removes the "Go Fullscreen" entry from the context menu, the

default is false.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

600 of 1131 12/16/2012 10:12 PM

Using UnityObject2 you control those parameters like this:

var params = {
disableContextMenu: true

};
var u = UnityObject2({ params: params });
u.initPlugin(jQuery("#unityPlayer")[0], "Example.unity3d");

In the above example you'll notice that neither disableExternalCall nor disableFullscreen are specified, therefore their

default values are used.

See UnityObject2 for more details.

Example setting all the behavior options:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Unity Web Player | "Sample"</title>

<script type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"></script>
<script type="text/javascript">

<!--
var unityObjectUrl = "http://webplayer.unity3d.com/download_webplayer-3.x/3.0/uo/UnityObject2.js";
if (document.location.protocol == 'https:')

unityObjectUrl = unityObjectUrl.replace("http://", "https://ssl-");
document.write('<script type="text\/javascript" src="' + unityObjectUrl + '"><\/script>');
-->

</script>
 <script type="text/javascript">

var params = {
disableContextMenu: true,
disableExternalCall: false,
disableFullscreen: false,

};
var u = new UnityObject2({ params: params });
u.observeProgress(function (progress) {

var $missingScreen = jQuery(progress.targetEl).find(".missing");
switch(progress.pluginStatus) {

case "unsupported":
showUnsupported();

break;
case "broken":

alert("You will need to restart your browser after installation.");
break;
case "missing":

$missingScreen.find("a").click(function (e) {
e.stopPropagation();
e.preventDefault();
u.installPlugin();
return false;

});
$missingScreen.show();

break;
case "installed":

$missingScreen.remove();
break;
case "first":
break;

}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

601 of 1131 12/16/2012 10:12 PM

});
jQuery(function(){

u.initPlugin(jQuery("#unityPlayer")[0], "Example.unity3d");
});

 </script>
 </head>

<body>
<p class="header">

Unity Web Player | WebPlayer
</p>
<div class="content">

<div id="unityPlayer">
<div class="missing">

<img alt="Unity Web Player. Install now!" src="http://webplayer.unity3d.com/installation/g

</div>

</div>
</div>
<p class="footer">« created with Unity

</body>

Page last updated: 2012-11-16

Unity Web Player and browser communication

The HTML page that contains Unity Web Player content can communicate with that content and vice versa. Basically there

are two communication directions:

The web page calls functions inside the Unity web player content.

The Unity web player content calls functions in the web page.

Each of these communication directions is described in more detail below.

Calling Unity web player content functions from the web page
The Unity Web Player object has a function, SendMessage(), that can be called from a web page in order to call functions

within Unity web player content. This function is very similar to the GameObject.SendMessage function in the Unity scripting

API. When called from a web page you pass an object name, a function name and a single argument, and SendMessage()

will call the given function in the given game object.

In order to call the Unity Web Player's SendMessage() function you must first get a reference to the Unity web player object.

You can use the GetUnity() function in the default html generated by Unity to obtain a reference to the object. Here is an

example JavaScript function that would execute the SendMessage() function on the Unity web player; in turn

SendMessage() will then call the function MyFunction() on the game object named MyObject, passing a piece of string data

as an argument:

<script type="text/javascript" language="javascript">
<!--
//initializing the WebPlayer
var u = new UnityObject2();
u.initPlugin(jQuery("#unityPlayer")[0], "Example.unity3d");

function SaySomethingToUnity()
{

u.getUnity().SendMessage("MyObject", "MyFunction", "Hello from a web page!");
}
-->

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

602 of 1131 12/16/2012 10:12 PM

</script>

Inside of the Unity web player content you need to have a script attached to the GameObject named MyObject, and that

script needs to implement a function named MyFunction:

function MyFunction(param : String)
{
 Debug.Log(param);
}

Note: keep in mind that if the function doesn't have any arguments, then an empty string ("") should be passed as an

argument.

A single string, integer or float argument must be passed when using SendMessage(), the parameter is required on the calling

side. If you don't need it then just pass a zero or other default value and ignore it on the Unity side. Additionally, the game

object specified by the name can be given in the form of a path name. For example, /MyObject/SomeChild where

SomeChild must be a child of MyObject and MyObject must be at the root level due to the '/' in front of its name.

Note: u.getUnity() might return null if the game isn't fully loaded yet, so it's a good idea to check if it's value is not null before

using SendMessage(). Or wait for your game to be fully loaded before trying to communicate with it.

Calling web page functions from Unity web player content
In order to call a web page function from within your Unity web player content you must use the Application.ExternalCall()

function. Using that function you can call any JavaScript function defined in the web page, passing any number of parameters

to it. Here is an example Unity script that uses the Application.ExternalCall() function to call a function named SayHello()

found within the web page, passing a piece of string data as an argument:

Application.ExternalCall("SayHello", "The game says hello!");

The web page would need to define the SayHello() function, for example:

<script type="text/javascript" language="javascript">
<!--
function SayHello(arg)
{
 // show the message
 alert(arg);
}
-->
</script>

Executing arbitrary browser code from Unity web player content
You don't even have to define functions in the embedding web page, instead you can use the Application.ExternalEval()

function to execute arbitrary browser code from the web player content.

The following example checks that the page embedding the web player content is fetched from a certain host (unity3d.com), if

that's not the case then it will redirect to another URL. This technique can be used to prevent deep linking to your web player

content:

Application.ExternalEval(
 "if(document.location.host != 'unity3d.com') { document.location='http://unity3d.com'; }"
);

Page last updated: 2012-11-15

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

603 of 1131 12/16/2012 10:12 PM

Using Web Player templates

When you build a webplayer project, Unity embeds the player in an HTML page so that it can be played in the browser. The

default page is very simple, with just a white background and some minimal text. There are actually three different variations of

this page which can be selected from the Player Settings inspector (menu: Edit > Project Settings > Player).

The built-in HTML pages are fine for testing and demonstrating a minimal player but for production purposes, it is often

desirable to see the player hosted in the page where it will eventually be deployed. For example, if the Unity content interacts

with other elements in the page via the external call interface then it must be tested with a page that provides those interacting

elements. Unity allows you to supply your own pages to host the player by using webplayer templates.

Structure of a Webplayer Template
Custom templates are added to a project by creating a folder called "WebPlayerTemplates" in the Assets folder - the templates

themselves are sub-folders within this folder. Each template folder contains an index.html or index.php file along with any other

resources the page needs, such as images or stylesheets.

Once created, the template will appear among the options on the Player Settings inspector. (the name of the template will be

the same as its folder). Optionally, the folder can contain a file named thumbnail.png, which should have dimensions of

128x128 pixels. The thumbnail image will be displayed in the inspector to hint at what the finished page will look like.

Template Tags
During the build process, Unity will look for special tag strings in the page text and replace them with values supplied by the

editor. These include the name, onscreen dimensions and various other useful information about the player.

The tags are delimited by percent signs (%) in the page source. For example, if the product name is defined as "MyPlayer" in

the Player settings:-

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

604 of 1131 12/16/2012 10:12 PM

<title>%UNITY_WEB_NAME%</title>

...in the template's index file will be replaced with

<title>MyPlayer</title>

...in the host page generated for the build. The complete set of tags is given below:-

UNITY_WEB_NAME

Name of the webplayer.

UNITY_WIDTH

UNITY_HEIGHT

Onscreen width and height of the player in pixels.

UNITY_WEB_PATH

Local path to the webplayer file.

UNITY_UNITYOBJECT_LOCAL

A browser JavaScript file called UnityObject2.js is generally used to embed the player in the host page and provide part of the

interaction between Unity and the host's JavaScript. This is normally supplied to a page by downloading from Unity's website.

However, this requires an internet connection and causes problems if the page is to be deployed offline from the user's hard

drive. This tag provides the local path to the UnityObject.js file, which will be generated if the Offline Deployment option is

enabled in the Build Settings.

UNITY_UNITYOBJECT_URL

In the usual case where the page will download UnityObject2.js from the Unity's website (ie, the Offline Deployment option is

disabled), this tag will provide the download URL.

UNITY_UNITYOBJECT_DEPENDENCIES

The UnityObject2.js have dependencies and this tag will be replaced with the needed dependencies for it to work properly.

UNITY_BETA_WARNING

If the webplayer has been built with a beta version of Unity, this tag will be replaced with a short warning message about the

fact. Otherwise, it is replaced with nothing.

UNITY_CUSTOM_SOME_TAG

If you add a tag to the index file with the form UNITY_CUSTOM_XXX, then this tag will appear in the Player Settings when

your template is selected. For example, if something like

<title>Unity Web Player | %UNITY_CUSTOM_MYTAG%</title>

...is added to the source, the Player Settings will look like this:-

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

605 of 1131 12/16/2012 10:12 PM

The textbox next to the tag's name contains the text that the custom tag will be replaced with during the build.

Example
To illustrate the use of the template tags, here is the HTML source that Unity uses for its default webplayer build.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Unity Web Player | %UNITY_WEB_NAME%</title>
%UNITY_UNITYOBJECT_DEPENDENCIES%
<script type="text/javascript">
<!--
var unityObjectUrl = "%UNITY_UNITYOBJECT_URL%";
if (document.location.protocol == 'https:')

unityObjectUrl = unityObjectUrl.replace("http://", "https://ssl-");
document.write('<script type="text\/javascript" src="' + unityObjectUrl + '"><\/script>');
-->
</script>
<script type="text/javascript">
<!--

jQuery(function() {
var config = {

width: %UNITY_WIDTH%,
height: %UNITY_HEIGHT%,
params: %UNITY_PLAYER_PARAMS%

};
var u = new UnityObject2(config);

var $missingScreen = jQuery("#unityPlayer").find(".missing");
var $brokenScreen = jQuery("#unityPlayer").find(".broken");
$missingScreen.hide();
$brokenScreen.hide();

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

606 of 1131 12/16/2012 10:12 PM

u.observeProgress(function (progress) {
switch(progress.pluginStatus) {

case "broken":
$brokenScreen.find("a").click(function (e) {

e.stopPropagation();
e.preventDefault();
u.installPlugin();
return false;

});
$brokenScreen.show();

break;
case "missing":

$missingScreen.find("a").click(function (e) {
e.stopPropagation();
e.preventDefault();
u.installPlugin();
return false;

});
$missingScreen.show();

break;
case "installed":

$missingScreen.remove();
break;
case "first":
break;

}
});
u.initPlugin(jQuery("#unityPlayer")[0], "%UNITY_WEB_PATH%");

});
-->
</script>
<style type="text/css">
<!--
body {

font-family: Helvetica, Verdana, Arial, sans-serif;
background-color: white;
color: black;
text-align: center;

}
a:link, a:visited {

color: #000;
}
a:active, a:hover {

color: #666;
}
p.header {

font-size: small;
}
p.header span {

font-weight: bold;
}
p.footer {

font-size: x-small;
}
div.content {

margin: auto;
width: %UNITY_WIDTH%px;

}
div.broken,
div.missing {

margin: auto;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

607 of 1131 12/16/2012 10:12 PM

position: relative;
top: 50%;
width: 193px;

}
div.broken a,
div.missing a {

height: 63px;
position: relative;
top: -31px;

}
div.broken img,
div.missing img {

border-width: 0px;
}
div.broken {

display: none;
}
div#unityPlayer {

cursor: default;
height: %UNITY_HEIGHT%px;
width: %UNITY_WIDTH%px;

}
-->
</style>

</head>
<body>

<p class="header">Unity Web Player | %UNITY_WEB_NAME%</p>%UNITY_BETA_WARNING%
<div class="content">

<div id="unityPlayer">
<div class="missing">

<img alt="Unity Web Player. Install now!" src="http://webplayer.unity3d.com/installation/g

</div>
<div class="broken">

<a href="http://unity3d.com/webplayer/" title="Unity Web Player. Install now! Restart your brow
<img alt="Unity Web Player. Install now! Restart your browser after install." src="http://w

</div>

</div>
</div>
<p class="footer">« created with Unity

</body>
</html>

Page last updated: 2012-11-15

Web Player Streaming

Web Player Streaming is critical for providing a great web gaming experience for the end user. The idea behind web games is

that the user can view your content almost immediately and start playing the game as soon as possible instead of making him

wait for a progress bar. This is very achievable, and we will explain how.

Tuning for Portals
This section will focus on publishing to online game portals. Streaming is useful for all kinds of contents, and it can easily be

applied to many other situations.

Online game portals expect that some form of game play really starts after downloading at most 1 MB of data. If you don't

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

608 of 1131 12/16/2012 10:12 PM

reach this makes it that much less likely for a portal to accept your content. From the user's perspective, the game needs to

start quickly. Otherwise his time is being wasted and he might as well close the window.

On a 128 kilobit cable connection you can download 16 KB per second or 1 MB per minute. This is the low end of bandwidth

online portals target.

The game would optimally be set up to stream something like this:

50 KB display the logo and menu (4 seconds)1.

320 KB let the user play a tiny tutorial level or let him do some fun interaction in the menu (20 seconds)2.

800 KB let the user play the first small level (50 seconds)3.

Finish downloading the entire game within 1-5 MB (1-5 minutes)4.

The key point to keep in mind is to think in wait times for a user on a slow connection. Never let him wait.

Now, don't panic if your web player currently is 10 MB. It seems daunting to optimize it, but it turns out that with a little effort it

is usually quite easy to structure your game in this fashion. Think of each above step as an individual scene. If you've made

the game, you've done the hard part already. Structuring some scenes around this loading concept is a comparative breeze!

If you open the console log (Open Editor Log button in the Console window(Desktop Platforms); Help -> Open Editor

console log menu OSX) after or during a build, you can see the size of each individual scene file. The console will show

something like this:

Player size statistics
Level 0 'Main Menu' uses 95.0 KB compressed.
Level 1 'Character Builder' uses 111.5 KB compressed.
Level 2 'Level 1' uses 592.0 KB compressed.
Level 3 'Level 2' uses 2.2 MB compressed.
Level 4 'Level 3' uses 2.3 MB compressed.
Total compressed size 5.3 MB. Total decompressed size 9.9 MB.

This game could use a little more optimization! For more information, we recommend you read the reducing file size page.

The Most Important Steps

Load the menu first. Showing an animated logo is a great way to make time go by unnoticed, thus letting the download

progress further.

1.

Make the first level be short and not use a lot of assets. This way, the first level can be loaded quickly, and by keeping

the player occupied playing it for a minute or two you can be sure that the download of all remaining assets can be

completed in the background. Why not have a mini tutorial level where the user can learn the controls of the game? No

reason for high-res textures here or loads of objects, or having all your enemies in the first level. Use the one with the

lowest poly-count. And yes, this means you might have to design your game with the web player experience in mind.

2.

There is no reason why all music must be available when the game starts. Externalize the music and load it via the

WWW class. Unity compresses audio with the high quality codec, Ogg Vorbis. However even when compressed, audio

takes up a lot of space, and if you have to fit things into 3 MB, if you have 5 minutes of music all the compression in the

world won't save you. Sacrifices are needed. Load a very short track that you can loop until more music has been

downloaded. Only load more music when the player is hooked on the first level.

3.

Optimize your textures using their Import Settings. After you externalize music, textures easily take up 90% of the game.

Typical texture sizes are too big for web deployment. In a small browser window, sometimes big textures don't even

increase the visual fidelity at all. Make sure you use textures that are only as big as they must be (and be ready for

more sacrifices here). Halving the texture resolution actually makes the texture size a quarter of what it was. And of

course all textures should be DXT compressed.

4.

Generally reduce the size of your web players. There is a manual page committed to the utilities Unity offers for

optimizing file size here. Although Unity uses cutting edge LZMA-based compression which usually compresses game

data to anywhere from one half to a third of the uncompressed size, you'll need to try everything you can.

5.

Try to avoid Resources.Load. While Resources.Load can be very handy, Unity will not be able to order your assets by

when they are first used when you use Resources.Load, because any script could attempt to load the Resource. You

6.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

609 of 1131 12/16/2012 10:12 PM

can set which level will include all assets that can be loaded through Resources.Load in the Edit->Project

Settings->Player using the First Streamed Level With Resources property. Obviously you want to move

Resources.Load assets as late as possible into the game or not use the feature at all.

Publishing Streaming Web Players
Streaming in Unity is level based, and there is an easy workflow to set this up. Internally, Unity does all the dirty work of

tracking assets and organizing them in the compressed data files optimally, ordering it by the first scene that uses them. You

simply have to ensure that the first levels in the Build Settings use as few assets as possible. This comes naturally for a "menu

level", but for a good web experience you really need make sure that the first actual game levels the player is going to play are

small too.

In order to use streaming in Unity, you select Web Player Streamed in the Build Settings. Then the content automatically

starts as soon as all assets used by the first level are loaded. Try to keep the "menu level" to something like 50-100 KB. The

stream continues to load as fast as it can, and meanwhile live decompresses. When you look at the Console during/after a

build, you can see how large

You can query the progress of the stream by level, and once a level is available it can be loaded. Use

GetStreamProgressForLevel for displaying a progress bar and CanStreamedLevelBeLoaded to check if all the data is

available to load a specific level.

This form of streaming is of course linear, which matches how games work in most cases. Sometimes that's not enough.

Therefore Unity also provides you with API's to load a .unity3d file manually using the WWW class. Video and audio can be

streamed as well, and can start playing almost immediately, without requiring the movie to be downloaded first. Finally Textures

can easily be downloaded via the WWW class, as can any textual or binary data your game might depend on.

Page last updated: 2012-10-12

WebPlayerChannels

Whenever a new major version of Unity is released, the webplayer plugin for the browser is also updated to take advantage of

the latest features. The plugin checks for new releases as it starts up and will automatically upgrade itself when necessary.

Although Unity does take backward compatibility very seriously, it is still possible that a new release could introduce bugs that

cause problems with existing webplayers. Since the plugin updates automatically, such bugs could leave a user unable to play

a web game until they are fixed and in the meantime, there may be no way to get the working version of the runtime back.

To avoid problems like this, the plugin is designed to keep a number of different versions of the Unity runtime, which are called

Release Channels. When an update to the runtime is released, the plugin automatically retrieves it but also retains a copy of

the previous version. The latest channel is named Release while the previous one is named Stable. By default, the plugin will

use the oldest channel that supports all the features needed by a given webplayer. This enables new games to make use of

new features but avoids the risk that new bugs will take down existing games.

Some time after a release, when the Release channel has been thoroughly tested for stability, it will be migrated to Stable

status and it will be used as the default for all players from then on.

Selecting a channel
Although the channel system avoids problems with upgrading, it is still useful to be able to test your game with the latest

runtime. The Unity browser plugin lets you select the desired channel from the context menu (right-click on the content area in

the web page).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

610 of 1131 12/16/2012 10:12 PM

The channels are listed in order with the most recent at the top. When you select an item from the menu, it will be used as the

minimum version for running webplayer content (so if you select the Release channel, the older Stable channel will not be

used). You can simply select the oldest version to restore the default channel selection. Normally, just the Release and Stable

channels will be available but the system is open-ended so other channels (say for Beta testing) may appear from time to time.

Additionally, the menu gives you the option to switch to Development mode, which enables debugging and profiling in the

webplayer and also offers an error console will appear whenever the player's code throws exceptions.

Page last updated: 2012-11-30

Reference

Refer to the information on these pages for details on working in-depth with various aspects of Unity.

The Unity Manual Guide contains sections that apply only to certain platforms. Please select which platforms you want to see.

Platform-specific information can always be seen by clicking on the disclosure triangles on each page.

Components

Pathfinding

NavMesh Agent (Pro Only)

Off-mesh links (Pro only)

Navmesh Obstacle

Animation Components

Animation

Animation Clip

Animator Component

Animator Controller

Creating the Avatar

Avatar Body Mask

Avatar Skeleton Mask

Human Template files

Animation States

Animation Transitions

Asset Components

Audio Clip

Cubemap Texture

Meshes

Import settings for Meshes

FBX Importer, Rig options

FBX Importer - Animations Tab

Flare

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

611 of 1131 12/16/2012 10:12 PM

Font

Material

Meshes

Movie Texture

Procedural Material Assets

Render Texture

Text Asset

Texture 2D

Audio Components

Audio Listener

Audio Source

Audio Filters (PRO only)

Audio Low Pass Filter (PRO only)

Audio High Pass Filter (PRO only)

Audio Echo Filter (PRO only)

Audio Distortion Filter (PRO only)

Audio Reverb Filter (PRO only)

Audio Chorus Filter (PRO only)

Reverb Zones.

Microphone

Physics Components

Box Collider

Capsule Collider

Character Controller

Character Joint

Configurable Joint

Constant Force

Fixed Joint

Hinge Joint

Mesh Collider

Physics Material

Rigidbody

Sphere Collider

Spring Joint

Interactive Cloth

Skinned Cloth

Wheel Collider

The GameObject

GameObject

Image Effect Scripts

Antialiasing (PostEffect)

Bloom

Camera Motion Blur

Depth of Field

Noise And Grain

Screen Overlay

Color Correction Lookup Texture

Bloom and Lens Flares

Color Correction Curves

Contrast Enhance

Crease

Depth of Field 3.4

Tonemapping

Edge Detect Effect Normals

Fisheye image effect

Global Fog

Sun Shafts

Tilt Shift

Vignetting (and Chromatic Aberration)

Blur image effect

Color Correction image effect

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

612 of 1131 12/16/2012 10:12 PM

Contrast Stretch image effect

Edge Detection image effect

Glow image effect

Grayscale image effect

Motion Blur image effect

Noise image effect

Sepia Tone image effect

Screen Space Ambient Occlusion (SSAO) image effect

Twirl image effect

Vortex image effect

Settings Managers

Audio Manager

Editor settings

Input Manager

NavMesh Layers (Pro only)

Network Manager

Physics Manager

Player Settings

Quality Settings

Render Settings

Script Execution Order Settings

Tag Manager

Time Manager

Mesh Components

Mesh Filter

Mesh Renderer

Skinned Mesh Renderer

Text Mesh

Network Group

Network View

Effects

Particle System (Shuriken)

Halo

Lens Flare

Line Renderer

Trail Renderer

Projector

Particle Systems (Legacy, prior to release 3.5)

Ellipsoid Particle Emitter (Legacy)

Mesh Particle Emitter (Legacy)

Particle Animator (Legacy)

Particle Renderer (Legacy)

World Particle Collider (Legacy)

Rendering Components

Camera

Flare Layer

GUI Layer

GUI Text

GUI Texture

Light

Light Probe Group

Occlusion Area (Pro Only)

Occlusion Portals

Skybox

Level of Detail (Pro Only)

3D Textures

Transform Component

Transform

UnityGUI Group

GUI Skin

GUI Style

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

613 of 1131 12/16/2012 10:12 PM

Wizards

Ragdoll Wizard

Terrain Engine Guide

Using Terrains

Height

Textures

Trees

Grass

Detail Meshes

Terrain Engine Guide

Other Settings

Tree Creator Guide

Building Your First Tree

Tree Creator Structure

Branch Group Properties

Leaf Group Properties

Tree - Wind Zones

Animation View Guide

Using the Animation View (Legacy)

Using Animation Curves (Legacy)

Editing Curves

Objects with Multiple Moving Parts

Using Animation Events

GUI Scripting Guide

GUI Basics

Controls

Customization

Layout Modes

Extending UnityGUI

Extending the Editor

Network Reference Guide

Networking on Mobile devices.

High Level Networking Concepts

Networking Elements in Unity

Network Views

RPC Details

State Synchronization Details

Network Instantiate

Network Level Loading

Master Server

Building the Unity Networking Servers on your own

Minimizing Network Bandwidth

Social API

Built-in Shader Guide

Performance of Unity shaders

Normal Shader Family

Vertex-Lit

Diffuse

Specular

Bumped Diffuse

Bumped Specular

Parallax Diffuse

Parallax Bumped Specular

Decal

Diffuse Detail

Transparent Shader Family

Transparent Vertex-Lit

Transparent Diffuse

Transparent Specular

Transparent Bumped Diffuse

Transparent Bumped Specular

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

614 of 1131 12/16/2012 10:12 PM

Transparent Parallax Diffuse

Transparent Parallax Specular

Transparent Cutout Shader Family

Transparent Cutout Vertex-Lit

Transparent Cutout Diffuse

Transparent Cutout Specular

Transparent Cutout Bumped Diffuse

Transparent Cutout Bumped Specular

Self-Illuminated Shader Family

Self-Illuminated Vertex-Lit

Self-Illuminated Diffuse

Self-Illuminated Specular

Self-Illuminated Normal mapped Diffuse

Self-Illuminated Normal mapped Specular

Self-Illuminated Parallax Diffuse

Self-Illuminated Parallax Specular

Reflective Shader Family

Reflective Vertex-Lit

Reflective Diffuse

Reflective Specular

Reflective Bumped Diffuse

Reflective Bumped Specular

Reflective Parallax Diffuse

Reflective Parallax Specular

Reflective Normal Mapped Unlit

Reflective Normal mapped Vertex-lit

Unity's Rendering behind the scenes

Deferred Lighting Rendering Path

Forward Rendering Path Details

Vertex Lit Rendering Path Details

Hardware Requirements for Unity's Graphics Features

Shader Reference

Writing Surface Shaders

Surface Shader Examples

Custom Lighting models in Surface Shaders

Surface Shader Lighting Examples

Surface Shaders with DX11 Tessellation

Writing vertex and fragment shaders

Accessing shader properties in Cg

Providing vertex data to vertex programs

Built-in shader include files

Predefined shader preprocessor macros

Built-in state variables in shader programs

GLSL Shader Programs

ShaderLab syntax: Shader

ShaderLab syntax: Properties

ShaderLab syntax: SubShader

ShaderLab syntax: Pass

ShaderLab syntax: Color, Material, Lighting

ShaderLab syntax: Culling & Depth Testing

ShaderLab syntax: Texture Combiners

ShaderLab syntax: Fog

ShaderLab syntax: Alpha testing

ShaderLab syntax: Blending

ShaderLab syntax: Pass Tags

ShaderLab syntax: Name

ShaderLab syntax: BindChannels

ShaderLab syntax: UsePass

ShaderLab syntax: GrabPass

ShaderLab syntax: SubShader Tags

ShaderLab syntax: Fallback

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

615 of 1131 12/16/2012 10:12 PM

ShaderLab syntax: other commands

Advanced ShaderLab topics

Unity's Rendering Pipeline

Performance Tips when Writing Shaders

Rendering with Replaced Shaders

Using Depth Textures

Camera's Depth Texture

Platform Specific Rendering Differences

Shader Level of Detail

ShaderLab builtin values

Scripting Concepts

Layers

Layer-Based Collision Detection.

What is a Tag?

Rigidbody Sleeping
Page last updated: 2011-04-05

Components

Pathfinding

NavMesh Agent (Pro Only)

Off-mesh links (Pro only)

Navmesh Obstacle

Animation Components

Animation

Animation Clip

Animator Component

Animator Controller

Creating the Avatar

Avatar Body Mask

Avatar Skeleton Mask

Human Template files

Animation States

Animation Transitions

Asset Components

Audio Clip

Cubemap Texture

Meshes

Import settings for Meshes

FBX Importer, Rig options

FBX Importer - Animations Tab

Flare

Font

Material

Meshes

Movie Texture

Procedural Material Assets

Render Texture

Text Asset

Texture 2D

Audio Components

Audio Listener

Audio Source

Audio Filters (PRO only)

Audio Low Pass Filter (PRO only)

Audio High Pass Filter (PRO only)

Audio Echo Filter (PRO only)

Audio Distortion Filter (PRO only)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

616 of 1131 12/16/2012 10:12 PM

Audio Reverb Filter (PRO only)

Audio Chorus Filter (PRO only)

Reverb Zones.

Microphone

Physics Components

Box Collider

Capsule Collider

Character Controller

Character Joint

Configurable Joint

Constant Force

Fixed Joint

Hinge Joint

Mesh Collider

Physics Material

Rigidbody

Sphere Collider

Spring Joint

Interactive Cloth

Skinned Cloth

Wheel Collider

The GameObject

GameObject

Image Effect Scripts

Antialiasing (PostEffect)

Bloom

Camera Motion Blur

Depth of Field

Noise And Grain

Screen Overlay

Color Correction Lookup Texture

Bloom and Lens Flares

Color Correction Curves

Contrast Enhance

Crease

Depth of Field 3.4

Tonemapping

Edge Detect Effect Normals

Fisheye image effect

Global Fog

Sun Shafts

Tilt Shift

Vignetting (and Chromatic Aberration)

Blur image effect

Color Correction image effect

Contrast Stretch image effect

Edge Detection image effect

Glow image effect

Grayscale image effect

Motion Blur image effect

Noise image effect

Sepia Tone image effect

Screen Space Ambient Occlusion (SSAO) image effect

Twirl image effect

Vortex image effect

Settings Managers

Audio Manager

Editor settings

Input Manager

NavMesh Layers (Pro only)

Network Manager

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

617 of 1131 12/16/2012 10:12 PM

Physics Manager

Player Settings

Quality Settings

Render Settings

Script Execution Order Settings

Tag Manager

Time Manager

Mesh Components

Mesh Filter

Mesh Renderer

Skinned Mesh Renderer

Text Mesh

Network Group

Network View

Effects

Particle System (Shuriken)

Halo

Lens Flare

Line Renderer

Trail Renderer

Projector

Particle Systems (Legacy, prior to release 3.5)

Ellipsoid Particle Emitter (Legacy)

Mesh Particle Emitter (Legacy)

Particle Animator (Legacy)

Particle Renderer (Legacy)

World Particle Collider (Legacy)

Rendering Components

Camera

Flare Layer

GUI Layer

GUI Text

GUI Texture

Light

Light Probe Group

Occlusion Area (Pro Only)

Occlusion Portals

Skybox

Level of Detail (Pro Only)

3D Textures

Transform Component

Transform

UnityGUI Group

GUI Skin

GUI Style

Wizards

Ragdoll Wizard
Page last updated: 2008-06-16

comp-AIGroup

This section covers Unity's support for pathfinding, the process of planning an efficient route between two points while

avoiding obstacles along the way.

NavMesh Agent (Pro Only)

Off-mesh links (Pro only)

Navmesh Obstacle
Page last updated: 2011-12-01

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

618 of 1131 12/16/2012 10:12 PM

class-NavMeshAgent

The NavMesh Agent component is used in connection with pathfinding, and is the place to put information about how this

agent navigates the NavMesh. You can access it in Component->Navigation->Nav Mesh Agent

Radius Agent radius (used for pathfinding purposes only, and can differ from the actual object's radius,

typically larger).

Speed Maximum movement speed with which the agent can traverse the world toward its destination.

Acceleration Maximum acceleration.

Angular Speed Maximum rotation speed in (deg/s).

Stopping distance Stopping distance. The agent will decelerate when within this distance to the destination.

Auto Traverse OffMesh

Link

Automate movement onto and off of OffMeshLinks.

Auto Repath Acquire new path if existing is partial or invalid.

Height The height of the agent (used in debug graphics).

Base offset Vertical offset of the collision geometry relative to the actual geometry.

Obstacle Avoidance

Type

The level of quality of avoidance.

NavMesh Walkable Specifies the types of Navmesh layers that the agent can traverse.

(back to Navigation and Pathfinding)

Page last updated: 2012-01-27

class-OffMeshLink

Note that this section is primarily about the manual off-mesh links, namely those that are set up by the user via the

OffMeshLink component. For automatically generated off-mesh links, see the the Navmesh intro

It is possible that the navmesh static geometry in the scene is disconnected, thus making it impossible for agents to get from

one part of the world to the other.

To remedy this, Unity has a system of Off-mesh links

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

619 of 1131 12/16/2012 10:12 PM

The OffMeshLink component

An off-mesh link is a component that can be placed on any object, and it has the following properties

Start The start object of the off-mesh link.

End The end object of the off-mesh link.

Cost Override If value is positive, use it when calculating path cost on processing a path request. Otherwise, we

use the default cost (cost of the layer to which this game object belongs). If the Cost Override is set

to the value 3.0, moving over the off-mesh link will be three times more expensive than moving the

same distance on a default NavMesh area. This property is runtime-editable and does not require a

re-bake

Bi Directional If this is on, the link can be traversed both ways, if it's off, the link can only be traversed in the

direction from Start to End.

Activated Specifies if this link is actually used by the pathfinder. When this property is false, the off-mesh link

will be disregarded. This property is runtime-editable, and does not require a re-bake.

Special notes on OffMeshLink properties
The "Activated" and "Cost Override" properties can be changed at runtime and have immediate effect. All other properties

require a Navmesh re-bake before they effect.

If the start or end transforms are unassigned when baking, or if the position of either the start or end transforms is too far away

from the NavMesh to find valid positions, the off-mesh links will not be generated. In this case, an error is displayed in the

Console window.

(back to Navigation and Pathfinding)

Page last updated: 2012-01-27

class-NavMeshObstacle

Fixed obstacles on a navmesh can be set up as part of the baking process. However, it is also possible to have dynamic

obstacles in a scene which will be avoided by agents as they move around. Such dynamic obstacles can be specified using

the Navmesh Obstacle component. This can be added to any GameObject and will move as that object moves.

Radius Radius of the obstacle cylinder.

Height Height of the obstacle cylinder.
Page last updated: 2012-09-03

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

620 of 1131 12/16/2012 10:12 PM

comp-AnimationGroup

For a detailed explanation of the Mecanim Animation System, see Mecanim introduction

Animation

Animation Clip

Animator Component

Animator Controller

Creating the Avatar

Avatar Body Mask

Avatar Skeleton Mask

Human Template files

Animation States

Animation Transitions
Page last updated: 2012-11-12

class-Animation

The Animation Inspector

Properties
Animation The default animation that will be played when Play Automatically is enabled.

Animations A list of animations that can be accessed from scripts.

Play Automatically Should the animation be played automatically when starting the game?

Animate Physics Should the animation interact with physics.

Culling Type Determines when the animation will not be played.

Always Animate Always animate.

Based on

Renderers

Cull based on the default animation pose.

Based on Clip

Bounds

Cull based on clip bounds (calculated during import), if the clip bounds are out of view, the animation

will not be played.

Based on User

Bounds

Cull based on bounds defined by the user, if the user-defined bounds are out of view, the animation

will not be played.

See the Animation View Guide for more information on how to create animations inside Unity. See the Animation Import page

on how to import animated characters, or the Animation Scripting page on how to create animated behaviors for your game.

Page last updated: 2012-11-10

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

621 of 1131 12/16/2012 10:12 PM

class-AnimationClip

Animation Clips are the smallest building blocks of animation in Unity. They represent an isolated piece of motion, such as

RunLeft, Jump, or Crawl, and can be manipulated and combined in various ways to produce lively end results (see Animation

State Machines, Animator Controller, or Blend Trees).

Animation clips can be selected from imported FBX data (see FBXImporter settings for Animations), and when you click on the

set of available animation clips you will see the following set of properties:

Name The name of the clip.

Source Take The take in the source file to use as a source for this animation clip. (This option will not show up if

there's only one take). This is what defines a set of animation as separated in Motionbuilder, Maya

and other 3D packages. Unity can import these takes as individual clips or you can create them from

the whole file or a take.

Start Start frame of the clip.

End End frame of the clip.

Loop Pose Enable to make the motion loop seamlessly.

Cycle Offset Offset to the cycle of a looping animation, if we want to start it at a different time.

Root Transform

Rotation

Bake into Pose Enable to make root rotation be baked into the movement of the bones. Disable to make root rotation

be stored as root motion.

Based Upon What the root rotation is based upon.

- Original Keeps the rotation as it is authored in the source file.

- Body Orientation Keeps the upper body pointing forward.

Offset Offset to the root rotation (in degrees).

Root Transform

Position (Y)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

622 of 1131 12/16/2012 10:12 PM

Bake into Pose Enable to make vertical root motion be baked into the movement of the bones. Disable to make

vertical root motion be stored as root motion.

Based Upon What the vertical root position is based upon.

- Original Keeps the vertical position as it is authored in the source file.

- Center of Mass Keeps the center of mass aligned with root transform position.

- Feet Keeps the feet aligned with the root transform position.

Offset Offset to the vertical root position.

Root Transform

Position (XZ)

Bake into Pose Enable to make horizontal root motion be baked into the movement of the bones. Disable to make

horizontal root motion be stored as root motion.

Based Upon What the horizontal root position is based upon.

- Original Keeps the horizontal position as it is authored in the source file.

- Center of Mass Keeps the center of mass aligned with the root transform position.

Offset Offset to the horizontal root position.

Mirror Mirror left and right in this clip.

Body Mask The Body mask applied to this animation clip (see section on body masks).

Curves (Unity Pro only) Parameter-related curves (see Curves in Mecanim).

Creating clips is essentially defining the start and end points for segments of animation. In order for these clips to loop, they

should be trimmed in such a way to match the first and last frame as best as possible for the desired loop. For more on this,

see the section on Looping animation clips

Page last updated: 2012-11-12

class-Animator

Any GameObject that has an avatar will also have an Animator component, which is the link between the character and its

behavior.

The Animator component references an Animator Controller which is used for setting up behavior on the character. This

includes setup for State Machines, Blend Trees, and events to be controlled from script.

Properties
Controller The animator controller attached to this character

Avatar The Avatar for this character.

Apply Root Motion Should we control the character's position from the animation itself or from script.

Animate Physics Should the animation interact with physics?

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

623 of 1131 12/16/2012 10:12 PM

Culling Mode Culling mode for animations

Always animate Always animate, don't do culling

Based on

Renderers

When the renderers are invisible, only root motion is animated. All other body parts will remain static

while the character is invisible.
Page last updated: 2012-11-01

class-AnimatorController

You can view and set up character behavior from the Animator Controller view (Menu: Window > Animator Controller).

An Animator Controller can be created from the Project View (Menu: Create > Animator Controller). This creates a

.controller asset on disk, which looks like this in the Project Browser

Animator Controller asset on disk

After the state machine setup has been made, you can drop the controller onto the Animator component of any character with

an Avatar in the Hierarchy View.

The Animator Controller Window

The Animator Controller Window will contain

The Animation Layer Widget (top-left corner, see Animation Layers)

The Event Parameters Widget (bottom-left, see Animation Parameters)

The visualization of the State Machine itself.

Note that the Animator Controller Window will always display the state machine from the most recently selected

.controller asset, regardless of what scene is currently loaded.

Page last updated: 2012-11-14

class-Avatar

After an FBX file is imported, you can specify what kind of rig it is in the Rig tab of the FBX importer options.

Humanoid animations
For a Humanoid rig, select Humanoid and click Apply. Mecanim will attempt to match up your existing bone structure to the

Avatar bone structure. In many cases, it can do this automatically by analysing the connections between bones in the rig.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

624 of 1131 12/16/2012 10:12 PM

If the match has succeeded, you will see a check mark next to the Configure... menu

Also, in the case of a successful match, an Avatar sub-asset is added to the FBX asset, which you will be able to see in the

project view hierarchy.

Models with and without an Avatar sub-asset

The inspector for an Avatar asset

If Mecanim was unable to create the Avatar, you will see a cross next to the Configure ... button, and no Avatar sub-asset will

be added. When this happens, you need to configure the avatar manually.

Non-humanoid animations
Two options for non-humanoid animation are provided: Generic and Legacy. Generic animations are imported using the

Mecanim system but don't take advantage of the extra features available for humanoid animations. Legacy animations use the

the animation system that was provided by Unity before Mecanim. There are some cases where it is still useful to work with

legacy animations (most notably with legacy projects that you don't want to update fully) but they are seldom needed for new

projects. See this section of the manual for further details on legacy animations.

(back to Avatar Creation and Setup)

(back to Mecanim introduction)

Page last updated: 2012-10-18

class-AvatarBodyMask

Specific body parts can be selectively enabled or disabled in an animation using a so-called Body Mask. Body masks are

used in the Animation tab of the mesh import inspector and Animation Layers. Body masks enable you to tailor an animation to

fit the specific requirements of your character more closely. For example, you may have a standard walking animation that

includes both arm and leg motion, but if a character is carrying a large object with both hands then you wouldn't want his arms

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

625 of 1131 12/16/2012 10:12 PM

to swing by his sides as he walks. However, you could still use the standard walking animation by switching off the arm

movements in the body mask.

The body parts included are: Head, Left Arm, Right Arm, Left Hand, Right Hand, Left Leg, Right Leg and Root (which is

denoted by the "shadow" under the feet). In the body mask, you can also toggle inverse kinematics (IK) for hands and feet,

which will determine whether or not IK curves will be included in animation blending.

Click the avatar section to toggle inclusion or exclusion (green/red)

Double click in empty space surrounding the avatar to toggle all

Body mask in the Body Mask inspector (arms excluded)

In the Animation tab of the mesh import inspector, you will see a list entitled Clips that contains all the object's animation clips.

When you select an item from this list, options for the clip will be shown, including the body mask editor.

You can also create Body Mask Assets (Assets->Create->Avatar Body Mask), which show up as .mask files on disk.

The BodyMask assets can be reused in Animator Controllers, when specifying Animation Layers

A benefit of using body masks is that they tend to reduce memory overheads since body parts that are not active do not need

their associated animation curves. Also, the unused curves need not be calculated during playback which will tend to reduce

the CPU overhead of the animation.

(back to Mecanim introduction)

Page last updated: 2012-11-09

class-AvatarSkeletonMask

similar to AvatarBodyMask, except used for generic animations.

Page last updated: 2012-10-18

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

626 of 1131 12/16/2012 10:12 PM

class-HumanTemplate

You can save the mapping of bones in your skeleton to the Avatar on disk as a "human template file" (extention *.ht), which

can be reused by any characters that use this mapping. This is useful, for example, if your animators use a consistent layout

and naming convention for all skeleton but Mecanim doesn't know how to interpret it. You can then Load the .ht file for each

model, so that manual remapping only needs to be done once.

Page last updated: 2012-11-05

class-State

Animation States are the basic building blocks of an Animation State Machine. Each state contains an individual animation

sequence (or blend tree) which will play while the character is in that state. When an event in the game triggers a state

transition, the character will be left in a new state whose animation sequence will then take over.

When you select a state in the Animator Controller, you will see the properties for that state in the inspector:-

Speed The default speed of the animation

Motion The animation clip assigned to this state

Foot IK Should Foot IK be respected for this state

Transitions The list of transitions originating from this state

The default state, displayed in brown, is the state that the machine will be in when it is first activated. You can change the

default state, if necessary, by right-clicking on another state and selecting Set As Default from the context menu. The solo

and mute checkboxes on each transition are used to control the behaviour of animation previews - see this page for further

details.

A new state can be added by right-clicking on an empty space in the Animator Controller Window and selecting Create

State->Empty from the context menu. Alternatively, you can drag an animation into the Animator Controller Window to create

a state containing that animation. (Note that you can only drag Mecanim animations into the Controller - non-Mecanim

animations will be rejected.) States can also contain Blend Trees.

Any State

Any State is a special state which is always present. It exists for the situation where you want to go to a specific state

regardless of which state you are currently in. This is a shorthand way of adding the same outward transition to all states in

your machine. Note that the special meaning of Any State implies that it cannot be the end point of a transition (ie, jumping to

"any state" cannot be used as a way to pick a random state to enter next).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

627 of 1131 12/16/2012 10:12 PM

(back to Animation State Machines)

Page last updated: 2012-11-14

class-Transition

Animation Transitions define what happens when you switch from one Animation State to another. There can be only one

transition active at any given time.

Atomic Is this transition atomic? (cannot be interrupted)

Conditions Here we decide when transitions get triggered.

A condition consists of:

An event parameter

Instead of a parameter, you can also use Exit Time, and specify a number which represents the normalized time of the

source state (e.g. 0.95 means the transition will trigger, when we've played the source clip 95% through).

A conditional predicate, if needed (for example Less/Greater for floats).

A parameter value (if needed).

You can adjust the transition between the two animation clips by dragging the start and end values of the overlap.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

628 of 1131 12/16/2012 10:12 PM

(See also Transition solo / mute)

(back to Animation State Machines)

Page last updated: 2012-11-14

comp-AssetsGroup

Assets are the models, textures, sounds and all other "content" files from which you make your game.

This section describes Components for all asset types. For a general overview of assets, see Assets overview page.

Audio Clip

Cubemap Texture

Meshes

Import settings for Meshes

FBX Importer, Rig options

FBX Importer - Animations Tab

Flare

Font

Material

Meshes

Movie Texture

Procedural Material Assets

Render Texture

Text Asset

Texture 2D
Page last updated: 2010-09-02

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

629 of 1131 12/16/2012 10:12 PM

class-AudioClip

Audio Clips contain the audio data used by Audio Sources. Unity supports mono, stereo and multichannel audio assets (up to

eight channels). The audio file formats that Unity can import are .aif, .wav, .mp3, and .ogg. Unity can also import tracker

modules in the .xm, .mod, .it, and .s3m formats. The tracker module assets behave the same way as any other audio assets

in Unity although no waveform preview is available in the asset import inspector.

The Audio Clip Inspector

Properties
Audio Format The specific format that will be used for the sound at runtime.

Native This option offers higher quality at the expense of larger file size and is best for very short sound

effects.

Compressed The compression results in smaller files but with somewhat lower quality compared to native audio.

This format is best for medium length sound effects and music.

3D Sound If enabled, the sound will play back in 3D space. Both Mono and Stereo sounds can be played in 3D.

Force to mono If enabled, the audio clip will be down-mixed to a single channel sound.

Load Type The method Unity uses to load audio assets at runtime.

Decompress on

load

Audio files will be decompressed as soon as they are loaded. Use this option for smaller compressed

sounds to avoid the performance overhead of decompressing on the fly. Be aware that

decompressing sounds on load will use about ten times more memory than keeping them

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

630 of 1131 12/16/2012 10:12 PM

compressed, so don't use this option for large files.

Compressed in

memory

Keep sounds compressed in memory and decompress while playing. This option has a slight

performance overhead (especially for Ogg/Vorbis compressed files) so only use it for bigger files

where decompression on load would use a prohibitive amount of memory. Note that, due to technical

limitations, this option will silently switch to Stream From Disc (see below) for Ogg Vorbis assets on

platforms that use FMOD audio.

Stream from disc Stream audio data directly from disc. The memory used by this option is typically a small fraction of

the file size, so it is very useful for music or other very long tracks. For performance reasons, it is

usually advisable to stream only one or two files from disc at a time but the of streams that can

comfortably be handled depends on the hardware.

Compression Amount of Compression to be applied to a Compressed clip. Statistics about the file size can be

seen under the slider. A good approach to tuning this value is to drag the slider to a place that leaves

the playback "good enough" while keeping the file small enough for your distribution requirements.

Hardware

Decoding

(iOS only) On iOS devices, Apple's hardware decoder can be used resulting in lower CPU overhead during

decompression. Check out platform specific details for more info.

Gapless

looping

(Android/iOS only) Use this when compressing a seamless looping audio source file (in a non-compressed PCM

format) to ensure perfect continuity is preserved at the seam. Standard MPEG encoders introduce a short silence

at the loop point, which will be audible as a brief "click" or "pop".

Importing Audio Assets
Unity supports both Compressed and Native Audio. Any type of file (except MP3/Ogg Vorbis) will be initially imported as

Native. Compressed audio files must be decompressed by the CPU while the game is running, but have smaller file size. If

Stream is checked the audio is decompressed on the fly, otherwise it is decompressed completely as soon as it loads. Native

PCM formats (WAV, AIFF) have the benefit of giving higher fidelity without increasing the CPU overhead, but files in these

formats are typically much larger than compressed files. Module files (.mod,.it,.s3m..xm) can deliver very high quality with an

extremely low footprint.

As a general rule of thumb, Compressed audio (or modules) are best for long files like background music or dialog, while

Native is better for short sound effects. You should tweak the amount of Compression using the compression slider. Start with

high compression and gradually reduce the setting to the point where the loss of sound quality is perceptible. Then, increase it

again slightly until the perceived loss of quality disappears.

Using 3D Audio
If an audio clip is marked as a 3D Sound then it will be played back so as to simulate its position in the game world's 3D

space. 3D sounds emulate the distance and location of sounds by attenuating volume and panning across speakers. Both

mono and multiple channel sounds can be positioned in 3D. For multiple channel audio, use the spread option on the Audio

Source to spread and split out the discrete channels in speaker space. Unity offers a variety of options to control and fine-tune

the audio behavior in 3D space - see the Audio Source component reference for further details.

Platform specific details

 iOS

On mobile platforms compressed audio is encoded as MP3 to take advantage of hardware decompression.

To improve performance, audio clips can be played back using the Apple hardware codec. To enable this option, check the

"Hardware Decoding" checkbox in the Audio Importer. Note that only one hardware audio stream can be decompressed at a

time, including the background iPod audio.

If the hardware decoder is not available, the decompression will fall back on the software decoder (on iPhone 3GS or later,

Apple's software decoder is used in preference to Unity's own decoder (FMOD)).

 Android

On mobile platforms compressed audio is encoded as MP3 to take advantage of hardware decompression.

Page last updated: 2012-10-31

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

631 of 1131 12/16/2012 10:12 PM

class-Cubemap

A Cubemap Texture is a collection of six separate square Textures that are put onto the faces of an imaginary cube. Most

often they are used to display infinitely faraway reflections on objects, similar to how Skybox displays faraway scenery in the

background. The Reflective built-in shaders in Unity use Cubemaps to display reflection.

A mountain scene Cubemap displayed as a reflection on this sphere

You create Cubemap in one of several ways:

Use Assets->Create->Cubemap, set its properties, and drag six Texture assets onto corresponding Cubemap

"faces". Note that the textures must be re-applied if changed because the textures are baked into the Cubemap Asset

and are in no way linked to the textures.

1.

Use the Texture Import Settings to create a Cubemap from a single imported texture asset.2.

Render your scene into a cubemap from script. Code example in Camera.RenderToCubemap page contains a script for

rendering cubemaps straight from the editor.

3.

Properties
Right (+X) Texture for the right global side of the Cubemap face.

Left (-X) Texture for the up global side of the Cubemap face.

Top (+Y) Texture for the top global side of the Cubemap face.

Bottom (-Y) Texture for the bottom global side of the Cubemap face.

Front (+Z) Texture for the forward global side of the Cubemap face.

Back (-Z) Texture for the rear global side of the Cubemap face.

Face Size Width and Height in pixels across each individual Cubemap face. Textures will be internally scaled to

fit this size, there is no need to manually scale the assets.

Mipmap Enable to create mipmaps.

Format Format of the created cubemap.

Page last updated: 2010-12-08

class-FBXImporter

When a 3D model is imported, Unity represents it internally as a Mesh. A Mesh must be attached to a GameObject using a

Mesh Filter component. For the mesh to be visible, the GameObject must also have a Mesh Renderer or other suitable

rendering component attached. With these components in place, the mesh will be visible at the GameObject's position with its

exact appearance dependent on the Material used by the renderer.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

632 of 1131 12/16/2012 10:12 PM

A Mesh Filter together with Mesh Renderer makes the model appear on screen.

Unity's mesh importer provides many options for controlling the generation of the mesh and associating it with its textures and

materials. These options are covered by the following pages:-

Import settings for Meshes

FBX Importer, Rig options

FBX Importer - Animations Tab
Page last updated: 2012-10-26

FBXImporter-Model

The Import Settings for a model file will be displayed in the Model tab of the FBX importer inspector when the model is

selected. These affect the mesh, it's normals and imported materials. Settings are applied per asset on disk so if you need

assets with different settings make (and rename accordingly) a duplicate file.

Although defaults can suffice initially, it is worth studying the settings glossary below, as they can determine what you wish to

do with the game object.

Some general adjustments to be made for example might be:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

633 of 1131 12/16/2012 10:12 PM

Scale - this scale factor is used for compensating difference in units between Unity and 3d modeling tool - it rescales whole

file. If you do not care about units you can simply set it to 1.

Generate colliders - this will generate a collison mesh to allow your model to collide with other objects - see notes below.

Material Naming and Search - this will help you automatically setup your materials and locate textures

FBX Importer Inspector: Model tab

Meshes

Scale Factor Unity's physics system expects 1 meter in the game world to be 1 unit in the imported file. If you

prefer to model at a different scale then you can compensate for it here. defaults for different 3D

packages are as follows .fbx, .max, .jas, .c4d = 0.01, .mb, .ma, .lxo, .dxf, .blend, .dae = 1 .3ds = 0.1

Mesh Compression Increasing this value will reduce the file size of the mesh, but might introduce irregularities. It's best to

turn it up as high as possible without the mesh looking too different from the uncompressed version.

This is useful for optimizing game size.

Read/Write Enabled Enables the mesh to be written at runtime so you can modify the data - makes a copy in memory.

Optimize Mesh This option determines the order in which triangles will be listed in the mesh.

Import BlendShapes Disable this if your file contains BlendShapes and you don't want them to be imported.

Generate Colliders If this is enabled, your meshes will be imported with Mesh Colliders automatically attached. This is

useful for quickly generating a collision mesh for environment geometry, but should be avoided for

geometry you will be moving. For more info see Colliders below.

Swap UVs Use this if lightmapped objects pick up the wrong UV channels. This will swap your primary and

secondary UV channels.

Generate Lightmap Use this to create the second UV channel to be used for Lightmapping.

Advanced Options See Lightmapping UVs document.

Normals & Tangents

Normals Defines if and how normals should be calculated. This is useful for optimizing game size.

Import Default option. Imports normals from the file.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

634 of 1131 12/16/2012 10:12 PM

Calculate Calculates normals based on Smoothing angle. If selected, the Smoothing Angle becomes

enabled.

None Disables normals. Use this option if the mesh is neither normal mapped nor affected by realtime

lighting.

Tangents Defines if and how tangents and binormals should be calculated. This is useful for optimizing game

size.

Import Imports tangents and binormals from the file. This option is available only for FBX, Maya and 3dsMax

files and only when normals are imported from the file.

Calculate Default option. Calculates tangents and binormals. This option is available only when normals are

either imported or calculated.

None Disables tangents and binormals. The mesh will have no Tangents, so won't work with normal-

mapped shaders.

Smoothing Angle Sets how sharp an edge has to be in order to be treated as a hard edge. It is also used to split

normal map tangents.

Split Tangents Enable this if normal map lighting is broken by seams on your mesh. This usually only applies to

characters.

Materials

Import Materials Disable this if you don't want materials to be generated. Default-Diffuse material will be used instead.

Material Naming Controls how Unity materials are named:

By Base Texture

Name

The name of the diffuse texture of the imported material that will be used to name the material in

Unity. When a diffuse texture is not assigned to the material, Unity will use the name of the imported

material.

From Model's

Material

The name of the imported material will be used for naming the Unity material.

Model Name +

Model's Material

The name of the model file in combination with the name of the imported material will be used for

naming the Unity material.

Texture Name or

Model Name + Model's

Material (Obsolete)

The name of the diffuse texture of the imported material will be used for naming the Unity material.

When a diffuse texture is not assigned or it cannot be located in one of the Textures folders, then the

material will be named by Model Name + Model's Material instead. This option is backwards

compatible with the behavior of Unity 3.4 (and earlier versions). We recommend using By Base

texture Name, because it is less complicated and has more consistent behavior.

Material Search Controls where Unity will try to locate existing materials using the name defined by the Material

Naming option:

Local Unity will try to find existing materials only in the "local" Materials folder, ie, the Materials subfolder

which is the same folder as the model file.

Recursive-Up Unity will try to find existing materials in all Materials subfolders in all parent folders up to the Assets

folder.

Everywhere Unity will try to find existing materials in all Unity project folders.
Page last updated: 2012-12-03

FBXImporter-Rig

The Rig TAB allows you to assign or create an avatar definition to your imported skinned model so that you can animate it -

see Asset Preparation and Import

If you have a humanoid character e.g. a biped (two legs) that has two arms and a head, then choose Humanoid and 'Create

from this model' an Avatar will be created to best match the bone hierarchy - see Avatar Creation and Setup or you can pick an

alternative avatar Definition that has already been set up.

If you have a non humanoid character e.g. a quadruped, or any animateable entity that you wish to use with Mecanim choose

Generic after choosing you will then need to identify a bone in the drop down to choose as the root node.

Choose legacy if you wish to use the legacy animation system and import and use animations as with 3.x

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

635 of 1131 12/16/2012 10:12 PM

Animation Type The type of animation.

None No animation present

Legacy Legacy animation system

Generic Generic Mecanim animation

Humanoid Humanoid Mecanim animation system

Avatar Definition Where to get the Avatar definition

Create from this

model

The Avatar should be based on this model

Copy from other

Avatar

Point to an Avatar config set up on another model.

Configure... Go to the Avatar configuration

Keep additional bones
Page last updated: 2012-11-02

FBXImporter-Animations

Animations

Generation Controls how animations are imported:

Don't Import No animation or skinning is imported.

Store in Original

Roots

Animations are stored in the root objects of your animation package (these might be different from the

root objects in Unity).

Store in Nodes Animations are stored together with the objects they animate. Use this when you have a complex

animation setup and want full scripting control.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

636 of 1131 12/16/2012 10:12 PM

Store in Root Animations are stored in the scene's transform root objects. Use this when animating anything that

has a hierarchy.

Bake Animations Enable this when using IK or simulation in your animation package. Unity will convert to forward

kinematics on import. This option is available only for Maya, 3dsMax and Cinema4D files.

Animation Wrap mode The default Wrap Mode for the animation in the mesh being imported

Default The animation plays as specified in the animation splitting options below.

Once The animation plays through to the end once and then stops.

Loop The animation plays through and then restarts when the end is reached.

PingPong The animation plays through and then plays in reverse from the end to the start, and so on.

ClampForever The animation plays through but the last frame is repeated indefinitely. This is not the same as Once

mode because playback does not technically stop at the last frame (which is useful when blending

animations).

Split Animations If you have multiple animations in a single file, you can split it into multiple clips.

Name The name of the split animation clip

Start The first frame of this clip in the model file

End The last frame of this clip in the model file

WrapMode What the split clip does when the end of the animation is reached (this is identical to the wrap mode

option described above).

Loop Depending on how the animation was created, one extra frame of animation may be required for the

split clip to loop properly. If your looping animation doesn't look correct, try enabling this option.

Animation

Compression

Anim. Compression The type of compression that will be applied to this mesh's animation(s)

Off Disables animation compression. This means that Unity doesn't reduce keyframe count on import,

which leads to the highest precision animations, but slower performance and bigger file and runtime

memory size. It is generally not advisable to use this option - if you need higher precision animation,

you should enable keyframe reduction and lower allowed Animation Compression Error values

instead.

Keyframe

Reduction

Reduces keyframes on import. If selected, the Animation Compression Errors options are

displayed.

Keyframe

Reduction and

Compression

Reduces keyframes on import and compresses keyframes when storing animations in files. This

affects only file size - the runtime memory size is the same as Keyframe Reduction. If selected, the

Animation Compression Errors options are displayed.

Animation

Compression Errors

These options are available only when keyframe reduction is enabled.

Rotation Error Defines how much rotation curves should be reduced. The smaller value you use - the higher

precision you get.

Position Error Defines how much position curves should be reduced. The smaller value you use - the higher

precision you get.

Scale Error Defines how much scale curves should be reduced. The smaller value you use - the higher precision

you get.

For properties of AnimationClip, go to the AnimationClip reference page

Page last updated: 2012-11-08

class-Flare

Flare objects are the source assets that are used by Lens Flare Components. The Flare itself is a combination of a texture file

and specific information that determines how the Flare behaves. Then when you want to use the Flare in a Scene, you

reference the specific Flare from inside a LensFlare Component attached to a GameObject.

There are some sample Flares in the Standard Assets package. If you want to add one of these to your scene, attach a Lens

Flare Component to a GameObject, and drag the Flare you want to use into the Flare property of the Lens Flare, just like

assigning a Material to a Mesh Renderer.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

637 of 1131 12/16/2012 10:12 PM

The Flare Inspector

Flares work by containing several Flare Elements on a single Texture. Within the Flare, you pick & choose which Elements

you want to include from any of the Textures.

Properties
Elements The number of Flare images included in the Flare.

Image Index Which Flare image to use from the Flare Texture for this Element. See the Flare Textures section

below for more information.

Position The Element's offset along a line running from the containing GameObject's position through the

screen center. 0 = GameObject position, 1 = screen center.

Size The size of the element.

Color Color tint of the element.

Use Light Color If the Flare is attached to a Light, enabling this will tint the Flare with the Light's color.

Rotate If enabled, bottom of the Element will always face the center of the screen, making the Element spin

as the Lens Flare moves around on the screen.

Zoom If enabled, the Element will scale up when it becomes visible and scale down again when it isn't.

Fade If enabled, the Element will fade in to full strength when it becomes visible and fade out when it isn't.

Flare Texture A texture containing images used by this Flare's Elements. It must be arranged according to one of

the TextureLayout options.

Texture Layout How the individual Flare Element images are laid out inside the Flare Texture.

Use Fog If enabled, the Flare will fade away with distance fog. This is used commonly for small Flares.

Details
A Flare consists of multiple Elements, arranged along a line. The line is calculated by comparing the position of the

GameObject containing the Lens Flare to the center of the screen. The line extends beyond the containing GameObject and

the screen center. All Flare Elements are strung out on this line.

Flare Textures
For performance reasons, all Elements of one Flare must share the same Texture. This Texture contains a collection of the

different images that are available as Elements in a single Flare. The Texture Layout defines how the Elements are laid out

in the Flare Texture.

Texture Layouts

These are the options you have for different Flare Texture Layouts. The numbers in the images correspond to the Image

Index property for each Element.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

638 of 1131 12/16/2012 10:12 PM

1 Large 4 Small

Designed for large sun-style Flares where you need one of the Elements to have a higher fidelity

than the others. This is designed to be used with Textures that are twice as high as they are wide.

1 Large 2 Medium 8

Small

Designed for complex flares that require 1 high-definition, 2 medium & 8 small images. This is used in

the standard assets "50mm Zoom Flare" where the two medium Elements are the rainbow-colored

circles. This is designed to be used with textures that are twice as high as they are wide.

1 Texture

A single image.

2x2 grid

A simple 2x2 grid.

3x3 grid

A simple 3x3 grid.

4x4 grid

A simple 4x4 grid.

Hints
If you use many different Flares, using a single Flare Texture that contains all the Elements will give you best rendering

performance.

Lens Flares are blocked by Colliders. A Collider in-between the Flare GameObject and the Camera will hide the Flare,

even if the Collider does not have a Mesh Renderer.
Page last updated: 2007-09-10

class-Font

Fonts can be created or imported for use in either the GUI Text or the Text Mesh Components.

Importing Font files
To add a font to your project you need to place the font file in your Assets folder. Unity will then automatically import it.

Supported Font formats are TrueType Fonts (.ttf or .dfont files) and OpenType Fonts (.otf files).

To change the Size of the font, highlight it in the Project View and you have a number of options in the Import Settings in

the Inspector.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

639 of 1131 12/16/2012 10:12 PM

Import Settings for a font

Font Size The size of the font, based on the sizes set in any word processor

Character The text encoding of the font. You can force the font to display only upper- or lower-case characters

here

 Setting this mode to Dynamic causes Unity to use the underlying OS font rendering routines (see

below).

2.x font placing Unity 3.x uses a more typographically correct vertical font placement compared to 2.x. We now use

the font ascent stored in the truetype font data rather than computing it when we render the font

texture. Ticking this Property causes the 2.x vertical positioning to be used.

Import Settings specific to non-dynamic fonts

Font Rendering The amount of anti-aliasing applied to the font.

Import Settings specific to dynamic fonts

Style The styling applied to the font, one of Normal, Bold, Italic or BoldAndItalic.

Include Font Data This setting controls the packaging of the font when used with Dynamic font property. When selected

the TTF is included in the output of the build. When not selected it is assumed that the end user will

have the font already installed on their machine. Note that fonts are subject to copyright and you

should only include fonts that you have licensed or created for yourself.

Font Names Only available when Include Font Data is not selected. Enter a comma-separated list of font names.

These fonts will be tried in turn from left to right and the first one found on the gamers machine will be

used.

After you import the font, you can expand the font in Project View to see that it has auto-generated some assets. Two assets

are created during import: "font material" and "font texture".

Dynamic fonts
Unity 3.0 adds support for dynamic font rendering. When you set the Characters drop-down in the Import Settings to

Dynamic, Unity will not pre-generate a texture with all font characters. Instead, it will use the FreeType font rendering engine

to create the texture on the fly. This has the advantage that it can save in download size and texture memory, especially when

you are using a font which is commonly included in user systems, so you don't have to include the font data, or when you need

to support asian languages or large font sizes (which would make the font textures very large using normal font textures).

Unicode support
Unity has full unicode support. Unicode text allows you to display German, French, Danish or Japanese characters that are

usually not supported in an ASCII character set. You can also enter a lot of different special purpose characters like arrow

signs or the option key sign, if your font supports it.

To use unicode characters, choose either Unicode or Dynamic from the Characters drop-down in the Import Settings. You

can now display unicode characters with this font. If you are using a GUIText or Text Mesh, you can enter unicode characters

into the Component's Text field in the Inspector. Note that the Inspector on Mac may not show the unicode characters

correctly.

You can also use unicode characters if you want to set the displayed text from scripting. The Javascript and C# compilers fully

support Unicode based scripts. You simply have to save your scripts with UTF-16 encoding. In Unitron, this can be done by

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

640 of 1131 12/16/2012 10:12 PM

opening the script and choosing Text->Text Encoding->Unicode (UTF 16). Now you can add unicode characters to a string

in your script and they will display as expected in UnityGUI, a GUIText, or a Text Mesh. On the PC where UniSciTE is used

for script editing save scripts using the UCS-2 Little Endian encoding.

Changing Font Color
There are different ways to change the color of your displayed font, depending on how the font is used.

GUIText & Text Mesh

If you are using a GUIText or a Text Mesh, you can change its color by using a custom Material for the font. In the Project

View, click on Create->Material, and select and set up the newly created Material in the Inspector. Make sure you assign the

texture from the font asset to the material. If you use the built-in GUI/Text Shader shader for the font material, you can choose

the color in the Text Color property of the material.

UnityGUI

If you are using UnityGUI scripting to display your font, you have much more control over the font's color under different

circumstances. To change the font's color, you create a GUISkin from Assets->Create->GUI Skin, and define the color for

the specific control state, e.g. Label->Normal->Text Color. For more details, please read the GUI Skin page.

Hints
To display an imported font select the font and choose GameObject->Create Other->3D Text.

Using only lower or upper case characters reduces generated texture size.

The default font that Unity supplies is Arial. This font is always available and does not appear in the Project window.
Page last updated: 2012-10-08

class-Material

Materials are used in conjunction with Mesh or Particle Renderers attached to the GameObject. They play an essential part

in defining how your object is displayed. Materials include a reference to the Shader used to render the Mesh or Particles, so

these Components can not be displayed without some kind of Material.

A Diffuse Shader Material has only two properties - a color and a texture.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

641 of 1131 12/16/2012 10:12 PM

Properties
The properties of any Material will change depending on the selected Shader. These are the most often used properties:

Shader The Shader that will be used by the Material. For more information, read the Built-in Shader Guide.

Main Color Any kind of color tint can be applied. Use white for no tint.

Base The Texture that will be displayed.

Details
Materials are used to place Textures onto your GameObjects. You cannot add a Texture directly without a Material, and doing

so will implicitly create a new Material. The proper workflow is to create a Material, select a Shader, and choose the Texture

asset(s) to display along with it. For more information on Materials, take a look at the Manual's page about Materials.

Choosing Shaders

After you create your material, the first thing you should decide is which Shader to use. You choose it from the drop-down

Shader menu.

The Shader drop-down menu

You can choose any Shader that exists in your project's assets folder or one of the built-in Shaders. You can also create your

own Shaders. For more information on using the built-in Shaders, view the Built-in Shader Guide. For information on writing

your own shaders, take a look at the Shaders section of the Manual and ShaderLab Reference.

Setting shader properties

Depending on the type of shader selected, a number of different properties can appear in the Inspector.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

642 of 1131 12/16/2012 10:12 PM

Properties of a Specular shader

Properties of a Normal mapped shader

Properties of a Normal mapped Specular shader

The different types of Shader properties are:

Color pickers Used to choose colors.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

643 of 1131 12/16/2012 10:12 PM

Sliders Used to tweak a number value across the allowed range.

Textures Used to select textures.

Texture placement

The placement of the textures can be altered by changing the Offset and Tiling properties.

This texture is tiled 2x2 times by changing the Tiling properties

Offset Slides the Texture around.

Tiling Tiles the Texture along the different axes.

Hints
It is a good practice to share a single Material across as many GameObjects as possible. This has great performance

benefits.
Page last updated: 2010-07-13

class-Mesh

Meshes make up a large part of your 3D worlds. Aside from some Asset store plugins, Unity does not include modelling tools.

Unity does however have great interactivity with most 3D modelling packages. Unity supports triangulated or Quadrangulated

polygon meshes. Nurbs, Nurms, Subdiv surfaces must be converted to polygons.

3D formats

Importing meshes into Unity can be achieved from two main types of files:

Exported 3D file formats, such as .FBX or .OBJ1.

Proprietary 3D application files, such as .Max and .Blend file formats from 3D Studio Max or Blender for example.2.

Either should enable you to get your meshes into Unity, but there are considerations as to which type you choose:

Exported 3D files
Unity can read .FBX, .dae (Collada), .3DS, .dxf and .obj files, FBX exporters can be found here and obj or Collada exporters

can also be found for many applications

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

644 of 1131 12/16/2012 10:12 PM

Advantages:

Only export the data you need

Verifiable data (re-import into 3D package before Unity)

Generally smaller files

Encourages modular approach - e.g different components for collision types or interactivity

Supports other 3D packages whose Proprietary formats we don't have direct support for

Disadvantages:

Can be a slower pipeline for prototyping and iterations

Easier to lose track of versions between source(working file) and game data (exported FBX for example)

Proprietary 3D application files
Unity can also import, through conversion: Max, Maya, Blender, Cinema4D, Modo, Lightwave & Cheetah3D files, e.g.

.MAX, .MB, .MA etc.

Advantages:

Quick iteration process (save the source file and Unity reimports)

Simple initially

Disadvantages:

A licensed copy of that software must be installed on all machines using the Unity project

Files can become bloated with unnecessary data

Big files can slow Unity updates

Less validation � harder to troubleshoot problems

Here are some guidelines for directly supported 3D applications, others can most often export file type listed above.

Maya

Cinema 4D

3ds Max

Cheetah3D

Modo

Lightwave

Blender

Textures
Unity will attempt to find the textures used by a mesh automatically on import by following a specific search plan. First, the

importer will look for a sub-folder called Textures within the same folder as the mesh or in any parent folder. If this fails, an

exhaustive search of all textures in the project will be carried out. Although slightly slower, the main disadvantage of the

exhaustive search is that there could be two or more textures in the project with the same name. In this case, it is not

guaranteed that the right one will be found.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

645 of 1131 12/16/2012 10:12 PM

Place your textures in a Textures folder at or above the asset's level

FBX importer options for the model

Material Generation and Assignment
For each imported material Unity will apply the following rules:-

If material generation is disabled (i.e. Import Materials is unchecked), then it will assign the Default-Diffuse material. If it is

enabled then it will do the following:

Unity will pick a name for the Unity material based on the Material Naming setting

Unity will try to find an existing material with that name. The scope of the Material search is defined by the Material

Search setting.

If Unity succeeds in finding an existing material then it will use it for the imported scene, otherwise it will generate a new

material

Colliders
Unity uses two main types of colliders: Mesh Colliders and Primitive Colliders. Mesh colliders are components that use

imported mesh data and can be used for environment collision. When you enable Generate Colliders in the Import Settings, a

Mesh collider is automatically added when the mesh is added to the Scene. It will be considered solid as far as the physics

system is concerned.

If you are moving the object around (a car for example), you can not use Mesh colliders. Instead, you will have to use Primitive

colliders. In this case you should disable the Generate Colliders setting.

Animations
Animations are automatically imported from the scene. For more details about animation import options see the section on

asset preparation and import in the Mecanim animation system.

Normal mapping and characters
If you have a character with a normal map that was generated from a high-polygon version of the model, you should import the

game-quality version with a Smoothing angle of 180 degrees. This will prevent odd-looking seams in lighting due to tangent

splitting. If the seams are still present with these settings, enable Split tangents across UV seams.

If you are converting a greyscale image into a normal map, you don't need to worry about this.

Blendshapes
Unity has support for BlendShapes (also called morph-targets or vertex level animation). Unity can import BlendShapes from

.FBX (BlendShapes and controlling aninimation) and .dae (only BlendShapes) exported 3D files. Unity BlendShapes support

vertex level animation on vertices, normals and tangents. Mesh can be affected by skin and BlendShapes at the same time. All

meshes imported with BlendShapes will use SkinnedMeshRenderer (no mater if it does have skin or not). BlendShape

animation is imported as part of regular animation - it simply animates BlendShape weigts on SkinnedMeshRenderer.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

646 of 1131 12/16/2012 10:12 PM

There are two ways to import BlendShapes with normals:

Set Normals import mode to Calculate, this way same logic will be used for calculating normals on a mesh and

BlendShapes.

1.

Export smoothing groups information to the source file, this ways Unity will calculate normals from smoothing groups for

mesh and BlendShapes.

2.

If you want tangents on your BlendShapes then set Tangents import mode to Calculate.

Hints
Merge your meshes together as much as possible. Make them share materials and textures. This has a huge performance

benefit.

If you need to set up your objects further in Unity (adding physics, scripts or other coolness), save yourself a world of pain

and name your objects properly in your 3D application. Working with lots of pCube17 or Box42-like objects is not fun.

Make your meshes be centered on the world origin in your 3D app. This will make them easier to place in Unity.

If a mesh does not have vertex colors, Unity will automatically add an array of all-white vertex colors to the mesh the first

time it is rendered.

The Unity Editor shows too many vertices or triangles (compared to what my 3D app says)

This is correct. What you are looking at is the number of vertices/triangles actually being sent to the GPU for rendering. In

addition to the case where the material requires them to be sent twice, other things like hard-normals and non-contiguous UVs

increase vertex/triangle counts significantly compared to what a modeling app tells you. Triangles need to be contiguous in

both 3D and UV space to form a strip, so when you have UV seams, degenerate triangles have to be made to form strips - this

bumps up the count.

See Also
Modeling Optimized Characters

How do I use normal maps?

How do I fix the rotation of an imported model?
Page last updated: 2012-12-03

class-MovieTexture

Note: This is a Pro/Advanced feature only.

 Desktop

Movie Textures are animated Textures that are created from a video file. By placing a video file in your project's Assets

Folder, you can import the video to be used exactly as you would use a regular Texture.

Video files are imported via Apple QuickTime. Supported file types are what your QuickTime installation can play (usually

.mov, .mpg, .mpeg, .mp4, .avi, .asf). On Windows movie importing requires Quicktime to be installed (download here).

Properties
The Movie Texture Inspector is very similar to the regular Texture Inspector.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

647 of 1131 12/16/2012 10:12 PM

Video files are Movie Textures in Unity

Aniso Level Increases Texture quality when viewing the texture at a steep angle. Good for floor and ground

textures

Filtering Mode Selects how the Texture is filtered when it gets stretched by 3D transformations

Loop If enabled, the movie will loop when it finishes playing

Quality Compression of the Ogg Theora video file. A higher value means higher quality, but larger file size

Details
When a video file is added to your Project, it will automatically be imported and converted to Ogg Theora format. Once your

Movie Texture has been imported, you can attach it to any GameObject or Material, just like a regular Texture.

Playing the Movie

Your Movie Texture will not play automatically when the game begins running. You must use a short script to tell it when to

play.

// this line of code will make the Movie Texture begin playing
renderer.material.mainTexture.Play();

Attach the following script to toggle Movie playback when the space bar is pressed:

function Update () {
if (Input.GetButtonDown ("Jump")) {

if (renderer.material.mainTexture.isPlaying) {
renderer.material.mainTexture.Pause();

}
else {

renderer.material.mainTexture.Play();
}

}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

648 of 1131 12/16/2012 10:12 PM

}

For more information about playing Movie Textures, see the Movie Texture Script Reference page

Movie Audio

When a Movie Texture is imported, the audio track accompanying the visuals are imported as well. This audio appears as an

AudioClip child of the Movie Texture.

The video's audio track appears as a child of the Movie Texture in the Project View

To play this audio, the Audio Clip must be attached to a GameObject, like any other Audio Clip. Drag the Audio Clip from the

Project View onto any GameObject in the Scene or Hierarchy View. Usually, this will be the same GameObject that is showing

the Movie. Then use audio.Play() to make the the movie's audio track play along with its video.

 iOS

Movie Textures are not supported on iOS. Instead, full-screen streaming playback is provided using

Handheld.PlayFullScreenMovie.

You need to keep your videos inside the StreamingAssets folder located in your Project directory.

Unity iOS supports any movie file types that play correctly on an iOS device, implying files with the extensions .mov, .mp4,

.mpv, and .3gp and using one of the following compression standards:

H.264 Baseline Profile Level 3.0 video

MPEG-4 Part 2 video

For more information about supported compression standards, consult the iPhone SDK MPMoviePlayerController Class

Reference.

As soon as you call iPhoneUtils.PlayMovie or iPhoneUtils.PlayMovieURL, the screen will fade from your current content to the

designated background color. It might take some time before the movie is ready to play but in the meantime, the player will

continue displaying the background color and may also display a progress indicator to let the user know the movie is loading.

When playback finishes, the screen will fade back to your content.

The video player does not respect switching to mute while playing videos

As written above, video files are played using Apple's embedded player (as of SDK 3.2 and iPhone OS 3.1.2 and earlier). This

contains a bug that prevents Unity switching to mute.

The video player does not respect the device's orientation

The Apple video player and iPhone SDK do not provide a way to adjust the orientation of the video. A common approach is to

manually create two copies of each movie in landscape and portrait orientations. Then, the orientation of the device can be

determined before playback so the right version of the movie can be chosen.

 Android

Movie Textures are not supported on Android. Instead, full-screen streaming playback is provided using

Handheld.PlayFullScreenMovie.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

649 of 1131 12/16/2012 10:12 PM

You need to keep your videos inside of the StreamingAssets folder located in your Project directory.

Unity Android supports any movie file type supported by Android, (ie, files with the extensions .mp4 and .3gp) and using one

of the following compression standards:

H.263

H.264 AVC

MPEG-4 SP

However, device vendors are keen on expanding this list, so some Android devices are able to play formats other than those

listed, such as HD videos.

For more information about the supported compression standards, consult the Android SDK Core Media Formats

documentation.

As soon as you call iPhoneUtils.PlayMovie or iPhoneUtils.PlayMovieURL, the screen will fade from your current content to the

designated background color. It might take some time before the movie is ready to play. In the meantime, the player will

continue displaying the background color and may also display a progress indicator to let the user know the movie is loading.

When playback finishes, the screen will fade back to your content.

Page last updated: 2012-09-18

class-ProceduralMaterial

Procedural Material Assets are textures that are generated for you at run-time. See Procedural Materials in the User Guide for

more information. A Procedural Material asset can contain one or more procedural materials. These can be viewed in the

Inspector just like regular materials. Note however that often procedural materials have many tweakable parameters. As with

Material assets the Inspector shows a preview of the Procedural Material at the bottom of the window.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

650 of 1131 12/16/2012 10:12 PM

A Procedural Material viewed in the Inspector.

The Inspector window has 4 main panes.

Substance Archive Manager.1.

Properties.2.

Generated Textures.3.

Preview.4.

Substance Archive Manager
The archive view shows you all the procedural materials that the Procedural Material asset contains. Select the procedural

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

651 of 1131 12/16/2012 10:12 PM

material you are interested in from the row of previews. Procedural Materials can be Added and Deleted to the Procedural

Material Asset archive using the plus and minus buttons. Adding a procedural material will create a new material using the

prototype encoded in the archive. The third, Duplicate button will create a new procedural material that is a copy of the

currently selected one, including all its settings. Procedural materials can be renamed by typing in a new name in the material

header name field.

Properties

Material Properties

These are the regular properties of the material, which are dependent on which shader is chosen. They work the same as for

regular materials.

Procedural Properties

The properties of any Procedural Material will change according to how the procedural material was created.

Generate at Load Generate the substance when the scene loads. If disabled, it will only be generated when prompted

from scripting.

Random Seed Procedural materials often need some randomness. The Random Seed can be used to vary the

generated appearance. Often this will be zero. Just click the Randomize button to get a different seed

and observe how the material changes.

Generated Textures

The Generated Textures pane.

This area allows you to visualize textures that the procedural material generates. The dropdown below each of the generated

textures allows you to choose which texture map should supply the alpha channel for that texture. You could, for example,

specify that the base alpha comes from the Transparency image, or from the Specular image. The screen-shot below shows

the base alpha channel coming from the Specular image.

Per-Platform Overrides

When you are building for different platforms, you have to think on the resolution of your textures for the target platform, the

size and the quality. You can override these options and assign specific values depending on the platform you are deploying

to. Note that if you don't select any value to override, the Editor will pick the default values when building your project.

Target Size The targeted size of the generated textures. Most procedural textures are designed to be resolution

independent and will respect the chosen target size, but in rare cases they will use a fixed size instead, or

have the possible sizes limited to within a certain range. The actual size of the generated textures can be

read in the preview at the bottom of the Inspector.

Texture Format What internal representation is used for the texture in memory, once it is generated. This is a tradeoff

between size and quality:

CompressedCompressed RGB texture. This will result in considerably less memory used.

RAW Uncompressed truecolor, this is the highest quality. At 256 KB for a 256x256 texture.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

652 of 1131 12/16/2012 10:12 PM

Preview
The procedural material preview operates in an identical manner to the material preview. However, unlike the regular material

preview it shows the pixel dimensions of the generated textures.

Page last updated: 2011-07-01

class-RenderTexture

Render Textures are special types of Textures that are created and updated at runtime. To use them, you first create a new

Render Texture and designate one of your Cameras to render into it. Then you can use the Render Texture in a Material just

like a regular Texture. The Water prefabs in Unity Standard Assets are an example of real-world use of Render Textures for

making real-time reflections and refractions.

Render Textures are a Unity Pro feature.

Properties
The Render Texture Inspector is different from most Inspectors, but very similar to the Texture Inspector.

The Render Texture Inspector is almost identical to the Texture Inspector

The Render Texture inspector displays the current contents of Render Texture in realtime and can be an invaluable debugging

tool for effects that use render textures.

Size The size of the Render Texture in pixels. Observe that only power-of-two values sizes can be chosen.

Aniso Level Increases Texture quality when viewing the texture at a steep angle. Good for floor and ground

textures

Filter Mode Selects how the Texture is filtered when it gets stretched by 3D transformations:

No Filtering The Texture becomes blocky up close

Bilinear The Texture becomes blurry up close

Trilinear Like Bilinear, but the Texture also blurs between the different mip levels

Wrap Mode Selects how the Texture behaves when tiled:

Repeat The Texture repeats (tiles) itself

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

653 of 1131 12/16/2012 10:12 PM

Clamp The Texture's edges get stretched

Example
A very quick way to make a live arena-camera in your game:

Create a new Render Texture asset using Assets->Create->Render Texture.1.

Create a new Camera using GameObject->Create Other->Camera.2.

Assign the Render Texture to the Target Texture of the new Camera.3.

Create a wide, tall and thin box4.

Drag the Render Texture onto it to create a Material that uses the render texture.5.

Enter Play Mode, and observe that the box's texture is updated in real-time based on the new Camera's output.6.

Render Textures are set up as demonstrated above

Hints

Unity renders everything in the texture assigned to RenderTexture.active.
Page last updated: 2011-01-31

class-TextAsset

Text Assets are a format for imported text files. When you drop a text file into your Project Folder, it will be converted to a Text

Asset. The supported text formats are:

.txt

.html

.htm

.xml

.bytes

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

654 of 1131 12/16/2012 10:12 PM

The Text Asset Inspector

Properties
Text The full text of the asset as a single string.

Details
The Text Asset is a very specialized use case. It is extremely useful for getting text from different text files into your game while

you are building it. You can write up a simple .txt file and bring the text into your game very easily. It is not intended for text file

generation at runtime. For that you will need to use traditional Input/Output programming techniques to read and write external

files.

Consider the following scenario. You are making a traditional text-heavy adventure game. For production simplicity, you want

to break up all the text in the game into the different rooms. In this case you would make one text file that contains all the text

that will be used in one room. From there it is easy to make a reference to the correct Text Asset for the room you enter. Then

with some customized parsing logic, you can manage a large amount of text very easily.

Binary data

A special feature of the text asset is that it can be used to store binary data. By giving a file the extension .bytes it can be

loaded as a text asset and the data can be accessed through the bytes property.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

655 of 1131 12/16/2012 10:12 PM

For example put a jpeg file into the Resources folder and change the extension to .bytes, then use the following script code to

read the data at runtime:

//Load texture from disk
TextAsset bindata= Resources.Load("Texture") as TextAsset;
Texture2D tex = new Texture2D(1,1);
tex.LoadImage(bindata.bytes);

Hints
Text Assets are serialized like all other assets in a build. There is no physical text file included when you publish your

game.

Text Assets are not intended to be used for text file generation at runtime.
Page last updated: 2011-05-24

class-Texture2D

Textures bring your Meshes, Particles, and interfaces to life! They are image or movie files that you lay over or wrap around

your objects. As they are so important, they have a lot of properties. If you are reading this for the first time, jump down to

Details, and return to the actual settings when you need a reference.

The shaders you use for your objects put specific requirements on which textures you need, but the basic principle is that you

can put any image file inside your project. If it meets the size requirements (specified below), it will get imported and optimized

for game use. This extends to multi-layer Photoshop or TIFF files - they are flattened on import, so there is no size penalty for

your game.

Properties
The Texture Inspector looks a bit different from most others:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

656 of 1131 12/16/2012 10:12 PM

The inspector is split into two sections, the Texture Importer and the texture preview.

Texture Importer
Textures all come from image files in your Project Folder. How they are imported is specified by the Texture Importer. You

change these by selecting the file texture in the Project View and modifying the Texture Importer in the Inspector.

The topmost item in the inspector is the Texture Type menu that allows you to select the type of texture you want to create

from the source image file.

Texture Type Select this to set basic parameters depending on the purpose of your texture.

Texture This is the most common setting used for all the textures in general.

Normal Map Select this to turn the color channels into a format suitable for real-time normal mapping. For more

info, see Normal Maps

GUI Use this if your texture is going to be used on any HUD/GUI Controls.

Reflection Also known as Cube Maps, used to create reflections on textures. check Cubemap Textures for more

info.

Cookie This sets up your texture with the basic parameters used for the Cookies of your lights

Advanced Select this when you want to have specific parameters on your texture and you want to have total

control over your texture.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

657 of 1131 12/16/2012 10:12 PM

Basic Texture Settings Selected

Alpha From

Grayscale

If enabled, an alpha transparency channel will be generated by the image's existing values of light &

dark.

Wrap Mode Selects how the Texture behaves when tiled:

Repeat The Texture repeats (tiles) itself

Clamp The Texture's edges get stretched

Filter Mode Selects how the Texture is filtered when it gets stretched by 3D transformations:

Point The Texture becomes blocky up close

Bilinear The Texture becomes blurry up close

Trilinear Like Bilinear, but the Texture also blurs between the different mip levels

Aniso Level Increases texture quality when viewing the texture at a steep angle. Good for floor and ground textures,

see below.

Normal Map Settings in the Texture Importer

Create from

Greyscale

If this is enabled then Bumpiness and Filtering options will be shown.

Bumpiness Control the amount of bumpiness.

Filtering Determine how the bumpiness is calculated:

Smooth This generates normal maps that are quite smooth.

Sharp Also known as a Sobel filter. this generates normal maps that are sharper than Standard.

Wrap Mode Selects how the Texture behaves when tiled:

Repeat The Texture repeats (tiles) itself

Clamp The Texture's edges get stretched

Filter Mode Selects how the Texture is filtered when it gets stretched by 3D transformations:

Point The Texture becomes blocky up close

Bilinear The Texture becomes blurry up close

Trilinear Like Bilinear, but the Texture also blurs between the different mip levels

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

658 of 1131 12/16/2012 10:12 PM

Aniso Level Increases texture quality when viewing the texture at a steep angle. Good for floor and ground textures,

see below.

GUI Settings for the Texture Importer

Filter Mode Selects how the Texture is filtered when it gets stretched by 3D transformations:

Point The Texture becomes blocky up close

Bilinear The Texture becomes blurry up close

Trilinear Like Bilinear, but the Texture also blurs between the different mip levels

Cursor settings for the Texture Importer

Wrap Mode Selects how the Texture behaves when tiled:

Repeat The Texture repeats (tiles) itself

Clamp The Texture's edges get stretched

Filter Mode Selects how the Texture is filtered when it gets stretched by 3D transformations:

Point The Texture becomes blocky up close

Bilinear The Texture becomes blurry up close

Trilinear Like Bilinear, but the Texture also blurs between the different mip levels

Reflection Settings in the Texture Importer

Mapping This determines how the texture will be mapped to a cubemap.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

659 of 1131 12/16/2012 10:12 PM

Sphere

Mapped

Maps the texture to a "sphere like" cubemap.

Cylindrical Maps the texture to a cylinder, use this when you want to use reflections on objects that are like cylinders.

Simple

Sphere

Maps the texture to a simple sphere, deforming the reflection when you rotate it.

Nice Sphere Maps the texture to a sphere, deforming it when you rotate but you still can see the texture's wrap

6 Frames

Layout

The texture contains six images arranged in one of the standard cubemap layouts, cross or sequence (+x -x

+y -y +z -z) and the images can be in either horizontal or vertical orientation.

Fixup edge

seams

Removes visual artifacts at the joined edges of the map image(s), which will be visible with glossy

reflections.

Filter Mode Selects how the Texture is filtered when it gets stretched by 3D transformations:

Point The Texture becomes blocky up close

Bilinear The Texture becomes blurry up close

Trilinear Like Bilinear, but the Texture also blurs between the different mip levels

Aniso Level Increases texture quality when viewing the texture at a steep angle. Good for floor and ground textures, see

below.

An interesting way to add a lot of visual detail to your scenes is to use Cookies - greyscale textures you use to control the

precise look of in-game lighting. This is fantastic for making moving clouds and giving an impression of dense foliage. The

Light page has more info on all this, but the main thing is that for textures to be usable for cookies you just need to set the

Texture Type to Cookie.

Cookie Settings in the Texture Importer

Light Type Type of light that the texture will be applied to. (This can be Spotlight, Point or Directional lights). For

Directional Lights this texture will tile, so in the texture inspector, you must set the Edge Mode to Repeat; for

SpotLights You should keep the edges of your cookie texture solid black in order to get the proper effect. In

the Texture Inspector, set the Edge Mode to Clamp.

Mapping (Point light only) Options for mapping the texture onto the spherical cast of the point light.

Sphere

Mapped

Maps the texture to a "sphere like" cubemap.

Cylindrical Maps the texture to a cylinder, use this when you want to use reflections on objects that are like cylinders.

Simple

Sphere

Maps the texture to a simple sphere, deforming the reflection when you rotate it.

Nice Sphere Maps the texture to a sphere, deforming it when you rotate but you still can see the texture's wrap

6 Frames

Layout

The texture contains six images arranged in one of the standard cubemap layouts, cross or sequence (+x -x

+y -y +z -z) and the images can be in either horizontal or vertical orientation.

Fixup edge

seams

(Point light only) Removes visual artifacts at the joined edges of the map image(s).

Alpha from

Greyscale

If enabled, an alpha transparency channel will be generated by the image's existing values of light & dark.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

660 of 1131 12/16/2012 10:12 PM

Lightmap settings in the Texture Importer

Filter Mode Selects how the Texture is filtered when it gets stretched by 3D transformations:

Point The Texture becomes blocky up close

Bilinear The Texture becomes blurry up close

Trilinear Like Bilinear, but the Texture also blurs between the different mip levels

Aniso

Level

Increases texture quality when viewing the texture at a steep angle. Good for floor and ground textures, see

below.

The Advanced Texture Importer Settings dialog

Non Power of 2 If texture has non-power-of-two size, this will define a scaling behavior at import time (for more info see

the Texture Sizes section below):

None Texture will be padded to the next larger power-of-two size for use with GUITexture component.

To nearest Texture will be scaled to the nearest power-of-two size at import time. For instance 257x511 texture will

become 256x512. Note that PVRTC formats require textures to be square (width equal to height),

therefore final size will be upscaled to 512x512.

To larger Texture will be scaled to the next larger power-of-two size at import time. For instance 257x511 texture

will become 512x512.

To smaller Texture will be scaled to the next smaller power-of-two size at import time. For instance 257x511

texture will become 256x256.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

661 of 1131 12/16/2012 10:12 PM

Generate Cube Map Generates a cubemap from the texture using different generation methods.

Spheremap Maps the texture to a "sphere like" cubemap.

Cylindrical Maps the texture to a cylinder, use this when you want to use reflections on objects that are like

cylinders.

SimpleSpheremap Maps the texture to a simple sphere, deforming the reflection when you rotate it.

NiceSpheremap Maps the texture to a sphere, deforming it when you rotate but you still can see the texture's wrap

FacesVertical The texture contains the six faces of the cube arranged in a vertical strip in the order +x -x +y -y +z -z.

FacesHorizontal The texture contains the six faces of the cube arranged in a horizontal strip in the order +x -x +y -y +z

-z.

CrossVertical The texture contains the six faces of the cube arranged in a vertically oriented cross.

CrossHorizontal The texture contains the six faces of the cube arranged in a horizontally oriented cross.

Read/Write Enabled Select this to enable access to the texture data from scripts (GetPixels, SetPixels and other Texture2D

functions). Note however that a copy of the texture data will be made, doubling the amount of memory

required for texture asset. Use only if absolutely necessary. This is only valid for uncompressed and

DTX compressed textures, other types of compressed textures cannot be read from. Disabled by

default.

Import Type The way the image data is interpreted.

Default Standard texture.

Normal Map Texture is treated as a normal map (enables other options)

Lightmap Texture is treated as a lightmap (disables other options)

Alpha from grayscale (Default mode only) Generates the alpha channel from the luminance information in the image

Create from

grayscale

(Normal map mode only) Creates the map from the luminance information in the image

Bypass sRGB

sampling

(Default mode only) Use the exact colour values from the image rather than compensating for gamma

(useful when the texture is for GUI or used as a way to encode non-image data)

Generate Mip Maps Select this to enable mip-map generation. Mip maps are smaller versions of the texture that get used

when the texture is very small on screen. For more info, see Mip Maps below.

In Linear Space Generate mipmaps in linear colour space.

Border Mip Maps Select this to avoid colors seeping out to the edge of the lower Mip levels. Used for light cookies (see

below).

Mip Map Filtering Two ways of mip map filtering are available to optimize image quality:

Box The simplest way to fade out the mipmaps - the mip levels become smoother and smoother as they go

down in size.

Kaiser A sharpening Kaiser algorithm is run on the mip maps as they go down in size. If your textures are too

blurry in the distance, try this option.

Fade Out Mipmaps Enable this to make the mipmaps fade to gray as the mip levels progress. This is used for detail maps.

The left most scroll is the first mip level to begin fading out at. The rightmost scroll defines the mip

level where the texture is completely grayed out

Wrap Mode Selects how the Texture behaves when tiled:

Repeat The Texture repeats (tiles) itself

Clamp The Texture's edges get stretched

Filter Mode Selects how the Texture is filtered when it gets stretched by 3D transformations:

Point The Texture becomes blocky up close

Bilinear The Texture becomes blurry up close

Trilinear Like Bilinear, but the Texture also blurs between the different mip levels

Aniso Level Increases texture quality when viewing the texture at a steep angle. Good for floor and ground

textures, see below.

Per-Platform Overrides
When you are building for different platforms, you have to think about the resolution of your textures for the target platform, the

size and the quality. You can set default options and then override the defaults for a specific platform.

Default settings for all platforms.

Max Texture

Size

The maximum imported texture size. Artists often prefer to work with huge textures - scale the texture down

to a suitable size with this.

Texture Format What internal representation is used for the texture. This is a tradeoff between size and quality. In the

examples below we show the final size of a in-game texture of 256 by 256 pixels:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

662 of 1131 12/16/2012 10:12 PM

Compressed Compressed RGB texture. This is the most common format for diffuse textures. 4 bits per pixel (32 KB for a

256x256 texture).

16 bit Low-quality truecolor. Has 16 levels of red, green, blue and alpha.

Truecolor Truecolor, this is the highest quality. At 256 KB for a 256x256 texture.

If you have set the Texture Type to Advanced then the Texture Format has different values.

 Desktop

Texture Format What internal representation is used for the texture. This is a tradeoff between size and quality. In the

examples below we show the final size of an in-game texture of 256 by 256 pixels:

RGB

Compressed

DXT1

Compressed RGB texture. This is the most common format for diffuse textures. 4 bits per pixel (32 KB for a

256x256 texture).

RGBA

Compressed

DXT5

Compressed RGBA texture. This is the main format used for diffuse & specular control textures. 1

byte/pixel (64 KB for a 256x256 texture).

RGB 16 bit 65 thousand colors with no alpha. Compressed DXT formats use less memory and usually look better. 128

KB for a 256x256 texture.

RGB 24 bit Truecolor but without alpha. 192 KB for a 256x256 texture.

Alpha 8 bit High quality alpha channel but without any color. 64 KB for a 256x256 texture.

RGBA 16 bit Low-quality truecolor. Has 16 levels of red, green, blue and alpha. Compressed DXT5 format uses less

memory and usually looks better. 128 KB for a 256x256 texture.

RGBA 32 bit Truecolor with alpha - this is the highest quality. At 256 KB for a 256x256 texture, this one is expensive.

Most of the time, DXT5 offers sufficient quality at a much smaller size. The main way this is used is for

normal maps, as DXT compression there often carries a visible quality loss.

 iOS

Texture Format What internal representation is used for the texture. This is a tradeoff between size and quality. In

the examples below we show the final size of a in-game texture of 256 by 256 pixels:

RGB Compressed

PVRTC 4 bits

Compressed RGB texture. This is the most common format for diffuse textures. 4 bits per pixel (32

KB for a 256x256 texture)

RGBA Compressed

PVRTC 4 bits

Compressed RGBA texture. This is the main format used for diffuse & specular control textures or

diffuse textures with transparency. 4 bits per pixel (32 KB for a 256x256 texture)

RGB Compressed

PVRTC 2 bits

Compressed RGB texture. Lower quality format suitable for diffuse textures. 2 bits per pixel (16 KB

for a 256x256 texture)

RGBA Compressed

PVRTC 2 bits

Compressed RGBA texture. Lower quality format suitable for diffuse & specular control textures. 2

bits per pixel (16 KB for a 256x256 texture)

RGB Compressed

DXT1

Compressed RGB texture. This format is not supported on iOS, but kept for backwards compatibility

with desktop projects.

RGBA Compressed

DXT5

Compressed RGBA texture. This format is not supported on iOS, but kept for backwards

compatibility with desktop projects.

RGB 16 bit 65 thousand colors with no alpha. Uses more memory than PVRTC formats, but could be more

suitable for UI or crisp textures without gradients. 128 KB for a 256x256 texture.

RGB 24 bit Truecolor but without alpha. 192 KB for a 256x256 texture.

Alpha 8 bit High quality alpha channel but without any color. 64 KB for a 256x256 texture.

RGBA 16 bit Low-quality truecolor. Has 16 levels of red, green, blue and alpha. Uses more memory than PVRTC

formats, but can be handy if you need exact alpha channel. 128 KB for a 256x256 texture.

RGBA 32 bit Truecolor with alpha - this is the highest quality. At 256 KB for a 256x256 texture, this one is

expensive. Most of the time, PVRTC formats offers sufficient quality at a much smaller size.

Compression quality Choose Fast for quickest performance, Best for the best image quality and Normal for a balance

between the two.

 Android

Texture Format What internal representation is used for the texture. This is a tradeoff between size and quality. In the

examples below we show the final size of a in-game texture of 256 by 256 pixels:

RGB Compressed

DXT1

Compressed RGB texture. Supported by Nvidia Tegra. 4 bits per pixel (32 KB for a 256x256 texture).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

663 of 1131 12/16/2012 10:12 PM

RGBA Compressed

DXT5

Compressed RGBA texture. Supported by Nvidia Tegra. 6 bits per pixel (64 KB for a 256x256 texture).

RGB Compressed

ETC 4 bits

Compressed RGB texture. This is the default texture format for Android projects. ETC1 is part of

OpenGL ES 2.0 and is supported by all OpenGL ES 2.0 GPUs. It does not support alpha. 4 bits per

pixel (32 KB for a 256x256 texture)

RGB Compressed

PVRTC 2 bits

Compressed RGB texture. Supported by Imagination PowerVR GPUs. 2 bits per pixel (16 KB for a

256x256 texture)

RGBA Compressed

PVRTC 2 bits

Compressed RGBA texture. Supported by Imagination PowerVR GPUs. 2 bits per pixel (16 KB for a

256x256 texture)

RGB Compressed

PVRTC 4 bits

Compressed RGB texture. Supported by Imagination PowerVR GPUs. 4 bits per pixel (32 KB for a

256x256 texture)

RGBA Compressed

PVRTC 4 bits

Compressed RGBA texture. Supported by Imagination PowerVR GPUs. 4 bits per pixel (32 KB for a

256x256 texture)

RGB Compressed

ATC 4 bits

Compressed RGB texture. Supported by Qualcomm Snapdragon. 4 bits per pixel (32 KB for a

256x256 texture).

RGBA Compressed

ATC 8 bits

Compressed RGBA texture. Supported by Qualcomm Snapdragon. 6 bits per pixel (64 KB for a

256x256 texture).

RGB 16 bit 65 thousand colors with no alpha. Uses more memory than the compressed formats, but could be

more suitable for UI or crisp textures without gradients. 128 KB for a 256x256 texture.

RGB 24 bit Truecolor but without alpha. 192 KB for a 256x256 texture.

Alpha 8 bit High quality alpha channel but without any color. 64 KB for a 256x256 texture.

RGBA 16 bit Low-quality truecolor. The default compression for the textures with alpha channel. 128 KB for a

256x256 texture.

RGBA 32 bit Truecolor with alpha - this is the highest quality compression for the textures with alpha. 256 KB for a

256x256 texture.

Compression quality Choose Fast for quickest performance, Best for the best image quality and Normal for a balance

between the two.

Unless you're targeting a specific hardware, like Tegra, we'd recommend using ETC1 compression. If needed you could store

an external alpha channel and still benefit from lower texture footprint. If you absolutely want to store an alpha channel in a

texture, RGBA16 bit is the compression supported by all hardware vendors.

Textures can be imported from DDS files but only DXT or uncompressed pixel formats are currently supported.

If your app utilizes an unsupported texture compression, the textures will be uncompressed to RGBA 32 and stored in memory

along with the compressed ones. So in this case you lose time decompressing textures and lose memory storing them twice. It

may also have a very negative impact on rendering performance.

Flash

Format Image format

RGB JPG Compressed RGB image data compressed in JPG format

RGBA JPG Compressed RGBA image data (ie, with alpha) compressed in JPG format

RGB 24-bit Uncompressed RGB image data, 8 bits per channel

RGBA 32-bit Uncompressed RGBA image data, 8 bits per channel

Details

Supported Formats

Unity can read the following file formats: PSD, TIFF, JPG, TGA, PNG, GIF, BMP, IFF, PICT. It should be noted that Unity can

import multi-layer PSD & TIFF files just fine. They are flattened automatically on import but the layers are maintained in the

assets themselves, so you don't lose any of your work when using these file types natively. This is important as it allows you to

just have one copy of your textures that you can use from Photoshop, through your 3D modelling app and into Unity.

Texture Sizes

Ideally texture sizes should be powers of two on the sides. These sizes are as follows: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

or 2048 pixels. The textures do not have to be square, i.e. width can be different from height.

It is possible to use other (non power of two) texture sizes with Unity. Non power of two texture sizes work best when used on

GUI Textures, however if used on anything else they will be converted to an uncompressed RGBA 32 bit format. That means

they will take up more video memory (compared to PVRT(iOS)/DXT(Desktop) compressed textures), will be slower to load and

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

664 of 1131 12/16/2012 10:12 PM

slower to render (if you are on iOS mode). In general you'll use non power of two sizes only for GUI purposes.

Non power of two texture assets can be scaled up at import time using the Non Power of 2 option in the advanced texture

type in the import settings. Unity will scale texture contents as requested, and in the game they will behave just like any other

texture, so they can still be compressed and very fast to load.

One potential problem with using non power of two textures this is that Unity will convert these textures internally to power of

two, and this stretching process can introduce minor visual artefacts.

UV Mapping

When mapping a 2D texture onto a 3D model, some sort of wrapping is done. This is called UV mapping and is done in your

3D modelling app. Inside Unity, you can scale and move the texture using Materials. Scaling normal & detail maps is especially

useful.

Mip Maps

Mip Maps are a list of progressively smaller versions of an image, used to optimise performance on real-time 3D engines.

Objects that are far away from the camera use the smaller texture versions. Using mip maps uses 33% more memory, but not

using them can be a huge performance loss. You should always use mipmaps for in-game textures; the only exceptions are

textures that will never be minified (e.g. GUI textures).

Normal Maps

Normal maps are used by normal map shaders to make low-polygon models look as if they contain more detail. Unity uses

normal maps encoded as RGB images. You also have the option to generate a normal map from a grayscale height map

image.

Detail Maps

If you want to make a terrain, you normally use your main texture to show where there are areas of grass, rocks sand, etc... If

your terrain has a decent size, it will end up very blurry. Detail textures hide this fact by fading in small details as your main

texture gets up close.

When drawing detail textures, a neutral gray is invisible, white makes the main texture twice as bright and black makes the

main texture completely black.

Reflections (Cube Maps)

If you want to use texture for reflection maps (e.g. use the Reflective builtin shaders), you need to use Cubemap Textures.

Anisotropic filtering

Anisotropic filtering increases texture quality when viewed from a grazing angle, at some expense of rendering cost (the cost is

entirely on the graphics card). Increasing anisotropy level is usually a good idea for ground and floor textures. In Quality

Settings anisotropic filtering can be forced for all textures or disabled completely.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

665 of 1131 12/16/2012 10:12 PM

No anisotropy (left) / Maximum anisotropy (right) used on the ground texture
Page last updated: 2012-10-25

comp-AudioGroup

These Components implement sound in Unity.

Audio Listener - Add this to a Camera to get 3D positional sound.

Audio Source - Add this Component to a GameObject to make it play a sound.
Page last updated: 2007-07-16

class-AudioListener

The Audio Listener acts as a microphone-like device. It receives input from any given Audio Source in the scene and plays

sounds through the computer speakers. For most applications it makes the most sense to attach the listener to the Main

Camera. If an audio listener is within the boundaries of a Reverb Zone reverberation is applied to all audible sounds in the

scene. (PRO only) Furthermore, Audio Effects can be applied to the listener and it will be applied to all audible sounds in the

scene.

The Audio Listener, attached to the Main Camera

Properties
The Audio Listener has no properties. It simply must be added to work. It is always added to the Main Camera by default.

Details
The Audio Listener works in conjunction with Audio Sources, allowing you to create the aural experience for your games.

When the Audio Listener is attached to a GameObject in your scene, any Sources that are close enough to the Listener will

be picked up and output to the computer's speakers. Each scene can only have 1 Audio Listener to work properly.

If the Sources are 3D (see import settings in Audio Clip), the Listener will emulate position, velocity and orientation of the

sound in the 3D world (You can tweak attenuation and 3D/2D behavior in great detail in Audio Source) . 2D will ignore any 3D

processing. For example, if your character walks off a street into a night club, the night club's music should probably be 2D,

while the individual voices of characters in the club should be mono with their realistic positioning being handled by Unity.

You should attach the Audio Listener to either the Main Camera or to the GameObject that represents the player. Try both to

find what suits your game best.

Hints
Each scene can only have one Audio Listener.

You access the project-wide audio settings using the Audio Manager, found in the Edit->Project Settings->Audio menu.

View the Audio Clip Component page for more information about Mono vs Stereo sounds.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

666 of 1131 12/16/2012 10:12 PM

Page last updated: 2010-09-10

class-AudioSource

The Audio Source plays back an Audio Clip in the scene. If the Audio Clip is a 3D clip, the source is played back at a given

position and will attenuate over distance. The audio can be spread out between speakers (stereo to 7.1) (Spread) and

morphed between 3D and 2D (PanLevel). This can be controlled over distance with falloff curves. Also, if the listener is within

one or multiple Reverb Zones, reverberations is applied to the source. (PRO only) Individual filters can be applied to each

audio source for an even richer audio experience. See Audio Effects for more details.

The Audio Source gizmo in the Scene View and its settings in the inspector.

Properties
Audio Clip Reference to the sound clip file that will be played.

Mute If enabled the sound will be playing but muted.

Bypass Effects This Is to quickly "by-pass" filter effects applied to the audio source. An easy way to turn all effects

on/off.

Play On Awake If enabled, the sound will start playing the moment the scene launches. If disabled, you need to start

it using the Play() command from scripting.

Loop Enable this to make the Audio Clip loop when it reaches the end.

Priority Determines the priority of this audio source among all the ones that coexist in the scene. (Priority: 0 =

most important. 256 = least important. Default = 128.). Use 0 for music tracks to avoid it getting

occasionally swapped out.

Volume How loud the sound is at a distance of one world unit (one meter) from the Audio Listener.

Pitch Amount of change in pitch due to slowdown/speed up of the Audio Clip. Value 1 is normal playback

speed.

3D Sound Settings Settings that are applied to the audio source if the Audio Clip is a 3D Sound.

Pan Level Sets how much the 3d engine has an effect on the audio source.

Spread Sets the spread angle to 3d stereo or multichannel sound in speaker space.

Doppler Level Determines how much doppler effect will be applied to this audio source (if is set to 0, then no effect

is applied).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

667 of 1131 12/16/2012 10:12 PM

Min Distance Within the MinDistance, the sound will stay at loudest possible. Outside MinDistance it will begin to

attenuate. Increase the MinDistance of a sound to make it 'louder' in a 3d world, and decrease it to

make it 'quieter' in a 3d world.

Max Distance The distance where the sound stops attenuating at. Beyond this point it will stay at the volume it

would be at MaxDistance units from the listener and will not attenuate any more.

Rolloff Mode How fast the sound fades. The higher the value, the closer the Listener has to be before hearing the

sound.(This is determined by a Graph).

Logarithmic Rolloff The sound is loud when you are close to the audio source, but when you get away from the object it

decreases significantly fast.

Linear Rolloff The further away from the audio source you go, the less you can hear it.

Custom Rolloff The sound from the audio source behaves accordingly to how you set the graph of roll offs.

2D Sound Settings Settings that are applied to the audio source if the Audio clip is a 2D Sound.

Pan 2D Sets how much the engine has an effect on the audio source.

Types of Rolloff
There are three Rolloff modes: Logarithmic, Linear and Custom Rolloff. The Custom Rolloff can be modified by modifying the

volume distance curve as described below. If you try to modify the volume distance function when it is set to Logarithmic or

Linear, the type will automatically change to Custom Rolloff.

Rolloff Modes that an audio source can have.

Distance Functions
There are several properties of the audio that can be modified as a function of the distance between the audio source and the

audio listener.

Volume: Amplitude(0.0 - 1.0) over distance.

Pan: Left(-1.0) to Right(1.0) over distance.

Spread: Angle (degrees 0.0 - 360.0) over distance.

Low-Pass (only if LowPassFilter is attached to the AudioSource): Cutoff Frequency (22000.0-10.0) over distance.

Distance functions for Volume, Pan, Spread and Low-Pass audio filter. The current distance to the Audio Listener is marked

in the graph.

To modify the distance functions, you can edit the curves directly. For more information, see the guide to Editing Curves.

Creating Audio Sources

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

668 of 1131 12/16/2012 10:12 PM

Audio Sources don't do anything without an assigned Audio Clip. The Clip is the actual sound file that will be played back.

The Source is like a controller for starting and stopping playback of that clip, and modifying other audio properties.

To create a new Audio Source:

Import your audio files into your Unity Project. These are now Audio Clips.1.

Go to GameObject->Create Empty from the menubar.2.

With the new GameObject selected, select Component->Audio->Audio Source.3.

Assign the Audio Clip property of the Audio Source Component in the Inspector.4.

Note: If you want to create an Audio Source just for one Audio Clip that you have in the Assets folder then you can just drag

that clip to the scene view - a GameObject with an Audio Source component will be created automatically for it. Dragging a

clip onto on existing GameObject will attach the clip along with a new Audio Source if there isn't one already there. If the

object does already have an Audio Source then the newly dragged clip will replace the one that the source currently uses.

Platform specific details

 iOS

On mobile platforms compressed audio is encoded as MP3 for speedier decompression. Beware that this compression can

remove samples at the end of the clip and potentially break a "perfect-looping" clip. Make sure the clip is right on a specific

MP3 sample boundary to avoid sample clipping - tools to perform this task are widely available. For performance reasons

audio clips can be played back using the Apple hardware codec. To enable this, check the "Use Hardware" checkbox in the

import settings. See the Audio Clip documentation for more details.

 Android

On mobile platforms compressed audio is encoded as MP3 for speedier decompression. Beware that this compression can

remove samples at the end of the clip and potentially break a "perfect-looping" clip. Make sure the clip is right on a specific

MP3 sample boundary to avoid sample clipping - tools to perform this task are widely available.

Page last updated: 2012-08-08

class-AudioEffect

AudioSources and the AudioListener can have filter components applied, by adding the filter components to the same

GameObject the AudioSource or AudioListener is on. Filter effects are serialized in the component order as seen here:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

669 of 1131 12/16/2012 10:12 PM

Enabling/Disabling a filter component will bypass the filter. Though highly optimized, some filters are still CPU intensive. Audio

CPU usage can monitored in the profiler under the Audio Tab.

See these pages for more information on each filter type:

Low Pass Filter

High Pass Filter

Echo Filter

Distortion Filter

Reverb Filter

Chorus Filter
Page last updated: 2011-12-06

class-AudioLowPassFilter

The Audio Low Pass Filter filter passes low frequencies of an AudioSource, or all sound reaching an AudioListener, and cuts

frequencies higher than the Cutoff Frequency.

The Lowpass Resonance Q (known as Lowpass Resonance Quality Factor) determines how much the filter's self-resonance

is dampened. Higher Lowpass Resonance Q indicates a lower rate of energy loss i.e. the oscillations die out more slowly.

The Audio Low Pass Filter has a Rolloff curve associated with it, making it possible to set Cutoff Frequency over distance

between the AudioSource and the AudioListener.

The Audio Low Pass filter properties in the inspector.

Properties
Cutoff Frequency Lowpass cutoff frequency in hz. 10.0 to 22000.0. Default = 5000.0.

Lowpass Resonance QLowpass resonance Q value. 1.0 to 10.0. Default = 1.0.

Adding a low pass filter

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

670 of 1131 12/16/2012 10:12 PM

To add a low pass filter to a given audio source just select the object in the inspector and then select

Component->Audio->Audio Low Pass Filter.

Hints
Sounds propagates very differently given the environment. For example, to compliment a visual fog effect add a subtle

low-pass to the Audio Listener.

The high frequencies of a sound being emitted from behind a door will not reach the listener. To simulate this, simply

change the Cutoff Frequency when opening the door.
Page last updated: 2012-08-08

class-AudioHighPassFilter

The Audio High Pass Filter passes high frequencies of an AudioSource and cuts off signals with frequencies lower than the

Cutoff Frequency.

The Highpass resonance Q (known as Highpass Resonance Quality Factor) determines how much the filter's self-resonance

is dampened. Higher Highpass resonance Q indicates a lower rate of energy loss i.e. the oscillations die out more slowly.

The Audio high Pass filter properties in the inspector.

Properties
Cutoff Frequency Highpass cutoff frequency in hz. 10.0 to 22000.0. Default = 5000.0.

Highpass Resonance

Q

Highpass resonance Q value. 1.0 to 10.0. Default = 1.0.

Adding a high pass filter
To add a high pass filter to a given audio source just select the object in the inspector and then select

Component->Audio->Audio High Pass Filter.

Page last updated: 2010-09-17

class-AudioEchoFilter

The Audio Echo Filter repeats a sound after a given Delay, attenuating the repetitions based on the Decay Ratio.

The Wet Mix determines the amplitude of the filtered signal, where the Dry Mix determines the amplitude of the unfiltered

sound output.

The Audio Echo Filter properties in the inspector.

Properties
Delay Echo delay in ms. 10 to 5000. Default = 500.

Decay Ratio Echo decay per delay. 0 to 1. 1.0 = No decay, 0.0 = total decay (ie simple 1 line delay). Default =

0.5.L

Wet Mix Volume of echo signal to pass to output. 0.0 to 1.0. Default = 1.0.

Dry Mix Volume of original signal to pass to output. 0.0 to 1.0. Default = 1.0.

Adding an Echo filter
To add an Echo filter to a given audio source just select the object in the inspector and then select

Component->Audio->Audio Echo Filter.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

671 of 1131 12/16/2012 10:12 PM

Hints
Hard surfaces reflects the propagation of sound. For example a large canyon can be made more convincing with the

Audio Echo Filter.

Sound propagates slower than light - we all know that from lightning and thunder. To simulate this, add an Audio Echo

Filter to an event sound, set the Wet Mix to 0.0 and modulate the Delay to the distance between AudioSource and

AudioListener.
Page last updated: 2012-08-08

class-AudioDistorionFilter

The Audio Distortion Filter distorts the sound from an AudioSource or sounds reaching the AudioListener.

The Audio Distortion Pass filter properties in the inspector.

Properties
Distortion Distortion value. 0.0 to 1.0. Default = 0.5.

Adding a Distortion filter
To add an Audio Distortion Filter to a selected AudioSource or AudioListener select the object in the inspector and then

select Component->Audio->Audio Distortion Filter.

Hints
Apply the Audio Distortion Filter to simulate the sound of a low quality radio transmission.

Page last updated: 2010-09-09

class-AudioReverbFilter

The Audio Reverb Filter takes an Audio Clip and distorts it to create a personalized reverb effect.

The Audio Reverb filter properties in the inspector.

Properties
Reverb Preset Custom reverb presets, select user to create your own customized reverbs.

Dry Level Mix level of dry signal in output in mB. Ranges from -10000.0 to 0.0. Default is 0.

Room Room effect level at low frequencies in mB. Ranges from -10000.0 to 0.0. Default is 0.0.

Room HF Room effect high-frequency level in mB. Ranges from -10000.0 to 0.0. Default is 0.0.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

672 of 1131 12/16/2012 10:12 PM

Room LF Room effect low-frequency level in mB. Ranges from -10000.0 to 0.0. Default is 0.0.

Decay Time Reverberation decay time at low-frequencies in seconds. Ranges from 0.1 to 20.0. Default is 1.0.

Decay HFRatio Decay HF Ratio : High-frequency to low-frequency decay time ratio. Ranges from 0.1 to 2.0. Default

is 0.5.

Reflections Level Early reflections level relative to room effect in mB. Ranges from -10000.0 to 1000.0. Default is

-10000.0.

Reflections Delay Early reflections delay time relative to room effect in mB. Ranges from -10000.0 to 2000.0. Default is

0.0.

Reverb Level Late reverberation level relative to room effect in mB. Ranges from -10000.0 to 2000.0. Default is 0.0.

Reverb Delay Late reverberation delay time relative to first reflection in seconds. Ranges from 0.0 to 0.1. Default is

0.04.

HFReference Reference high frequency in Hz. Ranges from 20.0 to 20000.0. Default is 5000.0.

LFReference Reference low-frequency in Hz. Ranges from 20.0 to 1000.0. Default is 250.0.

Reflections Delay Late reverberation level relative to room effect in mB. Ranges from -10000.0 to 2000.0. Default is 0.0.

Diffusion Reverberation diffusion (echo density) in percent. Ranges from 0.0 to 100.0. Default is 100.0.

Density Reverberation density (modal density) in percent. Ranges from 0.0 to 100.0. Default is 100.0.

Note: These values can only be modified if your Reverb Preset is set to User, else these values will be grayed out and they

will have default values for each preset.

Adding a reverb pass filter
To add a reverb pass filter to a given audio source just select the object in the inspector and then select

Component->Audio->Audio reverb Filter.

Page last updated: 2012-08-08

class-AudioChorusFilter

The Audio Chorus Filter takes an Audio Clip and processes it creating a chorus effect.

The chorus effect modulates the original sound by a sinusoid low frequency oscillator (LFO). The output sounds like there are

multiple sources emitting the same sound with slight variations - resembling a choir.

The Audio high Pass filter properties in the inspector.

Properties
Dry Mix Volume of original signal to pass to output. 0.0 to 1.0. Default = 0.5.

Wet Mix 1 Volume of 1st chorus tap. 0.0 to 1.0. Default = 0.5.

Wet Mix 2 Volume of 2nd chorus tap. This tap is 90 degrees out of phase of the first tap. 0.0 to 1.0. Default =

0.5.

Wet Mix 3 Volume of 3rd chorus tap. This tap is 90 degrees out of phase of the second tap. 0.0 to 1.0. Default =

0.5.

Delay The LFO's delay in ms. 0.1 to 100.0. Default = 40.0 ms

Rate The LFO's modulation rate in Hz. 0.0 to 20.0. Default = 0.8 Hz.

Depth Chorus modulation depth. 0.0 to 1.0. Default = 0.03.

Feed Back Chorus feedback. Controls how much of the wet signal gets fed back into the filter's buffer. 0.0 to 1.0.

Default = 0.0.

Adding a chorus filter

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

673 of 1131 12/16/2012 10:12 PM

To add a chorus filter to a given audio source just select the object in the inspector and then select

Component->Audio->Audio Chorus Filter.

Hints
You can tweak the chorus filter to create a flanger effect by lowering the feedback and decreasing the delay, as the flanger

is a variant of the chorus.

Creating a simple, dry echo is done by setting Rate and Depth to 0 and tweaking the mixes and Delay
Page last updated: 2012-08-08

class-AudioReverbZone

Reverb Zones take an Audio Clip and distort it depending where the audio listener is located inside the reverb zone. They are

used when you want to gradually change from a point where there is no ambient effect to a place where there is one, for

example when you are entering a cavern.

The Audio Reverb Zone gizmo seen in the inspector.

Properties
Min Distance Represents the radius of the inner circle in the gizmo, this determines the zone where there is a

gradually reverb effect and a full reverb zone.

Max Distance Represents the radius of the outer circle in the gizmo, this determines the zone where there is no

effect and where the reverb starts to get applied gradually.

Reverb Preset Determines the reverb effect that will be used by the reverb zone.

This diagram illustrates the properties of the reverb zone.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

674 of 1131 12/16/2012 10:12 PM

How the sound works in a reverb zone

Adding a Reverb Zone
To add a Reverb Zone to a given audio source just select the object in the inspector and then select

Component->Audio->Audio Reverb Zone.

Hints.
You can mix reverb zones to create combined effects

Page last updated: 2012-08-08

class-Microphone

The Microphone class is useful for capturing input from a built-in (physical) microphone on your PC or mobile device.

With this class, you can start and end a recording from a built-in microphone, get a listing of available audio input devices

(microphones), and find out the status of each such input device.

For more information on how to use this class, see the Scripting Reference.

Page last updated: 2011-10-18

comp-DynamicsGroup

Unity has NVIDIA PhysX physics engine built-in. This allows for unique emergent behaviour and has many useful features.

Basics
To put an object under physics control, simply add a Rigidbody to it. When you do this, the object will be affected by gravity,

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

675 of 1131 12/16/2012 10:12 PM

and can collide with other objects in the world.

Rigidbodies

Rigidbodies are physically simulated objects. You use Rigidbodies for things that the player can push around, for example

crates or loose objects, or you can move Rigidbodies around directly by adding forces to it by scripting.

If you move the Transform of a non-Kinematic Rigidbody directly it may not collide correctly with other objects. Instead you

should move a Rigidbody by applying forces and torque to it. You can also add Joints to rigidbodies to make the behavior more

complex. For example, you could make a physical door or a crane with a swinging chain.

You also use Rigidbodies to bring vehicles to life, for example you can make cars using a Rigidbody, 4 Wheel Colliders and a

script applying wheel forces based on the user's Input.

You can make airplanes by applying forces to the Rigidbody from a script. Or you can create special vehicles or robots by

adding various Joints and applying forces via scripting.

Rigidbodies are most often used in combination with primitive colliders.

Tips:

You should never have a parent and child rigidbody together

You should never scale the parent of a rigidbody

Kinematic Rigidbodies

A Kinematic Rigidbody is a Rigidbody that has the isKinematic option enabled. Kinematic Rigidbodies are not affected by

forces, gravity or collisions. They are driven explicitly by setting the position and rotation of the Transform or animating them,

yet they can interact with other non-Kinematic Rigidbodies.

Kinematic Rigidbodies correctly wake up other Rigidbodies when they collide with them, and they apply friction to Rigidbodies

placed on top of them.

These are a few example uses for Kinematic Rigidbodies:

Sometimes you want an object to be under physics control but in another situation to be controlled explicitly from a

script or animation. For example you could make an animated character whose bones have Rigidbodies attached that

are connected with joints for use as a Ragdoll. Most of the time the character is under animation control, thus you

make the Rigidbody Kinematic. But when he gets hit you want him to turn into a Ragdoll and be affected by physics. To

accomplish this, you simply disable the isKinematic property.

1.

Sometimes you want a moving object that can push other objects yet not be pushed itself. For example if you have an

animated platform and you want to place some Rigidbody boxes on top, you should make the platform a Kinematic

Rigidbody instead of just a Collider without a Rigidbody.

2.

You might want to have a Kinematic Rigidbody that is animated and have a real Rigidbody follow it using one of the

available Joints.

3.

Static Colliders

A Static Collider is a GameObject that has a Collider but not a Rigidbody. Static Colliders are used for level geometry which

always stays at the same place and never moves around. You can add a Mesh Collider to your already existing graphical

meshes (even better use the Import Settings Generate Colliders check box), or you can use one of the other Collider types.

You should never move a Static Collider on a frame by frame basis. Moving Static Colliders will cause an internal

recomputation in PhysX that is quite expensive and which will result in a big drop in performance. On top of that the behaviour

of waking up other Rigidbodies based on a Static Collider is undefined, and moving Static Colliders will not apply friction to

Rigidbodies that touch it. Instead, Colliders that move should always be Kinematic Rigidbodies.

Character Controllers

You use Character Controllers if you want to make a humanoid character. This could be the main character in a third person

platformer, FPS shooter or any enemy characters.

These Controllers don't follow the rules of physics since it will not feel right (in Doom you run 90 miles per hour, come to halt in

one frame and turn on a dime). Instead, a Character Controller performs collision detection to make sure your characters can

slide along walls, walk up and down stairs, etc.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

676 of 1131 12/16/2012 10:12 PM

Character Controllers are not affected by forces but they can push Rigidbodies by applying forces to them from a script.

Usually, all humanoid characters are implemented using Character Controllers.

Character Controllers are inherently unphysical, thus if you want to apply real physics - Swing on ropes, get pushed by big

rocks - to your character you have to use a Rigidbody, this will let you use joints and forces on your character. Character

Controllers are always aligned along the Y axis, so you also need to use a Rigidbody if your character needs to be able to

change orientation in space (for example under a changing gravity). However, be aware that tuning a Rigidbody to feel right for

a character is hard due to the unphysical way in which game characters are expected to behave. Another difference is that

Character Controllers can slide smoothly over steps of a specified height, while Rigidbodies will not.

If you parent a Character Controller with a Rigidbody you will get a "Joint" like behavior.

Component Details

Physics Control

Rigidbody - Rigidbodies put objects under physics control.

Constant Force - A utility component that adds a constant force to a rigidbody. Great for rockets and other quick

functionality.

Colliders

Sphere Collider - use for sphere-shaped objects.

Box Collider - use for box-shaped objects.

Capsule Collider - use for capsule-like (a cylinder with hemisphere ends) objects.

Mesh Collider - takes the graphical mesh and uses it as a collision shape.

Physic Material - contains settings allowing you to fine-tune your object's physical properties (friction, bounce, etc).

Joints

Hinge Joint - Used to make door hinges.

Spring Joint - A spring-like joint.

Fixed Joint - Use to "lock" objects together.

Configurable Joint - Use create complex joint behaviors of virtually any kind

Special Function

Character Controller and Character Joint - Used to make character controllers.

Wheel Collider - A special collider for grounded vehicles.

Skinned Cloth - Used to create Skinned cloth

Interactive Cloth - Used to create Interactive cloths, this is just normal cloth being simulated.
Page last updated: 2010-05-05

class-BoxCollider

The Box Collider is a basic cube-shaped collision primitive.

A pile of Box Colliders

Properties

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

677 of 1131 12/16/2012 10:12 PM

Is Trigger If enabled, this Collider is used for triggering events, and is ignored by the physics engine.

Material Reference to the Physics Material that determines how this Collider interacts with others.

Center The position of the Collider in the object's local space.

Size The size of the Collider in the X, Y, Z directions.

Details
The Box Collider can be resized into different shapes of rectangular prisms. It works great for doors, walls, platforms, etc. It is

also effective as a human torso in a ragdoll or as a car hull in a vehicle. Of course, it works perfectly for just boxes and crates

as well!

A standard Box Collider

Colliders work with Rigidbodies to bring physics in Unity to life. Whereas Rigidbodies allow objects to be controlled by physics,

Colliders allow objects to collide with each other. Colliders must be added to objects independently of Rigidbodies. A Collider

does not necessarily need a Rigidbody attached, but a Rigidbody must be attached in order for the object to move as a result

of collisions.

When a collision between two Colliders occurs and if at least one of them has a Rigidbody attached, three collision messages

are sent out to the objects attached to them. These events can be handled in scripting, and allow you to create unique

behaviors with or without making use of the built-in NVIDIA PhysX engine.

Triggers

An alternative way of using Colliders is to mark them as a Trigger, just check the IsTrigger property checkbox in the Inspector.

Triggers are effectively ignored by the physics engine, and have a unique set of three trigger messages that are sent out when

a collision with a Trigger occurs. Triggers are useful for triggering other events in your game, like cutscenes, automatic door

opening, displaying tutorial messages, etc. Use your imagination!

Be aware that in order for two Triggers to send out trigger events when they collide, one of them must include a Rigidbody as

well. For a Trigger to collide with a normal Collider, one of them must have a Rigidbody attached. For a detailed chart of

different types of collisions, see the collision action matrix in the Advanced section below.

Friction and bounciness

Friction, bounciness and softness are defined in the Physisc Material. The Standard Assets contain the most common physics

materials. To use one of them click on the Physics Material drop-down and select one, eg. Ice. You can also create your own

physics materials and tweak all friction values.

Compound Colliders
Compound Colliders are combinations of primitive Colliders, collectively acting as a single Collider. They come in handy when

you have a complex mesh to use in collisions but cannot use a Mesh Collider. To create a Compound Collider, create child

objects of your colliding object, then add a primitive Collider to each child object. This allows you to position, rotate, and scale

each Collider easily and independently of one another.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

678 of 1131 12/16/2012 10:12 PM

A real-world Compound Collider setup

In the above picture, the Gun Model GameObject has a Rigidbody attached, and multiple primitive Colliders as child

GameObjects. When the Rigidbody parent is moved around by forces, the child Colliders move along with it. The primitive

Colliders will collide with the environment's Mesh Collider, and the parent Rigidbody will alter the way it moves based on forces

being applied to it and how its child Colliders interact with other Colliders in the Scene.

Mesh Colliders can't normally collide with each other. If a Mesh Collider is marked as Convex, then it can collide with another

Mesh Collider. The typical solution is to use primitive Colliders for any objects that move, and Mesh Colliders for static

background objects.

Hints
To add multiple Colliders for an object, create child GameObjects and attach a Collider to each one. This allows each

Collider to be manipulated independently.

You can look at the gizmos in the Scene View to see how the Collider is being calculated on your object.

Colliders do their best to match the scale of an object. If you have a non-uniform scale (a scale which is different in each

direction), only the Mesh Collider can match completely.

If you are moving an object through its Transform component but you want to receive Collision/Trigger messages, you

must attach a Rigidbody to the object that is moving.

Advanced

Collider combinations

There are numerous different combinations of collisions that can happen in Unity. Each game is unique, and different

combinations may work better for different types of games. If you're using physics in your game, it will be very helpful to

understand the different basic Collider types, their common uses, and how they interact with other types of objects.

Static Collider

These are GameObjects that do not have a Rigidbody attached, but do have a Collider attached. These objects should

remain still, or move very little. These work great for your environment geometry. They will not move if a Rigidbody collides

with them.

Rigidbody Collider

These GameObjects contain both a Rigidbody and a Collider. They are completely affected by the physics engine through

scripted forces and collisions. They might collide with a GameObject that only contains a Collider. These will likely be your

primary type of Collider in games that use physics.

Kinematic Rigidbody Collider

This GameObject contains a Collider and a Rigidbody which is marked IsKinematic. To move this GameObject, you modify its

Transform Component, rather than applying forces. They're similar to Static Colliders but will work better when you want to

move the Collider around frequently. There are some other specialized scenarios for using this GameObject.

This object can be used for circumstances in which you would normally want a Static Collider to send a trigger event. Since a

Trigger must have a Rigidbody attached, you should add a Rigidbody, then enable IsKinematic. This will prevent your Object

from moving from physics influence, and allow you to receive trigger events when you want to.

Kinematic Rigidbodies can easily be turned on and off. This is great for creating ragdolls, when you normally want a character

to follow an animation, then turn into a ragdoll when a collision occurs, prompted by an explosion or anything else you choose.

When this happens, simply turn all your Kinematic Rigidbodies into normal Rigidbodies through scripting.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

679 of 1131 12/16/2012 10:12 PM

If you have Rigidbodies come to rest so they are not moving for some time, they will "fall asleep". That is, they will not be

calculated during the physics update since they are not going anywhere. If you move a Kinematic Rigidbody out from

underneath normal Rigidbodies that are at rest on top of it, the sleeping Rigidbodies will "wake up" and be correctly calculated

again in the physics update. So if you have a lot of Static Colliders that you want to move around and have different object fall

on them correctly, use Kinematic Rigidbody Colliders.

Collision action matrix

Depending on the configurations of the two colliding Objects, a number of different actions can occur. The chart below outlines

what you can expect from two colliding Objects, based on the components that are attached to them. Some of the

combinations only cause one of the two Objects to be affected by the collision, so keep the standard rule in mind - physics will

not be applied to objects that do not have Rigidbodies attached.

Collision detection occurs and messages are sent upon collision

 Static

Collider

Rigidbody

Collider

Kinematic

Rigidbody

Collider

Static

Trigger

Collider

Rigidbody

Trigger

Collider

Kinematic

Rigidbody

Trigger Collider

Static Collider Y

Rigidbody Collider Y Y Y

Kinematic Rigidbody Collider Y

Static Trigger Collider

Rigidbody Trigger Collider

Kinematic Rigidbody Trigger

Collider

Trigger messages are sent upon collision

 Static

Collider

Rigidbody

Collider

Kinematic

Rigidbody

Collider

Static

Trigger

Collider

Rigidbody

Trigger

Collider

Kinematic

Rigidbody

Trigger Collider

Static Collider Y Y

Rigidbody Collider Y Y Y

Kinematic Rigidbody Collider Y Y Y

Static Trigger Collider Y Y Y Y

Rigidbody Trigger Collider Y Y Y Y Y Y

Kinematic Rigidbody Trigger

Collider

Y Y Y Y Y Y

Layer-Based Collision Detection

In Unity 3.x we introduce something called Layer-Based Collision Detection, and you can now selectively tell Unity

GameObjects to collide with specific layers they are attached to. For more information click here

Page last updated: 2009-07-16

class-CapsuleCollider

The Capsule Collider is made of two half-spheres joined together by a cylinder. It is the same shape as the Capsule primitive.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

680 of 1131 12/16/2012 10:12 PM

A pile of Capsule Colliders

Properties
Is Trigger If enabled, this Collider is used for triggering events, and is ignored by the physics engine.

Material Reference to the Physics Material that determines how this Collider interacts with others.

Center The position of the Collider in the object's local space.

Radius The radius of the Collider's local width.

Height The total height of the Collider.

Direction The axis of the capsule's lengthwise orientation in the object's local space.

Details
You can adjust the Capsule Collider's Radius and Height independently of each other. It is used in the Character Controller

and works well for poles, or can be combined with other Colliders for unusual shapes.

A standard Capsule Collider

Colliders work with Rigidbodies to bring physics in Unity to life. Whereas Rigidbodies allow objects to be controlled by physics,

Colliders allow objects to collide with each other. Colliders must be added to objects independently of Rigidbodies. A Collider

does not necessarily need a Rigidbody attached, but a Rigidbody must be attached in order for the object to move as a result

of collisions.

When a collision between two Colliders occurs and if at least one of them has a Rigidbody attached, three collision messages

are sent out to the objects attached to them. These events can be handled in scripting, and allow you to create unique

behaviors with or without making use of the built-in NVIDIA PhysX engine.

Triggers

An alternative way of using Colliders is to mark them as a Trigger, just check the IsTrigger property checkbox in the Inspector.

Triggers are effectively ignored by the physics engine, and have a unique set of three trigger messages that are sent out when

a collision with a Trigger occurs. Triggers are useful for triggering other events in your game, like cutscenes, automatic door

opening, displaying tutorial messages, etc. Use your imagination!

Be aware that in order for two Triggers to send out trigger events when they collide, one of them must include a Rigidbody as

well. For a Trigger to collide with a normal Collider, one of them must have a Rigidbody attached. For a detailed chart of

different types of collisions, see the collision action matrix in the Advanced section below.

Friction and bounciness

Friction, bounciness and softness are defined in the Physisc Material. The Standard Assets contain the most common physics

materials. To use one of them click on the Physics Material drop-down and select one, eg. Ice. You can also create your own

physics materials and tweak all friction values.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

681 of 1131 12/16/2012 10:12 PM

Compound Colliders
Compound Colliders are combinations of primitive Colliders, collectively acting as a single Collider. They come in handy when

you have a complex mesh to use in collisions but cannot use a Mesh Collider. To create a Compound Collider, create child

objects of your colliding object, then add a primitive Collider to each child object. This allows you to position, rotate, and scale

each Collider easily and independently of one another.

A real-world Compound Collider setup

In the above picture, the Gun Model GameObject has a Rigidbody attached, and multiple primitive Colliders as child

GameObjects. When the Rigidbody parent is moved around by forces, the child Colliders move along with it. The primitive

Colliders will collide with the environment's Mesh Collider, and the parent Rigidbody will alter the way it moves based on forces

being applied to it and how its child Colliders interact with other Colliders in the Scene.

Mesh Colliders can't normally collide with each other. If a Mesh Collider is marked as Convex, then it can collide with another

Mesh Collider. The typical solution is to use primitive Colliders for any objects that move, and Mesh Colliders for static

background objects.

Hints
To add multiple Colliders for an object, create child GameObjects and attach a Collider to each one. This allows each

Collider to be manipulated independently.

You can look at the gizmos in the Scene View to see how the Collider is being calculated on your object.

Colliders do their best to match the scale of an object. If you have a non-uniform scale (a scale which is different in each

direction), only the Mesh Collider can match completely.

If you are moving an object through its Transform component but you want to receive Collision/Trigger messages, you

must attach a Rigidbody to the object that is moving.

Advanced

Collider combinations

There are numerous different combinations of collisions that can happen in Unity. Each game is unique, and different

combinations may work better for different types of games. If you're using physics in your game, it will be very helpful to

understand the different basic Collider types, their common uses, and how they interact with other types of objects.

Static Collider

These are GameObjects that do not have a Rigidbody attached, but do have a Collider attached. These objects should

remain still, or move very little. These work great for your environment geometry. They will not move if a Rigidbody collides

with them.

Rigidbody Collider

These GameObjects contain both a Rigidbody and a Collider. They are completely affected by the physics engine through

scripted forces and collisions. They might collide with a GameObject that only contains a Collider. These will likely be your

primary type of Collider in games that use physics.

Kinematic Rigidbody Collider

This GameObject contains a Collider and a Rigidbody which is marked IsKinematic. To move this GameObject, you modify its

Transform Component, rather than applying forces. They're similar to Static Colliders but will work better when you want to

move the Collider around frequently. There are some other specialized scenarios for using this GameObject.

This object can be used for circumstances in which you would normally want a Static Collider to send a trigger event. Since a

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

682 of 1131 12/16/2012 10:12 PM

Trigger must have a Rigidbody attached, you should add a Rigidbody, then enable IsKinematic. This will prevent your Object

from moving from physics influence, and allow you to receive trigger events when you want to.

Kinematic Rigidbodies can easily be turned on and off. This is great for creating ragdolls, when you normally want a character

to follow an animation, then turn into a ragdoll when a collision occurs, prompted by an explosion or anything else you choose.

When this happens, simply turn all your Kinematic Rigidbodies into normal Rigidbodies through scripting.

If you have Rigidbodies come to rest so they are not moving for some time, they will "fall asleep". That is, they will not be

calculated during the physics update since they are not going anywhere. If you move a Kinematic Rigidbody out from

underneath normal Rigidbodies that are at rest on top of it, the sleeping Rigidbodies will "wake up" and be correctly calculated

again in the physics update. So if you have a lot of Static Colliders that you want to move around and have different object fall

on them correctly, use Kinematic Rigidbody Colliders.

Collision action matrix

Depending on the configurations of the two colliding Objects, a number of different actions can occur. The chart below outlines

what you can expect from two colliding Objects, based on the components that are attached to them. Some of the

combinations only cause one of the two Objects to be affected by the collision, so keep the standard rule in mind - physics will

not be applied to objects that do not have Rigidbodies attached.

Collision detection occurs and messages are sent upon collision

 Static

Collider

Rigidbody

Collider

Kinematic

Rigidbody

Collider

Static

Trigger

Collider

Rigidbody

Trigger

Collider

Kinematic

Rigidbody

Trigger Collider

Static Collider Y

Rigidbody Collider Y Y Y

Kinematic Rigidbody Collider Y

Static Trigger Collider

Rigidbody Trigger Collider

Kinematic Rigidbody Trigger

Collider

Trigger messages are sent upon collision

 Static

Collider

Rigidbody

Collider

Kinematic

Rigidbody

Collider

Static

Trigger

Collider

Rigidbody

Trigger

Collider

Kinematic

Rigidbody

Trigger Collider

Static Collider Y Y

Rigidbody Collider Y Y Y

Kinematic Rigidbody Collider Y Y Y

Static Trigger Collider Y Y Y Y

Rigidbody Trigger Collider Y Y Y Y Y Y

Kinematic Rigidbody Trigger

Collider

Y Y Y Y Y Y

Layer-Based Collision Detection

In Unity 3.x we introduce something called Layer-Based Collision Detection, and you can now selectively tell Unity

GameObjects to collide with specific layers they are attached to. For more information click here

Page last updated: 2012-11-30

class-CharacterController

The Character Controller is mainly used for third-person or first-person player control that does not make use of Rigidbody

physics.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

683 of 1131 12/16/2012 10:12 PM

The Character Controller

Properties
Height The Character's Capsule Collider height. Changing this will scale the collider along the Y axis in

both positive and negative directions.

Radius Length of the Capsule Collider's radius. This is essentially the width of the collider.

Slope Limit Limits the collider to only climb slopes that are equal to or less than the indicated value.

Step Offset The character will step up a stair only if it is closer to the ground than the indicated value.

Min Move Distance If the character tries to move below the indicated value, it will not move at all. This can be used to

reduce jitter. In most situations this value should be left at 0.

Skin width Two colliders can penetrate each other as deep as their Skin Width. Larger Skin Widths reduce jitter.

Low Skin Width can cause the character to get stuck. A good setting is to make this value 10% of the

Radius.

Center This will offset the Capsule Collider in world space, and won't affect how the Character pivots.

Details
The traditional Doom-style first person controls are not physically realistic. The character runs 90 miles per hour, comes to a

halt immediately and turns on a dime. Because it is so unrealistic, use of Rigidbodies and physics to create this behavior is

impractical and will feel wrong. The solution is the specialized Character Controller. It is simply a capsule shaped Collider

which can be told to move in some direction from a script. The Controller will then carry out the movement but be constrained

by collisions. It will slide along walls, walk up stairs (if they are lower than the Step Offset) and walk on slopes within the

Slope Limit.

The Controller does not react to forces on its own and it does not automatically push Rigidbodies away.

If you want to push Rigidbodies or objects with the Character Controller, you can apply forces to any object that it collides with

via the OnControllerColliderHit() function through scripting.

On the other hand, if you want your player character to be affected by physics then you might be better off using a Rigidbody

instead of the Character Controller.

Fine-tuning your character

You can modify the Height and Radius to fit your Character's mesh. It is recommended to always use around 2 meters for a

human-like character. You can also modify the Center of the capsule in case your pivot point is not at the exact center of the

Character.

Step Offset can affect this too, make sure that this value is between 0.1 and 0.4 for a 2 meter sized human.

Slope Limit should not be too small. Often using a value of 90 degrees works best. The Character Controller will not be able

to climb up walls due to the capsule shape.

Don't get stuck

The Skin Width is one of the most critical properties to get right when tuning your Character Controller. If your character gets

stuck it is most likely because your Skin Width is too small. The Skin Width will let objects slightly penetrate the Controller

but it removes jitter and prevents it from getting stuck.

It's good practice to keep your Skin Width at least greater than 0.01 and more than 10% of the Radius.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

684 of 1131 12/16/2012 10:12 PM

We recommend keeping Min Move Distance at 0.

See the Character Controller script reference here

You can download an example project showing pre-setup animated and moving character controllers from the Resources area

on our website.

Hints
Try adjusting your Skin Width if you find your character getting stuck frequently.

The Character Controller can affect objects using physics if you write your own scripts.

The Character Controller can not be affected by objects through physics.

Note that changing Character Controller properties in the inspector will recreate the controller in the scene, so any existing

Trigger contacts will get lost, and you will not get any OnTriggerEntered messages until the controller is moved again.
Page last updated: 2012-06-18

class-CharacterJoint

Character Joints are mainly used for Ragdoll effects. They are an extended ball-socket joint which allows you to limit the joint

on each axis.

If you just want to set up a ragdoll read about Ragdoll Wizard.

The Character Joint on a Ragdoll

Properties
Connected Body Optional reference to the Rigidbody that the joint is dependent upon. If not set, the joint connects to

the world.

Anchor The point in the GameObject's local space where the joint rotates around.

Axis The twist axes. Visualized with the orange gizmo cone.

Swing Axis The swing axis. Visualized with the green gizmo cone.

Low Twist Limit The lower limit of the joint.

High Twist Limit The higher limit of the joint.

Swing 1 Limit Lower limit around the defined Swing Axis

Swing 2 Limit Upper limit around the defined Swing Axis

Break Force The force that needs to be applied for this joint to break.

Break Torque The torque that needs to be applied for this joint to break.

Details
Character joint's give you a lot of possibilities for constraining motion like with a universal joint.

The twist axis (visualized with the orange gizmo) gives you most control over the limits as you can specify a lower and upper

limit in degrees (the limit angle is measured relative to the starting position). A value of -30 in Low Twist Limit->Limit and 60

in High Twist Limit->Limit limits the rotation around the twist axis (orange gizmo) between -30 and 60 degrees.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

685 of 1131 12/16/2012 10:12 PM

The Swing 1 Limit limits the rotation around the swing axis (green axis). The limit angle is symmetric. Thus a value of eg. 30

will limit the rotation between -30 and 30.

The Swing 2 Limit axis doesn't have a gizmo but the axis is orthogonal to the 2 other axes. Just like the previous axis the limit

is symmetric, thus a value of eg. 40 will limit the rotation around that axis between -40 and 40 degrees.

Breaking joints

You can use the Break Force and Break Torque properties to set limits for the joint's strength. If these are less than infinity,

and a force/torque greater than these limits are applied to the object, its Fixed Joint will be destroyed and will no longer be

confined by its restraints.

Hints
You do not need to assign a Connected Body to your joint for it to work.

Character Joints require your object to have a Rigidbody attached.
Page last updated: 2007-09-12

class-ConfigurableJoint

Configurable Joints are extremely customizable. They expose all joint-related properties of PhysX, so they are capable of

creating behaviors similar to all other joint types.

Properties of the Configurable Joint

Details
There are two primary functions that the Configurable Joint can perform: movement/rotation restriction and movement/rotation

acceleration. These functions depend on a number of inter-dependent properties. It may require some experimentation to

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

686 of 1131 12/16/2012 10:12 PM

create the exact behavior you're trying to achieve. We'll now give you an overview of the Joint's functionality to make your

experimentation as simple as possible.

Movement/Rotation Restriction
You specify restriction per axis and per motion type. XMotion, YMotion, and ZMotion allow you to define translation along

that axis. Angular XMotion, Angular YMotion, and Angular ZMotion allow you to define rotation around that axis. Each one

of these properties can be set to Free (unrestricted), Limited (restricted based on limits you can define), or Locked

(restricted to zero movement).

Limiting Motion

When you have any of the "Motion" properties set to Limited, you can define the limitations of movement for that axis. You

do this by changing the values of one of the "Limit" properties.

For translation of movement (non-angular), the Linear Limit property will define the maximum distance the object can move

from its origin. Translation on any "Motion" properties set to Limited will be restricted according to Linear Limit->Limit.

Think of this Limit property as setting a border around the axis for the object.

Bouncyness, Spring, and Damper will define the behavior of the object when it reaches the Limit on any of the Limited

"Motion" axes. If all of these values are set to 0, the object will instantly stop moving when it reaches the border.

Bouncyness will make the object bounce back away from the border. Spring and Damper will use springing forces to pull the

object back to the border. This will soften the border, so the object will be able to pass through the border and be pulled back

instead of stopping immediately.

Limiting Rotation

Limiting rotation works almost the same as limiting motion. The difference is that the three "Angular Motion" properties all

correspond to different "Angular Limit" properties. Translation restriction along all 3 axes are defined by the Linear Limit

property, and rotation restriction along each of the 3 axes is defined by a separate "Angular Limit" property per axis.

Angular XMotion limitation is the most robust, as you can define a Low Angular XLimit and a High Angular XLimit.

Therefore if you want to define a low rotation limit of -35 degrees and a high rotation limit of 180 degrees, you can do this. For

the Y and Z axes, the low and high rotation limits will be identical, set together by the Limit property of Angular YLimit or

Angular ZLimit.

The same rules about object behavior at the rotation limits from the Limiting Motion section applies here.

Movement/Rotation Acceleration
You specify object movement or rotation in terms of moving the object toward a particular position/rotation, or velocity/angular

velocity. This system works by defining the "Target" value you want to move toward, and using a "Drive" to provide

acceleration which will move the object toward that target. Each "Drive" has a Mode, which you use to define which "Target"

the object is moving toward.

Translation Acceleration

The XDrive, YDrive, and ZDrive properties are what start the object moving along that axis. Each Drive's Mode will define

whether the object should be moving toward the Target Position or Target Velocity or both. For example, when XDrive 's

mode is set to Position, then the object will try to move to the value of Target Position->X.

When a Drive is using Position in its Mode, its Position Spring value will define how the object is moved toward the Target

Position. Similarly, when a Drive is using Velocity in its Mode, its Maximum Force value will define how the object is

accelerated to the Target Velocity.

Rotation Acceleration

Rotation acceleration properties: Angular XDrive, Angular YZDrive, and Slerp Drive function the same way as the

translation Drives. There is one substantial difference. Slerp Drive behaves differently from the Angular Drive functionality.

Therefore you can choose to use either both Angular Drives or Slerp Drive by choosing one from the Rotation Drive

Mode. You cannot use both at once.

Properties
Anchor The point where the center of the joint is defined. All physics-based simulation will use this point as

the center in calculations

Axis The local axis that will define the object's natural rotation based on physics simulation

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

687 of 1131 12/16/2012 10:12 PM

Secondary Axis Together, Axis and Secondary Axis define the local coordinate system of the joint. The third axis is

set to be orthogonal to the other two.

XMotion Allow movement along the X axis to be Free, completely Locked, or Limited according to Linear

Limit

YMotion Allow movement along the Y axis to be Free, completely Locked, or Limited according to Linear

Limit

ZMotion Allow movement along the Z axis to be Free, completely Locked, or Limited according to Linear

Limit

Angular XMotion Allow rotation around the X axis to be Free, completely Locked, or Limited according to Low and

High Angular XLimit

Angular YMotion Allow rotation around the Y axis to be Free, completely Locked, or Limited according to Angular

YLimit

Angular ZMotion Allow rotation around the Z axis to be Free, completely Locked, or Limited according to Angular

ZLimit

Linear Limit Boundary defining movement restriction, based on distance from the joint's origin

Limit The distance in units from the origin to the wall of the boundary

Bouncyness Amount of bounce-back force applied to the object when it reaches the Limit

Spring Strength of force applied to move the object back to the Limit. Any value other than 0 will implicitly

soften the boundary

Damper Resistance strength against the Spring

Low Angular XLimit Boundary defining lower rotation restriction, based on delta from original rotation

Limit The rotation in degrees that the object's rotation should not drop below

Bouncyness Amount of bounce-back torque applied to the object when its rotation reaches the Limit

Spring Strength of force applied to move the object back to the Limit. Any value other than 0 will implicitly

soften the boundary

Damper Resistance strength against the Spring

High Angular XLimit Boundary defining upper rotation restriction, based on delta from original rotation.

Limit The rotation in degrees that the object's rotation should not exceed

Bouncyness Amount of bounce-back torque applied to the object when its rotation reaches the Limit

Spring Strength of force applied to move the object back to the Limit. Any value other than 0 will implicitly

soften the boundary

Damper Resistance strength against the Spring

Angular YLimit Boundary defining rotation restriction, based on delta from original rotation

Limit The rotation in degrees that the object's rotation should not exceed

Bouncyness Amount of bounce-back torque applied to the object when its rotation reaches the Limit

Spring Strength of torque applied to move the object back to the Limit. Any value other than 0 will implicitly

soften the boundary

Damper Resistance strength against the Spring

Angular ZLimit Boundary defining rotation restriction, based on delta from original rotation

Limit The rotation in degrees that the object's rotation should not exceed

Bouncyness Amount of bounce-back torque applied to the object when its rotation reaches the Limit

Spring Strength of force applied to move the object back to the Limit. Any value other than 0 will implicitly

soften the boundary

Damper Resistance strength against the Spring

Target Position The desired position that the joint should move into

Target Velocity The desired velocity that the joint should move along

XDrive Definition of how the joint's movement will behave along its local X axis

Mode Set the following properties to be dependent on Target Position, Target Velocity, or both

Position Spring Strength of a rubber-band pull toward the defined direction. Only used if Mode includes Position

Position Damper Resistance strength against the Position Spring. Only used if Mode includes Position

Maximum Force Amount of strength applied to push the object toward the defined direction. Only used if Mode

includes Velocity

YDrive Definition of how the joint's movement will behave along its local Y axis

Mode Set the following properties to be dependent on Target Position, Target Velocity, or both

Position Spring Strength of a rubber-band pull toward the defined direction. Only used if Mode includes Position.

Position Damper Resistance strength against the Position Spring. Only used if Mode includes Position.

Maximum Force Amount of strength applied to push the object toward the defined direction. Only used if Mode

includes Velocity.

ZDrive Definition of how the joint's movement will behave along its local Z axis

Mode Set the following properties to be dependent on Target Position, Target Velocity, or both.

Position Spring Strength of a rubber-band pull toward the defined direction. Only used if Mode includes Position

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

688 of 1131 12/16/2012 10:12 PM

Position Damper Resistance strength against the Position Spring. Only used if Mode includes Position

Maximum Force Amount of strength applied to push the object toward the defined direction. Only used if Mode

includes Velocity

Target Rotation This is a Quaternion. It defines the desired rotation that the joint should rotate into

Target Angular

Velocity

This is a Vector3. It defines the desired angular velocity that the joint should rotate into

Rotation Drive Mode Control the object's rotation with either X & YZ or Slerp Drive by itself

Angular XDrive Definition of how the joint's rotation will behave around its local X axis. Only used if Rotation Drive

Mode is Swing & Twist

Mode Set the following properties to be dependent on Target Rotation, Target Angular Velocity, or both

Position Spring Strength of a rubber-band pull toward the defined direction. Only used if Mode includes Position

Position Damper Resistance strength against the Position Spring. Only used if Mode includes Position

Maximum Force Amount of strength applied to push the object toward the defined direction. Only used if Mode

includes Velocity.

Angular YZDrive Definition of how the joint's rotation will behave around its local Y and Z axes. Only used if Rotation

Drive Mode is Swing & Twist

Mode Set the following properties to be dependent on Target Rotation, Target Angular Velocity, or both

Position Spring Strength of a rubber-band pull toward the defined direction. Only used if Mode includes Position

Position Damper Resistance strength against the Position Spring. Only used if Mode includes Position

Maximum Force Amount of strength applied to push the object toward the defined direction. Only used if Mode

includes Velocity

Slerp Drive Definition of how the joint's rotation will behave around all local axes. Only used if Rotation Drive

Mode is Slerp Only

Mode Set the following properties to be dependent on Target Rotation, Target Angular Velocity, or both

Position Spring Strength of a rubber-band pull toward the defined direction. Only used if Mode includes Position

Position Damper Resistance strength against the Position Spring. Only used if Mode includes Position

Maximum Force Amount of strength applied to push the object toward the defined direction. Only used if Mode

includes Velocity

Projection Mode Properties to track to snap the object back to its constrained position when it drifts off too much

Projection Distance Distance from the Connected Body that must be exceeded before the object snaps back to an

acceptable position

Projection Angle Difference in angle from the Connected Body that must be exceeded before the object snaps back

to an acceptable position

Congfigure in World

Space

If enabled, all Target values will be calculated in World Space instead of the object's Local Space

Break Force Applied Force values above this number will cause the joint to be destroyed

Break Torque Applied Torque values above this number will cause the joint to be destroyed
Page last updated: 2010-08-24

class-ConstantForce

Constant Force is a quick utility for adding constant forces to a Rigidbody. This works great for one shot objects like rockets,

if you don't want it to start with a large velocity but instead accelerate.

A rocket propelled forward by a Constant Force

Properties
Force The vector of a force to be applied in world space.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

689 of 1131 12/16/2012 10:12 PM

Relative Force The vector of a force to be applied in the object's local space.

Torque The vector of a torque, applied in world space. The object will begin spinning around this vector. The

longer the vector is, the faster the rotation.

Relative Torque The vector of a torque, applied in local space. The object will begin spinning around this vector. The

longer the vector is, the faster the rotation.

Details

To make a rocket that accelerates forward set the Relative Force to be along the positive z-axis. Then use the Rigidbody's

Drag property to make it not exceed some maximum velocity (the higher the drag the lower the maximum velocity will be). In

the Rigidbody, also make sure to turn off gravity so that the rocket will always stay on its path.

Hints
To make an object flow upwards, add a Constant Force with the Force property having a positive Y value.

To make an object fly forwards, add a Constant Force with the Relative Force property having a positive Z value.
Page last updated: 2007-10-02

class-FixedJoint

Fixed Joints restricts an object's movement to be dependent upon another object. This is somewhat similar to Parenting but

is implemented through physics rather than Transform hierarchy. The best scenarios for using them are when you have

objects that you want to easily break apart from each other, or connect two object's movement without parenting.

The Fixed Joint Inspector

Properties
Connected Body Optional reference to the Rigidbody that the joint is dependent upon. If not set, the joint connects to

the world.

Break Force The force that needs to be applied for this joint to break.

Break Torque The torque that needs to be applied for this joint to break.

Details
There may be scenarios in your game where you want objects to stick together permanently or temporarily. Fixed Joints may

be a good Component to use for these scenarios, since you will not have to script a change in your object's hierarchy to

achieve the desired effect. The trade-off is that you must use Rigidbodies for any objects that use a Fixed Joint.

For example, if you want to use a "sticky grenade", you can write a script that will detect collision with another Rigidbody (like

an enemy), and then create a Fixed Joint that will attach itself to that Rigidbody. Then as the enemy moves around, the joint

will keep the grenade stuck to them.

Breaking joints

You can use the Break Force and Break Torque properties to set limits for the joint's strength. If these are less than infinity,

and a force/torque greater than these limits are applied to the object, its Fixed Joint will be destroyed and will no longer be

confined by its restraints.

Hints
You do not need to assign a Connected Body to your joint for it to work.

Fixed Joints require a Rigidbody.
Page last updated: 2007-09-14

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

690 of 1131 12/16/2012 10:12 PM

class-HingeJoint

The Hinge Joint groups together two Rigidbodies, constraining them to move like they are connected by a hinge. It is perfect

for doors, but can also be used to model chains, pendulums, etc.

The Hinge Joint Inspector

Properties
Connected Body Optional reference to the Rigidbody that the joint is dependent upon. If not set, the joint connects to

the world.

Anchor The position of the axis around which the body swings. The position is defined in local space.

Axis The direction of the axis around which the body swings. The direction is defined in local space.

Use Spring Spring makes the Rigidbody reach for a specific angle compared to its connected body.

Spring Properties of the Spring that are used if Use Spring is enabled.

Spring The force the object asserts to move into the position.

Damper The higher this value, the more the object will slow down.

Target Position Target angle of the spring. The spring pulls towards this angle measured in degrees.

Use Motor The motor makes the object spin around.

Motor Properties of the Motor that are used if Use Motor is enabled.

Target Velocity The speed the object tries to attain.

Force The force applied in order to attain the speed.

Free Spin If enabled, the motor is never used to brake the spinning, only accelerate it.

Use Limits If enabled, the angle of the hinge will be restricted within the Min & Max values.

Limits Properties of the Limits that are used if Use Limits is enabled.

Min The lowest angle the rotation can go.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

691 of 1131 12/16/2012 10:12 PM

Max The highest angle the rotation can go.

Min Bounce How much the object bounces when it hits the minimum stop.

Max Bounce How much the object bounces when it hits the maximum stop.

Break Force The force that needs to be applied for this joint to break.

Break Torque The torque that needs to be applied for this joint to break.

Details
A single Hinge Joint should be applied to a GameObject. The hinge will rotate at the point specified by the Anchor property,

moving around the specified Axis property. You do not need to assign a GameObject to the joint's Connected Body

property. You should only assign a GameObject to the Connected Body property if you want the joint's Transform to be

dependent on the attached object's Transform.

Think about how the hinge of a door works. The Axis in this case is up, positive along the Y axis. The Anchor is placed

somewhere at the intersection between door and wall. You would not need to assign the wall to the Connected Body,

because the joint will be connected to the world by default.

Now think about a doggy door hinge. The doggy door's Axis would be sideways, positive along the relative X axis. The main

door should be assigned as the Connected Body, so the doggy door's hinge is dependent on the main door's Rigidbody.

Chains

Multiple Hinge Joints can also be strung together to create a chain. Add a joint to each link in the chain, and attach the next

link as the Connected Body.

Hints
You do not need to assign a Connected Body to your joint for it to work.

Use Break Force in order to make dynamic damage systems. This is really cool as it allows the player to break a door off

its hinge by blasting it with a rocket launcher or running into it with a car.

The Spring, Motor, and Limits properties allow you to fine-tune your joint's behaviors.
Page last updated: 2007-09-14

class-MeshCollider

The Mesh Collider takes a Mesh Asset and builds its Collider based on that mesh. It is far more accurate for collision

detection than using primitives for complicated meshes. Mesh Colliders that are marked as Convex can collide with other

Mesh Colliders.

A Mesh Collider used on level geometry

Properties
Is Trigger If enabled, this Collider is used for triggering events, and is ignored by the physics engine.

Material Reference to the Physics Material that determines how this Collider interacts with others.

Mesh Reference to the Mesh to use for collisions.

Smooth Sphere

Collisions

When this is enabled, collision mesh normals are smoothed. You should enable this on smooth

surfaces eg. rolling terrain without hard edges to make sphere rolling smoother.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

692 of 1131 12/16/2012 10:12 PM

Convex If enabled, this Mesh Collider will collide with other Mesh Colliders. Convex Mesh Colliders are

limited to 255 triangles.

Details
The Mesh Collider builds its collision representation from the Mesh attached to the GameObject, and reads the properties of

the attached Transform to set its position and scale correctly.

Collision meshes use backface culling. If an object collides with a mesh that will be backface culled graphically it will also not

collide with it physically.

There are some limitations when using the Mesh Collider. Usually, two Mesh Colliders cannot collide with each other. All Mesh

Colliders can collide with any primitive Collider. If your mesh is marked as Convex, then it can collide with other Mesh

Colliders.

Colliders work with Rigidbodies to bring physics in Unity to life. Whereas Rigidbodies allow objects to be controlled by physics,

Colliders allow objects to collide with each other. Colliders must be added to objects independently of Rigidbodies. A Collider

does not necessarily need a Rigidbody attached, but a Rigidbody must be attached in order for the object to move as a result

of collisions.

When a collision between two Colliders occurs and if at least one of them has a Rigidbody attached, three collision messages

are sent out to the objects attached to them. These events can be handled in scripting, and allow you to create unique

behaviors with or without making use of the built-in NVIDIA PhysX engine.

Triggers

An alternative way of using Colliders is to mark them as a Trigger, just check the IsTrigger property checkbox in the Inspector.

Triggers are effectively ignored by the physics engine, and have a unique set of three trigger messages that are sent out when

a collision with a Trigger occurs. Triggers are useful for triggering other events in your game, like cutscenes, automatic door

opening, displaying tutorial messages, etc. Use your imagination!

Be aware that in order for two Triggers to send out trigger events when they collide, one of them must include a Rigidbody as

well. For a Trigger to collide with a normal Collider, one of them must have a Rigidbody attached. For a detailed chart of

different types of collisions, see the collision action matrix in the Advanced section below.

Friction and bounciness

Friction, bounciness and softness are defined in the Physisc Material. The Standard Assets contain the most common physics

materials. To use one of them click on the Physics Material drop-down and select one, eg. Ice. You can also create your own

physics materials and tweak all friction values.

Hints
Mesh Colliders cannot collide with each other unless they are marked as Convex. Therefore, they are most useful for

background objects like environment geometry.

Convex Mesh Colliders must be fewer than 255 triangles.

Primitive Colliders are less costly for objects under physics control.

When you attach a Mesh Collider to a GameObject, its Mesh property will default to the mesh being rendered. You can

change that by assigning a different Mesh.

To add multiple Colliders for an object, create child GameObjects and attach a Collider to each one. This allows each

Collider to be manipulated independently.

You can look at the gizmos in the Scene View to see how the Collider is being calculated on your object.

Colliders do their best to match the scale of an object. If you have a non-uniform scale (a scale which is different in each

direction), only the Mesh Collider can match completely.

If you are moving an object through its Transform component but you want to receive Collision/Trigger messages, you

must attach a Rigidbody to the object that is moving.

Advanced

Collider combinations

There are numerous different combinations of collisions that can happen in Unity. Each game is unique, and different

combinations may work better for different types of games. If you're using physics in your game, it will be very helpful to

understand the different basic Collider types, their common uses, and how they interact with other types of objects.

Static Collider

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

693 of 1131 12/16/2012 10:12 PM

These are GameObjects that do not have a Rigidbody attached, but do have a Collider attached. These objects should

remain still, or move very little. These work great for your environment geometry. They will not move if a Rigidbody collides

with them.

Rigidbody Collider

These GameObjects contain both a Rigidbody and a Collider. They are completely affected by the physics engine through

scripted forces and collisions. They might collide with a GameObject that only contains a Collider. These will likely be your

primary type of Collider in games that use physics.

Kinematic Rigidbody Collider

This GameObject contains a Collider and a Rigidbody which is marked IsKinematic. To move this GameObject, you modify its

Transform Component, rather than applying forces. They're similar to Static Colliders but will work better when you want to

move the Collider around frequently. There are some other specialized scenarios for using this GameObject.

This object can be used for circumstances in which you would normally want a Static Collider to send a trigger event. Since a

Trigger must have a Rigidbody attached, you should add a Rigidbody, then enable IsKinematic. This will prevent your Object

from moving from physics influence, and allow you to receive trigger events when you want to.

Kinematic Rigidbodies can easily be turned on and off. This is great for creating ragdolls, when you normally want a character

to follow an animation, then turn into a ragdoll when a collision occurs, prompted by an explosion or anything else you choose.

When this happens, simply turn all your Kinematic Rigidbodies into normal Rigidbodies through scripting.

If you have Rigidbodies come to rest so they are not moving for some time, they will "fall asleep". That is, they will not be

calculated during the physics update since they are not going anywhere. If you move a Kinematic Rigidbody out from

underneath normal Rigidbodies that are at rest on top of it, the sleeping Rigidbodies will "wake up" and be correctly calculated

again in the physics update. So if you have a lot of Static Colliders that you want to move around and have different object fall

on them correctly, use Kinematic Rigidbody Colliders.

Collision action matrix

Depending on the configurations of the two colliding Objects, a number of different actions can occur. The chart below outlines

what you can expect from two colliding Objects, based on the components that are attached to them. Some of the

combinations only cause one of the two Objects to be affected by the collision, so keep the standard rule in mind - physics will

not be applied to objects that do not have Rigidbodies attached.

Collision detection occurs and messages are sent upon collision

 Static

Collider

Rigidbody

Collider

Kinematic

Rigidbody

Collider

Static

Trigger

Collider

Rigidbody

Trigger

Collider

Kinematic

Rigidbody

Trigger Collider

Static Collider Y

Rigidbody Collider Y Y Y

Kinematic Rigidbody Collider Y

Static Trigger Collider

Rigidbody Trigger Collider

Kinematic Rigidbody Trigger

Collider

Trigger messages are sent upon collision

 Static

Collider

Rigidbody

Collider

Kinematic

Rigidbody

Collider

Static

Trigger

Collider

Rigidbody

Trigger

Collider

Kinematic

Rigidbody

Trigger Collider

Static Collider Y Y

Rigidbody Collider Y Y Y

Kinematic Rigidbody Collider Y Y Y

Static Trigger Collider Y Y Y Y

Rigidbody Trigger Collider Y Y Y Y Y Y

Kinematic Rigidbody Trigger

Collider

Y Y Y Y Y Y

Layer-Based Collision Detection

In Unity 3.x we introduce something called Layer-Based Collision Detection, and you can now selectively tell Unity

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

694 of 1131 12/16/2012 10:12 PM

GameObjects to collide with specific layers they are attached to. For more information click here

Page last updated: 2009-07-16

class-PhysicMaterial

The Physics Material is used to adjust friction and bouncing effects of colliding objects.

To create a Physics Material select Assets->Create->Physics Material from the menu bar. Then drag the Physics Material

from the Project View onto a Collider in the scene.

The Physics Material Inspector

Properties
Dynamic Friction The friction used when already moving. Usually a value from 0 to 1. A value of zero feels like ice, a

value of 1 will make it come to rest very quickly unless a lot of force or gravity pushes the object.

Static Friction The friction used when an object is laying still on a surface. Usually a value from 0 to 1. A value of

zero feels like ice, a value of 1 will make it very hard to get the object moving.

Bounciness How bouncy is the surface? A value of 0 will not bounce. A value of 1 will bounce without any loss of

energy.

Friction Combine

Mode

How the friction of two colliding objects is combined.

Average The two friction values are averaged.

Min The smallest of the two values is used.

Max The largest of the two values is used.

Multiply The friction values are multiplied with each other.

Bounce Combine How the bounciness of two colliding objects is combined. It has the same modes as Friction Combine

Mode

Friction Direction 2 The direction of anisotropy. Anisotropic friction is enabled if this direction is not zero. Dynamic

Friction 2 and Static Friction 2 will be applied along Friction Direction 2.

Dynamic Friction 2 If anisotropic friction is enabled, DynamicFriction2 will be applied along Friction Direction 2.

Static Friction 2 If anisotropic friction is enabled, StaticFriction2 will be applied along Friction Direction 2.

Details
Friction is the quantity which prevents surfaces from sliding off each other. This value is critical when trying to stack objects.

Friction comes in two forms, dynamic and static. Static friction is used when the object is lying still. It will prevent the object

from starting to move. If a large enough force is applied to the object it will start moving. At this point Dynamic Friction will

come into play. Dynamic Friction will now attempt to slow down the object while in contact with another.

Hints
Don't try to use a standard physics material for the main character. Make a customized one and get it perfect.

Page last updated: 2012-11-23

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

695 of 1131 12/16/2012 10:12 PM

class-Rigidbody

Rigidbodies enable your GameObjects to act under the control of physics. The Rigidbody can receive forces and torque to

make your objects move in a realistic way. Any GameObject must contain a Rigidbody to be influenced by gravity, act under

added forces via scripting, or interact with other objects through the NVIDIA PhysX physics engine.

Rigidbodies allow GameObjects to act under physical influence

Properties
Mass The mass of the object (arbitrary units). It is recommended to make masses not more or less than

100 times that of other Rigidbodies.

Drag How much air resistance affects the object when moving from forces. 0 means no air resistance, and

infinity makes the object stop moving immediately.

Angular Drag How much air resistance affects the object when rotating from torque. 0 means no air resistance, and

infinity makes the object stop rotating immediately.

Use Gravity If enabled, the object is affected by gravity.

Is Kinematic If enabled, the object will not be driven by the physics engine, and can only be manipulated by its

Transform. This is useful for moving platforms or if you want to animate a Rigidbody that has a

HingeJoint attached.

Interpolate Try one of the options only if you are seeing jerkiness in your Rigidbody's movement.

None No Interpolation is applied.

Interpolate Transform is smoothed based on the Transform of the previous frame.

Extrapolate Transform is smoothed based on the estimated Transform of the next frame.

Collision Detection Used to prevent fast moving objects from passing through other objects without detecting collisions.

Discrete Use Discreet collision detection against all other colliders in the scene. Other colliders will use

Discreet collision detection when testing for collision against it. Used for normal collisions (This is the

default value).

Continuous Use Discrete collision detection against dynamic colliders (with a rigidbody) and continuous collision

detection against static MeshColliders (without a rigidbody). Rigidbodies set to Continuous Dynamic

will use continuous collision detection when testing for collision against this rigidbody. Other

rigidbodies will use Discreet Collision detection. Used for objects which the Continuous Dynamic

detection needs to collide with. (This has a big impact on physics performance, leave it set to

Discrete, if you don't have issues with collisions of fast objects)

Continuous

Dynamic

Use continuous collision detection against objects set to Continuous and Continuous Dynamic

Collision. It will also use continuous collision detection against static MeshColliders (without a

rigidbody). For all other colliders it uses discreet collision detection. Used for fast moving objects.

Constraints Restrictions on the Rigidbody's motion:-

Freeze Position Stops the Rigidbody moving in the world X, Y and Z axes selectively.

Freeze Rotation Stops the Rigidbody rotating around the world X, Y and Z axes selectively.

Details
Rigidbodies allow your GameObjects to act under control of the physics engine. This opens the gateway to realistic collisions,

varied types of joints, and other very cool behaviors. Manipulating your GameObjects by adding forces to a Rigidbody creates

a very different feel and look than adjusting the Transform Component directly. Generally, you shouldn't manipulate the

Rigidbody and the Transform of the same GameObject - only one or the other.

The biggest difference between manipulating the Transform versus the Rigidbody is the use of forces. Rigidbodies can receive

forces and torque, but Transforms cannot. Transforms can be translated and rotated, but this is not the same as using physics.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

696 of 1131 12/16/2012 10:12 PM

You'll notice the distinct difference when you try it for yourself. Adding forces/torque to the Rigidbody will actually change the

object's position and rotation of the Transform component. This is why you should only be using one or the other. Changing

the Transform while using physics could cause problems with collisions and other calculations.

Rigidbodies must be explicitly added to your GameObject before they will be affected by the physics engine. You can add a

Rigidbody to your selected object from Components->Physics->Rigidbody in the menubar. Now your object is physics-

ready; it will fall under gravity and can receive forces via scripting, but you may need to add a Collider or a Joint to get it to

behave exactly how you want.

Parenting

When an object is under physics control, it moves semi-independently of the way its transform parents move. If you move any

parents, they will pull the Rigidbody child along with them. However, the Rigidbodies will still fall down due to gravity and react

to collision events.

Scripting

To control your Rigidbodies, you will primarily use scripts to add forces or torque. You do this by calling AddForce() and

AddTorque() on the object's Rigidbody. Remember that you shouldn't be directly altering the object's Transform when you are

using physics.

Animation

For some situations, mainly creating ragdoll effects, it is neccessary to switch control of the object between animations and

physics. For this purpose Rigidbodies can be marked isKinematic. While the Rigidbody is marked isKinematic, it will not be

affected by collisions, forces, or any other part of physX. This means that you will have to control the object by manipulating

the Transform component directly. Kinematic Rigidbodies will affect other objects, but they themselves will not be affected by

physics. For example, Joints which are attached to Kinematic objects will constrain any other Rigidbodies attached to them

and Kinematic Rigidbodies will affect other Rigidbodies through collisions.

Colliders

Colliders are another kind of component that must be added alongside the Rigidbody in order to allow collisions to occur. If two

Rigidbodies bump into each other, the physics engine will not calculate a collision unless both objects also have a Collider

attached. Collider-less Rigidbodies will simply pass through each other during physics simulation.

Colliders define the physical boundaries of a Rigidbody

Add a Collider with the Component->Physics menu. View the Component Reference page of any individual Collider for more

specific information:

Box Collider - primitive shape of a cube

Sphere Collider - primitive shape of a sphere

Capsule Collider - primitive shape of a capsule

Mesh Collider - creates a collider from the object's mesh, cannot collide with another Mesh Collider

Wheel Collider - specifically for creating cars or other moving vehicles

Compound Colliders

Compound Colliders are combinations of primitive Colliders, collectively acting as a single Collider. They come in handy when

you have a complex mesh to use in collisions but cannot use a Mesh Collider. To create a Compound Collider, create child

objects of your colliding object, then add a primitive Collider to each child object. This allows you to position, rotate, and scale

each Collider easily and independently of one another.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

697 of 1131 12/16/2012 10:12 PM

A real-world Compound Collider setup

In the above picture, the Gun Model GameObject has a Rigidbody attached, and multiple primitive Colliders as child

GameObjects. When the Rigidbody parent is moved around by forces, the child Colliders move along with it. The primitive

Colliders will collide with the environment's Mesh Collider, and the parent Rigidbody will alter the way it moves based on forces

being applied to it and how its child Colliders interact with other Colliders in the Scene.

Mesh Colliders can't normally collide with each other. If a Mesh Collider is marked as Convex, then it can collide with another

Mesh Collider. The typical solution is to use primitive Colliders for any objects that move, and Mesh Colliders for static

background objects.

Continuous Collision Detection

Continuous collision detection is a feature to prevent fast-moving colliders from passing each other. This may happen when

using normal (Discrete) collision detection, when an object is one side of a collider in one frame, and already passed the

collider in the next frame. To solve this, you can enable continuous collision detection on the rigidbody of the fast-moving

object. Set the collision detection mode to Continuous to prevent the rigidbody from passing through any static (ie,

non-rigidbody) MeshColliders. Set it to Continuous Dynamic to also prevent the rigidbody from passing through any other

supported rigidbodies with collision detection mode set to Continuous or Continuous Dynamic. Continuous collision

detection is supported for Box-, Sphere- and CapsuleColliders. Note that continuous collision detection is intended as a safety

net to catch collisions in cases where objects would otherwise pass through each other, but will not deliver physically accurate

collision results, so you might still consider decreasing the fixed Time step value in the TimeManager inspector to make the

simulation more precise, if you run into problems with fast moving objects.

Use the right size
The size of the your GameObject's mesh is much more important than the mass of the Rigidbody. If you find that your

Rigidbody is not behaving exactly how you expect - it moves slowly, floats, or doesn't collide correctly - consider adjusting the

scale of your mesh asset. Unity's default unit scale is 1 unit = 1 meter, so the scale of your imported mesh is maintained, and

applied to physics calculations. For example, a crumbling skyscraper is going to fall apart very differently than a tower made of

toy blocks, so objects of different sizes should be modeled to accurate scale.

If you are modeling a human make sure he is around 2 meters tall in Unity. To check if your object has the right size compare it

to the default cube. You can create a cube using GameObject->Create Other->Cube. The cube's height will be exactly 1

meter, so your human should be twice as tall.

If you aren't able to adjust the mesh itself, you can change the uniform scale of a particular mesh asset by selecting it in

Project View and choosing Assets->Import Settings... from the menubar. Here, you can change the scale and re-import

your mesh.

If your game requires that your GameObject needs to be instantiated at different scales, it is okay to adjust the values of your

Transform's scale axes. The downside is that the physics simulation must do more work at the time the object is instantiated,

and could cause a performance drop in your game. This isn't a terrible loss, but it is not as efficient as finalizing your scale with

the other two options. Also keep in mind that non-uniform scales can create undesirable behaviors when Parenting is used.

For these reasons it is always optimal to create your object at the correct scale in your modeling application.

Hints
The relative Mass of two Rigidbodies determines how they react when they collide with each other.

Making one Rigidbody have greater Mass than another does not make it fall faster in free fall. Use Drag for that.

A low Drag value makes an object seem heavy. A high one makes it seem light. Typical values for Drag are between .001

(solid block of metal) and 10 (feather).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

698 of 1131 12/16/2012 10:12 PM

If you are directly manipulating the Transform component of your object but still want physics, attach a Rigidbody and make

it Kinematic.

If you are moving a GameObject through its Transform component but you want to receive Collision/Trigger messages, you

must attach a Rigidbody to the object that is moving.
Page last updated: 2012-11-29

class-SphereCollider

The Sphere Collider is a basic sphere-shaped collision primitive.

A pile of Sphere Colliders

Properties
Is Trigger If enabled, this Collider is used for triggering events, and is ignored by the physics engine.

Material Reference to the Physics Material that determines how this Collider interacts with others.

Radius The size of the Collider.

Center The position of the Collider in the object's local space.

Details
The Sphere Collider can be resized to uniform scale, but not along individual axes. It works great for falling boulders, ping

pong balls, marbles, etc.

A standard Sphere Collider

Colliders work with Rigidbodies to bring physics in Unity to life. Whereas Rigidbodies allow objects to be controlled by physics,

Colliders allow objects to collide with each other. Colliders must be added to objects independently of Rigidbodies. A Collider

does not necessarily need a Rigidbody attached, but a Rigidbody must be attached in order for the object to move as a result

of collisions.

When a collision between two Colliders occurs and if at least one of them has a Rigidbody attached, three collision messages

are sent out to the objects attached to them. These events can be handled in scripting, and allow you to create unique

behaviors with or without making use of the built-in NVIDIA PhysX engine.

Triggers

An alternative way of using Colliders is to mark them as a Trigger, just check the IsTrigger property checkbox in the Inspector.

Triggers are effectively ignored by the physics engine, and have a unique set of three trigger messages that are sent out when

a collision with a Trigger occurs. Triggers are useful for triggering other events in your game, like cutscenes, automatic door

opening, displaying tutorial messages, etc. Use your imagination!

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

699 of 1131 12/16/2012 10:12 PM

Be aware that in order for two Triggers to send out trigger events when they collide, one of them must include a Rigidbody as

well. For a Trigger to collide with a normal Collider, one of them must have a Rigidbody attached. For a detailed chart of

different types of collisions, see the collision action matrix in the Advanced section below.

Friction and bounciness

Friction, bounciness and softness are defined in the Physisc Material. The Standard Assets contain the most common physics

materials. To use one of them click on the Physics Material drop-down and select one, eg. Ice. You can also create your own

physics materials and tweak all friction values.

Compound Colliders
Compound Colliders are combinations of primitive Colliders, collectively acting as a single Collider. They come in handy when

you have a complex mesh to use in collisions but cannot use a Mesh Collider. To create a Compound Collider, create child

objects of your colliding object, then add a primitive Collider to each child object. This allows you to position, rotate, and scale

each Collider easily and independently of one another.

A real-world Compound Collider setup

In the above picture, the Gun Model GameObject has a Rigidbody attached, and multiple primitive Colliders as child

GameObjects. When the Rigidbody parent is moved around by forces, the child Colliders move along with it. The primitive

Colliders will collide with the environment's Mesh Collider, and the parent Rigidbody will alter the way it moves based on forces

being applied to it and how its child Colliders interact with other Colliders in the Scene.

Mesh Colliders can't normally collide with each other. If a Mesh Collider is marked as Convex, then it can collide with another

Mesh Collider. The typical solution is to use primitive Colliders for any objects that move, and Mesh Colliders for static

background objects.

Hints
To add multiple Colliders for an object, create child GameObjects and attach a Collider to each one. This allows each

Collider to be manipulated independently.

You can look at the gizmos in the Scene View to see how the Collider is being calculated on your object.

Colliders do their best to match the scale of an object. If you have a non-uniform scale (a scale which is different in each

direction), only the Mesh Collider can match completely.

If you are moving an object through its Transform component but you want to receive Collision/Trigger messages, you

must attach a Rigidbody to the object that is moving.

If you make an explosion, it can be very effective to add a rigidbody with lots of drag and a sphere collider to it in order to

push it out a bit from the wall it hits.

Advanced

Collider combinations

There are numerous different combinations of collisions that can happen in Unity. Each game is unique, and different

combinations may work better for different types of games. If you're using physics in your game, it will be very helpful to

understand the different basic Collider types, their common uses, and how they interact with other types of objects.

Static Collider

These are GameObjects that do not have a Rigidbody attached, but do have a Collider attached. These objects should

remain still, or move very little. These work great for your environment geometry. They will not move if a Rigidbody collides

with them.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

700 of 1131 12/16/2012 10:12 PM

Rigidbody Collider

These GameObjects contain both a Rigidbody and a Collider. They are completely affected by the physics engine through

scripted forces and collisions. They might collide with a GameObject that only contains a Collider. These will likely be your

primary type of Collider in games that use physics.

Kinematic Rigidbody Collider

This GameObject contains a Collider and a Rigidbody which is marked IsKinematic. To move this GameObject, you modify its

Transform Component, rather than applying forces. They're similar to Static Colliders but will work better when you want to

move the Collider around frequently. There are some other specialized scenarios for using this GameObject.

This object can be used for circumstances in which you would normally want a Static Collider to send a trigger event. Since a

Trigger must have a Rigidbody attached, you should add a Rigidbody, then enable IsKinematic. This will prevent your Object

from moving from physics influence, and allow you to receive trigger events when you want to.

Kinematic Rigidbodies can easily be turned on and off. This is great for creating ragdolls, when you normally want a character

to follow an animation, then turn into a ragdoll when a collision occurs, prompted by an explosion or anything else you choose.

When this happens, simply turn all your Kinematic Rigidbodies into normal Rigidbodies through scripting.

If you have Rigidbodies come to rest so they are not moving for some time, they will "fall asleep". That is, they will not be

calculated during the physics update since they are not going anywhere. If you move a Kinematic Rigidbody out from

underneath normal Rigidbodies that are at rest on top of it, the sleeping Rigidbodies will "wake up" and be correctly calculated

again in the physics update. So if you have a lot of Static Colliders that you want to move around and have different object fall

on them correctly, use Kinematic Rigidbody Colliders.

Collision action matrix

Depending on the configurations of the two colliding Objects, a number of different actions can occur. The chart below outlines

what you can expect from two colliding Objects, based on the components that are attached to them. Some of the

combinations only cause one of the two Objects to be affected by the collision, so keep the standard rule in mind - physics will

not be applied to objects that do not have Rigidbodies attached.

Collision detection occurs and messages are sent upon collision

 Static

Collider

Rigidbody

Collider

Kinematic

Rigidbody

Collider

Static

Trigger

Collider

Rigidbody

Trigger

Collider

Kinematic

Rigidbody

Trigger Collider

Static Collider Y

Rigidbody Collider Y Y Y

Kinematic Rigidbody Collider Y

Static Trigger Collider

Rigidbody Trigger Collider

Kinematic Rigidbody Trigger

Collider

Trigger messages are sent upon collision

 Static

Collider

Rigidbody

Collider

Kinematic

Rigidbody

Collider

Static

Trigger

Collider

Rigidbody

Trigger

Collider

Kinematic

Rigidbody

Trigger Collider

Static Collider Y Y

Rigidbody Collider Y Y Y

Kinematic Rigidbody Collider Y Y Y

Static Trigger Collider Y Y Y Y

Rigidbody Trigger Collider Y Y Y Y Y Y

Kinematic Rigidbody Trigger

Collider

Y Y Y Y Y Y

Layer-Based Collision Detection

In Unity 3.x we introduce something called Layer-Based Collision Detection, and you can now selectively tell Unity

GameObjects to collide with specific layers they are attached to. For more information click here

Page last updated: 2007-12-08

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

701 of 1131 12/16/2012 10:12 PM

class-SpringJoint

The Spring Joint groups together two Rigidbodies, constraining them to move like they are connected by a spring.

The Spring Joint Inspector

Properties
Connected Body Optional reference to the Rigidbody that the joint is dependent upon.

Anchor Position in the object's local space (at rest) that defines the center of the joint. This is not the point

that the object will be drawn toward.

X Position of the joint's local center along the X axis.

Y Position of the joint's local center along the Y axis.

Z Position of the joint's local center along the Z axis.

Spring Strength of the spring.

Damper Amount that the spring is reduced when active.

Min Distance Distances greater than this will not cause the Spring to activate.

Max Distance Distances less than this will not cause the Spring to activate.

Break Force The force that needs to be applied for this joint to break.

Break Torque The torque that needs to be applied for this joint to break.

Details
Spring Joints allows a Rigidbodied GameObject to be pulled toward a particular "target" position. This position will either be

another Rigidbodied GameObject or the world. As the GameObject travels further away from this "target" position, the Spring

Joint applies forces that will pull it back to its original "target" position. This creates an effect very similar to a rubber band or a

slingshot.

The "target" position of the Spring is determined by the relative position from the Anchor to the Connected Body (or the

world) when the Spring Joint is created, or when Play mode is entered. This makes the Spring Joint very effective at setting up

Jointed characters or objects in the Editor, but is harder to create push/pull spring behaviors in runtime through scripting. If you

want to primarily control a GameObject's position using a Spring Joint, it is best to create an empty GameObject with a

Rigidbody, and set that to be the Connected Rigidbody of the Jointed object. Then in scripting you can change the position

of the Connected Rigidbody and see your Spring move in the ways you expect.

Connected Rigidbody

You do not need to use a Connected Rigidbody for your joint to work. Generally, you should only use one if your object's

position and/or rotation is dependent on it. If there is no Connected Rigidbody, your Spring will connect to the world.

Spring & Damper

Spring is the strength of the force that draws the object back toward its "target" position. If this is 0, then there is no force that

will pull on the object, and it will behave as if no Spring Joint is attached at all.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

702 of 1131 12/16/2012 10:12 PM

Damper is the resistance encountered by the Spring force. The lower this is, the springier the object will be. As the Damper

is increased, the amount of bounciness caused by the Joint will be reduced.

Min & Max Distance

If the position of your object falls in-between the Min & Max Distances, then the Joint will not be applied to your object. The

position must be moved outside of these values for the Joint to activate.

Hints
You do not need to assign a Connected Body to your Joint for it to work.

Set the ideal positions of your Jointed objects in the Editor prior to entering Play mode.

Spring Joints require your object to have a Rigidbody attached.
Page last updated: 2007-09-15

class-InteractiveCloth

The Interactive Cloth class is a Component that simulates a "cloth-like" behavior on a mesh. Use this Component if you want to

use cloth in your scene.

Interactive cloth in the scene view and its properties in the inspector.

Properties

Interactive Cloth
Bending Stiffness Bending stiffness of the cloth.

Stretching Stiffness Stretching Stiffness of the cloth.

Damping Damp cloth motion.

Thickness The thickness of the cloth surface.

Use Gravity Should Gravity affect the cloth simulation?.

Self Collision Will the cloth collide with itself?.

External Acceleration A constant, external acceleration applied to the cloth

Random Acceleration A random, external acceleration applied to the cloth

Mesh Mesh that will be used by the interactive cloth for the simulation

Friction The friction of the cloth.

Density The density of the cloth.

Pressure The pressure inside the cloth/

Collision Response How much force will be applied to colliding rigidbodies?.

Attachment Tear

Factor

How far attached rigid bodies need to be stretched, before they will tear off.

Attachment Response How much force will be applied to attached rigidbodies?.

Tear Factor How far cloth vertices need to be stretched, before the cloth will tear.

Attached Colliders Array that contains the attached colliders to this cloth

The Interactive Cloth Component depends of the Cloth Renderer Component, this means that this component cannot be

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

703 of 1131 12/16/2012 10:12 PM

removed if the Cloth Renderer is present in the Game Object.

Cloth Renderer
Cast Shadows If selected the cloth will cast shadows

Receive Shadows The cloth can receive Shadows if enabled

Materials Materials that the cloth will use.

Use Light Probes If selected, light probes will be enabled.

Light Probe Anchor Light Probe lighting is interpolated at the center of the Renderer's bounds or at the position of the

anchor, if assigned.

Pause When Not

Visible

If selected, the simulation will not be calculated when the cloth is not being rendered by the camera.

Adding an Interactive Cloth Game Object
To add an Interactive Cloth in the scene just select GameObject->Create Other->Cloth.

Hints.
Using lots of clothes in your game will reduce exponentially the performance of your game.

If you want to simulate clothing on characters, check out the Skinned Cloth component instead, which interacts with the

SkinnedMeshRenderer component and is much faster then InteractiveCloth.

To attach the cloth to other objects, use the Attached Colliders property to assign other objects to attach to. The colliders

must overlap some vertices of the cloth mesh for this to work.

Attached Colliders' objects must intersect with the cloth you are attaching to.

Notes.
Cloth simulation will generate normals but not tangents. If the source mesh has tangents, these will be passed to the

shader unmodified - so if you are using a shader which depends on tangents (such as bump mapped shaders), the lighting

will look wrong for cloth which has been moved from its initial position.
Page last updated: 2012-12-10

class-SkinnedCloth

Skinned cloth in the scene view and in the inspector.

The SkinnedCloth component works together with the SkinnedMeshRenderer to simulate clothing on a character. If you

have an animated character which uses the SkinnedMeshRenderer, you can add a SkinnedCloth component to the game

object with the SkinnedMeshRenderer to make him appear more life-like. Just select the GameObject with the

SkinnedMeshRender, and add a SkinnedCloth component using Component->Physics->Skinned Cloth.

What the SkinnedCloth component does, is to take the vertex output from the SkinnedMeshRenderer and apply clothing

simulation to that. The SkinnedCloth component has a set of per-vertex coefficients, which define how free the simulated cloth

can move with respect to the skinned mesh.

These coefficients can be visually edited using the scene view and the inspector, when the game object with the SkinnedCloth

component is selected. There are two editing modes, selection and vertex painting. In selection mode, you click on vertices in

the scene view to select them, and then edit their coefficients in the inspector. In vertex paining mode, you set the coefficient

values you want in the inspector, enable the "paint" button next to those coefficients you want to change, and click on the

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

704 of 1131 12/16/2012 10:12 PM

vertices to apply the values to those.

Note that skinned cloth simulation is only driven by the vertices skinned by the SkinnedMeshRenderer, and will not otherwise

interact with any colliders. This makes skinned cloth simulation much faster then the fully physical Interactive Cloth component,

as it does not need to be simulated on the same frame rate and the same thread as the rest of the physics simulation.

You can disable or enable the skinned cloth component at any time to turn it on or off. Turning it off will switch rendering to the

normal SkinnedMeshRenderer, so you can switch between these whenever needed to dynamically adjust for varying

performance. You can also smoothly cross-fade between the two modes from a script using the

SkinnedCloth.SetEnabledFading() method, to make the transition unnoticeable to the player.

Note that cloth simulation will generate normals but not tangents. If the source mesh has tangents, these will be passed to the

shader unmodified - so if you are using a shader which depends on tangents (such as bump mapped shaders), the lighting will

look wrong for cloth which has been moved from it's initial position.

Cloth Coefficients
There a four coefficients per vertex, which define how cloth vertices can move with respect to the skinned vertices and

normals. These are:

Max

Distance

Distance a vertex is allowed to travel from the skinned mesh vertex position. The SkinnedCloth component

makes sure that the cloth vertices stay within maxDistance from the skinned mesh vertex positions. If

maxDistance is zero, the vertex is not simulated but set to the skinned mesh vertex position. This behavior is

useful for fixing the cloth vertex to the skin of an animated character - you will want to do that for any vertices

which shouldn't be skinned, or for parts which are somehow fixed to the character's body (such as the waist of

trousers, fixed by a belt). However, if you have large parts of the character which should not use cloth simulation

(such as the face or hands), for best performance, set those up as a separate skinned mesh, which does not

have a SkinnedCloth component.

Distance

Bias

Distorts the sphere defined by the maxDistance based on skinned mesh normals. The feature is disabled for a

value of 0.0 (default). In this case the max distance sphere is undistorted. Decreasing the maxDistanceBias

towards -1.0 reduces the distance the vertex is allowed to travel in the tangential direction. For -1.0 the vertex

has to stay on the normal through the skinned mesh vertex position and within maxDistance to the skinned mesh

vertex position. Increasing maxDistanceBias towards 1.0 reduces the discance the vertex is allowed to travel in

the normal direction. At 1.0 the vertex can only move inside the tangental plane within maxDistance from the

skinned mesh vertex position.

Collision

Sphere

Radius and

Collision

Sphere

Distance

Definition of a sphere a vertex is not allowed to enter. This allows collision against the animated cloth. The pair

(collisionSphereRadius, collisionSphereDistance) define a sphere for each cloth vertex. The sphere's center is

located at the position constrainPosition - constrainNormal * (collisionSphereRadius + collisionSphereDistance)

and its radius is collisionSphereRadius, where constrainPosition and constrainNormal are the vertex positions

and normals generated by the SkinnedMeshRenderer. The SkinnedCloth makes sure that the cloth vertex does

not enter this sphere. This means that collisionSphereDistance defines how deeply the skinned mesh may be

penetrated by the cloth. It is typically set to zero. collisionSphereRadius should be set to a value larger then the

distance between the neighboring vertices to make sure the cloth vertices will not be able to slip around the

collision spheres. In such a setup, the cloth will appear to collides against the skinned mesh.

Refer to this image for a visual representation on how these coefficients work with respect to a skinned vertex and normal for

different values of maxDistanceBias. The red area is the collision sphere defined by collisionSphereRadius and

collisionSphereDistance, which the cloth vertex cannot enter. Thus, the green area, defined by maxDistance and

maxDistanceBias subtracted by the red area defines the space in which the cloth vertex can move.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

705 of 1131 12/16/2012 10:12 PM

The SkinnedCloth inspector
When you select a GameObject with a SkinnedCloth component, you can use the SkinnedCloth inspector to edit cloth vertex

coefficients, and other properties. The inspector has three tabs:

Vertex Selection Tool

In this mode you can select vertices in the scene view, and the set their coefficients in the inspector (see the previous section

for an explanation on how the cloth coefficients work). It is possible to set multiple coefficients by holding the shift key, or by

dragging a rectangle with the mouse. When multiple vertices are selected, the inspector will display average values for the

vertices coefficients. When you change the values, however, that coefficient will be set to the same value for all vertices. If you

switch the scene view to wireframe mode, you will also be able to see and to select back-facing vertices, this can be useful

when you want to select full parts of the character.

To help you understand which values the coefficients have for all the vertices, you can click the eye icon next to a coefficient

field, to make the editor visualize that coefficient in the scene view. This shows the vertices with the lowest value of that

coefficient in a green tint, mid-range values will be yellow, and the highest values get a blue tint. The colors scale is always

chosen relative to the used value range of that coefficient, and is independent of absolute values.

Vertex Painting Tool

Similar to the vertex selection, this is a tool to help you configure the vertex coefficient values. Unlike vertex selection, you

don't need to click on a vertex before changing a value - in this mode, you just enter the values you want to set, enable the

paintbrush toggle next to the coefficients you want to change, and then click on all vertices you want to set that value for.

Configuration

The third tab lets you configure various properties of the skinned cloth:

Bending Bending stiffness of the cloth.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

706 of 1131 12/16/2012 10:12 PM

Stiffness

Stretching

Stiffness

Streching stiffness of the cloth.

Damping Damp cloth motion

Thickness Thickness of the cloth surface. (0.001 - 10000)

Use Gravity If enabled, gravity will affect the cloth simulation.

Self Collision If enabled, the cloth can can collide with itself.

External

Acceleration

A constant, external acceleration applied to the cloth.

Random

Acceleration

A random, external acceleration applied to the cloth.

World Velocity

Scale

How much world-space movement of the character will affect cloth vertices. The higher this value is, the

more the cloth will move as a reaction to world space movement of the GameObject. Basically, this defines

the air friction of the SkinnedCloth.

World

Acceleration

Scale

How much world-space acceleration of the character will affect cloth vertices. The higher this value is, the

more the cloth will move as a reaction to world space acceleration of the GameObject. If the cloth appears

lifeless, try increasing this value. If it appears to get unstable when the character accelerates, try decreasing

the value.
Page last updated: 2012-12-10

class-WheelCollider

The Wheel Collider is a special collider for grounded vehicles. It has built-in collision detection, wheel physics, and a

slip-based tire friction model. It can be used for objects other than wheels, but it is specifically designed for vehicles with

wheels.

The Wheel Collider Component. Car model courtesy of ATI Technologies Inc.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

707 of 1131 12/16/2012 10:12 PM

Properties
Center Center of the wheel in object local space.

Radius Radius of the wheel.

Suspension Distance Maximum extension distance of wheel suspension, measured in local space. Suspension always

extends downwards through the local Y-axis.

Suspension Spring The suspension attempts to reach a Target Position by adding spring and damping forces.

Spring Spring force attempts to reach the Target Position. A larger value makes the suspension reach the

Target Position faster.

Damper Dampens the suspension velocity. A larger value makes the Suspension Spring move slower.

Target Position The suspension's rest distance along Suspension Distance. 0 maps to fully extended suspension,

and 1 maps to fully compressed suspension. Default value is zero, which matches the behavior of a

regular car's suspension.

Mass The Mass of the wheel.

Forward/Sideways

Friction

Properties of tire friction when the wheel is rolling forward and sideways. See Wheel Friction Curves

section below.

Details
The wheel's collision detection is performed by casting a ray from Center downwards through the local Y-axis. The wheel has

a Radius and can extend downwards according to the Suspension Distance. The vehicle is controlled from scripting using

different properties: motorTorque, brakeTorque and steerAngle. See the Wheel Collider scripting reference for more

information.

The Wheel Collider computes friction separately from the rest of physics engine, using a slip-based friction model. This allows

for more realistic behaviour but also causes Wheel Colliders to ignore standard Physic Material settings.

Wheel collider setup

You do not turn or roll WheelCollider objects to control the car - the objects that have WheelCollider attached should always be

fixed relative to the car itself. However, you might want to turn and roll the graphical wheel representations. The best way to do

this is to setup separate objects for Wheel Colliders and visible wheels:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

708 of 1131 12/16/2012 10:12 PM

Wheel Colliders are separate from visible Wheel Models

Collision geometry

Because cars can achieve large velocities, getting race track collision geometry right is very important. Specifically, the

collision mesh should not have small bumps or dents that make up the visible models (e.g. fence poles). Usually a collision

mesh for the race track is made separately from the visible mesh, making the collision mesh as smooth as possible. It also

should not have thin objects - if you have a thin track border, make it wider in a collision mesh (or completely remove the other

side if the car can never go there).

Visible geometry (left) is much more complex than collision geometry (right)

Wheel Friction Curves

Wheel Friction Curves

Tire friction can be described by the Wheel Friction Curve shown below. There are separate curves for the wheel's forward

(rolling) direction and sideways direction. In both directions it is first determined how much the tire is slipping (based on the

speed difference between the tire's rubber and the road). Then this slip value is used to find out tire force exerted on the

contact point.

The curve takes a measure of tire slip as an input and gives a force as output. The curve is approximated by a two-piece

spline. The first section goes from (0 , 0) to (ExtremumSlip , ExtremumValue), at which point the curve's tangent is zero. The

second section goes from (ExtremumSlip , ExtremumValue) to (AsymptoteSlip , AsymptoteValue), where curve's tangent

is again zero:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

709 of 1131 12/16/2012 10:12 PM

Typical shape of a wheel friction curve

The property of real tires is that for low slip they can exert high forces, since the rubber compensates for the slip by stretching.

Later when the slip gets really high, the forces are reduced as the tire starts to slide or spin. Thus, tire friction curves have a

shape like in the image above.

Extremum Slip/Value Curve's extremum point.

Asymptote Slip/Value Curve's asymptote point.

Stiffness Multiplier for the Extremum Value and Asymptote Value (default is 1). Changes the stiffness of

the friction. Setting this to zero will completely disable all friction from the wheel. Usually you modify

stiffness at runtime to simulate various ground materials from scripting.

Hints
You might want to decrease physics timestep length in Time Manager to get more stable car physics, especially if it's a

racing car that can achieve high velocities.

To keep a car from flipping over too easily you can lower its Rigidbody center of mass a bit from script, and apply "down

pressure" force that depends on car velocity.
Page last updated: 2012-12-10

comp-GameObjectGroup

GameObjects are containers for all other Components. All objects in your game are GameObjects that contain different

Components. Technically you can create a Component without GameObject, but you won't be able to use it until you apply it to

a GameObject.

GameObject
Page last updated: 2009-05-04

class-GameObject

GameObjects are containers for all other Components. All objects in your game are inherently GameObjects.

An empty GameObject

Creating GameObjects
GameObjects do not add any characteristics to the game by themselves. Rather, they are containers that hold Components,

which implement actual functionality. For example, a Light is a Component which is attached to a GameObject.

If you want to create a Component from script, you should create and empty GameObject and then add required Component

using gameObject.AddComponent(ClassName) function. You can't create Component and then make a reference from

object to it.

From scripts, Components can easily communicate with each other through message sending or the

GetComponent(TypeName) function. This allows you to write small, reusable scripts that can be attached to multiple

GameObjects and reused for different purposes.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

710 of 1131 12/16/2012 10:12 PM

Details
Aside from being a container for the components, GameObjects have a Tag, a Layer and a Name.

Tags are used to quickly find objects, utilizing the Tag name. Layers can be used to cast rays, render, or apply lighting to

certain groups of objects only. Tags and Layers can be set with the Tag Manager, found in Edit->Project Settings->Tags.

Static Checkbox
In Unity, there is a new checkbox in the GameObject called Static. This checkbox is used for:

preparing static geometry for automatic batching

calculating Occlusion Culling

The Static checkbox is used when generating Occlusion data

When generating Occlusion data, marking a GameObject as Static will enable it to cull (or disable) mesh objects that cannot

be seen behind the Static object. Therefore, any environmental objects that are not going to be moving around in your scene

should be marked as Static.

For more information about how Occlusion Culling works in Unity please read the Occlusion Culling page.

Hints
For more information see the GameObject scripting reference page.

More information about how to use layers can be found here.

More information about how to use tags can be found here.
Page last updated: 2010-09-03

comp-ImageEffects

This group handles all Render Texture-based fullscreen image postprocessing effects. They are only available with Unity

Pro. They add a lot to the look and feel of your game without spending much time on artwork.

All image effects make use of Unity's OnRenderImage function which any MonoBehavior attached to a camera can overwrite

to accomplish a wide range of custom effects.

Image effects can be executed directly after the opaque pass or after opaque and transparent passes (default). The former

behavior can very easily be acquired by adding the attribute ImageEffectOpaque to the OnRenderImage function of the

effect in question. For an example of an effect doing this, have a look at the Edge Detection effect.

Antialiasing (PostEffect)

Bloom

Camera Motion Blur

Depth of Field

Noise And Grain

Screen Overlay

Color Correction Lookup Texture

Bloom and Lens Flares

Color Correction Curves

Contrast Enhance

Crease

Depth of Field 3.4

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

711 of 1131 12/16/2012 10:12 PM

Tonemapping

Edge Detect Effect Normals

Fisheye image effect

Global Fog

Sun Shafts

Tilt Shift

Vignetting (and Chromatic Aberration)

Blur image effect

Color Correction image effect

Contrast Stretch image effect

Edge Detection image effect

Glow image effect

Grayscale image effect

Motion Blur image effect

Noise image effect

Sepia Tone image effect

Screen Space Ambient Occlusion (SSAO) image effect

Twirl image effect

Vortex image effect

The scene used in above pages looks like this without any image effects applied:

Scene with no image postprocessing effects.

Multiple image effects can be "stacked" on the same camera. Just add them and it will work.

Blur and Noise applied to the same camera.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

712 of 1131 12/16/2012 10:12 PM

Page last updated: 2012-11-16

script-AntialiasingAsPostEffect

The Antialiasing (PostEffect) offers a set of algorithms designed to give a smoother appearance to graphics. When two

areas of different colour adjoin in an image, the shape of the pixels can form a very distinctive "staircase" along the boundary.

This effect is known as aliasing and hence antialiasing refers to any measure which reduces the effect.

The cube on the left is rendered without antialiasing while the one on the right shows the effect of the

FXAA1PresetB algorithm

The antialiasing algorithms are image based, which is very useful for deferred rendering where traditional multisampling is not

properly supported. The algorithms currently supported are NVIDIA's FXAA, FXAA II, FXAA III (tweakable and console

optimized), simpler edge blurs (NFAA, SSAA) that blur only local edges and an adaption of the DLAA algorithm that also

addresses long edges. SSAA is the fastest technique, followed by NFAA, FXAAII, FXAA II, DLAA and the the other FXAA's.

Typically, the quality of antialiasing trades off against the speed of the algorithm but there may be situations where the choice

of algorithm makes little difference.

For those especially interested in console and NaCl deployment, the optimized FXAA III implementation offers the best tradeoff

between quality and performance and can furthermore be tweaked towards sharper or blurrier looks.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Properties
AA Technique The algorithm to be used.

Hardware support
This effect requires a graphics card with pixel shaders (3.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2004 (GeForce 6),

AMD cards since 2005 (Radeon X1300), Intel cards since 2006 (GMA X3000); Mobile: OpenGL ES 2.0; Consoles: Xbox 360,

PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2012-01-06

script-Bloom

Blooming is the optical effect where light from a bright source (such as a glint) appears to leak into surrounding objects. The

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

713 of 1131 12/16/2012 10:12 PM

Bloom image effect adds bloom and also automatically generates lens flares in a highly efficient way. Bloom is a very

distinctive effect that can make a big difference to a scene and may suggest a magical or dreamlike environment especially

when used in conjunction with HDR rendering. On the other hand, given proper settings it's also possible to enhance

photorealism using this effect. Glow around very bright objects is a common phenomena observed in film and photography,

where luminance values differ vastly. Bloom is an enhanced version of the Glow and Bloom And Flares image effects.

Example showing proper HDR glow as created by the Bloom effect. In this scene, bloom uses a threshhold of 1.0 indicating

that only HDR reflections, highlights or emissive surfaces glow, but common lighting is generally unaffected. In this

particular example, only the car window (sporting the reflection of HDR sun values) glows.

Example showing Anamorphic Lens Flares result as created by the Bloom effect

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Properties
Quality High quality preserves high frequencies and reduces aliasing.

Mode Choose complex mode to show advanced options.

Blend The method used to add bloom to the color buffer. The softer Screen mode is better for preserving

bright image details but doesn't work with HDR.

HDR Whether bloom is using HDR buffers. This will result in a different look as pixel intensities may leave

the [0,1] range, see details in tonemapping and HDR.

Cast lens flares Enable or disable automatic screen based lens flare generation.

Intensity The global light intensity of the added light (affects bloom and lens flares).

Threshhold Regions of the image brighter than this threshold receive blooming (and potentially lens flares).

RGB Threshhold Chose different threshholds for R, G and B.

Blur iterations The number of times gaussian blur is applied. More iterations improve smoothness but take extra time to

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

714 of 1131 12/16/2012 10:12 PM

process and hide small frequencies.

Sample

distance

The max radius of the blur. Does not affect performance.

Use alpha

mask

The degree to which the alpha channel acts as a mask for the bloom effect.

Lens Flares The type of lens flare. The options are Ghosting, Anamorphic or a mix of the two.

Local intensityLocal intensity used only for lens flares. 0 disables lens flares entirely.

Local

threshold

The accumulative light intensity threshold that defines which image parts are candidates for lens flares.

Stretch width The width for anamorphic lens flares.

Rotation The orientation for anamorphic lens flares.

Blur iterations The number of times blurring is applied to anamorphic lens flares. More iterations improve smoothness but

take more processing time.

Saturation (De-)saturates lens flares. If 0, lens flares will fully receive the Tint Color.

Tint Color Color modulation for the anamorphic flare type.

1st-4th Color Color modulation for all lens flares when Ghosting or Combined is chosen.

Lens flare

mask

Mask used to prevent lens flare artifacts at screen edges.

Blend Modes: Add and Screen
Blend modes determine the way that two images will be combined when overlaid. Each pixel from the base image is combined

mathematically with the pixel in the corresponding position in the overlay image. Two blend modes are available for this image

effect, Add and Screen.

Add Mode

When the images are blended in Add mode, the values of the color channels (red, green and blue) are simply added together

and clamped to the maximum value of 1. The overall effect is that areas of each image that aren't especially bright can easily

blend to maximum brightness in the result. The final image tends to lose color and detail and so Add mode is useful when a

dazzling "white out" effect is required.

Screen Mode

Screen mode is so named because it simulates the effect of projecting the two source images onto a white screen

simultaneously. Each color channel is combined separately but identically to the others. Firstly, the channel values of the two

source pixels are inverted (ie, subtracted from 1). Then, the two inverted values are multiplied together and the result is

inverted. The result is brighter than either of the two source pixels but it will be at maximum brightness only if one of the source

colors was also. The overall effect is that more color variation and detail from the source images is preserved, leading to a

gentler effect than Add mode.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2012-10-30

script-CameraMotionBlur

Motion Blur is a common postprocessing effect simulating the fact that for most camera systems 'light' gets accumulated over

time (instead of just taking discrete snapshots). Fast camera or object motion will hence produce blurred images.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

715 of 1131 12/16/2012 10:12 PM

Example of a standard camera motion blur when the camera is moving sideways. Also, notice how the background areas

blur less than the foreground ones which is a typical side effect of motion blur.

The current Motion Blur implementation only supports blur due to camera motion with the option to exclude certain layers

(useful for excluding characters and/or dynamic objects, especially when those are following the camera movement). It can

however be extended to support dynamic objects if an additional script keeps track of each objects model matrix and updates

the velocity buffer.

Example showing Camera Motion Blur with dynamic objects (canisters, bus) being excluded

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Properties
Technique Motion Blur algorithm. Reconstruction filters will generally give best results at the expense of

performance and a limited blur radius of 10 pixels unless a DirectX11 enabled graphics device is

used.

Velocity Scale Higher scale makes image more likely to blur.

Velocity Max Maximum pixel distance blur will be clamped to and tile size for reconstruction filters (see below).

Velocity Min Minimum pixel distance at which blur is removed entirely.

Camera Motion specific:

Camera Rotation Scales strength of blurs due to camera rotations.

Camera Movement Scales strength of blurs due to camera translations.

Local Blur, Reconstruction and ReconstructionDX11 specific:

Exclude layers Objects in this layer will remain unaffected.

Velocity

downsample

Lower resolution velocity buffers might help performance but will heavily degrade blur quality. Might still

be a valid option for simple scenes.

Sampler Jitter Adding noise helps prevent ghosting for the Reconstruction filter.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

716 of 1131 12/16/2012 10:12 PM

Max Sample Count Number of samples used to determine the blur. Affects performance a lot.

Preview (Scale) Preview how blur might look like given artificial camera motion values.

Motion Blur Filters (Technique)
Local Blur simply performs a directional blur along the current's pixel velocity. Being essentially a gather operation, it is suited

for scenes with a low geometric complexity (e.g. vast terrains), large blur radii or when 'realism' is not the governing factor. One

shortcoming is that it can't produce proper 'overlaps' of blurred objects onto focused background areas. Another one that

excluded objects 'smear' onto blurred areas.

Example using the Local Blur technique while the camera is translating sideways and either foreground (top) or background

is excluded (bottom). Notice that both of the above mentioned artifacts apply, typically degrading image quality. If those are

not important in your case, this motion blur technique is a fast and effective option.

Reconstruction filters can produce more realistic blur results. The name Reconstruction is derived from the fact that the filter

tries to estimate backgrounds, even if there is no information available in the given color and depth buffers. The results can be

of higher quality and shortcomings of the Local Blur's gather filter can be avoided (it can e.g. produce proper overlaps).

It is based on the paper A Reconstruction Filter for Plausible Motion Blur (http://graphics.cs.williams.edu/papers

/MotionBlurI3D12/). The algorithm chops the image into tiles of the size Velocity Max and uses the maximum velocity in the

area to simulate a blurry pixel scattering onto neighbouring areas. Artifacts can arise if the velocity is highly varying while the

mentioned tile size is large.

The DirectX11 exclusive filter ReconstructionDX11 allows arbitrary blur distances (aka tile size or Velocity Max) and a

flexible number of samples.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

717 of 1131 12/16/2012 10:12 PM

Example using the Reconstruction technique while the camera is translating sideways. Notice that this time, the mentioned

artifacts are less severe as the Reconstruction filter tries to solve those cases (cubes overlapping when background is

excluded (bottom) or excluded cubes not smearing onto blurred background (top)).

While all of the above filters need a prepass to generate a velocity buffer, the Camera Motion filter solely works on the

camera motion. It generates a global filter direction based on camera change and blurs the screen along that direction (see

http://www.valvesoftware.com/publications/2008/GDC2008_PostProcessingInTheOrangeBox.pdf for more details). It is

especially suited for smoothing fast camera rotations, for instance in first person shooter games.

Example using the Camera Motion technique. Notice that the blur is uniform across the entire screen.

Hardware support
This effect requires a graphics card with pixel shaders (3.0) or OpenGL ES 2.0. Additionally, depth texture support is required.

PC: NVIDIA cards since 2004 (GeForce 6), AMD cards since 2005 (Radeon X1300), Intel cards since 2006 (GMA X3000);

Mobile: OpenGL ES 2.0 with depth texture support; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

718 of 1131 12/16/2012 10:12 PM

Page last updated: 2012-10-03

script-DepthOfFieldScatter

Depth of Field is a common postprocessing effect that simulates the properties of a camera lens. This version is a more

modern and sophisticated version of the old Depth of Field 3.4 effect that works especially well with HDR rendering and a

DirectX 11 compatible graphics device.

In real life, a camera can only focus sharply on an object at a specific distance; objects nearer or farther from the camera will

be somewhat out of focus. The blurring not only gives a visual cue about an object's distance but also introduces Bokeh

which is the term for pleasing visual artifacts that appear around bright areas of the image as they fall out of focus. Common

Bokeh shapes are discs, hexagons and other shapes of higher level dihedral groups.

While the regular version only supports disc shapes (generated via circular texture sampling), the DirectX 11 version is able to

splat any shape as defined by the Bokeh Texture.

An example of Depth of Field effect can be seen in the following image, displaying the results of a focused foreground and a

defocused background..

The DirectX11 version of this effect can create nicely defined bokeh shapes at a very reasonable cost.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Properties
Focal Settings

Visualize Overlay color indicating camera focus.

Focal distance The distance to the focal plane from the camera position in world space.

Focal Size Increase the total focal area.

Focus on Transform Determine the focal distance using a target object in the scene.

Aperture The camera's aperture defining the transition between focused and defocused areas. It is good

practice to keep this value as high as possible, as otherwise sampling artifacts might occur,

especially when the Max Blur Distance is big. Bigger Aperture values will automatically downsample

the image to produce a better defocus.

Defocus Type Algorithm used to produce defocused areas. DX11 is effectively a bokeh splatting technique while DiscBlur

indicates a more traditional (scatter as gather) based blur.

Sample Count Amount of filter taps. Greatly affects performance.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

719 of 1131 12/16/2012 10:12 PM

Max Blur

Distance

Max distance for filter taps. Affects texture cache and can cause undersampling artifacts if value is too big. A

value smaller than 4.0 should produce decent results.

High

Resolution

Perform defocus operations in full resolution. Affects performance but might help reduce unwanted artifacts

and produce more defined bokeh shapes.

Near Blur Foreground areas will overlap at a performance cost.

Overlap Size Increase foreground overlap dilation if needed.

DX11 Bokeh Settings

Bokeh

Texture

Texture defining bokeh shape.

Bokeh Scale Size of bokeh texture.

Bokeh

Intensity

Blend strength of bokeh shapes.

Min

Luminance

Only pixels brighter than this value will cast bokeh shapes. Affects performance as it limits overdraw to a more

reasonable amount.

Spawn

Heuristic

Bokeh shapes will only be cast if pixel in questions passes a frequency check. A threshhold around 0.1 seems

like a good tradeoff between performance and quality.

Comparison between DirectX11 and DiscBlur settings

Smooth transitions are possible with the high resolution DX11 version (albeit at a high performance cost).

Due to the nature of the standard DiscBlur texture sampling approach, the maximum blur radius is limited before sampling

artifacts become appearant. Also, only spherical Bokeh shapes are possible.

About DirectX 11 Bokeh Splatting
This powerful technique enables proper Scattering, however due to high demands on fillrate, it should be used with care. The

parameters Spawn Heuristic and Min Luminance control when and where Bokeh Sprites will be placed. If pixels don't pass

a luminance and frequency check, a simple Box Blur will be used instead. It's however hard to notice as it uses the same

kernel width as the Bokeh sprites.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

720 of 1131 12/16/2012 10:12 PM

The following pictures show that the road, that is neither bright nor bears great frequency changes can just be blurred with a

simple box filter without ruining the overall Bokeh experience.

Example with small Max Blur Distance

Example with big Max Blur Distance

Hardware support
This effect requires a graphics card with pixel shaders (3.0) or OpenGL ES 2.0. Additionally, depth texture support is required.

PC: NVIDIA cards since 2004 (GeForce 6), AMD cards since 2005 (Radeon X1300), Intel cards since 2006 (GMA X3000);

Mobile: OpenGL ES 2.0 with depth texture support; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2012-09-26

script-NoiseAndGrain

The Noise And Grain image effect simulates noise and film grain which is a typical effect happening in film or photography.

This special noise implementation can even be used to enhance image contrast as it's using a special blend mode. It also

enables typical noise scenarios, such as as low level light noise or softening glowing halo's or bloom borders.

The DirectX 11 implementation is totally independent of any texture reads and thus a good fit for modern graphics hardware.

The standard version uses a noise texture that should have an average luminance of 0.5 to prevent unwanted brightness

changes of the resulting image. The used default texture is an example for this.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

721 of 1131 12/16/2012 10:12 PM

Example screenshot of the effect. Notice its smoothness, how it sticks mostly to bright and dark areas and that it has a

distinct blue tint.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Properties
DirectX11 Grain Enable high quality noise and grain (DX11 only).

Monochrome Use greyscale noise only.

Intensity Multiplier Global intensity adjustment.

General Add noise equally for all luminance ranges.

Black Boost Add extra low luminance noise.

White Boost Add extra high luminance noise.

Mid Grey Defines ranges for high-level and low-level noise ranges above.

Color Weights Additionally tint noise.

Texture Texture used for non-DX11 mode.

Filter Texture filtering.

SoftnessDefines noise or grain crispness. Higher values might yield better performance but require temporary a render target.

Advanced

Tiling Noise pattern tiling (can be tweaked for all color channels individually when in non-DX11 texture mode).

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2012-09-05

script-ScreenOverlay

The Screen Overlay image effect introduces an easy way to blend different kinds of textures over the entire screen to create

custom looks or effects.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

722 of 1131 12/16/2012 10:12 PM

Example using overlay to create a low quality camera light leak effect

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Properties
Blend Mode Blend mode used when applying texture.

Intensity Strength or opacity the overlay texture will be applied with.

Texture Overlay texture itself.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2012-09-04

script-ColorCorrectionLut

Color Correction Lut (Lut stands for lookup texture) is an optimized way of performing color grading in a post effect. Instead

of tweaking the individual color channels via curves as in Color Correction Curves, only a single texture is used to produce the

corrected image. The lookup will be performed by using the original image color as a vector that is used to address the lookup

texture.

Advantages include better performance and more professional workflow opportunities, where all color transforms can be

defined in professional image manipulation software (such as Photoshop or Gimp) and thus a more precise result can be

achieved.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

723 of 1131 12/16/2012 10:12 PM

Simple scene with neutral color correction applied.

Same scene using the included "ContrastEnhanced" lookup texture.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Properties
Based On A 2D representation of the 3D lookup texture that will be used to generate the corrected image.

Lookup Texture Requirements
The 2D texture representation is required to be laid out in a certain way that it represents an unwrapped volume texture

(imagine an image sequence of "depth slices").

The following image shows an example of such an unwrapped texture which effectively enhances image contrast. It should be

included in the standard packages.

The image shows a texture of the dimension 256x16, yielding a 16x16x16 color lookup texture (lut). If the resulting quality is

too low, a 1024x32 texture might yield better results (at the cost of memory).

Texture importer requirements include enabling Read/Write support and disabling texture compression. Otherwise, unwanted

image artifcats will likely occur.

Example Workflow
Always keep the basic neutral lookup texture (lut) ready as this will be the basis for generating all other corrective lut's.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

724 of 1131 12/16/2012 10:12 PM

Take a screenshot of your game

Import into e.g. Photoshop and apply color adjustments (such as contrast, brightness, color levels adjustments) until a

satisfying result has been reached

Perform the same steps to the neutral lut and save as a new lut

Assign new lut to the effect and hit Convert & Apply

Hardware support
This effect requires a graphics card with pixel shaders (3.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2004 (GeForce 6),

AMD cards since 2005 (Radeon X1300), Intel cards since 2006 (GMA X3000); Mobile: OpenGL ES 2.0; Consoles: Xbox 360,

PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2012-09-12

script-BloomAndLensFlares

Blooming is the optical effect where light from a bright source (such as a glint) appears to leak into surrounding objects. The

Bloom and Lens Flares image effect adds bloom and also automatically generates lens flares in a highly efficient way. Bloom

is a very distinctive effect that can make a big difference to a scene and may suggest a magical or dreamlike environment

especially when used in conjunction with HDR rendering. Bloom and Lens Flares is actually an enhanced version of the Glow

image effect which offers greater control over the bloom at the expense of rendering performance.

Note that this version is deprecated: A more flexible Bloom effect has been introduced with 4.0.

Example showing how Bloom and Lens Flares can give a soft glow using the new Screen blend mode. The new

anamorphic lens flare type helps evoke a cinematic feeling.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Properties
Tweak Mode Choose complex mode for additional options such as lens flares.

Blend mode The method used to add bloom to the color buffer. The softer Screen mode is better for preserving

bright image details but doesn't work with HDR.

HDR Whether bloom is using HDR buffers. This will result in a different look as pixel intensities may leave

the [0,1] range, see details in tonemapping and HDR.

Cast lens flares Enable or disable automatic lens flare generation.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

725 of 1131 12/16/2012 10:12 PM

Intensity The global light intensity of the added light (affects bloom and lens flares).

Threshhold Regions of the image brighter than this threshold receive blooming (and potentially lens flares).

Blur iterations The number of times gaussian blur is applied. More iterations improve smoothness but take extra time to

process and hide small frequencies.

Blur spread The max radius of the blur. Does not affect performance.

Use alpha

mask

The degree to which the alpha channel acts as a mask for the bloom effect.

Lens flare

mode

The type of lens flare. The options are Ghosting, Anamorphic or a mix of the two.

Lens flare

mask

Mask used to prevent lens flare artifacts at screen edges.

Local intensity Local intensity used only for lens flares.

Local

threshold

The accumulative light intensity threshold that defines which image parts are candidates for lens flares.

Stretch width The width for anamorphic lens flares.

Blur iterations The number of times blurring is applied to anamorphic lens flares. More iterations improve smoothness but

take more processing time.

Tint Color Color modulation for the anamorphic flare type.

1st-4th Color Color modulation for all lens flares when Ghosting or Combined is chosen.

Blend Modes: Add and Screen
Blend modes determine the way that two images will be combined when overlaid. Each pixel from the base image is combined

mathematically with the pixel in the corresponding position in the overlay image. Two blend modes are available for Unity

image effects, Add and Screen.

Add Mode

When the images are blended in Add mode, the values of the color channels (red, green and blue) are simply added together

and clamped to the maximum value of 1. The overall effect is that areas of each image that aren't especially bright can easily

blend to maximum brightness in the result. The final image tends to lose color and detail and so Add mode is useful when a

dazzling "white out" effect is required.

Screen Mode

Screen mode is so named because it simulates the effect of projecting the two source images onto a white screen

simultaneously. Each color channel is combined separately but identically to the others. Firstly, the channel values of the two

source pixels are inverted (ie, subtracted from 1). Then, the two inverted values are multiplied together and the result is

inverted. The result is brighter than either of the two source pixels but it will be at maximum brightness only if one of the source

colors was also. The overall effect is that more color variation and detail from the source images is preserved, leading to a

gentler effect than Add mode.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2012-11-16

script-ColorCorrectionCurves

Color Correction Curves make color adjustments using curves for each color channel. Depth based adjustments allow you

to vary the color adjustment according to a pixel's distance from the camera. For example, objects on a landscape typically get

more desaturated with distance due to the effect of particles in the atmosphere scattering.

Selective adjustments can also be applied, so you can swap a target color in the scene for another color of your own

choosing.

Lastly, Saturation is an easy way to adjust all color saturation or desaturation (until image turns black & white) which is an

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

726 of 1131 12/16/2012 10:12 PM

effect that is not achievable with curves only.

See also the new Color Correction Lut effect for lookup texture based color grading.

The following images demonstrate how by simply enhancing the saturation slider and the blue channel curve can make a

scene drastically different

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Properties
Mode Chose between advanced or simple configuration modes.

Saturation Saturation level (0 creates a black & white image).

Red The red channel curve.

Green The green channel curve.

Blue The blue channel curve.

Red (Depth) The red channel curve for depth based correction.

Green (Depth) The green channel curve for depth based correction.

Blue (Depth) The blue channel curve for depth based correction.

Blend Curve Defines how blending between the foreground and background color correction is performed.

Selective Color Correction

Enable Enables the optional selective color correction.

Key The key color for selective color correction.

Target The target color for selective color correction.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

727 of 1131 12/16/2012 10:12 PM

Understanding Curves
Curves offer a powerful way to enhance an image and can be used to increase or decrease contrast, add a tint or create

psychedelic color effects. Curves work on each of the red, green and blue color channels separately and are based around

the idea of mapping each input brightness level (ie, the original brightness value of a pixel) to an output level of your choosing.

The relationship between the input and output levels can be shown on a simple graph:-

The horizontal axis represents the input level and the vertical represents the output level. Any point on the line specifies the

output value that a given input is mapped to during processing. When the "curve" is the default straight line running from

bottom-left to top-right, the input value is mapped to an identical output value, which will leave the pixel unchanged. However,

the curve can be redrawn to re-map the brightness levels as required. A simple example is when the line goes diagonally from

top-left to bottom-right:-

In this case, the pixel's brightness will be inverted; 0% will map to 100%, 25% to 75% and vice versa. If this is applied to all

color channels then the image will be like a photographic negative of the original.

Contrast

Most of the detail in an image is conveyed by the difference in brightness levels between pixels, regardless of their colour.

Pixels that differ by less than about 2% brightness are likely to be indistinguishable but above this, the greater the difference,

the greater the impression of detail. The spread of brightness values in the image is referred to as its contrast.

If a shallow slope is used for the curve, rather than the corner-to-corner diagonal then the full range of input values will be

squeezed into a narrower range of output values:-

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

728 of 1131 12/16/2012 10:12 PM

This has the effect of reducing the contrast, since the differences between pixel values in the output are necessarily smaller

than those in the input (indeed, two slightly different input values may actually get mapped to the same output value). Note that

since the image no longer spans the full range of output values, it is possible to slide the curve up and down the range,

resulting in an image which is brighter or darker overall (the average brightness is sometimes called the "sit" point and is the

parameter adjusted by the brightness control on a TV set). Reduced contrast can give the impression of gloom, fog or a

dazzling light source in a scene, depending on the overall brightness.

It is not necessary to reduce the contrast across the whole range of brightness levels. The curve's slope can vary along its

length, with the shallower parts corresponding to ranges of reduced contrast. In between the shallow parts, the slope may be

steeper than the default, and the contrast will actually increase in these ranges. Changing the curve like this gives a useful

way to increase contrast in some parts of the image while reducing it in areas where the detail is less important:-

Colour Effects

If the curves are set identically for each color channel (red, green and blue) then the changes will mainly affect the brightness

of pixels while their colors remain relatively unchanged. However, if the curves are set differently for each channel then the

colors can change dramatically. Many complex interactions between the color channels are possible but some basic insight

can be gained from the following diagram:-

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

729 of 1131 12/16/2012 10:12 PM

As explained in the section above, a reduction of contrast can accompany an increase or reduction in the overall brightness. If,

say, the red channel is brightened then a red tint will be visible in the image. If it is darkened then the image will be tinted

towards cyan (since this color is obtained by combining the other two primaries, green and blue).

Depth-Based Color Correction

Colors often appear slightly different when viewed at a distance. For example, in a landscape scene, colors tend to get

desaturated by atmospheric light scattering. This kind of effect can be created using depth-based color correction. When this

is enabled, two sets of color curves become available, one for the camera's near clipping plane and the other for the far

clipping plane. The actual correction applied to an object depends on its distance from the camera; the normalized distance

between the two clipping planes is used as an interpolation parameter between the two sets of color curves. The exact type of

interpolation is specified by an additional blending curve, which maps the normalised distance to an interpolation value in

much the same way that a color curve maps an input to an output. By default, this curve is a straight diagonal which results in

linear interpolation between the two color corrections. However, it can be modified to bias the correction according to distance.

Selective Color Correction

Using this setting, it is possible to replace a particular color in the original image (referred to as the "key") and replace it with a

chosen target color. Using a single exact color for the key would tend to introduce visual artifacts and so a range is used

instead. The resulting color is an interpolation between the key and target colors, depending on how close the original image

pixel is to the specified key color.

Editing Curves
Clicking on one of the curves in the inspector will open an editing window:-

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

730 of 1131 12/16/2012 10:12 PM

At the bottom of the window are a number of presets for common curves. However, you can also alter the curve by

manipulating the key points. Right clicking on the curve line will add a new key point which can be dragged around with the

mouse. If you right click on one of the points, you will see a contextual menu that gives several options for editing the curve. As

well as allowing you to delete the key, there are four options that determine how it will affect the shape of the curve:-

Auto: the curve will pass through the point and its shape will be adjusted to keep the curvature smooth between

neighbouring points.

Free Smooth: the tangent of the curve can be edited using handles attached to the key point.

Flat: Free Smooth mode is enabled and the tangent is set horizontally.

Broken: The key point has tangent handles as with Free Smooth mode but the handles on the left and right of the curve

can be moved separately to create a sharp break rather than a smooth curve.

Below these options are a few settings that control how a point's tangent handles behave:-

Free: Broken mode is enabled for the curve at the specified tangent.

Linear: The curve between the key point and its neighbour is set to a straight line.

Constant: A flat horizontal line is drawn from the curve to its neighbour and the vertical displacement occurs as a sharp

step.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. Additionally, depth texture support is required.

PC: NVIDIA cards since 2004 (GeForce 6), AMD cards since 2004 (Radeon 9500), Intel cards since 2006 (GMA X3000);

Mobile: OpenGL ES 2.0 with depth texture support; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2012-11-16

script-ContrastEnhance

The Contrast Enhance image effect enhances the impression of contrast for a given camera. It uses the well-known unsharp

mask process available in image processing applications.

When blurring is applied to an image, the colors of adjacent pixels are averaged to some extent, resulting in a reduction of

sharp edge detail. However, areas of flat color remain relatively unchanged. The idea behind unsharp masking is that an

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

731 of 1131 12/16/2012 10:12 PM

image is compared with a blurred (or "unsharp") version of itself. The difference in brightness between each pixel in the

original and the corresponding pixel in the blurred image is an indication of how much constrast the pixel has against its

neighbours. The brightness of that pixel is then changed in proportion to the local contrast. A pixel which is darker after

blurring must be brighter than its neighbours, so its brightness is further increased while if the pixel is darker after blurring then

it will be darkened even more. The effect of this is to increase contrast selectively in areas of the image where the detail is

most noticeable. The parameters of unsharp masking are the pixel radius over which colors are blurred, the degree to which

brightness will be altered by the effect and a "threshold" of contrast below which no change of brightness will be made.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

No Contrast Enhance

Contrast enhance enabled

Properties
Intensity The intensity of contrast enhancement.

Threshhold The constrast threshold below which no enhancement is applied.

Blur Spread The radius over which contrast comparisons are made.

Hardware support

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

732 of 1131 12/16/2012 10:12 PM

This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2011-09-22

script-Crease

The Crease is a common non-photorealistic (NPR) rendering technique that enhances the visibility of objects by adding

outlines of variable thickness.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Crease shading creates depth based outlines.

Properties
Intensity The intensity of the crease shading.

Softness The smoothness and softness of the applied crease shading.

Spread The blur radius, which also determines the thickness of outlines.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. Additionally, depth texture support is required.

PC: NVIDIA cards since 2004 (GeForce 6), AMD cards since 2004 (Radeon 9500), Intel cards since 2006 (GMA X3000);

Mobile: OpenGL ES 2.0 with depth texture support; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2011-09-21

script-DepthOfField34

Depth of Field 3.4 is a common postprocessing effect that simulates the properties of a camera lens. The name refers to the

fact that the effect was added in Unity 3.4, but now is superseded by a more modern Depth Of Field Scatter effect which uses

optimized techniques to simulate lens blurs and enables better transitions between focal areas. However, depending on the

use case, performance might be a lot better in the old 3.4 version as it was developed for older hardware.

In real life, a camera can only focus sharply on an object at a specific distance; objects nearer or farther from the camera will

be somewhat out of focus. The blurring not only gives a visual cue about an object's distance but also introduces bokeh which

is the term for pleasing visual artifacts that appear around bright areas of the image as they fall out of focus.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

733 of 1131 12/16/2012 10:12 PM

An example of the new Depth of Field effect can be seen in the following images, displaying the results of a defocused

foreground and a defocused background. Notice how the foreground blur overlaps with the rest while the background doesn't.

Only the nearby pipes are in the focal area

Foreground vs Background blurring with Depth of Field

You might also consider using the Tilt Shift effect for a more straightforward but less sophisticated depth-of-field effect.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Properties
General Settings

Resolution Determines the internal render target sizes. A lower resolution will result in faster rendering and lower

memory requirements.

Quality The quality level. Choose between the faster OnlyBackground or the higher-quality

BackgroundAndForeground which calculates the depth-of-field defocus for both areas separately.

Simple tweak Switches to a simpler focal model.

Visualize focus This shows the focal plane in the game view to assist learning and debugging.

Enable bokeh This will generate more realistic lens blurs where very bright parts are scaled and overlap.

Focal Settings

Focal distance The distance to the focal plane from the camera position in world space.

Object Focus Determine the focal distance using a target object in the scene.

Smoothness The smoothness when transitioning from out-of-focus to in-focus areas.

Focal size The size of the in-focus area.

Blur

Blurriness How many iterations are used when blurring the various buffers (each iteration requires processing time).

Blur

spread

The blur radius. This is resolution-independent, so you may need to readjust the value for each required

resolution.

Bokeh Settings

Destination Enabling foreground and background blur increases rendering time but gives more realistic results.

Intensity Blend intensity used as bokeh shapes are being accumulated. This is a critical value that always needs to be

carefully adjusted.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

734 of 1131 12/16/2012 10:12 PM

Min

luminance

The luminance threshold below which pixels will not have bokeh artifacts applied.

Min contrast The contrast threshold below which pixels will not have bokeh artifacts applied. The significance of this is that

you usually only need bokeh shapes in areas of high frequency (ie, cluttered or "noisy" areas of image) since

they are otherwise nearly invisible. Performance will be improved if you use this parameter to avoid generating

unnecessary bokeh artifacts.

Downsample The size of the internal render target used for accumulating bokeh shapes.

Size The maximum bokeh size. Will be modulated by the amount of defocus (Circle of Confusion).

Bokeh

Texture

The texture defining the bokeh shapes.

Note that since the bokeh effect is created by drawing triangles per pixel, it can drastically affect your framerate, especially if

it's not adjusted optimally. Adjust the Size, Min luminance, Min contrast, Downsample and Resolution to improve

performance. Also, since the screen is darkened before the bokeh shapes are applied, you should use an appropriate

Blurriness level to remove possible artefacts.

Hardware support
This effect requires a graphics card with pixel shaders (3.0) or OpenGL ES 2.0. Additionally, depth texture support is required.

PC: NVIDIA cards since 2004 (GeForce 6), AMD cards since 2005 (Radeon X1300), Intel cards since 2006 (GMA X3000);

Mobile: OpenGL ES 2.0 with depth texture support; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2012-11-16

script-Tonemapping

Tonemapping is usually understood as the process of mapping color values from HDR (high dynamic range) to LDR (low

dynamic range). In Unity, this means for most platforms that arbitrary 16-bit floating point color values will be mapped to

traditional 8-bit values in the [0,1] range.

Note that Tonemapping will only properly work if the used camera is HDR enabled. It is also recommended to give light

sources higher than normal intensity values to make use of the bigger range. Just as in real life there is huger differences in

Luminance and our eyes or any capturing medium is only able to sample a certain range of that.

Tonemapping works well in conjunction with the HDR-enabled Bloom image effect. Make sure that Bloom should be applied

before Tonemapping as otherwise all high ranges will be lost. Generally, any effect that can benefit from higher luminances

should be scheduled before the Tonemapper (one more example being the Depth of Field image effect).

There are different ways on how to map intensities to LDR (as selected by Mode). This effect provides several techniques,

two of them being adaptive (AdaptiveReinhard and AdaptiveReinhardAutoWhite), which means that color changes are

carried out delayed as the change in intensities is fully registered. Cameras and the human eye have this effect. This enables

interesting dynamic effects such as a simulation of the natural adaption happening when entering or leaving a dark tunnel into

bright sunlight.

The following two screenshots show Photographic Tonemapping with different exposure values. Note how banding is avoided

by using HDR cameras.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

735 of 1131 12/16/2012 10:12 PM

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Properties
Mode Choose the desired tonemapping algorithm.

Exposure Simulated exposure, defining the actual range of luminances.

Average grey Average grey value of the scene that defines the intensity of the result.

White Smallest value that will be mapped white.

Adaption

speed

Adjustment speed for all adaptive tonemappers.

Texture size Size of the internal texture for all adaptive tonemappers. Bigger values capture more details when calculating

the new intensity and lower performance.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2012-11-16

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

736 of 1131 12/16/2012 10:12 PM

script-EdgeDetectEffectNormals

This version of the Edge Detect image effect creates outlines around edges by taking the scene geometry into account.

Edges are not determined by colour differences but by the surface normals and distance from camera of neighbouring pixels

(the surface normal is an "arrow" that indicates the direction the surface is facing at a given pixel position). Generally, where

two adjacent pixels have significantly different normals and/or distances from the camera, there is an edge in the scene.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Example Edge Detection. Note how edge outlines can be smoothed out by adding an Antialiasing effect to follow Edge

Detection.

This effect uses the ImageEffectOpaque attribute which enables image effects to be executed before the transparent render

passes. By default, image effects are executed after both opaque and transparent passes have been fully rendered.

Properties
Mode Chose the filter type (see below).

Depth Sensitivity The minimum difference between the distances of adjacent pixels that will indicate an edge.

Normals Sensitivity The minimum difference between the normals of adjacent pixels that will indicate an edge.

Sampling Distance Bigger sampling distances (default is 1.0) create thicker edges but also introduce haloing artifacts.

Edges exponent Exponent used for Sobel filter. Smaller values detect smaller depth differences as edges.

Background options

Edges only Blend the background with a fixed color.

Background The color used when Edges only is > 0.

Filter Types
The new SobelDepthThin filter offers a way to make edge detection work with other depth based image effects such as

Depth of Field, Fog or Motion Blur as edges don't cross an object's silhouette:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

737 of 1131 12/16/2012 10:12 PM

Edges don't leak into the defocused background and at the same time, the background blur doesn't remove the created

edges.

Note that as only depth is used for edge detection, this filter discards edges inside silhouettes.

SobelDepth works similarly but doesn't discard edges outside the silhouette of an object. Hence, the ede detection is more

precise but doesn't work well with other depth-based effects.

TriangleDepthNormals is likely the cheapest available filter even though it examines both depth and normals to decide if a

pixel resides on an edge, i.e. it detects more than just object silhouettes. A high amount of normal map details however might

break this filter.

RobertsCrossDepthNormals shares its properties with the Triangle filter but looks at slightly more samples to determine

edges. As a natural byproduct, the resulting edges tend to be thicker.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. Additionally, depth texture support is required.

PC: NVIDIA cards since 2004 (GeForce 6), AMD cards since 2004 (Radeon 9500), Intel cards since 2006 (GMA X3000);

Mobile: OpenGL ES 2.0 with depth texture support; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2012-11-16

script-Fisheye

The Fisheye image effect creates distorts the image as if viewed through a fisheye lens (although any lens will distort the

image to some extent).

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

738 of 1131 12/16/2012 10:12 PM

Fisheye distorts the image at its corners. The use of image antialiasing techniques is highly recommended because of

sampling artefacts.

Properties
Strength X The horizontal distortion.

Strength Y The vertical distortion.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2011-09-19

script-GlobalFog

The Global Fog image effect creates camera-based exponential fog. All calculations are done in world space which makes it

possible to have height-based fog modes that can be used for sophisticated effects (see example).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

739 of 1131 12/16/2012 10:12 PM

Example of global fog, demonstrating both distance and height based fog

Example of "cheating" at atmospheric effects using global fog

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Properties
Fog Mode The available types of fog, based on distance, height or both

Start Distance The distance at which the fog starts fading in, in world space units.

Global Density The degree to which the Fog Color accumulates with distance.

Height Scale The degree to which the fog density reduces with height (when height-based fog is enabled).

Height The world space Y coordinate where fog starts to fade in.

Global Fog Color The color of the fog.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. Additionally, depth texture support is required.

PC: NVIDIA cards since 2004 (GeForce 6), AMD cards since 2004 (Radeon 9500), Intel cards since 2006 (GMA X3000);

Mobile: OpenGL ES 2.0 with depth texture support; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2011-09-19

script-SunShafts

The Sun Shafts image effect simulates the radial light scattering (also known as the "god ray" effect) that arises when a very

bright light source is partly obscured.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

740 of 1131 12/16/2012 10:12 PM

Example of the Sun Shafts effect

Properties
Rely on Z Buffer This option can be used when no depth textures are available or they are too expensive to calculate

(eg, in forward rendering with a large number of objects). Note that if this option is disabled then Sun

Shafts must be the very first image effect applied to the camera.

Resolution The resolution at which the shafts are generated. Lower resolutions are faster to calculate and create

softer results.

Blend Mode Chose between the softer Screen mode and the simpler Add mode.

Sun Transform The transform of the light source that casts the Sun Shafts. Only the position is significant.

Center on ... Within the editor, position the Sun Transform object at the center of the game view camera.

Shafts color The tint color of the shafts.

Distance falloff The degree to which the shafts' brightness diminishes with distance from the Sun Transform object.

Blur size The radius over which pixel colours are combined during blurring.

Blur

iterations

The number of repetitions of the blur operation. More iterations will give smoother blurring but each has a cost

in processing time.

Intensity The brightness of the generated shafts.

Use alpha

mask

Defines how much the alpha channel of the color buffer should be used when generating Sun Shafts. This is

useful when your skybox has a proper alpha channel that defines a mask (eg, for clouds blocking the sun shafts).

Blend Modes: Add and Screen
Blend modes determine the way that two images will be combined when overlaid. Each pixel from the base image is combined

mathematically with the pixel in the corresponding position in the overlay image. Two blend modes are available for Unity

image effects, Add and Screen.

Add Mode

When the images are blended in Add mode, the values of the color channels (red, green and blue) are simply added together

and clamped to the maximum value of 1. The overall effect is that areas of each image that aren't especially bright can easily

blend to maximum brightness in the result. The final image tends to lose color and detail and so Add mode is useful when a

dazzling "white out" effect is required.

Screen Mode

Screen mode is so named because it simulates the effect of projecting the two source images onto a white screen

simultaneously. Each color channel is combined separately but identically to the others. Firstly, the channel values of the two

source pixels are inverted (ie, subtracted from 1). Then, the two inverted values are multiplied together and the result is

inverted. The result is brighter than either of the two source pixels but it will be at maximum brightness only if one of the source

colors was also. The overall effect is that more color variation and detail from the source images is preserved, leading to a

gentler effect than Add mode.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

741 of 1131 12/16/2012 10:12 PM

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. Additionally, depth texture support is required.

PC: NVIDIA cards since 2004 (GeForce 6), AMD cards since 2004 (Radeon 9500), Intel cards since 2006 (GMA X3000);

Mobile: OpenGL ES 2.0 with depth texture support; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2011-09-27

script-TiltShift

Tilt Shift is a specialized version of the Depth of Field effect that allows for very smooth transitions between focused and

defocused areas. It is is easier to use and is generally less prone to unsightly image artifacts. However, since it relies on

dependent texture lookups, it can also have a higher processing overhead.

Tilt shift example. Observe the overall smoothness the effect achieves.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Properties
Focal Settings

Visualize Visualizes the focal plane in the game view with a green tint (useful for learning or debugging).

Distance The distance to the focal plane from the camera position in world space units.

Smoothness The smoothness when transitioning from out-of-focus to in-focus areas.

Background Blur

Downsample Downsamples most internal buffers (this makes the effect faster but more blurry).

Iterations Number of iterations for blurring the background areas (ie, everything behind the focal plane). Each iteration

requires processing time.

Max Blur

spread

The maximum blur distance for the defocused areas. Makes out-of-focus areas increasingly blurred.

Foreground Blur

Enable Enables foreground blurring. This typically gives a better result but with a cost in processing time.

IterationsNumber of iterations for blurring the foreground areas (ie, everything in front of the focal area). Each iteration

requires processing time.

Hardware support
This effect requires a graphics card with pixel shaders (3.0) or OpenGL ES 2.0. Additionally, depth texture support is required.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

742 of 1131 12/16/2012 10:12 PM

PC: NVIDIA cards since 2004 (GeForce 6), AMD cards since 2005 (Radeon X1300), Intel cards since 2006 (GMA X3000);

Mobile: OpenGL ES 2.0 with depth texture support; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2011-09-19

script-Vignetting

The Vignetting image effect introduces darkening, blur and chromatic aberration (spectral color separation) at the edges and

corners of the image. This is usually used to simulate a view through a camera lens but can also be used to create abstract

effects.

Example of Vignetting and chromatic Aberration. Notice how the screen corners darken and color separation (aberration)

creates purple and slightly green color fringing.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Properties
Vignetting The degree of darkening applied to the screen edges and corners. Choose 0 to disable this feature

and save on performance.

Blurred Corners The amount of blur that is added to the screen corners. Choose 0 to disable this feature and save on

performance.

Blur Distance The blur filter sample distance used when blurring corners.

Aberration Mode Advanced tries to model more aberration effects (the constant axial aberration existant on the entire image

plane) while Simple only models tangential aberration (limited to corners).

Strength Overall aberration intensity (not to confuse with color offset distance), defaults to 1.0.

Tangential

Aberration

The degree of tangential chromatic aberration: Uniform on the entire image plane.

Axial Aberration The degree of axial chromatic aberration: Scales with smaller distance to the image plane's corners.

Contrast

Dependency

The bigger this value, the more contrast is needed for the aberration to trigger. Higher values are more

realistic (in this case, an HDR input is recommended).

Advanced Mode
Advanced mode is more expensive but offers a more realistic implementation of Chromatic Aberration.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

743 of 1131 12/16/2012 10:12 PM

The Advanced mode offers great control over our model of chromatic aberration -- also known as green or purple color

fringing -- a common phenomenon in photography (also see image below).

Closeup view of color fringing. Note how around areas of great contrast purple and green shimmers seem to appear. This

effect depends depends on the kind of camera or lens system being used. The effect is based on the fact that different

wavelengths will be projected on different focal planes.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2012-11-16

script-BlurEffect

The Blur image effect blurs the rendered image in real-time.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

744 of 1131 12/16/2012 10:12 PM

Blur effect applied to the scene

Properties
Iterations The number of times the basic blur operation will be repeated. More iterations typically give a better

result but each has a cost in processing time.

Blur Spread Higher values will spread out the blur more at the same iteration count but at some cost in quality.

Usually values from 0.6 to 0.7 are a good compromise between quality and speed.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2011-09-19

script-ColorCorrectionEffect

Color Correction allows you apply arbitrary color correction to your scene as a postprocessing effect (just like the Curves tool

in Photoshop or Gimp). This page explains how to setup color correction in Photoshop and then apply exactly the same color

correction at runtime in Unity.

Like all image effects, Color Correction is only available in Pro version of Unity. Make sure to have the Pro Standard Assets

installed.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

745 of 1131 12/16/2012 10:12 PM

Color correction applied to the scene. Color ramp used (magnified) is shown at the right.

Color ramp used for the image above.

Getting color correction from Photoshop into Unity

Take a screenshot of a typical scene in your game1.

Open it in Photoshop and color correct using the Image->Adjustments->Curves2.

Save the .acv file file from the dialog using Save...3.

Open Pro Standard Assets->Image Based->color correction ramp.png in Photoshop4.

Now apply color correction to the ramp image: open Image->Adjustments->Curves again and load your saved .acv

file

5.

Select your camera in Unity and select Component->Image Effects->Color Correction to add color correction

effect. Select your modified color ramp.

6.

Hit Play to see the effect in action!7.

Details
Color correction works by remapping the original image colors through the color ramp image (sized 256x1):

result.red = pixel's red value in ramp image at (original.red + RampOffsetR) index1.

result.green = pixel's green value in ramp image at (original.green + RampOffsetG) index2.

result.blue = pixel's blue value in ramp image at (original.blue + RampOffsetB) index3.

So for example, to invert the colors in the image you only need to flip the original color ramp horizontally (so that it goes from

white to black instead of from black to white).

A simpler version of color remapping that only remaps based on luminance can be achieved with Grayscale image effect.

Tips:

The color correction ramp image should not have mip-maps. Turn them off in Import Settings. It should also be set to

Clamp mode.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2011-05-12

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

746 of 1131 12/16/2012 10:12 PM

script-ContrastStretchEffect

Contrast Stretch dynamically adjusts the contrast of the image according to the range of brightness levels it contains. The

adjustment takes place gradually over a period of time, so the player can be briefly dazzled by bright outdoor light when

emerging from a dark tunnel, say. Equally, when moving from a bright scene to a dark one, the "eye" takes some time to adapt.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Understanding Contrast Stretch
The clarity of detail in an image is largely determined by the range of different brightness values it contains. It is difficult for the

eye to distinguish between two brightness levels that differ by less than about 2% and above that, the greater the difference,

the stronger the detail. The overall separation between the lightest and darkest values in an image is referred to as the

contrast of that image.

It is common for an image to use less than the full range of available brightness values. One way to increase the contrast is to

redistribute the pixels' values so as to make better use of the range. The darkest level in the original image is remapped to a

even darker level, the brightest to a brighter level and all the levels in between are moved farther apart in proportion. The

distribution of levels is then "stretched" out farther across the available range and thus this effect is known as contrast

stretch.

Contrast stretching is evocative of the way the eye adapts to different light conditions. When walking from an outdoor area to a

dimly lit building, the view will briefly appear indistinct until the contrast is stretched to reveal the detail. When emerging from

the building, the contrast stretch will have the effect of making the outdoor scene appear dazzling bright until the "eye" of the

player adjusts.

No Contrast Stretch applied.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

747 of 1131 12/16/2012 10:12 PM

Contrast stretch applied with a dark skybox. Note that buildings get brighter.

Contrast stretch applied with a very bright skybox. Note that buildings get darker.

Properties
Adaptation Speed The speed of the transition. The lower this number, the slower the transition

Limit Minimum The darkest level in the image after adjustment.

Limit Maximum The brightest level in the image after adjustment.

Tips:

Since Constrast Stretch is applied over a period of time, the full effect is only visible in Play mode.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2011-09-20

script-EdgeDetectEffect

Edge Detect image effect adds black edges to the image wherever color differences exceed some threshold.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

748 of 1131 12/16/2012 10:12 PM

If more sophisticated geometry-based edge detection is required, the Standard Assets also provide such a normals and

depth-based edge detection effect.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Edge Detect image effect applied to the scene

Threshold Edges will be displayed wherever the color difference between neighboring pixels exceeds this value.

Increasing the value will make edges less sensitive to texture or lighting changes.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2012-09-25

script-GlowEffect

Glow (sometimes called "Bloom") can dramatically enhance the rendered image by making overbright parts "glow" (e.g. sun,

light sources, strong highlights). The Bloom image effect gives greater control over the glow but has a bit higher processing

overhead.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

749 of 1131 12/16/2012 10:12 PM

Glow effect applied to the scene

Properties
Glow Intensity Total brightness at the brightest spots of the glowing areas.

Blur Iterations Number of times the glow is blurred when being drawn. Each iteration requires processing time.

Blur Spread The pixel distance over which pixels are combined to produce blurring.

Glow Tint Color tint applied to the glow.

Downsample Shader The shader used for the glow. You generally should not have to change this.

Details
Glow uses the alpha channel of the final image to represent "color brightness". All colors are treated as RGB, multiplied by the

alpha channel. You can view the contents of the alpha channel in Scene View.

All built-in shaders write the following information to alpha:

Main texture's alpha multiplied by main color's alpha (not affected by lighting).

Specular shaders add specular highlight multiplied by specular color's alpha.

Transparent shaders do not modify alpha channel at all.

Particle shaders do not modify alpha channel, except for Particles/Multiply which darkens anything that is in alpha.

Skybox shaders write alpha of the texture multiplied by tint alpha

Most of the time you'll want to do this to get reasonable glow:

Set material's main color alpha to zero or use a texture with zero alpha channel. In the latter case, you can put non-zero

alpha in the texture to cause these parts to glow.

Set the specular color alpha for Specular shaders to be 100%.

Keep in mind what alpha the camera clears to (if it clears to a solid color), or what alpha the skybox material uses.

Add the Glow image effect to the camera. Tweak Glow Intensity and Blur Iterations values, you can also take a look at the

comments in the shader script source.

The alpha channel on the Skybox can be used to great effect to add more glow when looking at the sun

Tips:

Use the alpha rendering mode in the scene view toolbar to quickly see which objects output different values to the alpha

channel.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2012-11-16

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

750 of 1131 12/16/2012 10:12 PM

script-GrayscaleEffect

Grayscale is a simple image effect that changes colors to grayscale by default. It can also use a Texture Ramp texture to

remap luminance to arbitrary colors.

Like all image effects, Grayscale is available in Unity Pro only. Make sure to have the Pro Standard Assets installed.

Grayscale image effect applied to the scene

Remapping colors
Grayscale can do a simple version of color correction, i.e. remap grayscale image into arbitrary colors. This can be used for

effects like heat vision.

The process of color remapping is very similar to ColorCorrection effect:

Take a screenshot of a typical scene in your game.1.

Open it in Photoshop and convert to grayscale.2.

Color correct it using the Image->Adjustments->Curves.3.

Save the .acv file file from the dialog using Save...4.

Open Pro Standard Assets->Image Based->color correction ramp.png in Photoshop5.

Now apply color correction to the ramp image: open Image->Adjustments->Curves again and load your saved .acv

file

6.

Select your camera in Unity and select Component->Image Effects->Grayscale to add the effect. Select your

modified color ramp.

7.

Hit Play to see the effect in action!8.

Details

Color remapping works by remapping the original image luminance through the color ramp image (sized 256x1):

result color = pixel's color in the ramp image at (OriginalLuminance + RampOffset) index. For example, to invert the colors

in the image you only need to flip the original color ramp horizontally (so that it goes from white to black instead of from

black to white):

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

751 of 1131 12/16/2012 10:12 PM

Grayscale applied to the scene with color ramp that goes from white to black.

A more complex version of color remapping that does arbitrary color correction can be achieved with ColorCorrection image

effect.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2011-05-12

script-MotionBlur

Motion Blur image effect enhances fast-moving scenes by leaving "motion trails" of previously rendered frames. For a modern

implementation of Motion Blur, please refer to the new Camera Motion Blur Effect.

Like all image effects, Motion Blur is only available in Unity Pro. Make sure to have the Pro Standard Assets installed.

Motion Blur effect applied to the rotating scene

Blur Amount How much of the previous frames to leave in the image. Higher values make longer motion trails.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

752 of 1131 12/16/2012 10:12 PM

Extra Blur If checked, this makes motion trails more blurry, by applying some extra blur to previous frames.

Tips:

Motion Blur only works while in play mode because it's time based.

Hardware support

Motion Blur effect works all graphics cards that support rendering to a texture. E.g. GeForce2, Radeon 7000 and up. All image

effects automatically disable themselves when they can not run on an end-users graphics card.

Page last updated: 2012-11-16

script-NoiseEffect

Noise is an image postprocessing effect that can simulate both TV and VCR noise.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Noise effect with high intensity applied to the scene

Monochrome If enabled, Noise is similar to TV noise. If disabled, it more closely resembles VCR noise - it distorts

color values in YUV space, so you also get hue changes, mostly towards magenta/green gues.

Grain Intensity

Min/Max

The intensity of noise takes random values between Min and Max.

Grain Size The size of a single grain texture pixel in screen pixels. Increasing this will make noise grains larger.

Scratch Intensity

Min/Max

The intensity of additional scratch/dust takes random values between Min and Max.

Scratch FPS Scratches jump to different positions on the screen at this framerate.

Scratch Jitter Scratches can jitter slightly while remaining close to their original positions.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2011-09-20

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

753 of 1131 12/16/2012 10:12 PM

script-SepiaToneEffect

Sepia Tone is a simple image effect that tints an image to resemble an old photograph.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Sepia Tone image effect applied to the scene

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2011-09-20

script-SSAOEffect

Screen Space Ambient Occlusion (SSAO) approximates Ambient Occlusion in realtime, as an image post-processing effect.

It darkens creases, holes and surfaces that are close to each other. In real life, such areas tend to block out or occlude

ambient light, hence they appear darker.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

754 of 1131 12/16/2012 10:12 PM

SSAO applied to the scene.

The same scene without SSAO for comparison. Note the differences at the corners where structures or grass meet the

ground.

Properties
Radius The maximum "radius" of a gap that will introduce ambient occlusion.

Sample Count Number of ambient occlusion samples. A higher count will give better quality but with a higher

processing overhead.

Occlusion Intensity The degree of darkness added by ambient occlusion.

Blur Amount of blur to apply to the darkening. No blur (0) is much faster but the darkened areas will be

noisy.

Downsampling The resolution at which calculations should be performed (for example, a downsampling value of 2

will work at half the screen resolution). Downsampling increases rendering speed at the cost of

quality.

Occlusion Attenuation How fast occlusion should attenuate with distance.

Min Z Try increasing this value if there are artifacts.

Details
SSAO approximates ambient occlusion using an image processing effect. Its cost depends purely on screen resolution and

SSAO parameters and does not depend on scene complexity as true AO would. However, the approximation tends to introduce

artifacts. For example, objects that are outside of the screen do not contribute to occlusion and the amount of occlusion is

dependent on viewing angle and camera position.

Note that SSAO is quite expensive in terms of processing time and generally should only be used on high-end graphics cards.

Using SSAO will cause Unity to render the depth+normals texture of the camera which increases the number of draw calls and

has a CPU processing overhead. However, the depth+normals texture then can be used for other effects as well (eg, Depth of

Field). Once the texture is generated, the remainder of the SSAO effect is performed on the graphics card.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

755 of 1131 12/16/2012 10:12 PM

Hardware support
SSAO works on graphics cards with Shader Model 3.0 support (eg, GeForce 6 and later, Radeon X1300 and later). All image

effects automatically disable themselves when they can not run on a particular graphics card. Due to the complexity of the

effect, SSAO is not supported on mobile devices.

Page last updated: 2011-09-21

script-TwirlEffect

The Twirl image effect distorts the rendered image within a circular region. The pixels at the centre of the circle are rotated by

a specified angle; the rotation for other pixels in the circle decreases with distance from the centre, diminishing to zero at the

circle's edge.

Twirl is similar to another image effect called Vortex, although vortex distorts the image around a central circle rather than a

single point.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Twirl image effect applied to the scene

Radius The radius of the ellipse where image distortion occurs, given in normalized screen coordinates (ie, a

radius of 0.5 is half the size of the screen).

Angle The angle of rotation at the centre point.

Center The point at the centre of the circle where distortion occurs.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2011-09-20

script-VortexEffect

The Vortex image effect distorts the rendered image within a circular region. Pixels in the image are displaced around a

central circular area by a specified angle; the amount of displacement reduces with distance from the centre, diminishing to

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

756 of 1131 12/16/2012 10:12 PM

zero at the circle's edge. Vortex is similar to another image effect called Twirl, although Twirl distorts the image around a point

rather than a circle.

As with the other image effects, this effect is only available in Unity Pro and you must have the Pro Standard Assets installed

before it becomes available.

Vortex image effect applied to the scene

Radius The radius of the circle where distortion occurs, given in normalized screen coordinates (ie, a radius

of 0.5 is half the size of the screen).

Angle The angle by which pixels are displaced around the central circle.

Center The center of the circular region of distortion.

Hardware support
This effect requires a graphics card with pixel shaders (2.0) or OpenGL ES 2.0. PC: NVIDIA cards since 2003 (GeForce FX),

AMD cards since 2004 (Radeon 9500), Intel cards since 2005 (GMA 900); Mobile: OpenGL ES 2.0; Consoles: Xbox 360, PS3.

All image effects automatically disable themselves when they can not run on end-users graphics card.

Page last updated: 2011-09-20

comp-ManagerGroup

Audio Manager

Editor settings

Input Manager

NavMesh Layers (Pro only)

Network Manager

Physics Manager

Player Settings

Quality Settings

Render Settings

Script Execution Order Settings

Tag Manager

Time Manager
Page last updated: 2007-07-16

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

757 of 1131 12/16/2012 10:12 PM

class-AudioManager

The Audio Manager allows you to tweak the maximum volume of all sounds playing in the scene. To see it choose

Edit->Project Settings->Audio.

Properties
Volume The volume of all sounds playing.

Rolloff Scale Sets the global attenuation rolloff factor for Logarithmic rolloff based sources (see Audio Source).

The higher the value the faster the volume will attenuate, conversely the lower the value, the slower

it attenuate (value of 1 will simulate the "real world").

Speed of Sound The speed of sound. 343 is the real world speed of sound, if you are using a meters as your units.

You can adjust this value to make your objects have more or less Doppler effect with larger or smaller

speed.

Doppler Factor How audible the Doppler effect is. When it is zero it is turned off. 1 means it should be quite audible

for fast moving objects.

Default Speaker Mode Defines which speaker mode should be the default for your project. Default is 2 for stereo speaker

setups (see AudioSpeakerMode in the scripting API reference for a list of modes).

DSP Buffer Size The size of the DSP buffer can be set to optimise for latency or performance

Default Default buffer size

Best Latency Trades off performance in favour of latency

Good Latency Balance between latency and performance

Best Performance Trades off latency in favour of performance

Details
If you want to use Doppler Effect set Doppler Factor to 1. Then tweak both Speed of Sound and Doppler Factor until you

are satisfied.

Speaker mode can be changed runtime from your application through scripting. See Audio Settings.

Page last updated: 2011-10-24

class-EditorManager

Properties
Version Control Which version control system should be used.

WWW Security

Emulation

For webplayer testing, the editor can "pretend" that the game is a webplayer hosted at this URL.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

758 of 1131 12/16/2012 10:12 PM

Asset Serialization To assist with version control merges, Unity can store scene files in a textual format (see the textual

scene format pages for further details). If merges will not be performed then Unity can store scenes in

a more space efficient binary format or allow both text and binary scene files to exist at the same

time.
Page last updated: 2012-01-31

class-InputManager

 Desktop

The Input Manager is where you define all the different input axes and game actions for your project.

The Input Manager

To see the Input Manager choose: Edit->Project Settings->Input.

Properties
Axes Contains all the defined input axes for the current project: Size is the number of different input axes

in this project, Element 0, 1, ... are the particular axes to modify.

Name The string that refers to the axis in the game launcher and through scripting.

Descriptive Name A detailed definition of the Positive Button function that is displayed in the game launcher.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

759 of 1131 12/16/2012 10:12 PM

Descriptive Negative

Name

A detailed definition of the Negative Button function that is displayed in the game launcher.

Negative Button The button that will send a negative value to the axis.

Positive Button The button that will send a positive value to the axis.

Alt Negative Button The secondary button that will send a negative value to the axis.

Alt Positive Button The secondary button that will send a positive value to the axis.

Gravity How fast will the input recenter. Only used when the Type is key / mouse button.

Dead Any positive or negative values that are less than this number will register as zero. Useful for

joysticks.

Sensitivity For keyboard input, a larger value will result in faster response time. A lower value will be more

smooth. For Mouse delta the value will scale the actual mouse delta.

Snap If enabled, the axis value will be immediately reset to zero after it receives opposite inputs. Only used

when the Type is key / mouse button.

Invert If enabled, the positive buttons will send negative values to the axis, and vice versa.

Type Use Key / Mouse Button for any kind of buttons, Mouse Movement for mouse delta and

scrollwheels, Joystick Axis for analog joystick axes and Window Movement for when the user

shakes the window.

Axis Axis of input from the device (joystick, mouse, gamepad, etc.)

Joy Num Which joystick should be used. By default this is set to retrieve the input from all joysticks. This is

only used for input axes and not buttons.

Details
All the axes that you set up in the Input Manager serve two purposes:

They allow you to reference your inputs by axis name in scripting

They allow the players of your game to customize the controls to their liking

All defined axes will be presented to the player in the game launcher, where they will see its name, detailed description, and

default buttons. From here, they will have the option to change any of the buttons defined in the axes. Therefore, it is best to

write your scripts making use of axes instead of individual buttons, as the player may want to customize the buttons for your

game.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

760 of 1131 12/16/2012 10:12 PM

The game launcher's Input window is displayed when your game is run

See also: Input.

Hints
Axes are not the best place to define "hidden" or secret functions, as they will be displayed very clearly to the player in the

game launcher.

 iOS

This section is not supported on iOS devices.

For more info on how to work with input on iOS devices, please refer to the iOS Input page.

 Android

This section is not supported on Android devices.

For more info on how to work with input on Android devices, please refer to the Android Input page.

Page last updated: 2011-10-21

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

761 of 1131 12/16/2012 10:12 PM

class-NavMeshLayers

The primary task of the navigation system is finding the optimal path between two points in navigation-space. In the simplest

case, the optimal path is the shortest path. However, in many complex environments, some areas are harder to move thru than

others (for example, crossing a river can be more costly than running across a bridge). To model this, Unity utilizes the concept

of cost and the optimal path is defined as the path with the lowest cost. To manage costs, Unity has the concept of Navmesh

Layers. Each geometry marked up as Navmesh Static will belong to a Navmesh Layer.

During pathfinding, instead of comparing lengths of potential path segments, the cost of each segment is evaluated. This is a

done by scaling the length of each segment by the cost of the navmesh layer for that particular segment. Note that when all

costs are set to 1, the optimal path is equivalent to the shortest path.

To define custom layers per project

Go to Edit->Project Settings->Navmesh Layers

Go to one of the user layers, and set up name and cost

The name is what will be used everywhere in the scene for identifying the navmesh layer

The cost indicates how difficult it is to traverse the NavMesh layer. 1 is default, 2.0 is twice as difficult, 0.5 is half as

difficult, etc.

There are 3 built-in layers

Default - specifies the cost for everything not otherwise specified

Not walkable - the cost is ignored

Jump - the cost of automatically generated off-mesh links

To apply custom layers to specific geometry

Select the geometry in the editor

Pull up the Navigation Mesh window (Window->Navigation)

Go to the Object tab, and select the desired Navigation layer for that object

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

762 of 1131 12/16/2012 10:12 PM

If you have Show NavMesh enabled in the Navmesh Display window, the different layers should show up in different

colors in the editor.

To tell an agent what layers he can or cannot traverse

Go to the NavMeshAgent component of the agent's geometry

Modify NavMesh Walkable property

Don't forget to set the agent's destination property from a script

Note: Setting the cost value below 1 is not recommended, as the underlying pathfinding method does not guarantee an

optimal path in this case

One good use case for using Navmesh Layers is:

You have a road that pedestrians (NavmeshAgents) need to cross.

The pedestrian walkway in the middle is the preferred place for them to go

Set up a navmesh layer with high cost for most of the road, and a navmesh layer with a low cost for the pedestrian

walkway.

This will cause agents to prefer paths that go thru the pedestrian walkway.

Another relevant topic for advanced pathfinding is Off-mesh links

(back to Navigation and Pathfinding)

Page last updated: 2012-04-24

class-NetworkManager

The Network Manager contains two very important properties for making Networked multiplayer games.

The Network Manager

You can access the Network Manager by selecting Edit->Project Settings->Network from the menu bar.

Properties
Debug Level The level of messages that are printed to the console

Off Only errors will be printed

Informational Significant networking events will be printed

Full All networking events will be printed

Sendrate Number of times per second that data is sent over the network

Details
Adjusting the Debug Level can be enormously helpful in fine-tuning or debugging your game's networking behaviors. At first,

setting it to Full will allow you to see every single network action that is performed. This will give you an overall sense of how

frequently you are using network communication and how much bandwidth you are using as a result.

When you set it to Informational, you will see major events, but not every individual activity. Assigning unique Network IDs

and buffering RPC calls will be logged here.

When it is Off, only errors from networking will be printed to the console.

The data that is sent at the Sendrate intervals (1 second / Sendrate = interval) will vary based on the Network View

properties of each broadcasting object. If the Network View is using Unreliable, its data will be send at each interval. If the

Network View is using Reliable Delta Compressed, Unity will check to see if the Object being watched has changed since

the last interval. If it has changed, the data will be sent.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

763 of 1131 12/16/2012 10:12 PM

Page last updated: 2011-10-21

class-PhysicsManager

You can access the Physics Manager by selecting Edit->Project Settings->Physics from the menu bar.

The Physics Manager

Properties
Gravity The amount of gravity applied to all Rigidbodies. Usually gravity acts only on the Y-axis (negative is

down). Gravity is meters/(seconds 2̂).

Default Material The default Physics Material that will be used if none has been assigned to an individual Collider.

Bounce Threshold Two colliding objects with a relative velocity below this value will not bounce. This value also reduces

jitter so it is not recommended to set it to a very low value.

Sleep Velocity The default linear velocity, below which objects start going to sleep.

Sleep Angular Velocity The default angular velocity, below which objects start going to sleep.

Max Angular Velocity The default maximimum angular velocity permitted for any Rigidbodies. The angular velocity of

Rigidbodies is clamped to stay within Max Angular Velocity to avoid numerical instability with

quickly rotating bodies. Because this may prevent intentional fast rotations on objects such as

wheels, you can override this value for any Rigidbody by scripting Rigidbody.maxAngularVelocity.

Min Penetration For

Penalty

How deep in meters are two objects allowed to penetrate before the collision solver pushes them

apart. A higher value will make objects penetrate more but reduces jitter.

Solver Iteration Count Determines how accurately joints and contacts are resolved. Usually a value of 7 works very well for

almost all situations.

Raycasts Hit Triggers If enabled, any Raycast that intersects with a Collider marked as a Trigger will return a hit. If

disabled, these intersections will not return a hit.

Layer Collision Matrix Defines how the layer-based collision detection system will behave.

Details
The Physics Manager is where you define the default behaviors of your world. For an explanation of Rigidbody Sleeping, read

this page about sleeping.

Hints

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

764 of 1131 12/16/2012 10:12 PM

If you are having trouble with connected bodies oscillating and behaving eratically, setting a higher Solver Iteration

Count may improve their stability, but will require more processing power.
Page last updated: 2012-09-03

class-PlayerSettings40

Player Settings is where you define various parameters (platform specific) for the final game that you will build in Unity. Some

of these values for example are used in the Resolution Dialog that launches when you open a standalone game, others are

used by XCode when building your game for the iOS devices, so it's important to fill them out correctly.

To see the Player Settings choose Edit->Project Settings->Player from the menu bar.

Global Settings that apply to any project you create.

Cross-Platform Properties
Company Name The name of your company. This is used to locate the preferences file.

Product Name The name that will appear on the menu bar when your game is running and is used to locate the

preferences file also.

Default Icon Default icon the application will have on every platform (You can override this later for platform

specific needs).

Default Cursor Default cursor the application will have on every supported platform.

Cursor Hotspot Cursor hotspot in pixels from the top left of the default cursor

Per-Platform Settings

 Desktop

Web-Player

Resolution And Presentation

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

765 of 1131 12/16/2012 10:12 PM

Resolution

Default Screen Width Screen Width the player will be generated with.

Default Screen Height Screen Height the plater will be generated with.

Run in background Check this if you dont want to stop executing your game if the player looses focus.

WebPlayer Template For more information you should check the "Using WebPlayer templates page", note that for each

built-in and custom template there will be an icon in this section.

Icon

Icons don't have any meaning for webplayer builds (you can set icons for Native Client builds in the Native Client section of the

Player Settings).

Other Settings

Rendering

Rendering Path This property is shared between Standalone and WebPlayer content.

Vertex Lit Lowest lighting fidelity, no shadows support. Best used on old machines or limited mobile platforms.

Forward with

Shaders

Good support for lighting features; limited support for shadows.

Deferred Lighting Best support for lighting and shadowing features, but requires certain level of hardware support. Best

used if you have many realtime lights. Unity Pro only.

Color Space The color space to be used for rendering

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

766 of 1131 12/16/2012 10:12 PM

GammaSpace

Rendering

Rendering is gamma-corrected

Linear Rendering

Hardware Sampling

Rendering is done in linear space

Use Direct3D 11 Use Direct3D 11 for rendering.

Static Batching Set this to use Static batching on your build (Inactive by default in webplayers). Unity Pro only.

Dynamic Batching Set this to use Dynamic Batching on your build (Activated by default).

Streaming

First Streamed Level If you are publishing a Streamed Web Player, this is the index of the first level that will have access to

all Resources.Load assets.

Configuration

Scripting Define

Symbols

Custom compilation flags (see the platform dependent compilation page for details).

Optimization

Optimize Mesh Data Remove any data from meshes that is not required by the material applied to them (tangents,

normals, colors, UV).

Standalone

Resolution And Presentation

Resolution

Default Screen Width Screen Width the stand alone game will be using by default.

Default Screen Height Screen Height the plater will be using by default.

Run in background Check this if you dont want to stop executing your game if it looses focus.

Standalone Player Options

Default is Full Screen Check this if you want to start your game by default in full screen mode.

Capture Single Screen If enabled, standalone games in fullscreen mode will not darken the secondary monitor in multi-

monitor setups.

DisplayResolution Dialog

Disabled No resolution dialog will appear when starting the game.

Enabled Resolution dialog will always appear when the game is launched.

Hidden by default The resolution player is possible to be opened only if you have pressed the "alt" key when starting

the game.

Use Player Log Write a log file with debugging information. If you plan to submit your application to the Mac App

Store you will want to leave this option un-ticked. Ticked is the default.

Resizable Window Allow user to resize the standalone player window.

Mac App Store

Validation

Enable receipt validation for the Mac App Store.

Mac Fullscreen Mode Options for fullscreen mode on Mac builds

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

767 of 1131 12/16/2012 10:12 PM

Capture Display Unity will take over the whole display (ie, GUI from other apps will not appear and the user cannot

switch apps until fullscreen mode is exited).

Fullscreen Window Unity runs in a window that covers the whole screen at desktop resolution. Other apps' GUI will

display correctly and it is possible to switch apps with cmd + tab or trackpad gestures on OSX 10.7

and above.

Fullscreen Window

with Menu Bar and

Dock

As fullscreen window mode but the standard menu bar and dock will also be shown.

Supported Aspect

Ratios

Aspect Ratios selectable in the Resolution Dialog will be monitor-supported resolutions of enabled

items from this list.

Icon

Override for

Standalone

Check if you want to assign a custom icon you would like to be used for your standalone game.

Different sizes of the icon should fill in the squares below.

Splash Image

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

768 of 1131 12/16/2012 10:12 PM

Config Dialog Banner Add your custom splash image that will be displayed when the game is starting.

Other Settings

Rendering

Rendering Path This property is shared between Standalone and WebPlayer content.

Vertex Lit Lowest lighting fidelity, no shadows support. Best used on old machines or limited mobile platforms.

Forward with

Shaders

Good support for lighting features; limited support for shadows.

Deferred Lighting Best support for lighting and shadowing features, but requires certain level of hardware support. Best

used if you have many realtime lights. Unity Pro only.

Color Space The color space to be used for rendering

GammaSpace

Rendering

Rendering is gamma-corrected

Linear Rendering

Hardware Sampling

Rendering is done in linear space

Static Batching Set this to use Static batching on your build (Inactive by default in webplayers). Unity Pro only.

Dynamic Batching Set this to use Dynamic Batching on your build (Activated by default).

Configuration

Scripting Define

Symbols

Custom compilation flags (see the platform dependent compilation page for details).

Optimization

API Compatibility Level

.Net 2.0 .Net 2.0 libraries. Maximum .net compatibility, biggest file sizes

.Net 2.0 Subset Subset of full .net compatibility, smaller file sizes

Optimize Mesh Data Remove any data from meshes that is not required by the material applied to them (tangents,

normals, colors, UV).

 iOS

Resolution And Presentation

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

769 of 1131 12/16/2012 10:12 PM

Resolution

Default Orientation (This setting is shared between iOS and Android devices)

Portrait The device is in portrait mode, with the device held upright and the home button at the bottom.

Portrait Upside

Down

The device is in portrait mode but upside down, with the device held upright and the home button at

the top.

Landscape Right The device is in landscape mode, with the device held upright and the home button on the left side.

Landscape Left The device is in landscape mode, with the device held upright and the home button on the right side.

Auto Rotation The screen orientation is automatically set based on the physical device orientation.

Auto Rotation settings

Use Animated

Autorotation

When checked, orientation change is animated. This only applies when Default orientation is set to

Auto Rotation.

Allowed Orientations for Auto Rotation

Portrait When checked, portrait orientation is allowed. This only applies when Default orientation is set to

Auto Rotation.

Portrait Upside

Down

When checked, portrait upside down orientation is allowed. This only applies when Default

orientation is set to Auto Rotation.

Landscape Right When checked, landscape right (home button on the left side) orientation is allowed. This only

applies when Default orientation is set to Auto Rotation.

Landscape Left When checked, landscape left (home button is on the right side) orientation is allowed. This only

applies when Default orientation is set to Auto Rotation.

Status Bar

Status Bar Hidden Specifies whether the status bar is initially hidden when the application launches.

Status Bar Style Specifies the style of the status bar as the application launches

Default

Black Translucent

Black Opaque

Use 32-bit Display

Buffer

Specifies if Display Buffer should be created to hold 32-bit color values (16-bit by default). Use it if

you see banding, or need alpha in your ImageEffects, as they will create RTs in same format as

Display Buffer.

Show Loading

Indicator

Options for the loading indicator

Don't Show No indicator

White Large Indicator shown large and in white

White Indicator shown at normal size in white

Gray Indicator shown at normal size in gray

Icon

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

770 of 1131 12/16/2012 10:12 PM

Override for iOS Check if you want to assign a custom icon you would like to be used for your iPhone/iPad game.

Different sizes of the icon should fill in the squares below.

Prerendered icon If unchecked iOS applies sheen and bevel effects to the application icon.

Splash Image

Mobile Splash Screen

(Pro-only feature)

Specifies texture which should be used for iOS Splash Screen. Standard Splash Screen size is

320x480.(This is shared between Android and iOS)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

771 of 1131 12/16/2012 10:12 PM

High Res. iPhone

(Pro-only feature)

Specifies texture which should be used for iOS 4th gen device Splash Screen. Splash Screen size is

640x960.

iPad Portrait (Pro-only

feature)

Specifies texture which should be used as iPad Portrait orientation Splash Screen. Standard Splash

Screen size is 768x1024.

High Res. iPad Portrait Specifies texture which should be used as the high res iPad Portrait orientation Splash Screen.

Standard Splash Screen size is 1536x2048.

iPad Landscape

(Pro-only feature)

Specifies texture which should be used as iPad Landscape orientation Splash Screen. Standard

Splash Screen size is 1024x768.

High res. iPad

Landscape (Pro-only

feature)

Specifies texture which should be used as the high res iPad Landscape orientation Splash Screen.

Standard Splash Screen size is 2048x1536.

Other Settings

Rendering

Static Batching Set this to use Static batching on your build (Activated by default). Pro-only feature.

Dynamic Batching Set this to use Dynamic Batching on your build (Activated by default).

Identification

Bundle Identifier The string used in your provisioning certificate from your Apple Developer Network account(This is

shared between iOS and Android)

Bundle Version Specifies the build version number of the bundle, which identifies an iteration (released or

unreleased) of the bundle. This is a monotonically increased string, comprised of one or more period-

separated

Configuration

Target Device Specifies application target device type.

iPhone Only Application is targeted for iPhone devices only.

iPad Only Application is targeted for iPad devices only.

iPhone + iPad Application is targeted for both iPad and iPhone devices.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

772 of 1131 12/16/2012 10:12 PM

Target Resolution Resolution you want to use on your deployed device.(This setting will not have any effect on devices

with maximum resolution of 480x320)

Native(Default

Device Resolution)

Will use the device native resolution.

Auto (Best

Performance)

Chooses resolution automatically, favouring performance over graphic quality.

Auto (Best Quality) Chooses resolution automatically, favouring graphic quality over performance.

320p (iPhone) Pre-Retina iPhone display.

640p (iPhone Retina

Display)

iPhone with Retina.

768p (iPad) iPad display.

Graphics Level OpenGL version.

OpenGL ES 1.x OpenGL ES 1.x versions.

OpenGL ES 2.0 OpenGL ES 2.0.

Accelerometer

Frequency

How often the accelerometer is sampled

Disabled Accelerometer is not sampled

15Hz 15 samples per second

30Hz 30 samples per second

60Hz 60 samples per second

100Hz 100 samples per second

Override iPod Music If selected, the application will silence user's iPod music. Otherwise user's iPod music will continue

playing in the background.

UI Requires Persistent

WiFi

Specifies whether the application requires a Wi-Fi connection. iOS maintains the active Wi-Fi

connection open while the application is running.

Exit on Suspend Specifies whether the application should quit when suspended to background on iOS versions that

support multitasking.

Scripting Define

Symbols

Custom compilation flags (see the platform dependent compilation page for details).

Optimization

Api Compatibility

Level

Specifies active .NET API profile

.Net 2.0 .Net 2.0 libraries. Maximum .net compatibility, biggest file sizes

.Net 2.0 Subset Subset of full .net compatibility, smaller file sizes

AOT compilation

options

Additional AOT compiler options.

SDK Version Specifies iPhone OS SDK version to use for building in Xcode

Device SDK SDK to run on actual hardware.

Simulator SDK SDK to run only on the simulator.

Target iOS Version Specifies lowest iOS version where final application will able to run; ranges from iOS 4.0 to 6.0.

Stripping Level

(Pro-only feature)

Options to strip out scripting features to reduce built player size(This setting is shared between iOS

and Android Platforms)

Disabled No reduction is done.

Strip Assemblies Level 1 size reduction.

Strip ByteCode Level 2 size reduction (includes reductions from Level 1).

Use micro mscorlib Level 3 size reduction (includes reductions from Levels 1 and 2).

Script Call

Optimization

Optionally disable exception handling for a speed boost at runtime

Slow and Safe Full exception handling will occur with some performance impact on the device

Fast but no

Exceptions

No data provided for exceptions on the device, but the game will run faster

Optimize Mesh Data Remove any data from meshes that is not required by the material applied to them (tangents,

normals, colors, UV).

Note: If you build for example for iPhone OS 3.2, and then select Simulator 3.2 in Xcode you will get a ton of errors. So you

MUST be sure to select a proper Target SDK in Unity Editor.

 Android

Resolution And Presentation

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

773 of 1131 12/16/2012 10:12 PM

Resolution and presentation for your Android project builds.

Resolution

Default Orientation (This setting is shared between iOS and Android devices)

Portrait The device is in portrait mode, with the device held upright and the home button at the bottom.

Portrait Upside

Down

The device is in portrait mode but upside down, with the device held upright and the home button at

the top (only available with Android OS 2.3 and later).

Landscape Right The device is in landscape mode, with the device held upright and the home button on the left side

(only available with Android OS 2.3 and later).

Landscape Left The device is in landscape mode, with the device held upright and the home button on the right side.

Use 32-bit Display

Buffer

Specifies if Display Buffer should be created to hold 32-bit color values (16-bit by default). Use it if

you see banding, or need alpha in your ImageEffects, as they will create RTs in same format as

Display Buffer. Not supported on devices running pre-Gingerbread OS (will be forced to 16-bit).

Use 24-bit Depth

Buffer

If set Depth Buffer will be created to hold (at least) 24-bit depth values. Use it only if you see

'z-fighting' or other artifacts, as it may have performance implications.

Icon

Different icons that your project will have when built.

Override for Android Check if you want to assign a custom icon you would like to be used for your Android game. Different

sizes of the icon should fill in the squares below.

Splash Image

Splash image that is going to be displayed when your project is launched.

Mobile Splash Screen

(Pro-only feature)

Specifies texture which should be used by the iOS Splash Screen. Standard Splash Screen size is

320x480.(This is shared between Android and iOS)

Splash Scaling Specifies how will be the splash image scaling on the device.

Other Settings

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

774 of 1131 12/16/2012 10:12 PM

Rendering

Static Batching Set this to use Static batching on your build (Activated by default). Pro-only feature.

Dynamic

Batching

Set this to use Dynamic Batching on your build (Activated by default).

Identification

Bundle

Identifier

The string used in your provisioning certificate from your Apple Developer Network account(This is shared

between iOS and Android)

Bundle Version Specifies the build version number of the bundle, which identifies an iteration (released or unreleased) of the

bundle. This is a monotonically increased string, comprised of one or more period-separated(This is shared

between iOS and Android)

Bundle Version

Code

An internal version number. This number is used only to determine whether one version is more recent than

another, with higher numbers indicating more recent versions. This is not the version number shown to

users; that number is set by the versionName attribute. The value must be set as an integer, such as "100".

You can define it however you want, as long as each successive version has a higher number. For example,

it could be a build number. Or you could translate a version number in "x.y" format to an integer by encoding

the "x" and "y" separately in the lower and upper 16 bits. Or you could simply increase the number by one

each time a new version is released.

Minimum API

Level

Minimum API version required to support the build.

Configuration

Graphics Level Select either ES 1.1 ('fixed function') or ES 2.0 ('shader based') Open GL level. When using the AVD

(emulator) only ES 1.x is supported.

Install Location Specifies application install location on the device (for detailed information, please refer to

http://developer.android.com/guide/appendix/install-location.html).

Automatic Let OS decide. User will be able to move the app back and forth.

Prefer

External

Install app to external storage (SD-Card) if possible. OS does not guarantee that will be possible; if not, the

app will be installed to internal memory.

Force

Internal

Force app to be installed into internal memory. User will be unable to move the app to external storage.

Internet AccessWhen set to Require, will enable networking permissions even if your scripts are not using this. Automatically

enabled for development builds.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

775 of 1131 12/16/2012 10:12 PM

Write Access When set to External (SDCard), will enable write access to external storage such as the SD-Card.

Automatically enabled for development builds.

Scripting

Define Symbols

Custom compilation flags (see the platform dependent compilation page for details).

Optimization

Api

Compatibility

Level

Specifies active .NET API profile

.Net 2.0 .Net 2.0 libraries. Maximum .net compatibility, biggest file sizes

.Net 2.0

Subset

Subset of full .net compatibility, smaller file sizes

Stripping Level

(Pro-only

feature)

Options to strip out scripting features to reduce built player size(This setting is shared between iOS and

Android Platforms)

Disabled No reduction is done.

Strip

Assemblies

Level 1 size reduction.

Strip

ByteCode (iOS

only)

Level 2 size reduction (includes reductions from Level 1).

Use micro

mscorlib

Level 3 size reduction (includes reductions from Levels 1 and 2).

Enable "logcat"

profiler

Enable this if you want to get feedback from your device while testing your projects. So adb logcat prints logs

from the device to the console (only available in development builds).

Optimize Mesh

Data

Remove any data from meshes that is not required by the material applied to them (tangents, normals,

colors, UV).

Publishing Settings

Publishing settings for Android Market

Keystore

Use Existing

Keystore / Create New

Keystore

Use this to choose whether to create a new Keystore or use an existing one.

Browse Keystore Lets you select an existing Keystore.

Keystore password Password for the Keystore.

Confirm password Password confirmation, only enabled if the Create New Keystore option is chosen.

Key

Alias Key alias

Password Password for key alias

Split Application

Binary

Flag to split the application into expansion files. Useful only with Google Play Store when the finished

build exceeds 50MB.

Note that for security reasons, Unity will save neither the keystore password nor the key password. Also, note that the signing

must be done from Unity's player settings - using jarsigner will not work.

Flash

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

776 of 1131 12/16/2012 10:12 PM

Resolution And Presentation

Resolution

Default Screen Width Screen Width the player will be generated with.

Default Screen Height Screen Height the plater will be generated with.

Other Settings

Optimization

Stripping Bytecode can optionally be stripped during the build.

Strip Physics Code Remove physics engine code from the build when not required.

Optimize Mesh Data Remove any data from meshes that is not required by the material applied to them (tangents,

normals, colors, UV).

Google Native Client

Resolution and Presentation

Resolution

Default Screen Width Screen Width the player will be generated with.

Default Screen Height Screen Height the plater will be generated with.

Icon

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

777 of 1131 12/16/2012 10:12 PM

Different icons that your project will have when built.

Override for Web Check if you want to assign a custom icon you would like to be used for your Native Client game.

Different sizes of the icon should fill in the squares.

Other Settings

Rendering

Static Batching Set this to use Static batching on your build (Inactive by default in webplayers). Unity Pro only.

Dynamic Batching Set this to use Dynamic Batching on your build (Activated by default).

Configuration

Scripting Define

Symbols

Custom compilation flags (see the platform dependent compilation page for details).

Optimization

API Compatibility Level

.Net 2.0 .Net 2.0 libraries. Maximum .net compatibility, biggest file sizes

.Net 2.0 Subset Subset of full .net compatibility, smaller file sizes

Strip Physics Code Remove physics engine code from the build when not required.

Optimize Mesh Data Remove any data from meshes that is not required by the material applied to them (tangents,

normals, colors, UV).

Details

 Desktop

The Player Settings window is where many technical preference defaults are set. See also Quality Settings where the different

graphics quality levels can be set up.

Publishing a web player

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

778 of 1131 12/16/2012 10:12 PM

Default Web Screen Width and Default Web Screen Height determine the size used in the html file. You can modify the

size in the html file later.

Default Screen Width and Default Screen Height are used by the Web Player when entering fullscreen mode through the

context menu in the Web Player at runtime.

Customizing your Resolution Dialog

The Resolution Dialog, presented to end-users

You have the option of adding a custom banner image to the Screen Resolution Dialog in the Standalone Player. The

maximum image size is 432 x 163 pixels. The image will not be scaled up to fit the screen selector. Instead it will be centered

and cropped.

Publishing to Mac App Store

Use Player Log enables writing a log file with debugging information. This is useful to find out what happened if there are

problems with your game. When publishing games for Apple's Mac App Store, it is recommended to turn this off, because

Apple may reject your submission otherwise. See this manual page for further information about log files.

Use Mac App Store Validation enables receipt validation for the Mac App Store. If this is enabled, your game will only run

when it contains a valid receipt from the Mac App Store. Use this when submitting games to Apple for publishing on the App

Store. This prevents people from running the game on any computer then the one it was purchased on. Note that this feature

does not implement any strong copy protection. In particular, any potential crack against one Unity game would work against

any other Unity content. For this reason, it is recommended that you implement your own receipt validation code on top of this

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

779 of 1131 12/16/2012 10:12 PM

using Unity's plugin feature. However, since Apple requires plugin validation to initially happen before showing the screen

setup dialog, you should still enable this check, or Apple might reject your submission.

 iOS

Bundle Identifier

The Bundle Identifier string must match the provisioning profile of the game you are building. The basic structure of the

identifier is com.CompanyName.GameName. This structure may vary internationally based on where you live, so always

default to the string provided to you by Apple for your Developer Account. Your GameName is set up in your provisioning

certificates, that are manageable from the Apple iPhone Developer Center website. Please refer to the Apple iPhone

Developer Center website for more information on how this is performed.

Stripping Level (Pro-only)

Most games don't use all necessary dlls. With this option, you can strip out unused parts to reduce the size of the built player

on iOS devices. If your game is using classes that would normally be stripped out by the option you currently have selected,

you'll be presented with a Debug message when you make a build.

Script Call Optimization

A good development practice on iOS is to never rely on exception handling (either internally or through the use of try/catch

blocks). When using the default Slow and Safe option, any exceptions that occur on the device will be caught and a stack

trace will be provided. When using the Fast but no Exceptions option, any exceptions that occur will crash the game, and no

stack trace will be provided. However, the game will run faster since the processor is not diverting power to handle exceptions.

When releasing your game to the world, it's best to publish with the Fast but no Exceptions option.

 Android

Bundle Identifier

The Bundle Identifier string is the unique name of your application when published to the Android Market and installed on the

device. The basic structure of the identifier is com.CompanyName.GameName, and can be chosen arbitrarily. In Unity this

field is shared with the iOS Player Settings for convenience.

Stripping Level (Pro-only)

Most games don't use all the functionality of the provided dlls. With this option, you can strip out unused parts to reduce the

size of the built player on Android devices.

Page last updated: 2012-09-25

class-QualitySettings

Unity allows you to set the level of graphical quality it will attempt to render. Generally speaking, quality comes at the expense

of framerate and so it may be best not to aim for the highest quality on mobile devices or older hardware since it will have a

detrimental effect on gameplay. The Quality Settings inspector (menu: Edit->Project Settings->Quality) is split into two

main areas. At the top, there is the following matrix:-

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

780 of 1131 12/16/2012 10:12 PM

Unity lets you assign a name to a given combination of quality options for easy reference. The rows of the matrix let you

choose which of the different platforms each quality level will apply to. The Default row at the bottom of the matrix is not a

quality level in itself but rather sets the default quality level used for each platform (a green checkbox in a column denotes the

level currently chosen for that platform). Unity comes with six quality levels pre-enabled but you can add your own levels using

the button below the matrix. You can use the trashcan icon (the rightmost column) to delete an unwanted quality level.

You can click on the name of a quality level to select it for editing, which is done in the panel below the settings matrix:-

The quality options you can choose for a quality level are as follows:-

Name The name that will be used to refer to this quality level

Pixel Light Count The maximum number of pixel lights when Forward Rendering is used.

Texture Quality This lets you choose whether to display textures at maximum resolution or at a fraction of this (lower

resolution has less processing overhead). The options are Full Res, Half Res, Quarter Res and

Eighth Res.

Anisotropic Textures This enables if and how anisotropic textures will be used.

Disabled Anisotropic textures are not used.

Per Texture Anisotropic rendering will be enabled separately for each Texture.

Forced On Anisotropic textures are always used.

AntiAliasing This sets the level of antialiasing that will be used. The options are 2x, 4x and 8x multi-sampling.

Soft Particles Should soft blending be used for particles?

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

781 of 1131 12/16/2012 10:12 PM

Shadows This determines which type of shadows should be used

Hard and Soft

Shadows

Both hard and soft shadows will be rendered.

Hard Shadows Only Only hard shadows will be rendered.

Disable Shadows No shadows will be rendered.

Shadow resolution Shadows can be rendered at several different resolutions: Low, Medium, High and Very High. The

higher the resolution, the greater the processing overhead.

Shadow Projection There are two different methods for projecting shadows from a directional light. Close Fit renders

higher resolution shadows but they can sometimes wobble slightly if the camera moves. Stable Fit

renders lower resolution shadows but they don't wobble with camera movements.

Shadow Cascades The number of shadow cascades can be set to zero, two or four. A higher number of cascades gives

better quality but at the expense of processing overhead (see the Directional Shadows page for

further details).

Shadow Distance The maximum distance from camera at which shadows will be visible. Shadows that fall beyond this

distance will not be rendered.

Blend Weights The number of bones that can affect a given vertex during an animation. The available options are

one, two or four bones.

VSync Count Rendering can be synchronised with the refresh rate of the display device to avoid "tearing" artifacts

(see below). You can choose to synchronise with every vertical blank (VBlank), every second vertical

blank or not to synchronise at all.

LOD Bias LOD levels are chosen based on the onscreen size of an object. When the size is between two LOD

levels, the choice can be biased toward the less detailed or more detailed of the two models

available. This is set as a fraction from 0 to 1 - the closer it is to zero, the more the bias is toward the

less detailed model.

Maximum LOD Level The highest LOD that will be used by the game. Models which have a LOD above this level will not

be used and omitted from the build (which will save storage and memory space).

Particle Raycast

Budget

The maximum number of raycasts to use for approximate particle system collisions (those with

Medium or Low quality). See Particle System Collision Module.

Tearing
The picture on the display device is not continuously updated but rather the updates happen at regular intervals much like

frame updates in Unity. However, Unity's updates are not necessarily synchronised with those of the display, so it is possible

for Unity to issue a new frame while the display is still rendering the previous one. This will result in a visual artifact called

"tearing" at the position onscreen where the frame change occurs.

Simulated example of tearing. The shift in the picture is clearly visible in the magnified portion.

It is possible to set Unity to switch frames only during the period where the display device is not updating, the so-called

"vertical blank". The VSync option on the Quality Settings synchronises frame switches with the device's vertical blank or

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

782 of 1131 12/16/2012 10:12 PM

optionally with every other vertical blank. The latter may be useful if the game requires more than one device update to

complete the rendering of a frame.

Anti-aliasing

Anti aliasing improves the appearance of polygon edges, so they are not "jagged", but smoothed out on the screen. However,

it incurs a performance cost for the graphics card and uses more video memory (there's no cost on the CPU though). The level

of anti-aliasing determines how smooth polygon edges are (and how much video memory does it consume).

Without anti-aliasing, polygon edges are "jagged".

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

783 of 1131 12/16/2012 10:12 PM

With 6x anti-aliasing, polygon edges are smoothed out.

Soft Particles

Soft Particles fade out near intersections with other scene geometry. This looks much nicer, however it's more expensive to

compute (more complex pixel shaders), and only works on platforms that support depth textures. Furthermore, you have to use

Deferred Lighting rendering path, or make the camera render depth textures from scripts.

Without Soft Particles - visible intersections with the scene.

With Soft Particles - intersections fade out smoothly.
Page last updated: 2012-11-16

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

784 of 1131 12/16/2012 10:12 PM

class-RenderSettings

The Render Settings contain default values for a range of visual elements in your scene, like Lights and Skyboxes.

To see the Render Settings choose Edit->Render Settings from the menu bar.

Properties
Fog If enabled, fog will be drawn throughout your scene.

Fog Color Color of the fog.

Fog Mode Fog mode: Linear, Exponential (Exp) or Exponential Squared (Exp2). This controls the way fog fades

in with distance.

Fog Density Density of the fog; only used by Exp and Exp2 fog modes.

Linear Fog Start/End Start and End distances of the fog; only used by Linear fog mode.

Ambient Light Color of the scene's ambient light.

Skybox Material Default skybox that will be rendered for cameras that have no skybox attached.

Halo Strength Size of all light halos in relation to their Range.

Flare Strength Intensity of all flares in the scene.

Halo Texture Reference to a Texture that will appear as the glow for all Halos in lights.

Spot Cookie Reference to a Texture2D that will appear as the cookie mask for all Spot lights.

Details
The Render Settings is used to define some basic visual commonalities of any individual scene in your project. Maybe you

have two levels in the same environment: one at daytime and one at nighttime. You can use the same meshes and Prefabs to

populate the scene, but you can change the Ambient Light to be much brighter at daytime, and much darker at night.

Fog

Enabling Fog will give a misty haze to your scene. You can adjust the look and color of the Fog with Fog Density and Fog

Color, respectively.

Adding fog is often used to optimize performance by making sure that far away objects fade out and are not drawn. Please

note that enabling fog is not enough to enable this performance optimization. To do that you also need to adjust your Camera's

Far Clip Plane, so that geometry far away will not be drawn. It is best to tweak the fog to look correct first. Then make the

Camera's far clip plane smaller until you see the geometry being clipped away before the fog fades it out.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

785 of 1131 12/16/2012 10:12 PM

A scene with Fog turned off

The same scene with Fog turned on

Note that fog is rendered uniformly in orthographic camera mode. This is because in our shaders, we output post-perspective

space Z coordinate as the fog coordinate. But post-perspective Z is not really suitable for fog in orthographic cameras. Why do

we do this? Because it's fast and does not need any extra computations; handling orthographic cameras would make all

shaders be a bit slower.

Hints
Don't under-estimate the visual impact your game can make by thoughtfully tweaking the Render Settings!

Render Settings are per-scene: each scene in your game can have different Render Settings.
Page last updated: 2011-10-24

class-ScriptExecution

By default, the Awake, OnEnable and Update functions of different scripts are called in the order the scripts are loaded (which

is arbitrary). However, it is possible to modify this order using the Script Execution Order settings.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

786 of 1131 12/16/2012 10:12 PM

Scripts can be added to the inspector using the Plus "+" button and dragged to change their relative order. Note that it is

possible to drag a script either above or below the Default Time bar; those above will execute ahead of the default time while

those below will execute after. The ordering of scripts in the dialog from top to bottom determines their execution order. All

scripts not in the dialog execute in the default time slot in arbitrary order.

Page last updated: 2011-10-21

class-TagManager

The Tag Manager allows you to set up Layers and Tags. To see it choose Edit->Project Settings->Tags.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

787 of 1131 12/16/2012 10:12 PM

The Tag Manager

Properties
Tags You can add new elements by typing in the last element.

User Layer 8-31 You can add custom named User Layers

Details
Layers can be used to cast rays, render, or apply lighting to certain groups of objects only. You can choose the Layer in the

GameObject inspector. More information about how to use Layers can be found here, while Tags are covered here.

Tags are used to quickly find objects from scripts, utilizing the Tag name. When a new tag is added, you can choose it from the

GameObject tag popup.

Page last updated: 2011-10-21

class-TimeManager

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

788 of 1131 12/16/2012 10:12 PM

The Time Manager

Properties

Fixed Timestep A framerate-independent interval that dictates when physics calculations and FixedUpdate() events

are performed.

Maximum Allowed

Timestep

A framerate-independent interval that caps the worst case scenario when frame-rate is low. Physics

calculations and FixedUpdate() events will not be performed for longer time than specified.

Time Scale The speed at which time progress. Change this value to simulate bullet-time effects. A value of 1

means real-time. A value of .5 means half speed; a value of 2 is double speed.

Details

Fixed Timestep

Fixed time stepping is very important for stable physics simulation. Not all computers are made equal, and different hardware

configurations will run Unity games with varying performance. Therefore, physics must be calculated independently of the

game's frame rate. Physics calculations like collision detection and Rigidbody movement are performed in discrete fixed time

steps that are not dependent on frame rate. This makes the simulation more consistent across different computers or when

changes in the frame rate occur. For example, the frame rate can drop due to an appearance of many game onscreen, or

because the user launched another application in the background.

Here's how the fixed time step is calculated. Before every frame is drawn onscreen, Unity advances the fixed time by fixed

delta time and performs physics calculations until it reaches the current time. This directly correlates to the Fixed Timestep

property. The smaller the value of Fixed Timestep, the more frequently physics will be calculated. The number of Fixed

frames per second can be calculated by dividing 1 by Fixed Timestep. Therefore, 1 / 0.02 = 50 fixed frames per second and

1 / 0.05 = 20 fixed frames per second.

Simply put, a smaller fixed update value leads to more accurate physics simulation but is heavier on the CPU.

Maximum Allowed Timestep

Fixed time stepping ensures stable physics simulation. However it can cause negative impact on performance if game is heavy

on physics and is already running slow or occasionally dips to low frame rate. Longer the frame takes to process - more fixed

update steps will have to be executed for the next frame. This results in performance degradation. To prevent such scenario

Unity iOS introduced Maximum Allowed Timestep which ensures that physics calculations will not run longer than specified

threshold.

If frame takes longer to process than time specified in Maximum Allowed Timestep, then physics will "pretend" that frame

took only Maximum Allowed Timestep seconds. In other words if frame rate drops below some threshold, then rigid bodies

will slow down a bit allowing CPU to catch up.

Maximum Allowed Timestep affects both physics calculation and FixedUpdate() events.

Maximum Allowed Timestep is specified in seconds as Fixed Timestep. Therefore setting 0.1 will make physics and

FixedUpdate() events to slow down, if frame rate dips below 1 / 0.1 = 10 frames per second.

Typical scenario

Let's assume Fixed Timestep is 0.01, which means that physx, fixedUpdate and animations should be processed

every 10 ms.

1.

When your frame time is ~33 ms then fixed loop is executed 3 times per visual frame on average.2.

But frametime isn't fixed constant and depends on many factors including your scene state, OS background taks, etc.3.

Because of 3. reasons frametime sometimes can reach 40-50 ms, which means that fixed step loop will be executed

4-5 times.

4.

When your fixed timestep tasks are pretty heavy then time spent on physx, fixedUpdates and animations extend your

frametime by another 10 ms, which means one more additional iteration of all these fixed timestep tasks.

5.

In some unlucky cases process described in 5. could extend to 10 and more times of processing fixed step loop.6.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

789 of 1131 12/16/2012 10:12 PM

That's why Maximum Allowed Timestep was introduced, it is the method to limit how much times physx,

fixedUpdates and animations can be processed during single visual frame. If you have Maximum Allowed Timestep

set to 100 ms and your Fixed Timestep is 10 ms, then for fixed step tasks will be executed up to 10 times per visual

frame. So sometimes small performance hitch could trigger big performance hitch because of increased fixed timestep

iteration count. By decreasing Maximum Allowed Timestep to 30 ms, you are limiting max fixed step iteration count

to 3 and this means that your physx, fixedUpdate and animation won't blow your frametime up very much, but there is

some negative effect of this limiting. Your animations and physics will slow down a bit when performance hitch occurs.

7.

Hints
Give the player control over time by changing Time Scale dynamically through scripting.

If your game is physics heavy or spends significant amount of time in FixedUpdate() events, then set Maximum Allowed

Timestep to 0.1. This will prevent physics from driving your game below 10 frames per second.
Page last updated: 2011-10-21

comp-MeshGroup

3D Meshes are the main graphics primitive of Unity. Various components exist in Unity to render regular or skinned meshes,

trails or 3D lines.

Mesh Filter

Mesh Renderer

Skinned Mesh Renderer

Text Mesh
Page last updated: 2007-07-26

class-MeshFilter

The Mesh Filter takes a mesh from your assets and passes it to the Mesh Renderer for rendering on the screen.

A Mesh Filter combined with a Mesh Renderer makes the model appear on screen.

Properties
Mesh Reference to a mesh that will be rendered. The Mesh is located in your Project Folder.

Details

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

790 of 1131 12/16/2012 10:12 PM

When importing mesh assets, Unity automatically creates a Skinned Mesh Renderer if the mesh is skinned, or a Mesh Filter

along with a Mesh Renderer, if it is not.

To see the Mesh in your scene, add a Mesh Renderer to the GameObject. It should be added automatically, but you will have

to manually re-add it if you remove it from your object. If the Mesh Renderer is not present, the Mesh will still exist in your

scene (and computer memory) but it will not be drawn.

Page last updated: 2010-09-14

class-MeshRenderer

The Mesh Renderer takes the geometry from the Mesh Filter and renders it at the position defined by the object's Transform

component.

Properties
Cast Shadows (Pro

only)

If enabled, this Mesh will create shadows when a shadow-creating Light shines on it

Receive Shadows (Pro

only)

If enabled, this Mesh will display any shadows being cast upon it

Materials A list of Materials to render model with

Use Light Probes Enable probe-based lighting for this mesh

Anchor Override A Transform used to determine the interpolation position when the light probe system is used

Details
Meshes imported from 3D packages can use multiple Materials. For each Material there is an entry in Mesh Renderer's

Materials list, so each submesh in the Mesh is rendered with a different material. If there are more materials assigned to the

MeshRenderer then submeshes in the Mesh, then the first submesh will be rendered with each of the remaining materials -

this lets you set up multi-pass rendering with multiple materials.

A mesh can receive light from the light probe system if the Use Light Probes option is enabled (see the light probes manual

page for further details). A single point is used as the mesh's notional position for light probe interpolation. By default, this is

the centre of the mesh's bounding box, but you can override this by dragging a Transform to the Anchor Override property. It

may be useful to set the anchor in cases where an object contains two adjoining meshes; since each mesh has a separate

bounding box, the two will be lit discontinuously at the join by default. However, if you set both meshes to use the same anchor

point, they will be consistently lit.

Page last updated: 2012-11-29

class-SkinnedMeshRenderer

The Skinned Mesh Renderer is automatically added to imported meshes when the imported mesh is skinned.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

791 of 1131 12/16/2012 10:12 PM

An animated character rendered using the Skinned Mesh Renderer

Properties
Cast Shadows (Pro

only)

If enabled, this Mesh will create shadows when a shadow-creating Light shines on it

Receive Shadows (Pro

only)

If enabled, this Mesh will display any shadows being cast upon it

Materials A list of Materials to render model with.

Quality The maximum amount of bones affecting every vertex.

Update When

Offscreen

If enabled, the Skinned Mesh will be updated when offscreen. If disabled, this also disables updating

animations.

Bounds These bounds are use for determining when skinned mesh is offscreen. Bounding box is also

displayed in the SceneView. Bounds are precalculated on import based on Mesh and animations in

the model file.

Mesh Meshed used by this renderer.

Details
Skinned Meshes are used for rendering characters. Characters are animated using bones, and every bone affects a part of

the mesh. Multiple bones can affect the same vertex and are weighted. The main advantage to using boned characters in

Unity is you can enable the bones to be affected by physics, making your characters into ragdolls. You can enable/disable

bones via scripting, so your character instantly goes ragdoll when it is hit by an explosion.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

792 of 1131 12/16/2012 10:12 PM

A Skinned Mesh enabled as a Ragdoll

Quality

Unity can skin every vertex with either 1, 2, or 4 bones. 4 bone weights look nicest and are most expensive. 2 Bone weights is

a good compromise and can be commonly used in games.

If Quality is set to Automatic, the Quality Settings Blend Weights value will be used. This allows end-users to choose a

quality setting that gives them optimum performance.

Update When Offscreen and Bounds

By default, skinned meshes that are not visible are not updated. The skinning is not updated until the mesh comes back on

screen. This is an important performance optimization - it allows you to have a lot of characters running around not taking up

any processing power when they are not visible.

However, visibility is determined from the Mesh's Bounds, which is precalculated on import. Unity takes into account all

attached animations for precalcualating bounding volume, but there are cases when Unity can't precalculate Bounds to fit all

user's needs, for example (each of these become a problem when they push bones or vertices out of precalculated bounding

volume):

adding animations at run-time;

using additive animations;

proceduraly affecting positions of bones;

using vertex shaders which can push vertices out of precalculated bounds;

using ragdolls.

In those cases there are two solutions:

modify Bounds to match potential bounding volume of your mesh;1.

enable Update When Offscreen to skin and render skinned mesh all the time.2.

You should use fist option most of the time since it has better performance and use second option only if performance is not

important in your case or you can't predict the size of your bounding volume (for example when using ragdolls).

In order to make SkinnedMeshes work better with Ragdolls Unity will automatically remap the SkinnedMeshRenderer to the

rootbone on import. However Unity only does this if there is a single SkinnedMeshRenderer in the model file. So if you can't

attach all SkinnedMeshRenderers to the root bone or a child and you use ragdolls, you should turn off this optimization.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

793 of 1131 12/16/2012 10:12 PM

Hints
Skinned Meshes currently can be imported from:

Maya

Cinema4D

3D Studio Max

Blender

Cheetah 3D

XSI

Any other tool that supports the FBX format
Page last updated: 2011-08-17

class-TextMesh

The Text Mesh generates 3D geometry that displays text strings.

The Text Mesh Inspector

You can create a new Text Mesh from GameObject->Create Other->3D Text.

Properties
Text The text that will be rendered

Offset Z How far should the text be offset from the transform.position.z when drawing

Character Size The size of each character (This scales the whole text)

Line Spacing How much space will be in-between lines of text.

Anchor Which point of the text shares the position of the Transform.

Alignment How lines of text are aligned (Left, Right, Center).

Tab Size How much space will be inserted for a tab '\t' character. This is a multiplum of the 'spacebar'

character offset.

Font The TrueType Font to use when rendering the text.

Details
Text Meshes can be used for rendering road signs, graffiti etc. The Text Mesh places text in the 3D scene. To make generic

2D text for GUIs, use a GUI Text component instead.

Follow these steps to create a Text Mesh with a custom Font:

Import a font by dragging a TrueType Font - a .ttf file - from the Explorer (Windows) or Finder (OS X) into the Project

View.

1.

Select the imported font in the Project View.2.

Choose GameObject->Create Other->3D Text.3.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

794 of 1131 12/16/2012 10:12 PM

You have now created a text mesh with your custom TrueType Font. You can scale the text and move it around using the

Scene View's Transform controls.

Note: If you want to change the font for a Text Mesh, need to set the component's font property and also set the texture of the

font material to the correct font texture. This texture can be located using the font asset's foldout. If you forget to set the texture

then the text in the mesh will appear blocky and misaligned.

Hints
When entering text into the Text property, you can create a line break by holding Alt and pressing Return.

You can download free TrueType Fonts from 1001freefonts.com (download the Windows fonts since they contain

TrueType Fonts).

If you are scripting the Text property, you can add line breaks by inserting the escape character "\n" in your strings.
Page last updated: 2012-01-11

comp-NetworkGroup

This group contains all the Components that relate to Networked Multiplayer games.

Network View
Page last updated: 2007-08-23

class-NetworkView

Network Views are the gateway to creating networked multiplayer games in Unity. They are simple to use, but they are

extremely powerful. For this reason, it is recommended that you understand the fundamental concepts behind networking

before you start experimenting with Network Views. You can learn and discover the fundamental concepts in the Network

Reference Guide.

The Network View Inspector

In order to use any networking capabilities, including State Synchronization or Remote Procedure Calls, your

GameObject must have a Network View attached.

Properties
State Synchronization The type of State Synchronization used by this Network View

Off No State Synchronization will be used. This is the best option if you only want to send RPCs

Reliable Delta

Compressed

The difference between the last state and the current state will be sent, if nothing has changed

nothing will be sent. This mode is ordered. In the case of packet loss, the lost packet is re-sent

automatically

Unreliable The complete state will be sent. This uses more bandwidth, but the impact of packet loss is

minimized

Observed The Component data that will be sent across the network

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

795 of 1131 12/16/2012 10:12 PM

View ID The unique identifier for this Network View. These values are read-only in the Inspector

Scene ID The number id of the Network View in this particular scene

Type Either saved to the Scene or Allocated at runtime

Details
When you add a Network View to a GameObject, you must decide two things

What kind of data you want the Network View to send1.

How you want to send that data2.

Choosing data to send

The Observed property of the Network View can contain a single Component. This can be a Transform, an Animation, a

RigidBody, or a script. Whatever the Observed Component is, data about it will be sent across the network. You can select a

Component from the drop-down, or you can drag any Component header directly to the variable. If you are not directly sending

data, just using RPC calls, then you can turn off synchronization (no data directly sent) and nothing needs to be set as the

Observed property. RPC calls just need a single network view present so you don't need to add a view specifically for RPC if a

view is already present.

How to send the data

You have 2 options to send the data of the Observed Component: State Synchronization and Remote Procedure Calls.

To use State Synchronization, set State Synchronization of the Network View to Reliable Delta Compressed or

Unreliable. The data of the Observed Component will now be sent across the network automatically.

Reliable Delta Compressed is ordered. Packets are always received in the order they were sent. If a packet is dropped, that

packet will be re-sent. All later packets are queued up until the earlier packet is received. Only the difference between the last

transmissions values and the current values are sent and nothing is sent if there is no difference.

If it is observing a Script, you must explicitly Serialize data within the script. You do this within the OnSerializeNetworkView()

function.

function OnSerializeNetworkView (stream : BitStream, info : NetworkMessageInfo) {
var horizontalInput : float = Input.GetAxis ("Horizontal");
stream.Serialize (horizontalInput);

}

The above function always writes (an update from the stream) into horizontalInput, when receiving an update and reads from

the variable writing into the stream otherwise. If you want to do different things when receiving updates or sending you can use

the isWriting attribute of the BitStream class.

function OnSerializeNetworkView (stream : BitStream, info : NetworkMessageInfo) {
var horizontalInput : float = 0.0;
if (stream.isWriting) {

// Sending
horizontalInput = Input.GetAxis ("Horizontal");
stream.Serialize (horizontalInput);

} else {

// Receiving
stream.Serialize (horizontalInput);
// ... do something meaningful with the received variable

}
}

OnSerializeNetworkView is called according to the sendRate specified in the network manager project settings. By default

this is 15 times per second.

If you want to use Remote Procedure Calls in your script all you need is a NetworkView component present in the same

GameObject the script is attached to. The NetworkView can be used for something else, or in case it's only used for sending

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

796 of 1131 12/16/2012 10:12 PM

RPCs it can have no script observed and state synchronization turned off. The function which is to be callable from the

network must have the @RPC attribute. Now, from any script attached to the same GameObject, you call networkView.RPC()

to execute the Remote Procedure Call.

var playerBullet : GameObject;

function Update () {
if (Input.GetButtonDown ("Fire1")) {

networkView.RPC ("PlayerFire", RPCMode.All);
}

}

@RPC
function PlayerFire () {

Instantiate (playerBullet, playerBullet.transform.position, playerBullet.transform.rotation);
}

RPCs are transmitted reliably and ordered. For more information about RPCs, see the RPC Details page.

Hints
Read through the Network Reference Guide if you're still unclear about how to use Network Views

State Synchronization does not need to be disabled to use Remote Procedure Calls

If you have more than one Network View and want to call an RPC on a specific one, use GetComponents(NetworkView)

[i].RPC().
Page last updated: 2010-09-20

comp-Effects

The effects group contains components that relate to visual effects.

Particle System (Shuriken)

Halo

Lens Flare

Line Renderer

Trail Renderer

Projector

Particle Systems (Legacy, prior to release 3.5)

Ellipsoid Particle Emitter (Legacy)

Mesh Particle Emitter (Legacy)

Particle Animator (Legacy)

Particle Renderer (Legacy)

World Particle Collider (Legacy)
Page last updated: 2012-01-12

class-ParticleSystem

Particle Systems in Unity are used to make clouds of smoke, steam, fire and other atmospheric effects.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

797 of 1131 12/16/2012 10:12 PM

You can create a new particle system by creating a Particle System GameObject (menu GameObject -> Create Other ->

Particle System) or by creating an empty GameObject and adding the ParticleSystem component to it (in

Component->Effects)

The Particle System Inspector (Shuriken)
The Particle System Inspector shows one particle system at a time (the currently selected one), and it looks like this:

Individual particle systems can take on various complex behaviors by using Modules.

They can also be extended by being grouped together into Particle Effects.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

798 of 1131 12/16/2012 10:12 PM

If you press the button Open Editor ..., this will open up the Extended Particle Editor, that shows all of the particle systems

under the same root in the scene tree. For more information on particle system grouping, see the section on Particle Effects.

Scene View Editing
When creating and editing Particle Systems, you either work with the Inspector or the extended Particle Editor, and your

changes are reflected in the SceneView. The scene view has a Preview Panel, where playback of the currently selected

Particle Effect can be controlled in Edit Mode, with actions like play, pause, stop and scrubbing playback time

Scrubbing play back time can be performed by dragging on the label Playback Time. All Playback controls have shortcut keys

which can be customized in the Preferences window

Particle System Curve Editor

MinMax curves
Many of the properties in the particle system modules describe a change of a value with time. That change is described via

MinMax Curves. These time-animated properties (for example size and speed), will have a pull down menu on the right hand

side, where you can choose between:

Constant: The value of the property will not change with time, and will not be displayed in the Curve Editor

Random between constants: The value of the property will be selected at random between the two constants

Curve: The value of the property will change with time based on the curve specified in the Curve Editor

A property animated with a Curve

Random between curves: A curve will be generated at random between the min and the max curve, and the value of the

property will change in time based on the generated curve

A property animated as Random Between Two Curves

In the Curve Editor, the x-axis spans time between 0 and the value specified by the Duration property, and the y-axis

represents the value of the animated property at each point in time. The range of the y-axis can be adjusted in the number field

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

799 of 1131 12/16/2012 10:12 PM

in the upper right corner of the Curve Editor. The Curve Editor currently displays all of the curves for a particle system in the

same window.

Multiple curves in the same curve editor

Note that the "-" in the bottom-right corner will remove the currently selected curve, while the "+" will optimize it (that is make it

into a parametrized curve with at most 3 keys).

For animating properties that describe vectors in 3D space, we use the TripleMinMax Curves, which are simply curves for the

x-,y-, and z- dimensions side by side, and it looks like this:

Managing many curves in the curve editor
To avoid cluttering in the Curve Editor, it is possible to toggle curves on and off, by clicking on them in the inspector. The

Particle System Curve Editor can also be detached from the Inspector by right-clicking on the Particle System Curves title

bar, after which you should see something like this:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

800 of 1131 12/16/2012 10:12 PM

A detached Curve Editor that can be docked like any other window

For more information on working with curves, take a look at the Curve Editor documentation

Colors and Gradients in the Particle System (Shuriken)

For properties that deal with color, the Particle System makes use of the Color and Gradient Editor. It works in a similar

way to the Curve Editor.

The color-based properties will have a pull down menu on the right hand side, where you can choose between:

Color: The color will be the same throughout time (see Color Picker)

Gradient: The gradient (RGBA) will vary throughout time, edited in the Gradient Editor

Random Between Two Colors: The color varies with time and is chosen at random between two values specified in the

Color Picker

Random Between Two Gradients: The gradient (RGBA) varies with time and is chosen at random between two values

specified Gradient Editor

Page last updated: 2012-01-25

class-Halo

Halos are light areas around light sources, used to give the impression of small dust particles in the air.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

801 of 1131 12/16/2012 10:12 PM

A Light with a separate Halo Component

Properties
Halos use the Halo Texture set up in the Render Settings. If none is assigned, it uses a default one. A Light component can

be setup to automatically show halo, without a separate Halo component.

Color Color of the Halo.

Size Size of the Halo.

Hints
To see Halos in the scene view, check Fx button in the Scene View Toolbar.

Page last updated: 2011-04-12

class-LensFlare

Lens Flares simulate the effect of lights refracting inside camera lens. They are used to represent really bright lights or, more

subtly, just to add a bit more atmosphere to your scene.

The Lens Flare Inspector

The easiest way to setup a Lens Flare is just to assign the Flare property of the Light. Unity contains a couple of

pre-configured Flares in the Standard Assets package.

Otherwise, create an empty GameObject with GameObject->Create Empty from the menu bar and add the Lens Flare

Component to it with Component->Rendering->Lens Flare. Then and choose the Flare in the Inspector.

To see the effect of Lens Flare in the Scene View, check the Fx button in the Scene View toolbar:

Enable the Fx button to view Lens Flares in the Scene View

Properties

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

802 of 1131 12/16/2012 10:12 PM

Flare The Flare to render. The flare defines all aspects of the lens flare's appearance.

Color Some flares can be colorized to better fit in with your scene's mood.

Brightness How large and bright the Lens Flare is.

Directional If set, the flare will be oriented along positive Z axis of the game object. It will appear as if it was

infinitely far away, and won't track object's position, only the direction of Z axis.

Details
You can directly set flares as a property of a Light Component, or set them up separately as Lens Flare component. If you

attach them to a light, they will automatically track the position and direction of the light. To get more precise control, use this

Component.

A Camera has to have a Flare Layer Component attached to make Flares visible (this is true by default, so you don't have to

do any set-up).

Hints
Be discrete about your usage of Lens Flares.

If you use a very bright Lens Flare, make sure its direction fits with your scene's primary light source.

To design your own Flares, you need to create some Flare Assets. Start by duplicating some of the ones we provided in

the the Lens Flares folder of the Standard Assets, then modify from that.

Lens Flares are blocked by Colliders. A Collider in-between the Flare GameObject and the Camera will hide the Flare,

even if the Collider does not have a Mesh Renderer.
Page last updated: 2008-05-30

class-LineRenderer

The Line Renderer takes an array of two or more points in 3D space and draws a straight line between each one. A single

Line Renderer Component can thus be used to draw anything from a simple straight line, to a complex spiral. The line is

always continuous; if you need to draw two or more completely separate lines, you should use multiple GameObjects, each

with its own Line Renderer.

The Line Renderer does not render one pixel thin lines. It renders billboard lines that have width and can be textured. It uses

the same algorithm for line rendering as the Trail Renderer.

The Line Renderer Inspector

Properties

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

803 of 1131 12/16/2012 10:12 PM

Materials The first material from this list is used to render the lines.

Positions Array of Vector3 points to connect.

Size The number of segments in this line.

Parameters List of parameters for each line:

StartWidth Width at the first line position.

EndWidth Width at the last line position.

Start Color Color at the first line position.

End Color Color at the last line position.

Use World Space If enabled, the object's position is ignored, and the lines are rendered around world origin.

Details
To create a line renderer:

Choose GameObject->Create Empty1.

Choose Component->Miscellaneous->Line Renderer2.

Drag a texture or Material on the Line Renderer. It looks best if you use a particle shader in the Material.3.

Hints
Line Renderers are good to use for effects when you need to lay out all the vertices in one frame.

The lines may seem to rotate as you move the Camera. This is intentional.

The Line Renderer should be the only Renderer on a GameObject.
Page last updated: 2012-01-12

class-TrailRenderer

The Trail Renderer is used to make trails behind objects in the scene as they move about.

The Trail Renderer Inspector

Properties
Materials An array of materials used for rendering the trail. Particle shaders work the best for trails.

Size The total number of elements in the Material array.

Element 0 Reference to the Material used to render the trail. The total number of elements is determined by the

Size property.

Time Length of the trail, measured in seconds.

Start Width Width of the trail at the object's position.

End Width Width of the trail at the end.

Colors Array of colors to use over the length of the trail. You can also set alpha transparency with the colors.

Color0 to Color4 The trail's colors, initial to final.

Min Vertex Distance The minimum distance between anchor points of the trail.

AutoDestruct Enable this to make the object be destroyed when the object has been idle for Time seconds.

Details

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

804 of 1131 12/16/2012 10:12 PM

The Trail Renderer is great for a trail behind a projectile, or contrails from the tip of a plane's wings. It is good when trying to

add a general feeling of speed.

When using a Trail Renderer, no other renderers on the GameObject are used. It is best to create an empty GameObject, and

attach a Trail Renderer as the only renderer. You can then parent the Trail Renderer to whatever object you would like it to

follow.

Materials

Trail Renderers should use a material that has a Particle Shader. The Texture used for the Material should be of square

dimensions (e.g. 256x256 or 512x512).

Trail Width

By setting the Trail's Start and End Width, along with the Time property, you can tune the way it is displayed and behaves.

For example, you could create the wake behind a boat by setting the Start Width to 1, and the End Width to 2. These values

would probably need to be fine-tuned for your game.

Trail Colors

You can cycle your trail through 5 different color/opacity combinations. Using colors could make a bright green plasma trail

gradually dim down to a dull grey dissipation, or cycle through the other colors of the rainbow. If you don't want to change the

color, it can be very effective to change only the opacity of each color to make your trail fade in and out at the head and/or tail.

Min Vertex Distance

The Min Vertex Distance value determines how far the object that contains the trail must travel before a segment of the trail

is solidified. Low values like 0.1 will create trail segments more often, creating smoother trails. Higher values like 1.5 will create

segments that are more jagged in appearance. There is a slight performance trade off when using lower values/smoother

trails, so try to use the largest possible value to achieve the effect you are trying to create.

Hints
Use Particle Materials with the Trail Renderer.

Trail Renderers must be laid out over a sequence of frames, they can't appear instantaneously.

Trail Renderers rotate to display the face toward the camera, similar to other Particle Systems.
Page last updated: 2011-12-28

class-Projector

A Projector allows you to project a Material onto all objects that intersect its frustum. The material must use a special type of

shader for the projection effect to work correctly - see the projector prefabs in Unity's standard assets for examples of how to

use the supplied Projector/Light and Projector/Multiply shaders.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

805 of 1131 12/16/2012 10:12 PM

The Projector Inspector

Properties
Near Clip Plane Objects in front of the near clip plane will not be projected upon.

Far Clip Plane Objects beyond this distance will not be affected.

Field Of View The field of view in degrees. This is only used if the Projector is not Ortho Graphic.

Aspect Ratio The Aspect Ratio of the Projector. This allows you to tune the height vs width of the Projector.

Is Ortho Graphic If enabled, the Projector will be Ortho Graphic instead of perspective.

Ortho Graphic Size The Ortho Graphic size of the Projection. this is only used if Is Ortho Graphic is turned on.

Material The Material that will be Projected onto Objects.

Ignore Layers Objects that are in one of the Ignore Layers will not be affected. By default, Ignore Layers is none so

all geometry that intersects the Projector frustum will be affected.

Details
With a projector you can:

Create shadows.1.

Make a real world projector on a tripod with another Camera that films some other part of the world using a Render

Texture.

2.

Create bullet marks.3.

Funky lighting effects.4.

A Projector is used to create a Blob Shadow for this Robot

If you want to create a simple shadow effect, simply drag the StandardAssets->Blob-Shadow->Blob shadow projector

Prefab into your scene. You can modify the Material to use a different Blob shadow texture.

Note: When creating a projector, always be sure to set the wrap mode of the texture's material of the projector to clamp. else

the projector's texture will be seen repeated and you will not achieve the desired effect of shadow over your character.

Hints
Projector Blob shadows can create very impressive Splinter Cell-like lighting effects if used to shadow the environment

properly.

When no Falloff Texture is used in the projector's Material, it can project both forward and backward, creating "double

projection". To fix this, use an alpha-only Falloff texture that has a black leftmost pixel column.
Page last updated: 2011-07-08

comp-ParticlesLegacy

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

806 of 1131 12/16/2012 10:12 PM

Particles are essentially 2D images rendered in 3D space. They are primarily used for effects such as smoke, fire, water

droplets, or leaves. A Particle System is made up of three separate Components: Particle Emitter, Particle Animator, and

a Particle Renderer. You can use a Particle Emitter and Renderer together if you want static particles. The Particle Animator

will move particles in different directions and change colors. You also have access to each individual particle in a particle

system via scripting, so you can create your own unique behaviors that way if you choose.

Please view the Particle Scripting Reference here.

Ellipsoid Particle Emitter (Legacy)

The Ellipsoid Particle Emitter spawns particles inside a sphere. Use the Ellipsoid property below to scale & stretch the

sphere.

The Ellipsoid Particle Emitter Inspector

Properties
Emit If enabled, the emitter will emit particles.

Min Size The minimum size each particle can be at the time when it is spawned.

Max Size The maximum size each particle can be at the time when it is spawned.

Min Energy The minimum lifetime of each particle, measured in seconds.

Max Energy The maximum lifetime of each particle, measured in seconds.

Min Emission The minimum number of particles that will be spawned every second.

Max Emission The maximum number of particles that will be spawned every second.

World Velocity The starting speed of particles in world space, along X, Y, and Z.

Local Velocity The starting speed of particles along X, Y, and Z, measured in the object's orientation.

Rnd Velocity A random speed along X, Y, and Z that is added to the velocity.

Emitter Velocity Scale The amount of the emitter's speed that the particles inherit.

Tangent Velocity The starting speed of particles along X, Y, and Z, across the Emitter's surface.

Angular Velocity The angular velocity of new particles in degrees per second.

Rnd Angular Velocity A random angular velocity modifier for new particles.

Rnd Rotation If enabled, the particles will be spawned with random rotations.

Simulate In World

Space

If enabled, the particles don't move when the emitter moves. If false, when you move the emitter, the

particles follow it around.

One Shot If enabled, the particle numbers specified by min & max emission is spawned all at once. If disabled,

the particles are generated in a long stream.

Ellipsoid Scale of the sphere along X, Y, and Z that the particles are spawned inside.

MinEmitterRange Determines an empty area in the center of the sphere - use this to make particles appear on the edge

of the sphere.

Details
Ellipsoid Particle Emitters (EPEs) are the basic emitter, and are included when you choose to add a Particle System to your

scene from Components->Particles->Particle System. You can define the boundaries for the particles to be spawned, and

give the particles an initial velocity. From here, use the Particle Animator to manipulate how your particles will change over time

to achieve interesting effects.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

807 of 1131 12/16/2012 10:12 PM

Particle Emitters work in conjunction with Particle Animators and Particle Renderers to create, manipulate, and display Particle

Systems. All three Components must be present on an object before the particles will behave correctly. When particles are

being emitted, all different velocities are added together to create the final velocity.

Spawning Properties

Spawning properties like Size, Energy, Emission, and Velocity will give your particle system distinct personality when trying

to achieve different effects. Having a small Size could simulate fireflies or stars in the sky. A large Size could simulate dust

clouds in a musky old building.

Energy and Emission will control how long your particles remain onscreen and how many particles can appear at any one

time. For example, a rocket might have high Emission to simulate density of smoke, and high Energy to simulate the slow

dispersion of smoke into the air.

Velocity will control how your particles move. You might want to change your Velocity in scripting to achieve interesting

effects, or if you want to simulate a constant effect like wind, set your X and Z Velocity to make your particles blow away.

Simulate in World Space

If this is disabled, the position of each individual particle will always translate relative to the Position of the emitter. When the

emitter moves, the particles will move along with it. If you have Simulate in World Space enabled, particles will not be

affected by the translation of the emitter. For example, if you have a fireball that is spurting flames that rise, the flames will be

spawned and float up in space as the fireball gets further away. If Simulate in World Space is disabled, those same flames

will move across the screen along with the fireball.

Emitter Velocity Scale

This property will only apply if Simulate in World Space is enabled.

If this property is set to 1, the particles will inherit the exact translation of the emitter at the time they are spawned. If it is set to

2, the particles will inherit double the emitter's translation when they are spawned. 3 is triple the translation, etc.

One Shot

One Shot emitters will create all particles within the Emission property all at once, and cease to emit particles over time. Here

are some examples of different particle system uses with One Shot Enabled or Disabled:

Enabled:

Explosion

Water splash

Magic spell

Disabled:

Gun barrel smoke

Wind effect

Waterfall

Min Emitter Range

The Min Emitter Range determines the depth within the ellipsoid that particles can be spawned. Setting it to 0 will allow

particles to spawn anywhere from the center core of the ellipsoid to the outer-most range. Setting it to 1 will restrict spawn

locations to the outer-most range of the ellipsoid.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

808 of 1131 12/16/2012 10:12 PM

Min Emitter Range of 0

Min Emitter Range of 1

Hints
Be careful of using many large particles. This can seriously hinder performance on low-level machines. Always try to use

the minimum number of particles to attain an effect.

The Emit property works in conjunction with the AutoDestruct property of the Particle Animator. Through scripting, you

can cease the emitter from emitting, and then AutoDestruct will automatically destroy the Particle System and the

GameObject it is attached to.

Mesh Particle Emitter (Legacy)

The Mesh Particle Emitter emits particles around a mesh. Particles are spawned from the surface of the mesh, which can be

necessary when you want to make your particles interact in a complex way with objects.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

809 of 1131 12/16/2012 10:12 PM

The Mesh Particle Emitter Inspector

Properties
Emit If enabled, the emitter will emit particles.

Min Size The minimum size each particle can be at the time when it is spawned.

Max Size The maximum size each particle can be at the time when it is spawned.

Min Energy The minimum lifetime of each particle, measured in seconds.

Max Energy The maximum lifetime of each particle, measured in seconds.

Min Emission The minimum number of particles that will be spawned every second.

Max Emission The maximum number of particles that will be spawned every second.

World Velocity The starting speed of particles in world space, along X, Y, and Z.

Local Velocity The starting speed of particles along X, Y, and Z, measured in the object's orientation.

Rnd Velocity A random speed along X, Y, and Z that is added to the velocity.

Emitter Velocity Scale The amount of the emitter's speed that the particles inherit.

Tangent Velocity The starting speed of particles along X, Y, and Z, across the Emitter's surface.

Angular Velocity The angular velocity of new particles in degrees per second.

Rnd Angular Velocity A random angular velocity modifier for new particles.

Rnd Rotation If enabled, the particles will be spawned with random rotations.

Simulate In World

Space

If enabled, the particles don't move when the emitter moves. If false, when you move the emitter, the

particles follow it around.

One Shot If enabled, the particle numbers specified by min & max emission is spawned all at once. If disabled,

the particles are generated in a long stream.

Interpolate Triangles If enabled, particles are spawned all over the mesh's surface. If disabled, particles are only spawned

from the mesh's vertrices.

Systematic If enabled, particles are spawned in the order of the vertices defined in the mesh. Although you

seldom have direct control over vertex order in meshes, most 3D modelling applications have a very

systematic setup when using primitives. It is important that the mesh contains no faces in order for

this to work.

Min Normal Velocity Minimum amount that particles are thrown away from the mesh.

Max Normal Velocity Maximum amount that particles are thrown away from the mesh.

Details
Mesh Particle Emitters (MPEs) are used when you want more precise control over the spawn position & directions than the

simpler Ellipsoid Particle Emitter gives you. They can be used for making advanced effects.

MPEs work by emitting particles at the vertices of the attached mesh. Therefore, the areas of your mesh that are more dense

with polygons will be more dense with particle emission.

Particle Emitters work in conjunction with Particle Animators and Particle Renderers to create, manipulate, and display Particle

Systems. All three Components must be present on an object before the particles will behave correctly. When particles are

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

810 of 1131 12/16/2012 10:12 PM

being emitted, all different velocities are added together to create the final velocity.

Spawning Properties

Spawning properties like Size, Energy, Emission, and Velocity will give your particle system distinct personality when trying

to achieve different effects. Having a small Size could simulate fireflies or stars in the sky. A large Size could simulate dust

clouds in a musky old building.

Energy and Emission will control how long your particles remain onscreen and how many particles can appear at any one

time. For example, a rocket might have high Emission to simulate density of smoke, and high Energy to simulate the slow

dispersion of smoke into the air.

Velocity will control how your particles move. You might want to change your Velocity in scripting to achieve interesting

effects, or if you want to simulate a constant effect like wind, set your X and Z Velocity to make your particles blow away.

Simulate in World Space

If this is disabled, the position of each individual particle will always translate relative to the Position of the emitter. When the

emitter moves, the particles will move along with it. If you have Simulate in World Space enabled, particles will not be

affected by the translation of the emitter. For example, if you have a fireball that is spurting flames that rise, the flames will be

spawned and float up in space as the fireball gets further away. If Simulate in World Space is disabled, those same flames

will move across the screen along with the fireball.

Emitter Velocity Scale

This property will only apply if Simulate in World Space is enabled.

If this property is set to 1, the particles will inherit the exact translation of the emitter at the time they are spawned. If it is set to

2, the particles will inherit double the emitter's translation when they are spawned. 3 is triple the translation, etc.

One Shot

One Shot emitters will create all particles within the Emission property all at once, and cease to emit particles over time. Here

are some examples of different particle system uses with One Shot Enabled or Disabled:

Enabled:

Explosion

Water splash

Magic spell

Disabled:

Gun barrel smoke

Wind effect

Waterfall

Interpolate Triangles
Enabling your emitter to Interpolate Triangles will allow particles to be spawned between the mesh's vertices. This option is

off by default, so particles will only be spawned at the vertices.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

811 of 1131 12/16/2012 10:12 PM

A sphere with Interpolate Triangles off (the default)

Enabling this option will spawn particles on and in-between vertices, essentially all over the mesh's surface (seen below).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

812 of 1131 12/16/2012 10:12 PM

A sphere with Interpolate Triangles on

It bears repeating that even with Interpolate Triangles enabled, particles will still be denser in areas of your mesh that are

more dense with polygons.

Systematic
Enabling Systematic will cause your particles to be spawned in your mesh's vertex order. The vertex order is set by your 3D

modeling application.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

813 of 1131 12/16/2012 10:12 PM

An MPE attached to a sphere with Systematic enabled

Normal Velocity
Normal Velocity controls the speed at which particles are emitted along the normal from where they are spawned.

For example, create a Mesh Particle System, use a cube mesh as the emitter, enable Interpolate Triangles, and set Normal

Velocity Min and Max to 1. You will now see the particles emit from the faces of the cube in a straight line.

See Also
How to make a Mesh Particle Emitter

Hints
Be careful of using many large particles. This can seriously hinder performance on low-level machines. Always try to use

the minimum number of particles to attain an effect.

The Emit property works in conjunction with the AutoDestruct property of the Particle Animator. Through scripting, you

can cease the emitter from emitting, and then AutoDestruct will automatically destroy the Particle System and the

GameObject it is attached to.

MPEs can also be used to make glow from a lot of lamps placed in a scene. Simply make a mesh with one vertex in the

center of each lamp, and build an MPE from that with a halo material. Great for evil sci-fi worlds.

Particle Animator (Legacy)

Particle Animators move your particles over time, you use them to apply wind, drag & color cycling to your particle systems.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

814 of 1131 12/16/2012 10:12 PM

The Particle Animator Inspector

Properties
Does Animate Color If enabled, particles cycle their color over their lifetime.

Color Animation The 5 colors particles go through. All particles cycle over this - if some have a shorter life span than

others, they will animate faster.

World Rotation Axis An optional world-space axis the particles rotate around. Use this to make advanced spell effects or

give caustic bubbles some life.

Local Rotation Axis An optional local-space axis the particles rotate around. Use this to make advanced spell effects or

give caustic bubbles some life.

Size Grow Use this to make particles grow in size over their lifetime. As randomized forces will spread your

particles out, it is often nice to make them grow in size so they don't fall apart. Use this to make

smoke rise upwards, to simulate wind, etc.

Rnd Force A random force added to particles every frame. Use this to make smoke become more alive.

Force The force being applied every frame to the particles, measure relative to the world.

Damping How much particles are slowed every frame. A value of 1 gives no damping, while less makes them

slow down.

Autodestruct If enabled, the GameObject attached to the Particle Animator will be destroyed when all particles

disappear.

Details
Particle Animators allow your particle systems to be dynamic. They allow you to change the color of your particles, apply

forces and rotation, and choose to destroy them when they are finished emitting. For more information about Particle Systems,

reference Mesh Particle Emitters, Ellipsoid Particle Emitters, and Particle Renderers.

Animating Color

If you would like your particles to change colors or fade in/out, enable them to Animate Color and specify the colors for the

cycle. Any particle system that animates color will cycle through the 5 colors you choose. The speed at which they cycle will be

determined by the Emitter's Energy value.

If you want your particles to fade in rather than instantly appear, set your first or last color to have a low Alpha value.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

815 of 1131 12/16/2012 10:12 PM

An Animating Color Particle System

Rotation Axes

Setting values in either the Local or World Rotation Axes will cause all spawned particles to rotate around the indicated axis

(with the Transform's position as the center). The greater the value is entered on one of these axes, the faster the rotation will

be.

Setting values in the Local Axes will cause the rotating particles to adjust their rotation as the Transform's rotation changes, to

match its local axes.

Setting values in the World Axes will cause the particles' rotation to be consistent, regardless of the Transform's rotation.

Forces & Damping

You use force to make particles accelerate in the direction specified by the force.

Damping can be used to decelerate or accelerate without changing their direction:

A value of 1 means no Damping is applied, the particles will not slow down or accelerate.

A value of 0 means particles will stop immediately.

A value of 2 means particles will double their speed every second.

Destroying GameObjects attached to Particles

You can destroy the Particle System and any attached GameObject by enabling the AutoDestruct property. For example, if

you have an oil drum, you can attach a Particle System that has Emit disabled and AutoDestruct enabled. On collision, you

enable the Particle Emitter. The explosion will occur and after it is over, the Particle System and the oil drum will be destroyed

and removed from the scene.

Note that automatic destruction takes effect only after some particles have been emitted. The precise rules for when the object

is destroyed when AutoDestruct is on:

If there have been some particles emitted already, but all of them are dead now, or

If the emitter did have Emit on at some point, but now Emit is off.

Hints
Use the Color Animation to make your particles fade in & out over their lifetime - otherwise, you will get nasty-looking

pops.

Use the Rotation Axes to make whirlpool-like swirly motions.

World Particle Collider (Legacy)

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

816 of 1131 12/16/2012 10:12 PM

The World Particle Collider is used to collide particles against other Colliders in the scene.

A Particle System colliding with a Mesh Collider

Properties
Bounce Factor Particles can be accelerated or slowed down when they collide against other objects. This factor is

similar to the Particle Animator's Damping property.

Collision Energy Loss Amount of energy (in seconds) a particle should lose when colliding. If the energy goes below 0, the

particle is killed.

Min Kill Velocity If a particle's Velocity drops below Min Kill Velocity because of a collision, it will be eliminated.

Collides with Which Layers the particle will collide against.

Send Collision

Message

If enabled, every particle sends out a collision message that you can catch through scripting.

Details
To create a Particle System with Particle Collider:

Create a Particle System using GameObject->Create Other->Particle System1.

Add the Particle Collider using Component->Particles->World Particle Collider2.

Messaging

If Send Collision Message is enabled, any particles that are in a collision will send the message OnParticleCollision() to

both the particle's GameObject and the GameObject the particle collided with.

Hints
Send Collision Message can be used to simulate bullets and apply damage on impact.

Particle Collision Detection is slow when used with a lot of particles. Use Particle Collision Detection wisely.

Message sending introduces a large overhead and shouldn't be used for normal Particle Systems.

Particle Renderer (Legacy)

The Particle Renderer renders the Particle System on screen.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

817 of 1131 12/16/2012 10:12 PM

The Particle Renderer Inspector

Properties
Cast Shadows If enabled, allows object to cast shadows.

Receive Shadows If enabled, allows object to receive shadows.

Materials Reference to a list of Materials that will be displayed in the position of each individual particle.

Use Light Probes If enabled and baked light probes are present in the scene, an interpolated light probe.

Light Probe Anchor If set, Renderer will use this Transform's position to find the interpolated light probe.

Camera Velocity Scale The amount of stretching that is applied to the Particles based on Camera movement.

Stretch Particles Determines how the particles are rendered.

Billboard The particles are rendered as if facing the camera.

Stretched The particles are facing the direction they are moving.

SortedBillboard The particles are sorted by depth. Use this when using a blending material.

VerticalBillboard All particles are aligned flat along the X/Z axes.

HorizontalBillboard All particles are aligned flat along the X/Y axes.

Length Scale If Stretch Particles is set to Stretched, this value determines how long the particles are in their

direction of motion.

Velocity Scale If Stretch Particles is set to Stretched, this value determines the rate at which particles will be

stretched, based on their movement speed.

UV Animation If either of these are set, the UV coordinates of the particles will be generated for use with a tile

animated texture. See the section on Animated Textures below.

X Tile Number of frames located across the X axis.

Y Tile Number of frames located across the Y axis.

Cycles How many times to loop the animation sequence.

Details
Particle Renderers are required for any Particle Systems to be displayed on the screen.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

818 of 1131 12/16/2012 10:12 PM

A Particle Renderer makes the Gunship's engine exhaust appear on the screen

Choosing a Material

When setting up a Particle Renderer it is very important to use an appropriate material and shader that renders both sides of

the material. Most of the time you want to use a Material with one of the built-in Particle Shaders. There are some premade

materials in the Standard Assets->Particles->Sources folder that you can use.

Creating a new material is easy:

Select Assets->Create Other->Material from the menu bar.1.

The Material has a shader popup, choose one of the shaders in the Particles group. Eg. Particles->Multiply.2.

Now assign a Texture. The different shaders use the alpha channel of the textures slightly differently, but most of the

time a value of black will make it invisible and white in the alpha channel will display it on screen.

3.

Distorting particles

By default particles are rendered billboarded. That is simple square sprites. This is good for smoke and explosions and most

other particle effects.

Particles can be made to either stretch with the velocity. This is useful for sparks, lightning or laser beams. Length Scale and

Velocity Scale affects how long the stretched particle will be.

Sorted Billboard can be used to make all particles sort by depth. Sometimes this is necessary, mostly when using Alpha

Blended particle shaders. This can be expensive and should only be used if it really makes a quality difference when

rendering.

Animated textures

Particle Systems can be rendered with an animated tile texture. To use this feature, make the texture out of a grid of images.

As the particles go through their life cycle, they will cycle through the images. This is good for adding more life to your

particles, or making small rotating debris pieces.

Hints
Use Particle Shaders with the Particle Renderer.

Page last updated: 2012-02-03

class-EllipsoidParticleEmitter

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

819 of 1131 12/16/2012 10:12 PM

The Ellipsoid Particle Emitter spawns particles inside a sphere. Use the Ellipsoid property below to scale & stretch the

sphere.

The Ellipsoid Particle Emitter Inspector

Properties
Emit If enabled, the emitter will emit particles.

Min Size The minimum size each particle can be at the time when it is spawned.

Max Size The maximum size each particle can be at the time when it is spawned.

Min Energy The minimum lifetime of each particle, measured in seconds.

Max Energy The maximum lifetime of each particle, measured in seconds.

Min Emission The minimum number of particles that will be spawned every second.

Max Emission The maximum number of particles that will be spawned every second.

World Velocity The starting speed of particles in world space, along X, Y, and Z.

Local Velocity The starting speed of particles along X, Y, and Z, measured in the object's orientation.

Rnd Velocity A random speed along X, Y, and Z that is added to the velocity.

Emitter Velocity Scale The amount of the emitter's speed that the particles inherit.

Tangent Velocity The starting speed of particles along X, Y, and Z, across the Emitter's surface.

Angular Velocity The angular velocity of new particles in degrees per second.

Rnd Angular Velocity A random angular velocity modifier for new particles.

Rnd Rotation If enabled, the particles will be spawned with random rotations.

Simulate In World

Space

If enabled, the particles don't move when the emitter moves. If false, when you move the emitter, the

particles follow it around.

One Shot If enabled, the particle numbers specified by min & max emission is spawned all at once. If disabled,

the particles are generated in a long stream.

Ellipsoid Scale of the sphere along X, Y, and Z that the particles are spawned inside.

MinEmitterRange Determines an empty area in the center of the sphere - use this to make particles appear on the edge

of the sphere.

Details
Ellipsoid Particle Emitters (EPEs) are the basic emitter, and are included when you choose to add a Particle System to your

scene from Components->Particles->Particle System. You can define the boundaries for the particles to be spawned, and

give the particles an initial velocity. From here, use the Particle Animator to manipulate how your particles will change over time

to achieve interesting effects.

Particle Emitters work in conjunction with Particle Animators and Particle Renderers to create, manipulate, and display Particle

Systems. All three Components must be present on an object before the particles will behave correctly. When particles are

being emitted, all different velocities are added together to create the final velocity.

Spawning Properties

Spawning properties like Size, Energy, Emission, and Velocity will give your particle system distinct personality when trying

to achieve different effects. Having a small Size could simulate fireflies or stars in the sky. A large Size could simulate dust

clouds in a musky old building.

Energy and Emission will control how long your particles remain onscreen and how many particles can appear at any one

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

820 of 1131 12/16/2012 10:12 PM

time. For example, a rocket might have high Emission to simulate density of smoke, and high Energy to simulate the slow

dispersion of smoke into the air.

Velocity will control how your particles move. You might want to change your Velocity in scripting to achieve interesting

effects, or if you want to simulate a constant effect like wind, set your X and Z Velocity to make your particles blow away.

Simulate in World Space

If this is disabled, the position of each individual particle will always translate relative to the Position of the emitter. When the

emitter moves, the particles will move along with it. If you have Simulate in World Space enabled, particles will not be

affected by the translation of the emitter. For example, if you have a fireball that is spurting flames that rise, the flames will be

spawned and float up in space as the fireball gets further away. If Simulate in World Space is disabled, those same flames

will move across the screen along with the fireball.

Emitter Velocity Scale

This property will only apply if Simulate in World Space is enabled.

If this property is set to 1, the particles will inherit the exact translation of the emitter at the time they are spawned. If it is set to

2, the particles will inherit double the emitter's translation when they are spawned. 3 is triple the translation, etc.

One Shot

One Shot emitters will create all particles within the Emission property all at once, and cease to emit particles over time. Here

are some examples of different particle system uses with One Shot Enabled or Disabled:

Enabled:

Explosion

Water splash

Magic spell

Disabled:

Gun barrel smoke

Wind effect

Waterfall

Min Emitter Range

The Min Emitter Range determines the depth within the ellipsoid that particles can be spawned. Setting it to 0 will allow

particles to spawn anywhere from the center core of the ellipsoid to the outer-most range. Setting it to 1 will restrict spawn

locations to the outer-most range of the ellipsoid.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

821 of 1131 12/16/2012 10:12 PM

Min Emitter Range of 0

Min Emitter Range of 1

Hints
Be careful of using many large particles. This can seriously hinder performance on low-level machines. Always try to use

the minimum number of particles to attain an effect.

The Emit property works in conjunction with the AutoDestruct property of the Particle Animator. Through scripting, you

can cease the emitter from emitting, and then AutoDestruct will automatically destroy the Particle System and the

GameObject it is attached to.
Page last updated: 2011-12-01

class-MeshParticleEmitter

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

822 of 1131 12/16/2012 10:12 PM

The Mesh Particle Emitter emits particles around a mesh. Particles are spawned from the surface of the mesh, which can be

necessary when you want to make your particles interact in a complex way with objects.

The Mesh Particle Emitter Inspector

Properties
Emit If enabled, the emitter will emit particles.

Min Size The minimum size each particle can be at the time when it is spawned.

Max Size The maximum size each particle can be at the time when it is spawned.

Min Energy The minimum lifetime of each particle, measured in seconds.

Max Energy The maximum lifetime of each particle, measured in seconds.

Min Emission The minimum number of particles that will be spawned every second.

Max Emission The maximum number of particles that will be spawned every second.

World Velocity The starting speed of particles in world space, along X, Y, and Z.

Local Velocity The starting speed of particles along X, Y, and Z, measured in the object's orientation.

Rnd Velocity A random speed along X, Y, and Z that is added to the velocity.

Emitter Velocity Scale The amount of the emitter's speed that the particles inherit.

Tangent Velocity The starting speed of particles along X, Y, and Z, across the Emitter's surface.

Angular Velocity The angular velocity of new particles in degrees per second.

Rnd Angular Velocity A random angular velocity modifier for new particles.

Rnd Rotation If enabled, the particles will be spawned with random rotations.

Simulate In World

Space

If enabled, the particles don't move when the emitter moves. If false, when you move the emitter, the

particles follow it around.

One Shot If enabled, the particle numbers specified by min & max emission is spawned all at once. If disabled,

the particles are generated in a long stream.

Interpolate Triangles If enabled, particles are spawned all over the mesh's surface. If disabled, particles are only spawned

from the mesh's vertrices.

Systematic If enabled, particles are spawned in the order of the vertices defined in the mesh. Although you

seldom have direct control over vertex order in meshes, most 3D modelling applications have a very

systematic setup when using primitives. It is important that the mesh contains no faces in order for

this to work.

Min Normal Velocity Minimum amount that particles are thrown away from the mesh.

Max Normal Velocity Maximum amount that particles are thrown away from the mesh.

Details
Mesh Particle Emitters (MPEs) are used when you want more precise control over the spawn position & directions than the

simpler Ellipsoid Particle Emitter gives you. They can be used for making advanced effects.

MPEs work by emitting particles at the vertices of the attached mesh. Therefore, the areas of your mesh that are more dense

with polygons will be more dense with particle emission.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

823 of 1131 12/16/2012 10:12 PM

Particle Emitters work in conjunction with Particle Animators and Particle Renderers to create, manipulate, and display Particle

Systems. All three Components must be present on an object before the particles will behave correctly. When particles are

being emitted, all different velocities are added together to create the final velocity.

Spawning Properties

Spawning properties like Size, Energy, Emission, and Velocity will give your particle system distinct personality when trying

to achieve different effects. Having a small Size could simulate fireflies or stars in the sky. A large Size could simulate dust

clouds in a musky old building.

Energy and Emission will control how long your particles remain onscreen and how many particles can appear at any one

time. For example, a rocket might have high Emission to simulate density of smoke, and high Energy to simulate the slow

dispersion of smoke into the air.

Velocity will control how your particles move. You might want to change your Velocity in scripting to achieve interesting

effects, or if you want to simulate a constant effect like wind, set your X and Z Velocity to make your particles blow away.

Simulate in World Space

If this is disabled, the position of each individual particle will always translate relative to the Position of the emitter. When the

emitter moves, the particles will move along with it. If you have Simulate in World Space enabled, particles will not be

affected by the translation of the emitter. For example, if you have a fireball that is spurting flames that rise, the flames will be

spawned and float up in space as the fireball gets further away. If Simulate in World Space is disabled, those same flames

will move across the screen along with the fireball.

Emitter Velocity Scale

This property will only apply if Simulate in World Space is enabled.

If this property is set to 1, the particles will inherit the exact translation of the emitter at the time they are spawned. If it is set to

2, the particles will inherit double the emitter's translation when they are spawned. 3 is triple the translation, etc.

One Shot

One Shot emitters will create all particles within the Emission property all at once, and cease to emit particles over time. Here

are some examples of different particle system uses with One Shot Enabled or Disabled:

Enabled:

Explosion

Water splash

Magic spell

Disabled:

Gun barrel smoke

Wind effect

Waterfall

Interpolate Triangles
Enabling your emitter to Interpolate Triangles will allow particles to be spawned between the mesh's vertices. This option is

off by default, so particles will only be spawned at the vertices.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

824 of 1131 12/16/2012 10:12 PM

A sphere with Interpolate Triangles off (the default)

Enabling this option will spawn particles on and in-between vertices, essentially all over the mesh's surface (seen below).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

825 of 1131 12/16/2012 10:12 PM

A sphere with Interpolate Triangles on

It bears repeating that even with Interpolate Triangles enabled, particles will still be denser in areas of your mesh that are

more dense with polygons.

Systematic
Enabling Systematic will cause your particles to be spawned in your mesh's vertex order. The vertex order is set by your 3D

modeling application.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

826 of 1131 12/16/2012 10:12 PM

An MPE attached to a sphere with Systematic enabled

Normal Velocity
Normal Velocity controls the speed at which particles are emitted along the normal from where they are spawned.

For example, create a Mesh Particle System, use a cube mesh as the emitter, enable Interpolate Triangles, and set Normal

Velocity Min and Max to 1. You will now see the particles emit from the faces of the cube in a straight line.

See Also
How to make a Mesh Particle Emitter

Hints
Be careful of using many large particles. This can seriously hinder performance on low-level machines. Always try to use

the minimum number of particles to attain an effect.

The Emit property works in conjunction with the AutoDestruct property of the Particle Animator. Through scripting, you

can cease the emitter from emitting, and then AutoDestruct will automatically destroy the Particle System and the

GameObject it is attached to.

MPEs can also be used to make glow from a lot of lamps placed in a scene. Simply make a mesh with one vertex in the

center of each lamp, and build an MPE from that with a halo material. Great for evil sci-fi worlds.
Page last updated: 2011-12-01

class-ParticleAnimator

Particle Animators move your particles over time, you use them to apply wind, drag & color cycling to your particle systems.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

827 of 1131 12/16/2012 10:12 PM

The Particle Animator Inspector

Properties
Does Animate Color If enabled, particles cycle their color over their lifetime.

Color Animation The 5 colors particles go through. All particles cycle over this - if some have a shorter life span than

others, they will animate faster.

World Rotation Axis An optional world-space axis the particles rotate around. Use this to make advanced spell effects or

give caustic bubbles some life.

Local Rotation Axis An optional local-space axis the particles rotate around. Use this to make advanced spell effects or

give caustic bubbles some life.

Size Grow Use this to make particles grow in size over their lifetime. As randomized forces will spread your

particles out, it is often nice to make them grow in size so they don't fall apart. Use this to make

smoke rise upwards, to simulate wind, etc.

Rnd Force A random force added to particles every frame. Use this to make smoke become more alive.

Force The force being applied every frame to the particles, measure relative to the world.

Damping How much particles are slowed every frame. A value of 1 gives no damping, while less makes them

slow down.

Autodestruct If enabled, the GameObject attached to the Particle Animator will be destroyed when all particles

disappear.

Details
Particle Animators allow your particle systems to be dynamic. They allow you to change the color of your particles, apply

forces and rotation, and choose to destroy them when they are finished emitting. For more information about Particle Systems,

reference Mesh Particle Emitters, Ellipsoid Particle Emitters, and Particle Renderers.

Animating Color

If you would like your particles to change colors or fade in/out, enable them to Animate Color and specify the colors for the

cycle. Any particle system that animates color will cycle through the 5 colors you choose. The speed at which they cycle will be

determined by the Emitter's Energy value.

If you want your particles to fade in rather than instantly appear, set your first or last color to have a low Alpha value.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

828 of 1131 12/16/2012 10:12 PM

An Animating Color Particle System

Rotation Axes

Setting values in either the Local or World Rotation Axes will cause all spawned particles to rotate around the indicated axis

(with the Transform's position as the center). The greater the value is entered on one of these axes, the faster the rotation will

be.

Setting values in the Local Axes will cause the rotating particles to adjust their rotation as the Transform's rotation changes, to

match its local axes.

Setting values in the World Axes will cause the particles' rotation to be consistent, regardless of the Transform's rotation.

Forces & Damping

You use force to make particles accelerate in the direction specified by the force.

Damping can be used to decelerate or accelerate without changing their direction:

A value of 1 means no Damping is applied, the particles will not slow down or accelerate.

A value of 0 means particles will stop immediately.

A value of 2 means particles will double their speed every second.

Destroying GameObjects attached to Particles

You can destroy the Particle System and any attached GameObject by enabling the AutoDestruct property. For example, if

you have an oil drum, you can attach a Particle System that has Emit disabled and AutoDestruct enabled. On collision, you

enable the Particle Emitter. The explosion will occur and after it is over, the Particle System and the oil drum will be destroyed

and removed from the scene.

Note that automatic destruction takes effect only after some particles have been emitted. The precise rules for when the object

is destroyed when AutoDestruct is on:

If there have been some particles emitted already, but all of them are dead now, or

If the emitter did have Emit on at some point, but now Emit is off.

Hints
Use the Color Animation to make your particles fade in & out over their lifetime - otherwise, you will get nasty-looking

pops.

Use the Rotation Axes to make whirlpool-like swirly motions.
Page last updated: 2011-12-01

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

829 of 1131 12/16/2012 10:12 PM

class-ParticleRenderer

The Particle Renderer renders the Particle System on screen.

The Particle Renderer Inspector

Properties
Cast Shadows If enabled, allows object to cast shadows.

Receive Shadows If enabled, allows object to receive shadows.

Materials Reference to a list of Materials that will be displayed in the position of each individual particle.

Use Light Probes If enabled and baked light probes are present in the scene, an interpolated light probe.

Light Probe Anchor If set, Renderer will use this Transform's position to find the interpolated light probe.

Camera Velocity Scale The amount of stretching that is applied to the Particles based on Camera movement.

Stretch Particles Determines how the particles are rendered.

Billboard The particles are rendered as if facing the camera.

Stretched The particles are facing the direction they are moving.

SortedBillboard The particles are sorted by depth. Use this when using a blending material.

VerticalBillboard All particles are aligned flat along the X/Z axes.

HorizontalBillboard All particles are aligned flat along the X/Y axes.

Length Scale If Stretch Particles is set to Stretched, this value determines how long the particles are in their

direction of motion.

Velocity Scale If Stretch Particles is set to Stretched, this value determines the rate at which particles will be

stretched, based on their movement speed.

UV Animation If either of these are set, the UV coordinates of the particles will be generated for use with a tile

animated texture. See the section on Animated Textures below.

X Tile Number of frames located across the X axis.

Y Tile Number of frames located across the Y axis.

Cycles How many times to loop the animation sequence.

Details

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

830 of 1131 12/16/2012 10:12 PM

Particle Renderers are required for any Particle Systems to be displayed on the screen.

A Particle Renderer makes the Gunship's engine exhaust appear on the screen

Choosing a Material

When setting up a Particle Renderer it is very important to use an appropriate material and shader that renders both sides of

the material. Most of the time you want to use a Material with one of the built-in Particle Shaders. There are some premade

materials in the Standard Assets->Particles->Sources folder that you can use.

Creating a new material is easy:

Select Assets->Create Other->Material from the menu bar.1.

The Material has a shader popup, choose one of the shaders in the Particles group. Eg. Particles->Multiply.2.

Now assign a Texture. The different shaders use the alpha channel of the textures slightly differently, but most of the

time a value of black will make it invisible and white in the alpha channel will display it on screen.

3.

Distorting particles

By default particles are rendered billboarded. That is simple square sprites. This is good for smoke and explosions and most

other particle effects.

Particles can be made to either stretch with the velocity. This is useful for sparks, lightning or laser beams. Length Scale and

Velocity Scale affects how long the stretched particle will be.

Sorted Billboard can be used to make all particles sort by depth. Sometimes this is necessary, mostly when using Alpha

Blended particle shaders. This can be expensive and should only be used if it really makes a quality difference when

rendering.

Animated textures

Particle Systems can be rendered with an animated tile texture. To use this feature, make the texture out of a grid of images.

As the particles go through their life cycle, they will cycle through the images. This is good for adding more life to your

particles, or making small rotating debris pieces.

Hints
Use Particle Shaders with the Particle Renderer.

Page last updated: 2012-11-30

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

831 of 1131 12/16/2012 10:12 PM

class-WorldParticleCollider

The World Particle Collider is used to collide particles against other Colliders in the scene.

A Particle System colliding with a Mesh Collider

Properties
Bounce Factor Particles can be accelerated or slowed down when they collide against other objects. This factor is

similar to the Particle Animator's Damping property.

Collision Energy Loss Amount of energy (in seconds) a particle should lose when colliding. If the energy goes below 0, the

particle is killed.

Min Kill Velocity If a particle's Velocity drops below Min Kill Velocity because of a collision, it will be eliminated.

Collides with Which Layers the particle will collide against.

Send Collision

Message

If enabled, every particle sends out a collision message that you can catch through scripting.

Details
To create a Particle System with Particle Collider:

Create a Particle System using GameObject->Create Other->Particle System1.

Add the Particle Collider using Component->Particles->World Particle Collider2.

Messaging

If Send Collision Message is enabled, any particles that are in a collision will send the message OnParticleCollision() to

both the particle's GameObject and the GameObject the particle collided with.

Hints
Send Collision Message can be used to simulate bullets and apply damage on impact.

Particle Collision Detection is slow when used with a lot of particles. Use Particle Collision Detection wisely.

Message sending introduces a large overhead and shouldn't be used for normal Particle Systems.
Page last updated: 2011-12-01

comp-RenderingGroup

This group contains all Components that have to do with rendering in-game and user interface elements. Lighting and special

effects are also included in this group.

Camera

Flare Layer

GUI Layer

GUI Text

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

832 of 1131 12/16/2012 10:12 PM

GUI Texture

Light

Light Probe Group

Occlusion Area (Pro Only)

Occlusion Portals

Skybox

Level of Detail (Pro Only)

3D Textures
Page last updated: 2007-07-16

class-Camera

Cameras are the devices that capture and display the world to the player. By customizing and manipulating cameras, you can

make the presentation of your game truly unique. You can have an unlimited number of cameras in a scene. They can be set

to render in any order, at any place on the screen, or only certain parts of the screen.

Unity's flexible Camera object

Properties
Clear Flags Determines which parts of the screen will be cleared. This is handy when using multiple Cameras to

draw different game elements.

Background Color applied to the remaining screen after all elements in view have been drawn and there is no

skybox.

Culling Mask Include or omit layers of objects to be rendered by the Camera. Assign layers to your objects in the

Inspector.

Projection Toggles the camera's capability to simulate perspective.

Perspective Camera will render objects with perspective intact.

Orthographic Camera will render objects uniformly, with no sense of perspective.

Size (when Orthographic

is selected)

The viewport size of the Camera when set to Orthographic.

Field of view Width of the Camera's view angle, measured in degrees along the local Y axis.

Clipping Planes Distances from the camera to start and stop rendering.

Near The closest point relative to the camera that drawing will occur.

Far The furthest point relative to the camera that drawing will occur.

Normalized View Port

Rect

Four values that indicate where on the screen this camera view will be drawn, in Screen Coordinates

(values 0-1).

X The beginning horizontal position that the camera view will be drawn.

Y The beginning vertical position that the camera view will be drawn.

W (Width) Width of the camera output on the screen.

H (Height) Height of the camera output on the screen.

Depth The camera's position in the draw order. Cameras with a larger value will be drawn on top of cameras

with a smaller value.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

833 of 1131 12/16/2012 10:12 PM

Rendering Path Options for defining what rendering methods will be used by the camera.

Use Player SettingsThis camera will use whichever Rendering Path is set in the Player Settings.

Vertex Lit All objects rendered by this camera will be rendered as Vertex-Lit objects.

Forward All objects will be rendered with one pass per material, as was standard in Unity 2.x.

Deferred Lighting

(Unity Pro only)

All objects will be drawn once without lighting, then lighting of all objects will be rendered together at

the end of the render queue.

Target Texture (Unity

Pro/Advanced only)

Reference to a Render Texture that will contain the output of the Camera view. Making this reference

will disable this Camera's capability to render to the screen.

HDR Enables High Dynamic Range rendering for this camera.

Details
Cameras are essential for displaying your game to the player. They can be customized, scripted, or parented to achieve just

about any kind of effect imaginable. For a puzzle game, you might keep the Camera static for a full view of the puzzle. For a

first-person shooter, you would parent the Camera to the player character, and place it at the character's eye level. For a

racing game, you'd likely want to have the Camera follow your player's vehicle.

You can create multiple Cameras and assign each one to a different Depth. Cameras are drawn from low Depth to high

Depth. In other words, a Camera with a Depth of 2 will be drawn on top of a Camera with a depth of 1. You can adjust the

values of the Normalized View Port Rectangle property to resize and position the Camera's view onscreen. This can create

multiple mini-views like missile cams, map views, rear-view mirrors, etc.

Render Path

Unity supports different Rendering Paths. You should choose which one you use depending on your game content and target

platform / hardware. Different rendering paths have different features and performance characteristics that mostly affect Lights

and Shadows.

The rendering Path used by your project is chosen in Player Settings. Additionally, you can override it for each Camera.

For more info on rendering paths, check the rendering paths page.

Clear Flags

Each Camera stores color and depth information when it renders its view. The portions of the screen that are not drawn in are

empty, and will display the skybox by default. When you are using multiple Cameras, each one stores its own color and depth

information in buffers, accumulating more data as each Camera renders. As any particular Camera in your scene renders its

view, you can set the Clear Flags to clear different collections of the buffer information. This is done by choosing one of the

four options:

Skybox

This is the default setting. Any empty portions of the screen will display the current Camera's skybox. If the current Camera has

no skybox set, it will default to the skybox chosen in the Render Settings (found in Edit->Render Settings). It will then fall

back to the Background Color. Alternatively a Skybox component can be added to the camera. If you want to create a new

Skybox, you can use this guide.

Solid Color

Any empty portions of the screen will display the current Camera's Background Color.

Depth Only

If you wanted to draw a player's gun without letting it get clipped inside the environment, you would set one Camera at Depth

0 to draw the environment, and another Camera at Depth 1 to draw the weapon alone. The weapon Camera's Clear Flags

should be set to to depth only. This will keep the graphical display of the environment on the screen, but discard all

information about where each object exists in 3-D space. When the gun is drawn, the opaque parts will completely cover

anything drawn, regardless of how close the gun is to the wall.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

834 of 1131 12/16/2012 10:12 PM

The gun is drawn last, after clearing the depth buffer of the cameras before it

Don't Clear

This mode does not clear either the color or the depth buffer. The result is that each frame is drawn over the next, resulting in

a smear-looking effect. This isn't typically used in games, and would likely be best used with a custom shader.

Clip Planes

The Near and Far Clip Plane properties determine where the Camera's view begins and ends. The planes are laid out

perpendicular to the Camera's direction and are measured from the its position. The Near plane is the closest location that will

be rendered, and the Far plane is the furthest.

The clipping planes also determine how depth buffer precision is distributed over the scene. In general, to get better precision

you should move the Near plane as far as possible.

Note that the near and far clip planes together with the planes defined by the field of view of the camera describe what is

popularly known as the camera frustum. Unity ensures that when rendering your objects those which are completely outside of

this frustum are not displayed. This is called Frustum Culling. Frustum Culling happens irrespective of whether you use

Occlusion Culling in your game.

For performance reasons, you might want to cull small objects earlier. For example, small rocks and debris could be made

invisible at much smaller distance than large buildings. To do that, put small objects into a separate layer and setup per-layer

cull distances using Camera.layerCullDistances script function.

Culling Mask

The Culling Mask is used for selectively rendering groups of objects using Layers. More information on using layers can be

found here.

Commonly, it is good practice to put your User Interface on a different layer, then render it by itself with a separate Camera set

to render the UI layer by itself.

In order for the UI to display on top of the other Camera views, you'll also need to set the Clear Flags to Depth only and

make sure that the UI Camera's Depth is higher than the other Cameras.

Normalized Viewport Rectangle

Normalized Viewport Rectangles are specifically for defining a certain portion of the screen that the current camera view

will be drawn upon. You can put a map view in the lower-right hand corner of the screen, or a missile-tip view in the upper-left

corner. With a bit of design work, you can use Viewport Rectangle to create some unique behaviors.

It's easy to create a two-player split screen effect using Normalized Viewport Rectangle. After you have created your two

cameras, change both camera H value to be 0.5 then set player one's Y value to 0.5, and player two's Y value to 0. This will

make player one's camera display from halfway up the screen to the top, and player two's camera will start at the bottom and

stop halfway up the screen.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

835 of 1131 12/16/2012 10:12 PM

Two-player display created with Normalized Viewport Rectangle

Orthographic

Marking a Camera as Orthographic removes all perspective from the Camera's view. This is mostly useful for making

isometric or 2D games.

Note that fog is rendered uniformly in orthographic camera mode and may therefore not appear as expected. Read more about

why in the component reference on Render Settings.

Perspective camera.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

836 of 1131 12/16/2012 10:12 PM

Orthographic camera. Objects do not get smaller with distance here!

Render Texture

This feature is only available for Unity Advanced licenses . It will place the camera's view onto a Texture that can then be

applied to another object. This makes it easy to create sports arena video monitors, surveillance cameras, reflections etc.

A Render Texture used to create a live arena-cam

Hints
Cameras can be instantiated, parented, and scripted just like any other GameObject.

To increase the sense of speed in a racing game, use a high Field of View.

Cameras can be used in physics simulation if you add a Rigidbody Component.

There is no limit to the number of Cameras you can have in your scenes.

Orthographic cameras are great for making 3D user interfaces

If you are experiencing depth artifacts (surfaces close to each other flickering), try setting Near Plane to as large as

possible.

Cameras cannot render to the Game Screen and a Render Texture at the same time, only one or the other.

Pro license holders have the option of rendering a Camera's view to a texture, called Render-to-Texture, for even more

unique effects.

Unity comes with pre-installed Camera scripts, found in Components->Camera Control. Experiment with them to get a

taste of what's possible.
Page last updated: 2011-11-10

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

837 of 1131 12/16/2012 10:12 PM

class-FlareLayer

The Flare Layer Component can be attached to Cameras to make Lens Flares appear in the image. By default, Cameras

have a Flare Layer already attached.

Page last updated: 2007-07-30

class-GUILayer

A GUI Layer Component is attached to a Camera to enable rendering of 2D GUIs.

When a GUI Layer is attached to a Camera it will render all GUI Textures and GUI Texts in the scene. GUI Layers do not affect

UnityGUI in any way.

You can enable and disable rendering GUI in a single camera by clicking on the check box of the GUI Layer in the Inspector.

Page last updated: 2007-09-21

class-GuiText

GUI Text displays text of any font you import in screen coordinates.

The GUI Text Inspector

Please Note: Unity 2.0 introduced UnityGUI, a GUI Scripting system. You may prefer creating user interface elements with

UnityGUI instead of GUI Texts. Read more about how to use UnityGUI in the GUI Scripting Guide.

Properties
Text The string to display.

Anchor The point at which the Text shares the position of the Transform.

Alignment How multiple lines are aligned within the GUIText.

Pixel Offset Offset of the text relative to the position of the GUIText in the screen.

Line Spacing How much space will be in-between lines of Text.

Tab Size How much space will be inserted for a tab ('\t') character. As a multiplum of the space character

offset.

Font The Font to use when rendering the text.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

838 of 1131 12/16/2012 10:12 PM

Material Reference to the Material containing the characters to be drawn. If set, this property overrides the

one in the Font asset.

Font Size The font size to use. Set to 0 to use the default font size. Only applicable for dynamic fonts.

Font Style The font style to use. (Normal, Bold, Italic or Bold and Italic). Only applicable for dynamic fonts.

Pixel Correct If enabled, all Text characters will be drawn in the size of the imported font texture. If disabled, the

characters will be resized based on the Transform's Scale.

Rich Text If enabled, allows HTML-style tags for text formatting.

Details
GUI Texts are used to print text onto the screen in 2D. The Camera has to have a GUI Layer attached in order to render the

text. Cameras include a GUI Layer by default, so don't remove it if you want to display a GUI Text. GUI Texts are positioned

using only the X and Y axes. Rather than being positioned in World Coordinates, GUI Texts are positioned in Screen

Coordinates, where (0,0) is the bottom-left and (1,1) is the top-right corner of the screen

To import a font see the Font page.

Pixel Correct

By default, GUI Texts are rendered with Pixel Correct enabled. This makes them look crisp and they will stay the same size in

pixels independent of the screen resolution.

Hints
When entering text into the Text property, you can create a line break by holding Alt and pressing Return.

If you are scripting the Text property, you can add line breaks by inserting the escape character "\n" in your strings.

You can download free true type fonts from 1001freefonts.com (download the Windows fonts since they contain TrueType

fonts).
Page last updated: 2012-11-20

class-GuiTexture

GUI Textures are displayed as flat images in 2D. They are made especially for user interface elements, buttons, or

decorations. Their positioning and scaling is performed along the x and y axes only, and they are measured in Screen

Coordinates, rather than World Coordinates.

The GUI Texture Inspector

Please Note: Unity 2.0 introduced UnityGUI, a GUI Scripting system. You may prefer creating user interface elements with

UnityGUI instead of GUI Textures. Read more about how to use UnityGUI in the GUI Scripting Guide.

Properties
Texture Reference to the Texture that will be used as the texture's display.

Color Color that will tint the Texture drawn on screen.

Pixel Inset Used for pixel-level control of the scaling and positioning of the GUI Texture. All values are measured

relative to the position of the GUI Texture's Transform.

X Left-most pixel position of the texture.

Y Bottom-most pixel position of the texture.

Width Right-most pixel position of the texture.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

839 of 1131 12/16/2012 10:12 PM

Height Top-most pixel position of the texture.

Left Border Number of pixels from the left that are not affected by scale.

Right Border Number of pixels from the right that are not affected by scale.

Top Border Number of pixels from the top that are not affected by scale.

Bottom Border Number of pixels from the bottom that are not affected by scale.

Details
To create a GUITexture:

Select a Texture in the Project View1.

Choose GameObject->Create Other->GUI Texture from the menu bar2.

GUI Textures are perfect for presenting game interface backgrounds, buttons, or other elements to the player. Through

scripting, you can easily provide visual feedback for different "states" of the texture -- when the mouse is hovering over the

texture, or is actively clicking it for example. Here is the basic breakdown of how the GUI Texture is calculated:

GUI Textures are laid out according to these rules

The GUI elements seen here were all created with GUI Textures

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

840 of 1131 12/16/2012 10:12 PM

Borders

The number of pixels that will not scale with the texture at each edge of the image. As you rarely know the resolution your

game runs in, chances are your GUI will get scaled. Some GUI textures have a border at the edge that is meant to be an exact

number of pixels. In order for this to work, set the border sizes to match those from the texture.

Pixel Inset

The purpose of the Pixel Inset is to prevent textures from scaling with screen resolution, and keeping thim in a fixed pixel size.

This allows you to render a texture without any scaling. This means that players who run your game in higher resolutions will

see your textures in smaller areas of the screen, allowing them to have more screen real-estate for your gameplay graphics.

To use it effectively, you need to set the scale of the GUI Texture's Transform to (0, 0, 0). Now, the Pixel Inset is in full control

of the texture's size and you can set the Pixel Inset values to be the exact pixel size of your Texture.

Hints
The depth of each layered GUI Texture is determined by its individual Z Transform position, not the global Z position.

GUI Textures are great for making menu screens, or pause/escape menu screens.

You should use Pixel Inset on any GUI Textures that you want to be a specific number of pixels for the width and height.
Page last updated: 2010-06-24

class-Light

Lights will bring personality and flavor to your game. You use lights to illuminate the scenes and objects to create the perfect

visual mood. Lights can be used to simulate the sun, burning match light, flashlights, gun-fire, or explosions, just to name a

few.

The Light Inspector

There are four types of lights in Unity:

Point lights shine from a location equally in all directions, like a light bulb.

Directional lights are placed infinitely far away and affect everything in the scene, like the sun.

Spot lights shine from a point in a direction and only illuminate objects within a cone - like the headlights of a car.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

841 of 1131 12/16/2012 10:12 PM

Area lights (only available for lightmap baking) shine in all directions to one side of a rectangular section of a plane.

Lights can also cast Shadows. Shadows are a Pro-only feature. Shadow properties can be adjusted on a per-light basis.

Properties
Type The current type of light object:

Directional A light placed infinitely far away. It affects everything in the scene.

Point A light that shines equally in all directions from its location, affecting all objects within its Range.

Spot A light that shines everywhere within a cone defined by Spot Angle and Range. Only objects within

this region are affected by the light.

Area A light that shines in all directions to one side of a rectangular area of a plane, affecting all objects

within its Range. The rectangle is defined by the X and Y properties. Area lights are only available

during lightmap baking and have no effect on objects at runtime.

Range How far light is emitted from the center of the object. Point/Spot light only.

Spot Angle Determines the angle of the cone in degrees. Spot light only.

Color The color of the light emitted.

Intensity Brightness of the light. Default value for a Point/Spot light is 1. Default value for a Directional light

is 0.5

Cookie The alpha channel of this texture is used as a mask that determines how bright the light is at different

places. If the light is a Spot or a Directional light, this must be a 2D texture. If the light is a Point

light, it must be a Cubemap.

Cookie Size Scales the projection of a Cookie. Directional light only.

Shadow Type (Pro only)No, Hard or Soft shadows that will be cast by this light. Only applicable to desktop build targets. Soft

shadows are more expensive.

Strength The darkness of the shadows. Values are between 0 and 1.

Resolution Detail level of the shadows.

Bias Offset used when comparing the pixel position in light space with the value from the shadow map.

See Shadow Mapping and the Bias Property below

Softness Scales the penumbra region (the offset of blur samples). Directional light only.

Softness Fade Shadow softness fade based on the distance from the camera. Directional light only.

Draw Halo If checked, a spherical halo of light will be drawn with a radius equal to Range.

Flare Optional reference to the Flare that will be rendered at the light's position.

Render Mode Importance of this light. This can affect lighting fidelity and performance, see Performance

Considerations below. Options include:

Auto The rendering method is determined at runtime depending on the brightness of nearby lights and

current Quality Settings for desktop build target.

Important This light is always rendered at per-pixel quality. Use this for very important effects only (e.g.

headlights of a player's car).

Not Important This light is always rendered in a faster, vertex/object light mode.

Culling Mask Use to selectively exclude groups of objects from being affected by the light; see Layers.

Lightmapping The Lightmapping mode: RealtimeOnly, Auto or BakedOnly; see the Dual Lightmaps description.

X (Area lights only) The width of the rectangular light area.

Y (Area lights only) The height of the rectangular light area.

Details
There are four basic light types in Unity. Each type can be customized to fit your needs.

You can create a texture that contains an alpha channel and assign it to the Cookie variable of the light. The Cookie will be

projected from the light. The Cookie's alpha mask modulates the light amount, creating light and dark spots on surfaces. They

are a great way af adding lots of complexity or atmosphere to a scene.

All built-in shaders in Unity seamlessly work with any type of light. VertexLit shaders cannot display Cookies or Shadows,

however.

In Unity Pro with a build target of webplayer or standalone, all Lights can optionally cast Shadows. This is done by selecting

either Hard Shadows or Soft Shadows for the Shadow Type property of each individual Light. For more information about

shadows, please read the Shadows page.

Point Lights

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

842 of 1131 12/16/2012 10:12 PM

Point lights shine out from a point in all directions. They are the most common lights in computer games - typically used for

explosions, light bulbs, etc. They have an average cost on the graphics processor (though point light shadows are the most

expensive).

Point Light

Point lights can have cookies - Cubemap texture with alpha channel. This Cubemap gets projected out in all directions.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

843 of 1131 12/16/2012 10:12 PM

Point Light with a Cookie

Spot Lights

Spot lights only shine in one direction, in a cone. They are perfect for flashlights, car headlights or lamp posts. They are the

most expensive on the graphics processor.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

844 of 1131 12/16/2012 10:12 PM

Spot Light

Spot lights can also have cookies - a texture projected down the cone of the light. This is good for creating an effect of light

shining through the window. It is very important that the texture is black at the edges, has Border Mipmaps option on and its

wrapping mode is set to Clamp. For more info on this, see Textures.

Spot Light with a Cookie

Directional Lights

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

845 of 1131 12/16/2012 10:12 PM

Directional lights are used mainly in outdoor scenes for sun & moonlight. The light affect all surfaces of objects in your scene.

They are the least expensive on the graphics processor. Shadows from directional lights (for platforms that support shadows)

are explained in depth on this page.

Directional Light

When directional light has a cookie, it is projected down the center of the light's Z axis. The size of the cookie is controlled with

Cookie Size property. Set the cookie texture's wrapping mode to Repeat in the Inspector.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

846 of 1131 12/16/2012 10:12 PM

Directional Light projecting a cloud-like cookie texture

A cookie is a great way to add some quick detail to large outdoor scenes. You can even slide the light slowly over the scene to

give the impression of moving clouds.

Area Lights
Area lights cast light from one side of a rectangular area of a plane.

Light is cast on all objects within the light's range. The size of the rectangle is determined by the X and Y properties and and

the plane's normal (ie, the side to which light is cast) is the same as the light's positive Z direction. Light is emitted from the

whole surface of the rectangle, so shading and shadows from affected object tend to be much softer than with point or

directional light sources.

Since the lighting calculation is quite processor-intensive, area lights are not available at runtime and can only be used as a

lightmap effect.

Performance considerations
Lights can be rendered in one of two methods: vertex lighting and pixel lighting. Vertex lighting only calculates the lighting at

the vertices of the game models and interpolates the lighting over the surfaces of the models. Pixel lights are calculated at

every screen pixel, and hence are much more expensive. Some older graphics cards only support vertex lighting.

While pixel lighting is slower to render, it does allow some effects that are not possible with vertex lighting. Normal-mapping,

light cookies and realtime shadows are only rendered for pixel lights. Spotlight shapes and Point light highlights are much

better when rendered in pixel mode as well. The three light types above would look like this when rendered in vertex light

mode:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

847 of 1131 12/16/2012 10:12 PM

Point light in Vertex lighting mode.

Spot light in Vertex lighting mode.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

848 of 1131 12/16/2012 10:12 PM

Directional light in Vertex lighting mode.

Lights have a big impact on rendering speed - therefore a tradeoff has to be made betwen lighting quality and game speed.

Since pixel lights are much more expensive than vertex lights, Unity will only render the brightest lights at per-pixel quality. The

actual number of pixel lights can be set in the Quality Settings for webplayer and standalone build targets.

You can explicitly control if a light should be rendered as a vertex or pixel light using the Render Mode property. By default

Unity will classify the light automatically based on how much the object is affected by the light.

The actual lights that are rendered as pixel lights are determined on an object-by-object case. This means:

Huge objects with bright lights could use all the pixel lights (depending on the quality settings). If the player is far from

these, nearby lights will be rendered as vertex lights. Therefore, it is better to split huge objects up in a couple of small

ones.

See Optimizing Graphics performance on Desktop, iOS or Android page for more information.

Creating Cookies
For more information on creating cookies, please see the tutorial on how to create a Spot light cookie.

Shadow Mapping and the Bias Property
Shadows are implemented using a technique known as shadow mapping. This is analogous to the depth mapping used by a

camera to determine which surfaces are obscured by others. The scene is internally rendered by a camera at the position of

the light to create a depth map which stores the distance to each surface illuminated by the light. This kind of depth map is

referred to as a shadow map, for obvious reasons. When the scene is rendered to the main view camera, each pixel position in

the view is transformed into the light's space so that its distance can be compared to the corresponding pixel in the shadow

map. If the pixel is more distant than the shadow map pixel then it is presumably obscured from the light by another object and

so it will get no illumination.

Cylinder with correct shadowing

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

849 of 1131 12/16/2012 10:12 PM

A surface directly illuminated by a light can sometimes appear to be partly in shadow. This is because pixels that should be

exactly at the distance specified in the shadow map will sometimes be deemed farther away (a consequence of using a low

resolution image for the map). The result is arbitrary patterns of pixels in shadow when they should really be lit, giving a visual

effect known as "shadow acne".

Shadow acne in the form of small dots on the cylinder

To prevent shadow acne, a bias value can be added to the distance in the shadow map to ensure that pixels on the borderline

will definitely pass the comparison as they should. This is the value set by the Bias property associated with a light when it has

shadows enabled. It is a mistake to set the bias too high, however, since areas of a shadow near to the object casting it can

then sometimes be falsely illuminated. This effect is known as "Peter Panning" (ie, the disconnected shadow makes the object

look as if it is flying some way above the ground like Peter Pan).

Peter Panning makes the object look raised above the ground

The bias value for a light may need a bit of tweaking to make sure that neither shadow acne nor Peter Panning occur. It is

generally easier to gauge the right value by eye rather than attempt to calculate it.

Hints
Spot lights with cookies can be extremely effective for making light coming in from windows.

Low-intensity point lights are good for providing depth to a scene.

For maximum performance, use a VertexLit shader. This shader only does per-vertex lighting, giving a much higher

throughput on low-end cards.

Auto lights can cast dynamic shadows over lightmapped objects without adding extra illumination. For this to work the Auto

lights must be active when the Lightmap is baked. Otherwise they render as real time lights.
Page last updated: 2012-09-21

class-LightProbeGroup

A Light Probe Group adds one or more light probes to a scene.

A new probe can be created by clicking the Add Probe button in the inspector. Once created, the probe can be selected and

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

850 of 1131 12/16/2012 10:12 PM

moved in much the same way as a GameObject and can be deleted by typing Ctrl/Cmd + Backspace.

Light probes appear as yellow spheres in the Scene View
Page last updated: 2011-10-25

class-OcclusionArea

To apply occlusion culling to moving objects you have to create an Occlusion Area and then modify its size to fit the space

where the moving objects will be located (of course the moving objects cannot be marked as static). You can create Occlusion

Areas is by adding the Occlusion Area component to an empty game object (Component->Rendering->Occlusion Area in

the menus)

After creating the Occlusion Area, just check the Is Target Volume checkbox to occlude moving objects.

Occlusion Area properties for moving objects.

Size Defines the size of the Occlusion Area.

Center Sets the center of the Occlusion Area. By default this is 0,0,0 and is located in the center of the box.

Is View Volume Defines where the camera can be. Check this in order to occlude static objects that are inside this

Occlusion Area.

Is Target Volume Select this when you want to occlude moving objects.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

851 of 1131 12/16/2012 10:12 PM

Target Resolution Determines how accurate the occlusion culling inside the area will be. This affects the size of the

cells in an Occlusion Area. NOTE: This only affects Target Areas.

Low This takes less time to calculate but is less accurate.

Medium This gives a balance between accuracy and time taken to process the occlusion culling data.

High This takes longer to calculate but has better accuracy.

Very High Use this value when you want to have more accuracy than high resolutions, be aware it takes more

time.

Extremely High Use this value when you want to have almost exact occlusion culling on your moveable objects. Note:

This setting takes a lot of time to calculate.

After you have added the Occlusion Area, you need to see how it divides the box into cells. To see how the occlusion area will

be calculated, Select Edit and toggle the View button in the Occlusion Culling Preview Panel.

Testing the generated occlusion
After your occlusion is set up, you can test it by enabling the Occlusion Culling (in the Occlusion Culling Preview Panel in

Visualize mode) and moving the Main Camera around in the scene view.

The Occlusion View mode in Scene View

As you move the Main Camera around (whether or not you are in Play mode), you'll see various objects disable themselves.

The thing you are looking for here is any error in the occlusion data. You'll recognize an error if you see objects suddenly

popping into view as you move around. If this happens, your options for fixing the error are either to change the resolution (if

you are playing with target volumes) or to move objects around to cover up the error. To debug problems with occlusion, you

can move the Main Camera to the problematic position for spot-checking.

When the processing is done, you should see some colorful cubes in the View Area. The blue cubes represent the cell

divisions for Target Volumes. The white cubes represent cell divisions for View Volumes. If the parameters were set

correctly you should see some objects not being rendered. This will be because they are either outside of the view frustum of

the camera or else occluded from view by other objects.

After occlusion is completed, if you don't see anything being occluded in your scene then try breaking your objects into smaller

pieces so they can be completely contained inside the cells.

Page last updated: 2012-02-14

class-OcclusionPortal

In order to create occlusion primitive which are openable and closable at runtime, Unity uses Occlusion Portals.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

852 of 1131 12/16/2012 10:12 PM

Open Indicates if the portal is open (scriptable)

Center Sets the center of the Occlusion Area. By default this is 0,0,0 and is located in the center of the box.

Size Defines the size of the Occlusion Area.
Page last updated: 2011-11-17

class-Skybox

Skyboxes are a wrapper around your entire scene that display the vast beyond of your world.

One of the default Skyboxes found under Standard Assets->Skyboxes

Properties
Material The Material used to render the Skybox, which contains 6 Textures. This Material should use the

Skybox Shader, and each of the textures should be assigned to the proper global direction.

Details

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

853 of 1131 12/16/2012 10:12 PM

Skyboxes are rendered before anything else in the scene in order to give the impression of complex scenery at the horizon.

They are a box of 6 textures, one for each primary direction (+/-X, +/-Y, +/-Z).

You have two options for implementing Skyboxes. You can add them to an individual Camera (usually the main Camera) or you

can set up a default Skybox in Render Settings's Skybox Material property. The Render Settings is most useful if you want all

Cameras in your scene to share the same Skybox.

Adding the Skybox Component to a Camera is useful if you want to override the default Skybox set up in the Render Settings.

E.g. You might have a split screen game using two Cameras, and want the Second camera to use a different Skybox. To add a

Skybox Component to a Camera, click to highlight the Camera and go to Component->Rendering->Skybox.

Unity's Standard Assets contain 2 pre-setup Skybox materials in Standard Assets->Skyboxes.

If you want to create a new Skybox, use this guide.

Hints
If you have a Skybox assigned to a Camera, make sure to set the Camera's Clear mode to Skybox.

It's a good idea to match your Fog color to the skybox's color. Fog color can be set in Render Settings.
Page last updated: 2011-01-19

class-LODGroup

As your scenes get larger, performance becomes a bigger consideration. One of the ways to manage this is to have meshes

with different levels of detail depending on how far the camera is from the object. This is called Level of Detail (abbreviated

as LOD).

Here's one of the ways to set up an object with different LODs.

Create an empty Game Object in the scene1.

Create 2 versions of the mesh, a high-res mesh (for L0D:0, when camera is the closest), and a low-res mesh (for

L0D:1, when camera is further away)

2.

Add a LODGroup component to this object (Component->Rendering->LOD Group)3.

Drag in the object with the high-res mesh onto the first Renderers box for L0D:0. Say yes to the "Reparent game

objects?" dialog

4.

Drag in the object with the low-res mesh onto the first Renderers box for LOD:1. Say yes to the "Reparent game

objects?" dialog

5.

Right Click on LOD:2 and remove it.6.

At this point the empty object should contain both versions of the mesh and "know" which mesh to show depending on how far

away the camera is.

You can preview the effect of this by dragging the camera icon left and right in the window for the LODGroup component.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

854 of 1131 12/16/2012 10:12 PM

camera at LOD 0

camera at LOD 1

In the Scene View, you should be able to see

Percentage of the view this object occupies

What LOD is currently being displayed

The number of triangles

LOD-based naming conventions in the asset import pipeline
In order to simplify setup of LODs, Unity has a naming convention for models that are being imported.

Simply create your meshes in your modelling tool with names ending with _LOD0, _LOD1, _LOD2, etc., and the LOD group

with appropriate settings will be created for you.

Note that the convention assumes that the LOD 0 is the highest resolution model.

Setting up LODs for different platforms
You can tweak your LOD settings for each platform in Quality Settings, in particular the properties of LOD bias and Maximum

LOD Level.

Utilities

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

855 of 1131 12/16/2012 10:12 PM

Here are some options that help you work with LODs

Recalculate

Bounds

If there is new geometry added to the LODGroup that is not reflected in the bounding volume then click this to

update the bounds. One example where this is needed is when one of the geometries is part of a prefab, and

new geometry is added to that prefab. Geometry added directly to the LODGroup will automatically update the

bounds.

Update

Lightmaps

Updates the Scale in Lightmap property in the lightmaps based on the LOD level boundaries.

Upload to

Importer

Uploads the LOD level boundaries to the importer.

Page last updated: 2012-11-13

class-Texture3D

Unity supports 3D Texture use and creation from shader and script. While use cases of 3D Textures might not seem as

straightforward at first, they can be an integral part of implementing specific kinds of effects such as 3D Color Correction.

Currently, 3D Textures can only be created from script. The following snippet creates a "neutral" 3D texture where, if used as a

lookup texture in 3D Color Correction, the performed correction will be the identity.

function CreateIdentityLut (dim : int, tex3D : Texture3D)
{
 var newC : Color[] = new Color[dim * dim * dim];
 var oneOverDim : float = 1.0f / (1.0f * dim - 1.0f);
 for(var i : int = 0; i < dim; i++) {
 for(var j : int = 0; j < dim; j++) {
 for(var k : int = 0; k < dim; k++) {
 newC[i + (j*dim) + (k*dim*dim)] = new Color((i*1.0f)*oneOverDim, (j*1.0f)*oneOverDim, (k*1.0f)*oneOverDim, 1.0f);
 }
 }
 }
 tex3D.SetPixels (newC);
 tex3D.Apply ();
}

Page last updated: 2012-09-11

comp-TransformationGroup

This group is for all Components that handle object positioning outside of Physics.

Transform
Page last updated: 2007-07-16

class-Transform

The Transform Component determines the Position, Rotation, and Scale of each object in the scene. Every object has a

Transform.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

856 of 1131 12/16/2012 10:12 PM

The Transform Component is editable in the Scene View and in the Inspector

Properties
Position Position of the Transform in X, Y, and Z coordinates.

Rotation Rotation of the Transform around the X, Y, and Z axes, measured in degrees.

Scale Scale of the Transform along X, Y, and Z axes. Value "1" is the original size (size at which the object

was imported).

All properties of a Transform are measured relative to the Transform's parent (see below for further details). If the Transform

has no parent, the properties are measured relative to World Space.

Using Transforms
Transforms are always manipulated in 3D space in the X, Y, and Z axes. In Unity, these axes are represented by the colors

red, green, and blue respectively. Remember: XYZ = RGB.

Color-coded relationship between the three axes and Transform properties

Transforms can be directly manipulated in the Scene View or by editing properties in the Inspector. In the scene, you can

modify Transforms using the Move, Rotate and Scale tools. These tools are located in the upper left-hand corner of the Unity

Editor.

The View, Translate, Rotate, and Scale tools

The tools can be used on any object in the scene. When you click on an object, you will see the tool gizmo appear within it.

The appearance of the gizmo depends on which tool is selected.

All three Gizmos can be directly edited in the Scene View.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

857 of 1131 12/16/2012 10:12 PM

When you click and drag on one of the three gizmo axes, you will notice that its color changes. As you drag the mouse, you will

see the object translate, rotate, or scale along the selected axis. When you release the mouse button, the axis remains

selected. You can click the middle mouse button and drag the mouse to manipulate the Transform along the selected axis.

Any individual axis will become selected when you click on it

Around the centre of the Transform gizmo are three coloured squares. These allow you to drag the Transform in a single plane

(ie, the object will move in two axes but be held still in the third axis).

Dragging in the XZ plane

Parenting
Parenting is one of the most important concepts to understand when using Unity. When a GameObject is a Parent of another

GameObject, the Child GameObject will move, rotate, and scale exactly as its Parent does. Just like your arms are attached to

your body, when you turn your body, your arms move because they're attached. Any object can have multiple children, but only

one parent.

You can create a Parent by dragging any GameObject in the Hierarchy View onto another. This will create a Parent-Child

relationship between the two GameObjects.

Example of a Parent-Child hierarchy. GameObjects with foldout arrows to the left of their names are parents.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

858 of 1131 12/16/2012 10:12 PM

In the above example, we say that the arms are parented to the body and the hands are parented to the arms. The scenes you

make in Unity will contain collections of these Transform hierarchies. The topmost parent object is called the Root object.

When you move, scale or rotate a parent, all the changes in its Transform are applied to its children as well.

It is worth pointing out that the Transform values in the Inspector of any Child GameObject are displayed relative to the

Parent's Transform values. These are also called the Local Coordinates. Through scripting, you can access the Global

Coordinates as well as the local coordinates.

You can build compound objects by parenting several separate objects together, for example, the skeletal structure of a human

ragdoll. You can also achieve useful effects with simple hierarchies. For example, if you have a horror game that takes place at

night, you can create an effective atmosphere with a flashlight. To create this object, you would parent a spotlight Transform to

the flashlight Transform. Then, any alteration of the flashlight Transform will affect the spotlight, creating a convincing flashlight

effect.

Performance Issues and Limitations with Non-Uniform Scaling
Non-uniform scaling is when the Scale in a Transform has different values for x, y, and z; for example (2, 4, 2). In contrast,

uniform scaling has the same value for x, y, and z; for example (3, 3, 3). Non-uniform scaling can be useful in a few select

cases but should be avoided whenever possible.

Non-uniform scaling has a negative impact on rendering performance. In order to transform vertex normals correctly, we

transform the mesh on the CPU and create an extra copy of the data. Normally we can keep the mesh shared between

instances in graphics memory, but in this case you pay both a CPU and memory cost per instance.

There are also certain limitations in how Unity handles non-uniform scaling:

Certain components do not fully support non-uniform scaling. For example, for components with a radius property or

similar, such as a Sphere Collider, Capsule Collider, Light, Audio Source etc., the shape will never become elliptical

but remain circular/spherical regardless of non-uniform scaling.

A child object that has a non-uniformly scaled parent and is rotated relative to that parent may have a non-orthogonal

matrix, meaning that it may appear skewed. Some components that do support simple non-uniform scaling still do not

support non-orthogonal matrices. For example, a Box Collider cannot be skewed so if its transform is non-orthogonal, the

Box Collider will not match the shape of the rendered mesh accurately.

For performance reasons, a child object that has a non-uniformly scaled parent will not have its scale/matrix automatically

updated while rotating. This may result in popping of the scale once the scale is updated, for example if the object is

detached from its parent.

Importance of Scale
The scale of the Transform determines the difference between the size of your mesh in your modeling application and the size

of your mesh in Unity. The mesh's size in Unity (and therefore the Transform's scale) is very important, especially during

physics simulation. There are three factors that can affect the scale of your object:

The size of your mesh in your 3D modeling application.

The Mesh Scale Factor setting in the object's Import Settings.

The Scale values of your Transform Component.

Ideally, you should not adjust the Scale of your object in the Transform Component. The best option is to create your models

at real-life scale so you won't have to change your Transform's scale. The next best option is to adjust the scale at which your

mesh is imported in the Import Settings for your individual mesh. Certain optimizations occur based on the import size, and

instantiating an object that has an adjusted scale value can decrease performance. For more information, see the section

about optimizing scale on the Rigidbody component reference page.

Hints
When parenting Transforms, set the parent's location to <0,0,0> before adding the child. This will save you many

headaches later.

Particle Systems are not affected by the Transform's Scale. In order to scale a Particle System, you need to modify the

properties in the System's Particle Emitter, Animator and Renderer.

If you are using Rigidbodies for physics simulation, there is some important information about the Scale property on the

Rigidbody component reference page.

You can change the colors of the Transform axes (and other UI elements) from the preferences (Menu: Unity >

Preferences and then select the Colors & keys panel).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

859 of 1131 12/16/2012 10:12 PM

It is best to avoid scaling within Unity if possible. Try to have the scales of your object finalized in your 3D modeling

application, or in the Import Settings of your mesh.
Page last updated: 2012-01-18

comp-UnityGUIGroup

UnityGUI is the GUI creation system built into Unity. It consists of creating different Controls, and defining the content and

appearance of those controls.

The Components of UnityGUI allow you to define the appearance of Controls.

GUI Skin

GUI Style

For information about using UnityGUI to create Controls and define their content, please read the GUI Scripting Guide.

Page last updated: 2007-08-22

class-GUISkin

GUISkins are a collection of GUIStyles that can be applied to your GUI. Each Control type has its own Style definition. Skins

are intended to allow you to apply style to an entire UI, instead of a single Control by itself.

A GUI Skin as seen in the Inspector

To create a GUISkin, select Assets->Create->GUI Skin from the menubar.

GUISkins are part of the UnityGUI system. For more detailed information about UnityGUI, please take a look at the GUI

Scripting Guide.

Properties

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

860 of 1131 12/16/2012 10:12 PM

All of the properties within a GUI Skin are an individual GUIStyle. Please read the GUIStyle page for more information about

how to use Styles.

Font The global Font to use for every Control in the GUI

Box The Style to use for all Boxes

Button The Style to use for all Buttons

Toggle The Style to use for all Toggles

Label The Style to use for all Labels

Text Field The Style to use for all Text Fields

Text Area The Style to use for all Text Areas

Window The Style to use for all Windows

Horizontal Slider The Style to use for all Horizontal Slider bars

Horizontal Slider

Thumb

The Style to use for all Horizontal Slider Thumb Buttons

Vertical Slider The Style to use for all Vertical Slider bars

Vertical Slider Thumb The Style to use for all Vertical Slider Thumb Buttons

Horizontal Scrollbar The Style to use for all Horizontal Scrollbars

Horizontal Scrollbar

Thumb

The Style to use for all Horizontal Scrollbar Thumb Buttons

Horizontal Scrollbar

Left Button

The Style to use for all Horizontal Scrollbar scroll Left Buttons

Horizontal Scrollbar

Right Button

The Style to use for all Horizontal Scrollbar scroll Right Buttons

Vertical Scrollbar The Style to use for all Vertical Scrollbars

Vertical Scrollbar

Thumb

The Style to use for all Vertical Scrollbar Thumb Buttons

Vertical Scrollbar Up

Button

The Style to use for all Vertical Scrollbar scroll Up Buttons

Vertical Scrollbar

Down Button

The Style to use for all Vertical Scrollbar scroll Down Buttons

Custom 1-20 Additional custom Styles that can be applied to any Control

Custom Styles An array of additional custom Styles that can be applied to any Control

Settings Additional Settings for the entire GUI

Double Click

Selects Word

If enabled, double-clicking a word will select it

Triple Click Selects

Line

If enabled, triple-clicking a word will select the entire line

Cursor Color Color of the keyboard cursor

Cursor Flash SpeedThe speed at which the text cursor will flash when editing any Text Control

Selection Color Color of the selected area of Text

Details
When you are creating an entire GUI for your game, you will likely need to do a lot of customization for every different Control

type. In many different game genres, like real-time strategy or role-playing, there is a need for practically every single Control

type.

Because each individual Control uses a particular Style, it does not make sense to create a dozen-plus individual Styles and

assign them all manually. GUI Skins take care of this problem for you. By creating a GUI Skin, you have a pre-defined

collection of Styles for every individual Control. You then apply the Skin with a single line of code, which eliminates the need to

manually specify the Style of each individual Control.

Creating GUISkins

GUISkins are asset files. To create a GUI Skin, select Assets->Create->GUI Skin from the menubar. This will put a new

GUISkin in your Project View.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

861 of 1131 12/16/2012 10:12 PM

A new GUISkin file in the Project View

Editing GUISkins

After you have created a GUISkin, you can edit all of the Styles it contains in the Inspector. For example, the Text Field Style

will be applied to all Text Field Controls.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

862 of 1131 12/16/2012 10:12 PM

Editing the Text Field Style in a GUISkin

No matter how many Text Fields you create in your script, they will all use this Style. Of course, you have control over

changing the styles of one Text Field over the other if you wish. We'll discuss how that is done next.

Applying GUISkins

To apply a GUISkin to your GUI, you must use a simple script to read and apply the Skin to your Controls.

// Create a public variable where we can assign the GUISkin
var customSkin : GUISkin;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

863 of 1131 12/16/2012 10:12 PM

// Apply the Skin in our OnGUI() function
function OnGUI () {

GUI.skin = customSkin;

// Now create any Controls you like, and they will be displayed with the custom Skin
GUILayout.Button ("I am a re-Skinned Button");

// You can change or remove the skin for some Controls but not others
GUI.skin = null;

// Any Controls created here will use the default Skin and not the custom Skin
GUILayout.Button ("This Button uses the default UnityGUI Skin");

}

In some cases you want to have two of the same Control with different Styles. For this, it does not make sense to create a new

Skin and re-assign it. Instead, you use one of the Custom Styles in the skin. Provide a Name for the custom Style, and you

can use that name as the last argument of the individual Control.

// One of the custom Styles in this Skin has the name "MyCustomControl"
var customSkin : GUISkin;

function OnGUI () {
GUI.skin = customSkin;

// We provide the name of the Style we want to use as the last argument of the Control function
GUILayout.Button ("I am a custom styled Button", "MyCustomControl");

// We can also ignore the Custom Style, and use the Skin's default Button Style
GUILayout.Button ("I am the Skin's Button Style");

}

For more information about working with GUIStyles, please read the GUIStyle page. For more information about using

UnityGUI, please read the GUI Scripting Guide.

Page last updated: 2007-10-01

class-GUIStyle

GUI Styles are a collection of custom attributes for use with UnityGUI. A single GUI Style defines the appearance of a single

UnityGUI Control.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

864 of 1131 12/16/2012 10:12 PM

A GUI Style in the Inspector

If you want to add style to more than one control, use a GUI Skin instead of a GUI Style. For more information about UnityGUI,

please read the GUI Scripting Guide.

Properties
Name The text string that can be used to refer to this specific Style

Normal Background image & Text Color of the Control in default state

Hover Background image & Text Color when the mouse is positioned over the Control

Active Background image & Text Color when the mouse is actively clicking the Control

Focused Background image & Text Color when the Control has keyboard focus

On Normal Background image & Text Color of the Control in enabled state

On Hover Background image & Text Color when the mouse is positioned over the enabled Control

On Active Properties when the mouse is actively clicking the enabled Control

On Focused Background image & Text Color when the enabled Control has keyboard focus

Border Number of pixels on each side of the Background image that are not affected by the scale of the

Control' shape

Padding Space in pixels from each edge of the Control to the start of its contents.

Margin The margins between elements rendered in this style and any other GUI Controls.

Overflow Extra space to be added to the background image.

Font The Font used for all text in this style

Image Position The way the background image and text are combined.

Alignment Standard text alignment options.

Word Wrap If enabled, text that reaches the boundaries of the Control will wrap around to the next line

Text Clipping If Word Wrap is enabled, choose how to handle text that exceeds the boundaries of the Control

Overflow Any text that exceeds the Control boundaries will continue beyond the boundaries

Clip Any text that exceeds the Control boundaries will be hidden

Content Offset Number of pixels along X and Y axes that the Content will be displaced in addition to all other

properties

X Left/Right Offset

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

865 of 1131 12/16/2012 10:12 PM

Y Up/Down Offset

Fixed Width Number of pixels for the width of the Control, which will override any provided Rect() value

Fixed Height Number of pixels for the height of the Control, which will override any provided Rect() value

Stretch Width If enabled, Controls using this style can be stretched horizontally for a better layout.

Stretch Height If enabled, Controls using this style can be stretched vertically for a better layout.

Details
GUIStyles are declared from scripts and modified on a per-instance basis. If you want to use a single or few Controls with a

custom Style, you can declare this custom Style in the script and provide the Style as an argument of the Control function. This

will make these Controls appear with the Style that you define.

First, you must declare a GUI Style from within a script.

/* Declare a GUI Style */
var customGuiStyle : GUIStyle;

...

When you attach this script to a GameObject, you will see the custom Style available to modify in the Inspector.

A Style declared in a script can be modified in each instance of the script

Now, when you want to tell a particular Control to use this Style, you provide the name of the Style as the last argument in the

Control function.

...

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

866 of 1131 12/16/2012 10:12 PM

function OnGUI () {
// Provide the name of the Style as the final argument to use it
GUILayout.Button ("I am a custom-styled Button", customGuiStyle);

// If you do not want to apply the Style, do not provide the name
GUILayout.Button ("I am a normal UnityGUI Button without custom style");

}

Two Buttons, one with Style, as created by the code example

For more information about using UnityGUI, please read the GUI Scripting Guide.

Page last updated: 2007-10-01

comp-Wizards

Ragdoll Wizard
Page last updated: 2007-07-16

wizard-RagdollWizard

Unity has a simple wizard that lets you quickly create your own ragdoll. You simply have to drag the different limbs on the

respective properties in the wizard. Then select create and Unity will automatically generate all Colliders, Rigidbodies and

Joints that make up the Ragdoll for you.

Creating the Character
Ragdolls make use of Skinned Meshes, that is a character mesh rigged up with bones in the 3D modeling application. For

this reason, you must build ragdoll characters in a 3D package like Maya or Cinema4D.

When you've created you character and rigged it, save the asset normally in your Project Folder. When you switch to Unity,

you'll see the character asset file. Select that file and the Import Settings dialog will appear inside the inspector. Make sure

that Mesh Colliders is not enabled.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

867 of 1131 12/16/2012 10:12 PM

Using the Wizard
It's not possible to make the actual source asset into a ragdoll. This would require modifying the source asset file, and is

therefore impossible. You will make an instance of the character asset into a ragdoll, which can then be saved as a Prefab for

re-use.

Create an instance of the character by dragging it from the Project View to the Hierarchy View. Expand its Transform

Hierarchy by clicking the small arrow to the left of the instance's name in the Hierarchy. Now you are ready to start assigning

your ragdoll parts.

Open the Ragdoll Wizard by choosing GameObject->Create Other->Ragdoll from the menu bar. You will now see the

Wizard itself.

The Ragdoll Wizard

Assigning parts to the wizard should be self-explanatory. Drag the different Transforms of your character instance to the

appropriate property on the wizard. This should be especially easy if you created the character asset yourself.

When you are done, click the Create Button. Now when you enter Play Mode, you will see your character go limp as a

ragdoll.

The final step is to save the setup ragdoll as a Prefab. Choose Assets->Create->Prefab from the menu bar. You will see a

New Prefab appear in the Project View. Rename it to "Ragdoll Prefab". Drag the ragdoll character instance from the Hierarchy

on top of the "Ragdoll Prefab". You now have a completely set-up, re-usable ragdoll character to use as much as you like in

your game.

Page last updated: 2012-08-09

script-Terrain

This section will explain how to use the Terrain Engine. It will cover creation, technical details, and other considerations. It is

broken into the following sections:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

868 of 1131 12/16/2012 10:12 PM

Using Terrains
This section covers the most basic information about using Terrains. This includes creating Terrains and how to use the new

Terrain tools & brushes.

Height
This section explains how to use the different tools and brushes that alter the Height of the Terrain.

Terrain Textures
This section explains how to add, paint and blend Terrain Textures using different brushes.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

869 of 1131 12/16/2012 10:12 PM

Trees
This section contains important information for creating your own tree assets. It also covers adding and painting trees on your

Terrain.

Grass
This section explains how grass works, and how to use it.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

870 of 1131 12/16/2012 10:12 PM

Detail Meshes
This section explains practical usage for detail meshes like rocks, haystacks, vegetation, etc.

Lightmaps
You can lightmap terrains just like any other objects using Unity's built-in lightmapper. See Lightmapping Quickstart for help.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

871 of 1131 12/16/2012 10:12 PM

Other Settings
This section covers all the other settings associated with Terrains.

Mobile performance note
Rendering terrain is quite expensive, so terrain engine is not very practical on lower-end mobile devices.

Page last updated: 2012-08-17

terrain-UsingTerrains

Creating a new Terrain
A new Terrain can be created from Terrain->Create Terrain. This will add a Terrain to your Project and Hierarchy Views.

Your new Terrain will look like this in the Scene View:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

872 of 1131 12/16/2012 10:12 PM

A new Terrain in Scene View

If you would like a differently sized Terrain, choose Terrain->Set Resolution from the menu bar. There are a number of

settings that related to Terrain size which you can change from this dialog.

Setting the resolution of your terrain.

On the above image, there are values that can be changed.

These values are:

Terrain Width: The width of the Terrain in units.

Terrain Height: The height of the Terrain in units.

Terrain Length: The length of the Terrain in units.

HeightMap Resolution: The HeightMap resolution for the selected Terrain.

Detail Resolution: The resolution of the map that controls grass and detail meshes. For performance reasons (to save on

draw calls) the lower you set this number the better.

Control Texture Resolution: The resolution of the splat map used to layer the different textures painted onto the Terrain.

Base Texture Resolution: The resolution of the composite texture that is used in place of the splat map at certain

distances.

Navigating the Terrain
Terrains work a bit differently than other GameObjects. You can use Brushes to paint and manipulate your Terrain. If you want

to reposition a Terrain, you can modify its Transform Position values in the Inspector. This allows you to move your Terrain

around, but you cannot rotate or scale it.

While your Terrain is selected in the Hierarchy, you can gracefully navigate the terrain with the F (focus) key. When you press

F, wherever your mouse is positioned will be moved to the center of the Scene View. This allows you to touch up an area, and

quickly zoom over to a different area and change something else. If your mouse is not hovering over an area of the Terrain

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

873 of 1131 12/16/2012 10:12 PM

when you press the F key, the entire Terrain will be centered in your Scene View.

Editing the Terrain
With the Terrain selected, you can look at the Inspector to see some incredible new Terrain editing tools.

Terrain Editing Tools appear in the Inspector

Each rectangular button is a different Terrain tool. There are tools to change the height, paint splat maps, or attach details like

trees or rocks. To use a specific tool, click on it. You will then see a short description of the tool appear in text below the tool

buttons.

Most of the tools make use of a brush. Many different brushes are displayed for any tool that uses a brush. To select a brush,

just click on it. The currently selected brush will display a preview when you hover the mouse over the terrain, at the size you

have specified.

You will use all of these brushes in the Scene View to paint directly onto your Terrain. Simply choose the tool and brush you

want, then click & drag on the Terrain to alter it in real-time. To paint height, textures, or decorations, you must have the

Terrain selected in the Hierarchy View.

Note: When you have a brush selected, move your mouse over the Terrain in the Scene View and press F. This will center the

Scene View over the mouse pointer position and automatically zoom in to the Brush Size distance. This is the quickest &

easiest way to navigate around your Terrain while creating it.

Terrain Keyboard Shortcuts

While Terrain Inspector is active, those keyboard shortcuts can be used for fast editing (all of them customizable in Unity

Preferences):

Shift-Q to Shift-Y selects active terrain tool.

Comma (,) and dot (.) cycle through active brush.

Shift-comma (<) and Shift-dot (>) cycle through active tree/texture/detail object.
Page last updated: 2011-11-03

terrain-Height

Using any of the Terrain editing tools is very simple. You will literally paint the Terrain from within the Scene View. For the

height tools and all others, you just have to select the tool, and click the Terrain in Scene View to manipulate it in real-time.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

874 of 1131 12/16/2012 10:12 PM

Raising & Lowering Height

The first tool on the left is the Raise Height tool .

With this tool, you paint brush strokes that will raise the height of the Terrain. Clicking the mouse once will increment the

height. Keeping the mouse button depressed and moving the mouse will continually raise the height until the maximum height

is reached.

You can use any of the brushes to achieve different results

If you want to lower the height when you click, hold the Shift key.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

875 of 1131 12/16/2012 10:12 PM

Note:When you have a brush selected, move your mouse over the Terrain in the Scene View and press F. This will center the

Scene View over the mouse pointer position and automatically zoom in to the Brush Size distance. This is the quickest &

easiest way to navigate around your Terrain while creating it.

Paint Height

The second tool from the left is the Paint Height tool .

This tool allows you to specify a target height, and move any part of the terrain toward that height. Once the terrain reaches

the target height, it will stop moving and rest at that height.

To specify the target height, hold Shift and click on the terrain at the height you desire. You can also manually adjust the

Height slider in the Inspector.

Now you've specified the target height, and any clicks you make on the terrain will move the terrain up or down to reach that

height.

Smoothing Height

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

876 of 1131 12/16/2012 10:12 PM

The third tool from the left is the Smoothing Height tool .

This tool allows you to soften any height differences within the area you're painting. Like the other brushes, paint the areas

you want to smooth in the Scene View.

Working with Heightmaps
If you like, you can import a greyscale Heightmap created in Photoshop, or from real-world geography data and apply it to your

Terrain. To do this, choose Terrain->Import Heightmap - Raw..., then select the desired RAW file. You'll then see some

import settings. These will be set for you, but you have the option of changing the size of your Terrain from this dialog if you

like. When you're ready, click the Import button. Once the Heightmap has been applied to the Terrain, you can edit it normally

with all the Tools described above. Note that the Unity Heightmap importer can only import grayscale raw files. Thus you can't

create a raw heightmap using RGB channels, you must use grayscale.

Unity works with RAW files which make use of full 16-bit resolution. Any other heightmap editing application like Bryce,

Terragen, or Photoshop can work with a Unity Heightmap at full resolution.

You also have the option of exporting your Heightmap to RAW format. Choose Terrain->Export Heightmap - Raw... and

you'll see a export settings dialog. Make any changes you like, and click Export to save your new Heightmap.

Unity also provides an easy way to flatten your terrain. Choose Terrain->Flatten.... This lets you flatten your terrain to a

height you specify in the wizard.

Page last updated: 2011-10-29

terrain-Textures

Decorate the landscape of your terrain by tiling Terrain Textures across the entire terrain. You can blend and combine Terrain

Textures to make smooth transitions from one map to another, or to keep the surroundings varied.

Terrain Textures are also called splat maps. What this means is you can define several repeating high resolution textures and

blend between them arbitrarily, using alpha maps which you paint directly onto the Terrain. Because the textures are not large

compared to the size of the terrain, the distribution size of the Textures is very small.

Note: Using an amount of textures in a multiple of four provides the greatest benefit for performance and storage of the

Terrain alpha maps.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

877 of 1131 12/16/2012 10:12 PM

To being working with textures, click on the Paint Textures button in the Inspector.

Adding a Terrain Texture
Before you can begin painting Terrain Textures, you will add at least one to the Terrain from your Project folder. Click the

Options Button->Add Texture....

This will bring up the Add Terrain Texture dialog.

The Add Terrain Texture dialog

From here, select a tileable texture in the Splat property. You can either drag a texture to the property from the Project View, or

choose one from the drop-down.

Now, set the Tile Size X and Tile Size Y properties. The larger the number, the larger each "tile" of the texture will be scaled.

Textures with large Tile Sizes will be repeated fewer times across the entire Terrain. Smaller numbers will repeat the texture

more often with smaller tiles.

Click the Add Button and you'll see your first Terrain Texture tile across the entire Terrain.

Repeat this process for as many Terrain Textures as you like.

Painting Terrain Textures
Once you've added at least two Terrain Textures, you can blend them together in various ways. This part gets really fun, so

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

878 of 1131 12/16/2012 10:12 PM

let's jump right to the good stuff.

Select the Terrain Texture you want to use. The currently selected Terrain Texture will be highlighted in blue.

Select the Brush you want to use. The currently selected Brush will be highlighted in blue.

Select the Brush Size, Opacity, and Target Strength.

Size refers to the width of the brush relative to your terrain grid squares

Opacity is the transparency or amount of texture applied for a given amount of time you paint

Target Strength is the maximum opacity you can reach by painting continuously.

Click and drag on the terrain to draw the Terrain Texture.

Use a variety of Textures, Brushes, Sizes, and Opacities to create a great variety of blended styles.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

879 of 1131 12/16/2012 10:12 PM

Note:When you have a brush selected, move your mouse over the Terrain in the Scene View and press F. This will center the

Scene View over the mouse pointer position and automatically zoom in to the Brush Size distance. This is the quickest &

easiest way to navigate around your Terrain while creating it.

Page last updated: 2012-08-17

terrain-Trees

Unity's Terrain Engine has special support for Trees. You can put thousands of trees onto a Terrain, and render them in-game

with a practical frame rate. This works by rendering trees near the camera in full 3D, and transitioning far-away trees to 2D

billboards. Billboards in the distance will automatically update to orient themselves correctly as they are viewed from different

angles. This transition system makes a detailed tree environment very simple for performance. You have complete control over

tweaking the parameters of the mesh-to-billboard transition so you can get the best performance you need.

You can easily paint lots of trees for beautiful environments like this

Adding Trees

Select the Place Trees button in the Inspector.

Before you can place trees on your terrain, you have to add them to the library of available trees. To do this, click the Edit

Trees button->Add Tree. You'll see the Add Tree dialog appear.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

880 of 1131 12/16/2012 10:12 PM

The Add Tree dialog

Select the tree from your Project View and drag it to the Tree variable. You can also edit the Bend Factor if you want to add

an additional bit of animated "bending in the wind" effect to the trees. When you're ready, click Add. The tree will now appear

selected in the Inspector.

The newly added tree appears selected in the Inspector

You can add as many trees as you like. Each one will be selectable in the Inspector for you to place on your Terrain.

The currently selected tree will always be highlighted in blue

Painting Trees
While still using the Place Trees tool, click anywhere on the Terrain to place your trees. To erase trees, hold the Shift button

and click on the Terrain.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

881 of 1131 12/16/2012 10:12 PM

Painting trees is as easy as using a paintbrush tool

There are a number of options at your disposal when placing trees.

Brush Size Radius in meters of the tree placing brush.

Tree Spacing Percentage of tree width between trees.

Color Variation Allowed amount of color difference between each tree.

Tree Height Height adjustment of each tree compared to the asset.

Height Variation Allowed amount of difference in height between each tree.

Tree Width Width adjustment of each tree compared to the asset.

Width Variation Allowed amount of difference in width between each tree.

Tree Painting Tips

Different Brush sizes cover different area sizes

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

882 of 1131 12/16/2012 10:12 PM

Adjust Tree Spacing to change the density of the trees you're painting

Editing Trees
To change any import parameters for an added tree, select the detail and choose Edit Trees button->Edit Detail. Or

double-click the tree you want to edit. You will then see the Edit Tree dialog, and you can change any of the settings.

Mass Placement
If you don't want to paint your trees and you just want a whole forest created, you can use Terrain->Mass Place Trees. Here,

you will see the Mass Place Trees dialog. You can set the number of trees you want placed, and they'll be instantly

positioned. All the trees added to your Terrain will be used in this mass placement.

10,000 Trees placed at once

Refreshing Source Assets
If you make any updates to your tree asset source file, it must be manually re-imported into the Terrain. To do this, use

Terrain->Refresh Tree and Detail Prototypes. This is done after you've changed your source asset and saved it, and will

refresh the trees in your Terrain immediately.

Creating Trees
Trees can be created in two ways to the terrain engine:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

883 of 1131 12/16/2012 10:12 PM

The first one is by using the Tree creator that Unity comes with, and the second one is by using a 3rd party modeling program

compatible with Unity, in this case every tree should consist of a single mesh with two Materials. One for the trunk and one for

the leaves.

For performance reasons, triangle count should be kept below 2000 for an average tree. The fewer triangles the better. The

pivot point of the tree mesh must be exactly at the root of the tree, that is at the point where the tree should meet the surface it

is placed on. This makes it the easiest to import into Unity and other modelling applications.

Trees must use the Nature/Soft Occlusion Leaves and Nature/Soft Occlusion Bark shader. In order to use those shaders

you also have to place the tree in a special folder that contains the name "Ambient-Occlusion". When you place a model in that

folder and reimport it, Unity will calculate soft ambient occlusion specialized for trees. The "Nature/Soft Occlusion" shaders

need this information. If you don't follow the naming conventions the tree will look weird with completely black parts.

Unity also ships with several high quality trees in the "Terrain Demo.unitypackage". You can use those trees readily in your

game.

Using Low Poly Trees

One branch with leaves is done with only six triangles and shows quite a bit of curvature. You can add more triangles for even

more curvature. But the main point is: When making trees, work with triangles not with quads. If you use quads you basically

need twice as many triangles to get the same curvature on branches.

The tree itself wastes a lot of fillrate by having large polygons but almost everything is invisible due to the alpha. This should

be avoided for performance reasons and of course because the goal is to make dense trees. This is one of the things that

makes Oblivion's trees look great. They are so dense you cant even see through the leaves.

Setting up Tree Collisions
If you'd like your trees to make use of colliders, it's very easy. When you've imported your Tree asset file, all you need to do is

instantiate it in the Scene View, add a Capsule Collider and tweak it, and make the GameObject into a new Prefab. Then

when you're adding trees to your Terrain, you add the tree Prefab with the Capsule Collider attached. You can only use

Capsule Colliders when adding collisions with trees.

Making your Trees Collide.

Terrain Collider Inspector

If you want to make your trees collide with rigid bodies, make sure you you check the Create Tree Colliders box. else your

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

884 of 1131 12/16/2012 10:12 PM

objects will go trough the trees you create. Note that the PhysX engine used by Unity only handles a maximum of 65536

colliders in a scene. If you use more trees then that (minus the other colliders already in the scene), then enabling tree

colliders will fail with an error.

Page last updated: 2012-01-24

terrain-Grass

The Paint Foliage button allows you to paint grass, rocks, or other decorations

around the Terrain. To paint grass, choose Edit Details button->Add Grass Texture. You don't need to create a mesh for

grass, just a texture.

The Add Grass Texture dialog

At this dialog, you can fine-tune the appearance of the grass with the following options:

Detail Texture The texture to be used for the grass.

Min Width Minimum width of each grass section in meters.

Max Width Maximum width of each grass section in meters.

Min Height Minimum height of each grass section in meters.

Max Height Maximum height of each grass section in meters.

Noise Spread The size of noise-generated clusters of grass. Lower numbers mean less noise.

Healthy Color Color of healthy grass, prominent in the center of Noise Spread clusters.

Dry Color Color of dry grass, prominent on the outer edges of Noise Spread clusters.

Grayscale Lighting If enabled, grass textures will not be tinted by any colored light shining on the Terrain.

Lightmap Factor How much the grass will be influenced by the Lightmap.

Billboard If checked, this grass will always rotate to face the main Camera.

After you've clicked the Add button, you'll see the grass appear selectable in the Inspector.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

885 of 1131 12/16/2012 10:12 PM

The added grass appears in the Inspector

Painting Grass
Painting grass works the same as painting textures or trees. Select the grass you want to paint, and paint right onto the Terrain

in the Scene View

Painting grass is easy as pie

Note:When you have a brush selected, move your mouse over the Terrain in the Scene View and press F. This will center the

Scene View over the mouse pointer position and automatically zoom in to the Brush Size distance. This is the quickest &

easiest way to navigate around your Terrain while creating it.

Editing Grass
To change any import parameters for a particular Grass Texture, select it choose Edit Details button->Edit. You can also

double-click it. You will then see the Edit Grass dialog appear, and be able to adjust the parameters described above.

You'll find that changing a few parameters can make a world of difference. Even changing the Max/Min Width and Height

parameters can vastly change the way the grass looks, even with the same number of grass objects painted on the Terrain.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

886 of 1131 12/16/2012 10:12 PM

Grass created with the default parameters

The same number of painted grass objects, now wider and taller
Page last updated: 2011-10-29

terrain-DetailMeshes

Any Terrain decoration that is not trees or grass should be created as a Detail Mesh. This is perfect for things like rocks, 3D

shrubbery, or other static items. To add these, use the Paint Foliage button . Then

choose Edit Details button->Add Detail Mesh. You will see the Add Detail Mesh dialog appear.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

887 of 1131 12/16/2012 10:12 PM

The Add Detail Mesh dialog

Detail The mesh to be used for the detail.

Noise Spread The size of noise-generated clusters of the Detail. Lower numbers mean less noise.

Random Width Limit for the amount of width variance between all detail objects.

Random Height Limit for the amount of height variance between all detail objects.

Healthy Color Color of healthy detail objects, prominent in the center of Noise Spread clusters.

Dry Color Color of dry detail objects, prominent on the outer edges of Noise Spread clusters.

Grayscale Lighting If enabled, detail objects will not be tinted by any colored light shining on the Terrain.

Lightmap Factor How much the detail objects will be influenced by the Lightmap.

Render Mode Select whether this type of detail object will be lit using Grass lighting or normal Vertex lighting. Detail

objects like rocks should use Vertex lighting.

After you've clicked the Add button, you'll see the Detail mesh appear in the Inspector. Detail meshes and grass will appear

next to each other.

The added Detail mesh appears in the Inspector, beside any Grass objects

Painting Detail Meshes
Painting a Detail mesh works the same as painting textures, trees, or grass. Select the Detail you want to paint, and paint right

onto the Terrain in the Scene View.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

888 of 1131 12/16/2012 10:12 PM

Painting Detail meshes is very simple

Note: When you have a brush selected, move your mouse over the Terrain in the Scene View and press F. This will center the

Scene View over the mouse pointer position and automatically zoom in to the Brush Size distance. This is the quickest &

easiest way to navigate around your Terrain while creating it.

Editing Details
To change any import parameters for a Detail Mesh, select it and choose Edit Details button->Edit. You will then see the

Edit Detail Mesh dialog appear, and be able to adjust the parameters described above.

Refreshing Source Assets
If you make any updates to your Detail Mesh asset source file, it must be manually re-imported into the Terrain. To do this, use

Terrain->Refresh Tree and Detail Prototypes. This is done after you've changed your source asset and saved it, and will

refresh the Detail Meshes in your Terrain immediately.

Hints:
The UVs of the detail mesh objects need to be in the 0-1 range because all the separate textures used for all the detail

meshes are packed into a single texture atlas.
Page last updated: 2011-10-29

Terrain Lightmapping

This section will explain how to use the Terrain Engine. It will cover creation, technical details, and other considerations. It is

broken into the following sections:

Using Terrains
This section covers the most basic information about using Terrains. This includes creating Terrains and how to use the new

Terrain tools & brushes.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

889 of 1131 12/16/2012 10:12 PM

Height
This section explains how to use the different tools and brushes that alter the Height of the Terrain.

Terrain Textures
This section explains how to add, paint and blend Terrain Textures using different brushes.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

890 of 1131 12/16/2012 10:12 PM

Trees
This section contains important information for creating your own tree assets. It also covers adding and painting trees on your

Terrain.

Grass
This section explains how grass works, and how to use it.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

891 of 1131 12/16/2012 10:12 PM

Detail Meshes
This section explains practical usage for detail meshes like rocks, haystacks, vegetation, etc.

Lightmaps
You can lightmap terrains just like any other objects using Unity's built-in lightmapper. See Lightmapping Quickstart for help.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

892 of 1131 12/16/2012 10:12 PM

Other Settings
This section covers all the other settings associated with Terrains.

Mobile performance note
Rendering terrain is quite expensive, so terrain engine is not very practical on lower-end mobile devices.

Page last updated: 2012-08-17

terrain-OtherSettings

There are a number of options under the Terrain Settings button in the Terrain

Inspector.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

893 of 1131 12/16/2012 10:12 PM

All additional Terrain Settings

Base Terrain
Pixel Error controls the amount of allowable errors in the display of Terrain Geometry. This is essentially a geometry LOD

setting; the higher the value, the less dense terrain geometry will be.

Base Map Dist.: The distance that Terrain Textures will be displayed in high-resolution. After this distance, a

low-resolution composited texture will be displayed.

Cast Shadows: Should terrain cast shadows?

Material slot allows assigning a custom material for the terrain. The material should be using a shader that is capable of

rendering terrain, for example Nature/Terrain/Diffuse (this shader is used if no material is assigned) or Nature/Terrain

/Bumped Specular.

Tree & Detail Settings
Draw: if enabled, all trees, grass, and detail meshes will be drawn.

Detail Distance distance from the camera that details will stop being displayed.

Tree Distance: distance from the camera that trees will stop being displayed. The higher this is, the further-distance trees

can be seen.

Billboard Start: distance from the camera that trees will start appearing as Billboards instead of Meshes.

Fade Length: total distance delta that trees will use to transition from Billboard orientation to Mesh orientation.

Max Mesh Trees: total number of allowed mesh trees to be capped in the Terrain.

Wind Settings
Speed: the speed that wind blows through grass.

Size: the areas of grass that are affected by wind all at once.

Bending: amount that grass will bend due to wind.

Grass Tint: overall tint amount for all Grass and Detail Meshes.
Page last updated: 2012-11-16

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

894 of 1131 12/16/2012 10:12 PM

class-Tree

The Tree Creator allows you to create and edit trees procedurally. The resulting trees can be used as normal GameObjects

or integrated into the Terrain Engine. With this tool, you can create great looking trees quickly and fine tune your trees using a

number of design tools to achieve the perfect look in your game. The Tree Creator is very useful when you want to create a

forest or a jungle where you need different tree forms.

Building Your First Tree
In this section we walk you step by step to create your first tree in Unity.

Tree Creator Structure
This section provides a general overview of the Tree Creator's user interface.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

895 of 1131 12/16/2012 10:12 PM

Branches
This section focuses on explaining the specific properties of branches.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

896 of 1131 12/16/2012 10:12 PM

Leaves
This section focuses on explaining the specific properties of leaves.

Wind Zones
This section explains Wind Zones and how to apply them to your trees.

Trees in the Terrain Engine
This section of the Terrain Engine Guide covers all the basics of integrating your trees into the Terrain Engine.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

897 of 1131 12/16/2012 10:12 PM

Page last updated: 2011-10-29

tree-FirstTree

We'll now walk you through the creation of your first Tree Creator Tree in Unity. First, make sure you have included the tree

creator package in your project. If you don't, select Assets->Import Package..., navigate to your Unity installation folder, and

open the folder named Standard Packages. Select the Tree Creator.unityPackage package to get the needed assets into your

project.

Adding a new Tree
To create a new Tree asset, select GameObject->Create Other->Tree.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

898 of 1131 12/16/2012 10:12 PM

You'll see a new Tree asset is created in your Project View, and instantiated in the currently open Scene. This new Tree is

very basic with only a single branch, so let's add some character to it.

Adding Branches

A brand new tree in your scene

Select the tree to view the Tree Creator in the Inspector. This interface provides all the tools for shaping and sculpting your

trees. You will see the Tree Hierarchy with two nodes present: the Tree Root node and a single Branch Group node, which

we'll call the trunk of the tree.

In the Tree Hierarchy, select the Branch Group, which acts as the trunk of the tree. Click on the Add Branch Group button

and you'll see a new Branch Group appear connected to the Main Branch. Now you can play with the settings in the Branch

Group Properties to see alterations of the branches attached to the tree trunk.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

899 of 1131 12/16/2012 10:12 PM

Adding branches to the tree trunk.

After creating the branches that are attached to the trunk, we can now add smaller twigs to the newly created branches by

attaching another Branch Group node. Select the secondary Branch Group and click the Add Branch Group button again.

Tweak the values of this group to create more branches that are attached to the secondary branches.

Adding branches to the secondary branches.

Now the tree's branch structure is in place. Our game doesn't take place in the winter time, so we should also add some

Leaves to the different branches, right?

Adding Leaves
We decorate our tree with leaves by adding Leaf Groups, which basically work the same as the Branch groups we've already

used. Select your secondary Branch Group node and then click the Add Leaf Group button. If you're really hardcore, you can

add another leaf group to the tiniest branches on the tree as well.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

900 of 1131 12/16/2012 10:12 PM

Leaves added to the secondary and smallest branches

Right now the leaves are rendered as opaque planes. This is because we want to adjust the leaves' values (size, position,

rotation, etc.) before we add a material to them. Tweak the Leaf values until you find some settings you like.

Adding Materials
In order to make our tree realistic looking, we need to apply Materials for the branches and the leaves. Create a new Material

in your project using ^Assets->Create->Material. Rename it to "My Tree Bark", and choose Nature->Tree Creator Bark^̂

from the Shader drop-down. From here you can assign the Textures provided in the Tree Creator Package to the Base,

Normalmap, and Gloss properties of the Bark Material. We recommend using the texture "BigTree_bark_diffuse" for the Base

and Gloss properties, and "BigTree_bark_normal" for the Normalmap property.

Now we'll follow the same steps for creating a Leaf Material. Create a new Material and assign the shader as Nature->Tree

Creator Leaves. Assign the texture slots with the leaf textures from the Tree Creator Package.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

901 of 1131 12/16/2012 10:12 PM

Material for the Leaves

When both Materials are created, we'll assign them to the different Group Nodes of the Tree. Select your Tree and click any

Branch or Leaf node, then expand the Geometry section of the Branch Group Properties. You will see a Material

assignment slot for the type of node you've selected. Assign the relevant Material you created and view the results.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

902 of 1131 12/16/2012 10:12 PM

Setting the leaves material

To finish off the tree, assign your Materials to all the Branch and Leaf Group nodes in the Tree. Now you're ready to put your

first tree into a game!

Tree with materials on leaves and branches.

Hints.
Creating trees is a trial and error process.

Don't create too many leaves/branches as this can affect the performance of your game.

Check the alpha maps guide for creating custom leaves.
Page last updated: 2011-10-29

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

903 of 1131 12/16/2012 10:12 PM

tree-Structure

The Tree Creator's inspector is split into three different panes: Hierarchy, Editing Tools and Properties.

Hierarchy
The hierarchy view is where you start building your tree. It shows a schematic representation of the tree, where each box is a

group of nodes. By selecting one of the groups in the hierarchy you can modify its properties. You may also add or remove

groups by clicking one of the buttons in the toolbar below the hierarchy.

This hierarchy represents a tree with one trunk, 25 child branches. Child branches have in total 70 fronds attached, 280

leaves and 25 fronds with branches. Node representing the last group is selected. Also the trunk has 25 leaves of one type

and 15 of another type, the last group is hidden.

Tree Stats Status information about your tree, tells you how many vertices, triangles and materials the tree has.

Delete Node Deletes the currently selected group in the Hierarchy or a node or a spline point in the Scene View.

Copy Node Copies the currently selected group.

Add Branch Adds a branch group node to the currently selected group node.

Add Leaf Adds a leaf group node to the currently selected group node.

External

Reload

Recomputes the whole tree, should be used when the source materials have changed or when a mesh used in

Mesh Geometry Mode on leaves has changed.

Nodes in the tree hierarchy represent groups of elements in the tree itself, i.e. branches, leaves or fronds. There are 5 types of

nodes:

Root Node:

This is the starting point of a tree. It determines the global parameters for a tree, such as: quality, seed to diversify the trees,

ambient occlusion and some material properties.

Branch Nodes

First branch group node attached to the root node creates trunk(s). The following branch nodes will create child branches.

Various shape, growth and breaking parameters can be set on this type of node.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

904 of 1131 12/16/2012 10:12 PM

Leaf Node

Leaves can be attached to a root node (e.g. for small bushes) or to branch nodes. Leaves are final nodes, meaning no other

nodes can be attached to them. Various geometry and distribution parameters can be set on this type of a node.

Frond Node

It has a similar behavior as the branch node, with some of the shape properties disabled and frond specific ones added.

Branch + Frond Node

This kind of node is a mixture of a branch and a frond, with properties of both types being accessible.

Node Parameters
Number at the top right of each node represents the number of elements this node created in the tree. The value is related

to the frequency parameter from the Distribution tab.

A node can be visible () or invisible ().

If a node was edited manually (branch splines or leaves were manipulated in the Scene View) a warning sign will appear

over the node (). In such a case some procedural properties will be disabled.

Editing Tools

While the Tree Creator works with procedural elements, you can decide at any time to modify them by hand to achieve the

exact positioning and shape of elements you want.

Once you have edited a group by hand, certain procedural properties will no longer be available. You can, however, always

revert it to a procedural group by clicking the button displayed in the Branch/Leaf Group Properties.

Move Select a node or a spline point in the Scene View. Dragging the node allows you to move it along and around

its parent. Spline points can be moved using the normal move handles.

Rotate Select a node or a spline point in the Scene View. Both will show the normal rotation handles.

Free Hand

Drawing

Click on a spline point and drag the mouse to draw a new shape. Release the mouse to complete the drawing.

Drawing always happens on a plane perpendicular to the viewing direction.

Global Tree Properties

Every tree has a root node which contains the global properties. This is the least complex group type, but it contains some

important properties that control the rendering and generation of the entire tree.

Distribution
Allows for diversifying trees by changing the Tree Seed and making groups of trees by adjusting the Area Spread when the

frequency on the branch node connected to the root node is higher than 1.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

905 of 1131 12/16/2012 10:12 PM

Tree Seed The global seed that affects the entire tree. Use it to randomize your tree, while keeping the general structure

of it.

Area Spread Adjusts the spread of trunk nodes. Has an effect only if you have more than one trunk.

Ground

Offset

Adjusts the offset of trunk nodes on Y axis.

Geometry
Allows to set the overall quality of the tree geometry and to control ambient occlusion.

LOD

Quality

Defines the level-of-detail for the entire tree. A low value will make the tree less complex, a high value will make

the tree more complex. Check the statistics in the hierarchy view to see the current complexity of the mesh.

Depending on the type of the tree and your target platform, you may need to adjust this property to make the tree

fit within your polygon budget. With careful creation of art assets you can produce good looking trees with

relatively few polygons.

Ambient

Occlusion

Toggles ambient occlusion on or off. While modifying tree properties ambient occlusion is always hidden and

won't be recomputed until you finish your changes, e.g. let go a slider. Ambient occlusion can greatly improve the

visual quality of your tree, but its computation takes time, so you may want to disable it until you are happy with

the shape of your tree.

AO Density Adjusts the density of ambient occlusion. The higher the value the darker the effect.

Material
Controls the global material properties of the tree.

Translucency is one of the effects you can control in the Material properties. That property has an effect on leaves, which are

translucent meaning that they permit the light to pass through them, but they diffuse it on the way.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

906 of 1131 12/16/2012 10:12 PM

Translucency

Color

The color that will be multiplied in when the leaves are backlit.

Translucency

View

Dependency

Fully view dependent translucency is relative to the angle between the view direction and the light

direction. View independent is relative to the angle between the leaf's normal vector and the light direction.

Alpha Cutoff Alpha values from the base texture smaller than the alpha cutoff are clipped creating a cutout.

Shadow Strength Makes the shadows on the leaves less harsh. Note: Since it scales all the shadowing that the leaves

receive, it should be used with care for trees that are e.g. in a shadow of a mountain.

Shadow Offset Scales the values from the Shadow Offset texture set in the source material. It is used to offset the position

of the leaves when collecting the shadows, so that the leaves appear as if they were not placed on one

quad. It's especially important for billboarded leaves and they should have brighter values in the center of

the texture and darker ones at the border. Start out with a black texture and add different shades of gray

per leaf.

Shadow Caster

Resolution

Defines the resolution of the texture atlas containing alpha values from source diffuse textures. The atlas is

used when the leaves are rendered as shadow casters. Using lower resolution might increase

performance.

Branches

This section focuses on explaining the specific Branch Group Properties.

Leaves

This section focuses on explaining the specific Leaf Group Properties.

Page last updated: 2011-10-29

tree-Branches

Branch groups node is responsible for generating branches and fronds. Its properties appear when you have selected a

branch, frond or branch + frond node.

Distribution
Adjusts the count and placement of branches in the group. Use the curves to fine tune position, rotation and scale. The curves

are relative to the parent branch or to the area spread in case of a trunk.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

907 of 1131 12/16/2012 10:12 PM

Group Seed The seed for this group of branches. Modify to vary procedural generation.

Frequency Adjusts the number of branches created for each parent branch.

Distribution The way the branches are distributed along their parent.

Twirl Defines how many nodes are in each whorled step when using Whorled distribution. For real plants this is

normally a Fibonacci number.

Growth

Scale

Defines the scale of nodes along the parent node. Use the curve to adjust and the slider to fade the effect in

and out.

Growth

Angle

Defines the initial angle of growth relative to the parent. Use the curve to adjust and the slider to fade the effect

in and out.

Geometry
Select what type of geometry is generated for this branch group and which materials are applied. LOD Multiplier allows you to

adjust the quality of this group relative to tree's LOD Quality.

LOD Multiplier Adjusts the quality of this group relative to tree's LOD Quality, so that it is of either higher or lower quality than

the rest of the tree.

Geometry

Mode

Type of geometry for this branch group: Branch Only, Branch + Fronds, Fronds Only.

Branch

Material

The primary material for the branches.

Break Material Material for capping broken branches.

Frond Material Material for the fronds.

Shape
Adjusts the shape and growth of the branches. Use the curves to fine tune the shape, all curves are relative to the branch

itself.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

908 of 1131 12/16/2012 10:12 PM

Length Adjusts the length of the branches.

Relative Length Determines whether the radius of a branch is affected by its length.

Radius Adjusts the radius of the branches, use the curve to fine-tune the radius along the length of the branches.

Cap Smoothing Defines the roundness of the cap/tip of the branches. Useful for cacti.

Growth Adjusts the growth of the branches.
Crinkliness Adjusts how crinkly/crooked the branches are, use the curve to fine-tune.

Seek Sun Use the curve to adjust how the branches are bent upwards/downwards and the slider to change the scale.

Surface
Noise

Adjusts the surface noise of the branches.

Noise Overall noise factor, use the curve to fine-tune.

Noise Scale U Scale of the noise around the branch, lower values will give a more wobbly look, while higher values gives

a more stochastic look.

Noise Scale V Scale of the noise along the branch, lower values will give a more wobbly look, while higher values gives a

more stochastic look.

Flare Defines a flare for the trunk.
Flare Radius The radius of the flares, this is added to the main radius, so a zero value means no flares.

Flare Height Defines how far up the trunk the flares start.

Flare Noise Defines the noise of the flares, lower values will give a more wobbly look, while higher values gives a more

stochastic look.

These properties are for child branches only, not trunks.

Welding Defines the welding of branches onto their parent branch. Only valid for secondary
branches.

Weld Length Defines how far up the branch the weld spread starts.

Spread Top Weld's spread factor on the top-side of the branch, relative to it's parent branch. Zero means no spread.

Spread

Bottom

Weld's spread factor on the bottom-side of the branch, relative to it's parent branch. Zero means no spread.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

909 of 1131 12/16/2012 10:12 PM

Breaking
Controls the breaking of branches.

Break

Chance

Chance of a branch breaking, i.e. 0 = no branches are broken, 0.5 = half of the branches are broken, 1.0 = all

the branches are broken.

Break

Location

This range defines where the branches will be broken. Relative to the length of the branch.

Fronds
Here you can adjust the number of fronds and their properties. This tab is only available if you have Frond geometry enabled

in the Geometry tab.

Frond Count Defines the number of fronds per branch. Fronds are always evenly spaced around the branch.

Frond Width The width of the fronds, use the curve to adjust the specific shape along the length of the branch.

Frond Range Defines the starting and ending point of the fronds.

Frond Rotation Defines rotation around the parent branch.

Frond Crease Adjust to crease / fold the fronds.

Animation
Adjusts the parameters used for animating this group of branches. The wind zones are only active in Play Mode.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

910 of 1131 12/16/2012 10:12 PM

Main Wind Primary wind effect. This creates a soft swaying motion and is typically the only parameter needed for primary

branches.

Main

Turbulence

Secondary turbulence effect. Produces more stochastic motion, which is individual per branch. Typically used

for branches with fronds, such as ferns and palms.

Edge

Turbulence

Turbulence along the edge of fronds. Useful for ferns, palms, etc.

Create Wind

Zone

Creates a Wind Zone.

Page last updated: 2011-10-29

tree-Leaves

Leaf groups generate leaf geometry. Either from primitives or from user created meshes.

Distribution
Adjusts the count and placement of leaves in the group. Use the curves to fine tune position, rotation and scale. The curves

are relative to the parent branch.

Group Seed The seed for this group of leaves. Modify to vary procedural generation.

Frequency Adjusts the number of leaves created for each parent branch.

Distribution Select the way the leaves are distributed along their parent.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

911 of 1131 12/16/2012 10:12 PM

Twirl Twirl around the parent branch.

Whorled

Step

Defines how many nodes are in each whorled step when using Whorled distribution. For real plants this is

normally a Fibonacci number.

Growth

Scale

Defines the scale of nodes along the parent node. Use the curve to adjust and the slider to fade the effect in

and out.

Growth

Angle

Defines the initial angle of growth relative to the parent. Use the curve to adjust and the slider to fade the effect

in and out.

Geometry
Select what type of geometry is generated for this leaf group and which materials are applied. If you use a custom mesh, its

materials will be used.

Geometry

Mode

The type of geometry created. You can use a custom mesh, by selecting the Mesh option, ideal for flowers,

fruits, etc.

Material Material used for the leaves.

Mesh Mesh used for the leaves.

Shape
Adjusts the shape and growth of the leaves.

Size Adjusts the size of the leaves, use the range to adjust the minimum and the maximum size.

Perpendicular Align Adjusts whether the leaves are aligned perpendicular to the parent branch.

Horizontal Align Adjusts whether the leaves are aligned horizontally.

Animation
Adjusts the parameters used for animating this group of leaves. Wind zones are only active in Play Mode. If you select too high

values for Main Wind and Main Turbulence the leaves may float away from the branches.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

912 of 1131 12/16/2012 10:12 PM

Main Wind Primary wind effect. Usually this should be kept as a low value to avoid leaves floating away from the parent

branch.

Main TurbulenceSecondary turbulence effect. For leaves this should usually be kept as a low value.

Edge

Turbulence

Defines how much wind turbulence occurs along the edges of the leaves.

Page last updated: 2011-10-29

class-WindZone

Wind Zones add realism to the trees you create by making them wave their branches and leaves as if blown by the wind.

To the left a Spherical Wind Zone, to the right a Directional Wind zone.

Properties
Mode

Spherical Wind zone only has an effect inside the radius, and has a falloff from the center towards the edge.

Directional Wind zone affects the entire scene in one direction.

Radius Radius of the Spherical Wind Zone (only active if the mode is set to Spherical).

Wind Main The primary wind force. Produces a softly changing wind pressure.

Turbulence The turbulence wind force. Produces a rapidly changing wind pressure.

Pulse Magnitude Defines how much the wind changes over time.

Pulse Frequency Defines the frequency of the wind changes.

Details
Wind Zones are used only by the tree creator for animating leaves and branches. This can help your scenes appear more

natural and allows forces (such as explosions) within the game to look like they are interacting with the trees. For more

information about how a tree works, just visit the tree class page.

Using Wind Zones in Unity.
Using Wind Zones in Unity is really simple.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

913 of 1131 12/16/2012 10:12 PM

First of all, to create a new wind zone just click on Game Object -> Create Other -> Wind Zone.

Place the wind zone (depending on the type) near the trees created with the tree creator and watch it interact with your trees!.

Note: If the wind zone is Spherical you should place it so that the trees you want to blow are within the sphere's radius. If the

wind zone is directional it doesn't matter where in the scene you place it.

Hints
To produce a softly changing general wind:

Create a directional wind zone.

Set Wind Main to 1.0 or less, depending on how powerful the wind should be.

Set Turbulence to 0.1.

Set Pulse Magnitude to 1.0 or more.

Set Pulse Frequency to 0.25.

To create the effect of a helicopter passing by:

Create a spherical wind zone.

Set Radius to something that fits the size of your helicopter

Set Wind Main to 3.0

Set Turbulence to 5.0

Set Pulse Magnitude to 0.1

Set Pulse Frequency to 1.0

Attach the wind zone to a GameObject resembling your helicopter.

To create the effect of an explosion:

Do the same as with the helicopter, but fade the Wind Main and Turbulence quickly to make the effect wear off.
Page last updated: 2011-10-29

AnimationEditorGuide

The Animation View in Unity allows you to create and modify Animation Clips directly inside Unity. It is designed to act as a

powerful and straightforward alternative to external 3D animation programs. In addition to animating movement, the editor also

allows you to animate variables of materials and components and augment your Animation Clips with Animation Events,

functions that are called at specified points along the timeline.

See the pages about Animation import and Animation Scripting for further information about these subject.

The Animation View Guide is broken up into several pages that each focus on different areas of the View:-

Using the Animation View

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

914 of 1131 12/16/2012 10:12 PM

This section covers the basic operations of the Animation View, such as creating and editing Animations Clips.

Using Animation Curves

This section explains how to create Animation Curves, add and move keyframes and set WrapModes. It also offers tips for

using Animation Curves to their full advantage.

Editing Curves

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

915 of 1131 12/16/2012 10:12 PM

This section explains how to navigate efficienlty in the editor, create and move keys, and edit tangents and tangent types.

Objects with Multiple Moving Parts

This section explains how to animate Game Objects with multiple moving parts and how to handle cases where there is more

than one Animation Component that can control the selected Game Object.

Using Animation Events

This section explains how to add Animation Events to an Animation Clip. Animation Events allow you call a script function

at specified points in the animation's timeline.

Page last updated: 2012-12-04

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

916 of 1131 12/16/2012 10:12 PM

animeditor-UsingAnimationEditor

The Animation View can be used to preview and edit Animation Clips for animated Game Objects in Unity. The

Animation View can be opened from the Window->Animation menu.

Viewing Animations on a GameObject
The Animation View is tightly integrated with the Hierarchy View, the Scene View, and the Inspector. Like the Inspector,

the Animation View will show whatever Game Object is selected. You can select a Game Object to view using the Hierarchy

View or the Scene View. (If you select a Prefab in the Project View you can inspect its animation curves as well, but you

have to drag the Prefab into the Scene View in order to be able to edit the curves.)

The Animation View shows the Game Object selected in the Hierarchy View.

At the left side of the Animation View is a hierarchical list of the animatable properties of the selected Game Object. The list

is ordered by the Components and Materials attached to the Game Object, just like in the Inspector. Components and

Materials can be folded and unfolded by clicking the small triangles next to them. If the selected Game Object has any child

Game Objects, these will be shown after all of the Components and Materials.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

917 of 1131 12/16/2012 10:12 PM

The property list to the left in the Animation View shows the Components and Materials of the selected Game Object, just

like the Inspector.

Creating a New Animation Clip
Animated Game Objects in Unity need an Animation Component that controls the animations. If a Game Object doesn't

already have an Animation Component, the Animation View can add one for you automatically when creating a new

Animation Clip or when entering Animation Mode.

To create a new Animation Clip for the selected Game Object, click the right of the two selection boxes at the upper right of

the Animation View and select [Create New Clip]. You will then be prompted to save an Animation Clip somewhere in your

Assets folder. If the Game Object doesn't have an Animation Component already, it will be automatically added at this point.

The new Animation Clip will automatically be added to the list of Animations in the Animation Component.

Create a new Animation Clip.

In the Animation View you can always see which Game Object you are animating and which Animation Clip you are

editing. There are two selection boxes in the upper left of the Animation View. The left selection box shows the Game Object

with the Animation Component attached, and the right selection box shows the Animation Clip you are editing.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

918 of 1131 12/16/2012 10:12 PM

The left selection box shows the Game Object with the Animation Component attached, and the right selection box shows

the Animation Clip you are editing.

Animating a Game Object
To begin editing an Animation Clip for the selected Game Object, click on the Animation Mode button.

 Click the Animation Mode button to enter Animation Mode.

This will enter Animation Mode, where changes to the Game Object are stored into the Animation Clip. (If the Game Object

doesn't have an Animation Component already, it will be automatically added at this point. If there is not an existing

Animation Clip, you will be prompted to save one somewhere in your Assets folder.)

You can stop the Animation Mode at any time by clicking the Animation Mode button again. This will revert the Game

Object to the state it was in prior to entering the Animation Mode.

You can animate any of the properties shown in the property list of the Animation View. To animate a property, click on the

Key Indicator for that property and choose Add Curve from the menu. You can also select multiple properties and right click

on the selection to add curves for all the selected properties at once. (Transform properties are special in that the .x, .y, and

.z properties are linked, so that curves are added three at a time.)

Any property can be animated by clicking on its Key Indicator or by right clicking on its name. For Transform properties,

curves for .x, .y, and .z are added together.

When in Animation Mode, a red vertical line will show which frame of the Animation Clip is currently previewed. The

Inspector and Scene View will show the Game Object at that frame of the Animation Clip. The values of the animated

properties at that frame are also shown in a column to the right of the property names.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

919 of 1131 12/16/2012 10:12 PM

In Animation Mode a red vertical line shows the currently previewed frame. The animated values at that frame are

previewed in the Inspector and Scene View and to the right of the property names in the Animation View.

You can click anywhere on the Time Line to preview or modify that frame in the Animation Clip. The numbers in the Time

Line are shown as seconds and frames, so 1:30 means 1 second and 30 frames.

 Click in the Time Line to preview a given frame.

 You can go directly to a specific frame by typing it in, or use the buttons to go to the previous or next

keyframe.

You can also use the following keyboard shortcuts to navigate between frames:

Press Comma (,) to go to the previous frame.

Press Period (.) to go to the next frame.

Hold Alt and press Comma (,) to go to the previous keyframe.

Hold Alt and press Period (.) to go to the next keyframe.

In Animation Mode you can move, rotate, or scale the Game Object in the Scene View. This will automatically create

Animation Curves for the position, rotation, and scale properties of the Animation Clip if they didn't already exist, and keys

on those Animation Curves will automatically be created at the currently previewed frame to store the respective Transform

values you changed.

You can also use the Inspector to modify any of the animatable properties of the Game Object. This too will create

Animation Curves as needed, and create keys on those Animation Curves at the currently previewed frame to store your

changed values. Properties that are not animatable are grayed out in the Inspector while in Animation Mode.

 The Keyframe button creates a keyframe for the shown curves at the currently previewed frame (shortcut: K).

You can also manually create a keyframe using the Keyframe button. This will create a key for all the curves that are

currently shown in the Animation View. If you want to only show curves for a subset of the properties in the property list, you

can select those properties. This is useful for selectively adding keys to specific properties only.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

920 of 1131 12/16/2012 10:12 PM

When selecting a property in the property list, only the curve for that property is shown.

Playback
The Animation Clip can be played back at anytime by clicking the Play button in the Animation View.

 Click the Play button to play back the Animation Clip.

The playback will loop within the time range that is shown in the Time Line. This makes it possible to focus on refining a small

part of the Animation Clip that is being worked on, without having to play back the entire length of the clip. To play back the

whole length of the Animation Clip, zoom out to view the entire time range, or press F to Frame Select with no keys selected.

To learn more about navigating the Curve View, see the section on Editing Animation Curves.

Page last updated: 2012-09-05

animeditor-AnimationCurves

The Property List
In an Animation Clip, any animatable property can have an Animation Curve, which means that the Animation Clip controls

that property. In the property list of the Animation View properties with Animation Curves have colored curve indicators. For

information on how to add curves to an animation property, see the section on Using the Animation View.

A Game Object can have quite a few components and the property list in the Animation View can get very long. To show

only the properties that have Animation Curves, click the lower left button in the Animation View to set its state to Show:

Animated.

Set the toggle button in the lower left corner to Show: Animated to hide all the properties without Animation Curves from

the property list.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

921 of 1131 12/16/2012 10:12 PM

Understanding Curves, Keys and Keyframes
An Animation Curve has multiple keys which are control points that the curve passes through. These are visualized in the

Curve Editor as small diamond shapes on the curves. A frame in which one or more of the shown curves have a key is called

a keyframe. The keyframes are shown as white diamonds in the Keyframe Line.

If a property has a key in the currently previewed frame, the curve indicator will have a diamond shape.

The Rotation.y property has a key at the currently previewed frame. The Keyframe Line marks the keyframes for all shown

curves.

The Keyframe Line only shows keyframes for the curves that are shown. If a property is selected in the property list, only that

property is shown, and the Keyframe Line will not mark the keys of the curves that are not shown.

When a property is selected, other properties are not shown and the keys of their curves are not shown in the Keyframe

Line.

Adding and Moving Keyframes

The Keyframe Line shows the keyframes of the currently shown curves. You can add a keyframe by double-clicking the

Keyframe Line or by using the Keyframe button.

A keyframe can be added at the currently previewed frame by clicking the Keyframe button or at any given frame by

double-clicking the Keyframe Line at the frame where the keyframe should be. This will add a key to all the shown curves

at once. It is also possible to add a keyframe by right-clicking the Keyframe Line and select Add Keyframe from the

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

922 of 1131 12/16/2012 10:12 PM

context menu. Once placed, keyframes can be dragged around with the mouse. It is also possible to select multiple

keyframes to drag at once. Keyframes can be deleted by selecting them and pressing Delete, or by right-clicking on them

and selecting Delete Keyframe from the context menu.

Wrap Mode
An Animation Clip in Unity can have various Wrap Modes that can for example set the Animation Clip to loop. See

WrapMode in the Scripting Reference to learn more. The Wrap Mode of an Animation Clip can be set in the Animation View

in the lower right selection box. The Curve View will preview the selected Wrap Mode as white lines outside of the time

range of the Animation Clip.

Setting the Wrap Mode of an Animation Clip will preview that Wrap Mode in the Curve View.

Supported Animatable Properties
The Animation View can be used to animate much more than just the position, rotation, and scale of a Game Object. The

properties of any Component and Material can be animated - even the public variables of your own scripts components.

Making animations with complex visual effects and behaviors is only a matter of adding Animation Curves for the relevant

properties.

The following types of properties are supported in the animation system:

Float

Color

Vector2

Vector3

Vector4

Quaternion

Arrays are not supported and neither are structs or objects other than the ones listed above.

Booleans in script components are not supported by the animation system, but booleans in certain built-in components are.

For those booleans, a value of 0 equals False while any other value equals True.

Here are a few examples of the many things the Animation View can be used for:

Animate the Color and Intensity of a Light to make it blink, flicker, or pulsate.

Animate the Pitch and Volume of a looping Audio Source to bring life to blowing wind, running engines, or flowing water

while keeping the sizes of the sound assets to a minimum.

Animate the Texture Offset of a Material to simulate moving belts or tracks, flowing water, or special effects.

Animate the Emit state and Velocities of multiple Ellipsoid Particle Emitters to create spectacular fireworks or fountain

displays.

Animate variables of your own script components to make things behave differently over time.

When using Animation Curves to control game logic, please be aware of the way animations are played back and sampled in

Unity.

Rotation Interpolation Types

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

923 of 1131 12/16/2012 10:12 PM

In Unity rotations are internally represented as Quaternions. Quaternions consist of .x, .y, .z, and .w values that should

generally not be modified manually except by people who know exactly what they're doing. Instead, rotations are typically

manipulated using Euler Angles which have .x, .y, and .z values representing the rotations around those three respective

axes.

When interpolating between two rotations, the interpolation can either be performed on the Quaternion values or on the Euler

Angles values. The Animation View lets you choose which form of interpolation to use when animating Transform rotations.

However, the rotations are always shown in the form of Euler Angles values no matter which interpolation form is used.

Transform rotations can use Euler Angles interpolation or Quaternion interpolation.

Quaternion Interpolation

Quaternion interpolation always generates nice interpolations along the shortest path between two rotations. This avoids

rotation interpolation artifacts such as Gimbal Lock. However, Quaternion interpolation cannot represent rotations larger than

180 degrees, because it is then shorter to go the other way around. If you use Quaternion interpolation and place two keys

further apart than 180 degrees, the curve will look discontinuous, even though the actual rotation is still smooth - it simply goes

the other way around, because it is shorter. If rotations larger than 180 degrees are desired, additional keys must be placed in

between. When using Quaternion interpolation, changing the keys or tangents of one curve may also change the shapes of

the other two curves, since all three curves are created from the internal Quaternion representation. When using Quaternion

interpolation, keys are always linked, so that creating a key at a specific time for one of the three curves will also create a key

at that time for the other two curves.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

924 of 1131 12/16/2012 10:12 PM

Placing two keys 270 degrees apart when using Quaternion interpolation will cause the interpolated value to go the other

way around, which is only 90 degrees.

Euler Angles Interpolation

Euler Angles interpolation is what most people are used to working with. Euler Angles can represent arbitrary large rotations

and the .x, .y, and .z curves are independent from each other. Euler Angles interpolation can be subject to artifacts such as

Gimbal Lock when rotating around multiple axes at the same time, but are intuitive to work with for simple rotations around one

axis at a time. When Euler Angles interpolation is used, Unity internally bakes the curves into the Quaternion representation

used internally. This is similar to what happens when importing animation into Unity from external programs. Note that this

curve baking may add extra keys in the process and that tangents with the Constant tangent type may not be completely

precise at a sub-frame level.

Page last updated: 2012-12-04

EditingCurves

Curves can be used for many different things and there are several different controls in Unity that use curves that can be

edited.

The Animation View uses curves to animate properties over time in an Animation Clip.

The Animation View.

Script components can have member variables of type AnimationCurve that can be used for all kinds of things. Clicking on

those in the Inspector will open up the Curve Editor.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

925 of 1131 12/16/2012 10:12 PM

The Curve Editor.

The Audio Source component uses curves to control rolloff and other properties as a function of distance to the Audio

Source.

Distance function curves in the AudioSource component in the Inspector.

While these controls have subtle differences, the curves can be edited in the exact same way in all of them. This page

explains how to navigate and edit curves in those controls.

Adding and Moving Keys on a Curve
A key can be added to a curve by double-clicking on the curve at the point where the key should be placed. It is also possible

to add a key by right-clicking on a curve and select Add Key from the context menu.

Once placed, keys can be dragged around with the mouse:

Click on a key to select it. Drag the selected key with the mouse.

To snap the key to the grid while dragging it around, hold down Command on Mac / Control on Windows while dragging.

It is also possible to select multiple keys at once:

To select multiple keys at once, hold down Shift while clicking the keys.

To deselect a selected key, click on it again while holding down Shift.

To select all keys within a rectangular area, click on an empty spot and drag to form the rectangle selection.

The rectangle selection can also be added to existing selected keys by holding down Shift.

Keys can be deleted by selecting them and pressing Delete, or by right-clicking on them and selecting Delete Key from the

context menu.

Navigating the Curve View

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

926 of 1131 12/16/2012 10:12 PM

When working with the Animation View you can easily zoom in on details of the curves you want to work with or zoom out to

get the full picture.

You can always press F to frame-select the shown curves or selected keys in their entirely.

Zooming

You can zoom the Curve View using the scroll-wheel of your mouse, the zoom functionality of your trackpad, or by holding Alt

while right-dragging with your mouse.

You can zoom on only the horizontal or vertical axis:

zoom while holding down Command on Mac / Control on Windows to zoom horizontally.

zoom while holding down Shift to zoom vertically.

Furthermore, you can drag the end caps of the scrollbars to shrink or expand the area shown in the Curve View.

Panning

You can pan the Curve View by middle-dragging with your mouse or by holding Alt while left-dragging with your mouse.

Editing Tangents
A key has two tangents - one on the left for the ingoing slope and one on the right for the outgoing slope. The tangents

control the shape of the curve between the keys. The Animation View have multiple tangent types that can be used to easily

control the curve shape. The tangent types for a key can be chosen by right-clicking the key.

Right-click a key to select the tangent type for that key.

In order for animated values to change smoothly when passing a key, the left and right tangent must be co-linear. The

following tangent types ensure smoothness:

Auto: The tangents are automatically set so make the curve go smoothly through the key.

Free Smooth: The tangents can be freely set by dragging the tangent handles. They are locked to be co-linear to ensure

smoothness.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

927 of 1131 12/16/2012 10:12 PM

Flat: The tangents are set to be horizontal. (This is a special case of Free Smooth.)

Sometimes smoothness is not desired. The left and right tangent can be set individually when the tangents are Broken. The

left and right tangent can each be set to one of the following tangent types:

Free: The tangent can be freely set by dragging the tangent handle.

Linear: The tangent points towards the neighboring key. A linear curve segment can be made by setting the tangents at

both ends to be Linear.

Constant: The curve retains a constant value between two keys. The value of the left key determines the value of the

curve segment.

Page last updated: 2012-12-04

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

928 of 1131 12/16/2012 10:12 PM

animeditor-MultipleParts

You may want to animate Game Objects that have multiple moving parts, such as a gun turret with a moving barrel, or a

character with many body parts. All the parts can be animated by a single Animation component on the parent, although it is

useful to have additional Animation components on the children in some cases.

Animating Child Game Objects
The Game Object hierarchy is shown in the panel to the left of the Animation View.

You can access the children of a Game Object by using the foldout triangle next to the object's name. The properties of child

objects can be animated just like those of the parent.

Child Game Objects can be folded out in the Animation View.

Alternatively you can select just the child Game Object you want to animate from the Hierarchy panel or the scene view. When

you do this, only the child object is shown in the property list, although the animation data is still handled by the Animation

component on the parent.

The child Game Objects selected in the Hierarchy View are shown in the Animation View.

Handling Multiple Animation Components
If both a parent object and one of its children both have an Animation component then either component can animate the child

object. The property list can be used to select which one you want to use.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

929 of 1131 12/16/2012 10:12 PM

Select the Animation component you want to edit from the property list

As an example, you may have a multiple characters (a hero and sidekick, say) that each have their own Animation component.

You could have another Game Object in the same scene whose Animation component is used for controlling cutscenes. The

cutscene might involve both the hero and sidekick characters walking around, which could be achieved by animating their

positions from the cutscene controller. However, both characters would need to be children of the cutscene object to be

controlled by its Animation component.

Page last updated: 2011-11-16

animeditor-AnimationEvents

The power of animation clips can be increased by using Animation Events, which allow you to call functions in the object's

script at specified points in the timeline.

The function called by an animation event can optionally take one parameter. The parameter can be a float, string, int, object

reference or an AnimationEvent object. The AnimationEvent object has member variables that allow a float, string, integer and

object reference to be passed into the function all at once, along with other information about the event that triggered the

function call.

// This JavaScript function can be called by an Animation Event
function PrintFloat (theValue : float) {

Debug.Log ("PrintFloat is called with a value of " + theValue);
}

You can add an animation event to a clip at the current playhead position by clicking the Event button or at any point in the

animation by double-clicking the Event Line at the point where you want the event to be triggered. Once added, an event can

be repositioned by dragging with the mouse. You can delete an event by selecting it and pressing Delete, or by right-clicking

on it and selecting Delete Event from the contextual menu.

Animation Events are shown in the Event Line. Add a new Animation Event by double-clicking the Event Line or by using

the Event button.

When you add an event, a dialog box will appear to prompt you for the name of the function and the value of the parameter

you want to pass to it.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

930 of 1131 12/16/2012 10:12 PM

The Animation Event popup dialog lets you specify which function to call with which parameter value.

The events added to a clip are shown as markers in the event line. Holding the mouse over a marker will show a tooltip with

the function name and parameter value.

Holding the mouse cursor over an Animation Event marker will show which function it calls as well as the parameter value.
Page last updated: 2011-11-16

GUI Scripting Guide

Overview
UnityGUI allows you to create a wide variety of highly functional GUIs very quickly and easily. Rather than creating a GUI

object, manually positioning it, and then writing a script that handles its functionality, you can do everything at once with just a

few lines of code. The code produces GUI controls that are instantiated, positioned and handled with a single function call.

For example, the following code will create and handle a button with no additional work in the editor or elsewhere:-

// JavaScript
function OnGUI () {

if (GUI.Button (Rect (10,10,150,100), "I am a button")) {
print ("You clicked the button!");

}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

931 of 1131 12/16/2012 10:12 PM

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

void OnGUI () {
if (GUI.Button (new Rect (10,10,150,100), "I am a button")) {

print ("You clicked the button!");
}

}
}

This is the button created by the code above

Although this example is very simple, there are very powerful and complex techniques available for use in UnityGUI. GUI

construction is a broad subject but the following sections should help you get up to speed as quickly as possible. This guide

can be read straight through or used as reference material.

UnityGUI Basics
This section covers the fundamental concepts of UnityGUI, giving you an overview as well as a set of working examples you

can paste into your own code. UnityGUI is very friendly to play with, so this is a good place to get started.

Controls
This section lists every available Control in UnityGUI, along with code samples and images showing the results.

Customization
It is important to be able to change the appearance of the GUI to match the look of your game. All controls in UnityGUI can be

customized with GUIStyles and GUISkins, as explained in this section.

Layout Modes
UnityGUI offers two ways to arrange your GUIs: you can manually place each control on the screen, or you can use an

automatic layout system which works in a similar way to HTML tables. Either system can be used as desired and the two can

be freely mixed. This section explains the functional differences between the two systems, including examples.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

932 of 1131 12/16/2012 10:12 PM

Extending UnityGUI
UnityGUI is very easy to extend with new Control types. This chapter shows you how to make simple compound controls -

complete with integration into Unity's event system.

Extending Unity Editor
The GUI of the Unity editor is actually written using UnityGUI. Consequently, the editor is highly extensible using the same type

of code you would use for in-game GUI. In addition, there are a number of Editor-specific GUI controls to help you create

custom editor GUI.

Page last updated: 2012-01-17

gui-Basics

This section will explain the bare necessities for scripting Controls with UnityGUI.

Making Controls with UnityGUI
UnityGUI controls make use of a special function called OnGUI(). The OnGUI() function gets called every frame as long as the

containing script is enabled - just like the Update() function.

GUI controls themselves are very simple in structure. This structure is evident in the following example.

/* Example level loader */

// JavaScript
function OnGUI () {

// Make a background box
GUI.Box (Rect (10,10,100,90), "Loader Menu");

// Make the first button. If it is pressed, Application.Loadlevel (1) will be executed
if (GUI.Button (Rect (20,40,80,20), "Level 1")) {

Application.LoadLevel (1);
}

// Make the second button.
if (GUI.Button (Rect (20,70,80,20), "Level 2")) {

Application.LoadLevel (2);
}

}

//C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

void OnGUI () {
// Make a background box
GUI.Box(new Rect(10,10,100,90), "Loader Menu");

// Make the first button. If it is pressed, Application.Loadlevel (1) will be executed
if(GUI.Button(new Rect(20,40,80,20), "Level 1")) {

Application.LoadLevel(1);
}

// Make the second button.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

933 of 1131 12/16/2012 10:12 PM

if(GUI.Button(new Rect(20,70,80,20), "Level 2")) {
Application.LoadLevel(2);

}
}

}

This example is a complete, functional level loader. If you copy/paste this script and attach it a GameObject, you'll see the

following menu appear in when you enter Play Mode:

The Loader Menu created by the example code

Let's take a look at the details of the example code:

The first GUI line, GUI.Box (Rect (10,10,100,90), "Loader Menu"); displays a Box Control with the header text "Loader

Menu". It follows the typical GUI Control declaration scheme which we'll explore momentarily.

The next GUI line is a Button Control declaration. Notice that it is slightly different from the Box Control declaration.

Specifically, the entire Button declaration is placed inside an if statement. When the game is running and the Button is clicked,

this if statement returns true and any code inside the if block is executed.

Since the OnGUI() code gets called every frame, you don't need to explicitly create or destroy GUI controls. The line that

declares the Control is the same one that creates it. If you need to display Controls at specific times, you can use any kind of

scripting logic to do so.

/* Flashing button example */

// JavaScript
function OnGUI () {

if (Time.time % 2 < 1) {
if (GUI.Button (Rect (10,10,200,20), "Meet the flashing button")) {

print ("You clicked me!");
}

}
}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

934 of 1131 12/16/2012 10:12 PM

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

void OnGUI () {
if (Time.time % 2 < 1) {

if (GUI.Button (new Rect (10,10,200,20), "Meet the flashing button")) {
print ("You clicked me!");

}
}

}
}

Here, GUI.Button() only gets called every other second, so the button will appear and disappear. Naturally, the user can only

click it when the button is visible.

As you can see, you can use any desired logic to control when GUI Controls are displayed and functional. Now we will explore

the details of each Control's declaration.

Anatomy of a Control
There are three key pieces of information required when declaring a GUI Control:

Type (Position, Content)

Observe that this structure is a function with two arguments. We'll explore the details of this structure now.

Type

Type is the Control Type, and is declared by calling a function in Unity's GUI class or the GUILayout class, which is

discussed at length in the Layout Modes section of the Guide. For example, GUI.Label() will create a non-interactive label. All

the different control types are explained later, in the Controls section of the Guide.

Position

The Position is the first argument in any GUI Control function. The argument itself is provided with a Rect() function. Rect()

defines four properties: left-most position, top-most position, total width, total height. All of these values are provided in

integers, which correspond to pixel values. All UnityGUI controls work in Screen Space, which is the resolution of the

published player in pixels.

The coordinate system is top-left based. Rect(10, 20, 300, 100) defines a Rectangle that starts at coordinates: 10,20 and

ends at coordinates 310,120. It is worth repeating that the second pair of values in Rect() are total width and height, not the

coordinates where the controls end. This is why the example mentioned above ends at 310,120 and not 300,100.

You can use the Screen.width and Screen.height properties to get the total dimensions of the screen space available in the

player. The following example may help clarify how this is done:

/* Screen.width & Screen.height example */

// JavaScript
function OnGUI () {

GUI.Box (Rect (0,0,100,50), "Top-left");
GUI.Box (Rect (Screen.width - 100,0,100,50), "Top-right");
GUI.Box (Rect (0,Screen.height - 50,100,50), "Bottom-left");
GUI.Box (Rect (Screen.width - 100,Screen.height - 50,100,50), "Bottom-right");

}

// C#

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

935 of 1131 12/16/2012 10:12 PM

using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

void OnGUI(){
GUI.Box (new Rect (0,0,100,50), "Top-left");
GUI.Box (new Rect (Screen.width - 100,0,100,50), "Top-right");
GUI.Box (new Rect (0,Screen.height - 50,100,50), "Bottom-left");
GUI.Box (new Rect (Screen.width - 100,Screen.height - 50,100,50), "Bottom-right");

}

}

The Boxes positioned by the above example

Content

The second argument for a GUI Control is the actual content to be displayed with the Control. Most often you will want to

display some text or an image on your Control. To display text, pass a string as the Content argument like this:

/* String Content example */

// JavaScript
function OnGUI () {

GUI.Label (Rect (0,0,100,50), "This is the text string for a Label Control");
}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

void OnGUI () {
GUI.Label (new Rect (0,0,100,50), "This is the text string for a Label Control");

}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

936 of 1131 12/16/2012 10:12 PM

}

To display an image, declare a Texture2D public variable, and pass the variable name as the content argument like this:

/* Texture2D Content example */

// JavaScript
var controlTexture : Texture2D;

function OnGUI () {
GUI.Label (Rect (0,0,100,50), controlTexture);

}

// C#
public Texture2D controlTexture;
 ...

void OnGUI () {
GUI.Label (new Rect (0,0,100,50), controlTexture);

}

Here is an example closer to a real-world scenario:

/* Button Content examples */

// JavaScript
var icon : Texture2D;

function OnGUI () {
if (GUI.Button (Rect (10,10, 100, 50), icon)) {

print ("you clicked the icon");
}

if (GUI.Button (Rect (10,70, 100, 20), "This is text")) {
print ("you clicked the text button");

}
}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

public Texture2D icon;

void OnGUI () {
if (GUI.Button (new Rect (10,10, 100, 50), icon)) {

print ("you clicked the icon");
}

if (GUI.Button (new Rect (10,70, 100, 20), "This is text")) {
print ("you clicked the text button");

}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

937 of 1131 12/16/2012 10:12 PM

}

}

The Buttons created by the above example

There is a third option which allows you to display images and text together in a GUI Control. You can provide a GUIContent

object as the Content argument, and define the string and image to be displayed within the GUIContent.

/* Using GUIContent to display an image and a string */

// JavaScript
var icon : Texture2D;

function OnGUI () {
GUI.Box (Rect (10,10,100,50), GUIContent("This is text", icon));

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

public Texture2D icon;

void OnGUI () {
GUI.Box (new Rect (10,10,100,50), new GUIContent("This is text", icon));

}

}

You can also define a Tooltip in the GUIContent, and display it elsewhere in the GUI when the mouse hovers over it.

/* Using GUIContent to display a tooltip */

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

938 of 1131 12/16/2012 10:12 PM

// JavaScript
function OnGUI () {

// This line feeds "This is the tooltip" into GUI.tooltip
GUI.Button (Rect (10,10,100,20), GUIContent ("Click me", "This is the tooltip"));
// This line reads and displays the contents of GUI.tooltip
GUI.Label (Rect (10,40,100,20), GUI.tooltip);

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

void OnGUI () {
// This line feeds "This is the tooltip" into GUI.tooltip
GUI.Button (new Rect (10,10,100,20), new GUIContent ("Click me", "This is the tooltip"));

// This line reads and displays the contents of GUI.tooltip
GUI.Label (new Rect (10,40,100,20), GUI.tooltip);

}

}

If you're daring you can also use GUIContent to display a string, an icon, and a tooltip!

/* Using GUIContent to display an image, a string, and a tooltip */

// JavaScript
var icon : Texture2D;

function OnGUI () {
GUI.Button (Rect (10,10,100,20), GUIContent ("Click me", icon, "This is the tooltip"));
GUI.Label (Rect (10,40,100,20), GUI.tooltip);

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

public Texture2D icon;

void OnGUI () {
GUI.Button (new Rect (10,10,100,20), new GUIContent ("Click me", icon, "This is the tooltip"));
GUI.Label (new Rect (10,40,100,20), GUI.tooltip);

}

}

The scripting reference page for GUIContent's constructor for an extensive list of examples.

Page last updated: 2012-01-17

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

939 of 1131 12/16/2012 10:12 PM

gui-Controls

Control Types
There are a number of different GUI Controls that you can create. This section lists all of the available display and interactive

Controls. There are other GUI functions that affect layout of Controls, which are described in the Layout section of the Guide.

Label

The Label is non-interactive. It is for display only. It cannot be clicked or otherwise moved. It is best for displaying information

only.

/* GUI.Label example */

// JavaScript
function OnGUI () {

GUI.Label (Rect (25, 25, 100, 30), "Label");
}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

void OnGUI () {
GUI.Label (new Rect (25, 25, 100, 30), "Label");

}

}

The Label created by the example code

Button

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

940 of 1131 12/16/2012 10:12 PM

The Button is a typical interactive button. It will respond a single time when clicked, no matter how long the mouse remains

depressed. The response occurs as soon as the mouse button is released.

Basic Usage

In UnityGUI, Buttons will return true when they are clicked. To execute some code when a Button is clicked, you wrap the the

GUI.Button function in an if statement. Inside the if statement is the code that will be executed when the Button is clicked.

/* GUI.Button example */

// JavaScript
function OnGUI () {

if (GUI.Button (Rect (25, 25, 100, 30), "Button")) {
// This code is executed when the Button is clicked

}
}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

void OnGUI () {
if (GUI.Button (new Rect (25, 25, 100, 30), "Button")) {

// This code is executed when the Button is clicked
}

}

}

The Button created by the example code

RepeatButton

RepeatButton is a variation of the regular Button. The difference is, RepeatButton will respond every frame that the mouse

button remains depressed. This allows you to create click-and-hold functionality.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

941 of 1131 12/16/2012 10:12 PM

Basic Usage

In UnityGUI, RepeatButtons will return true for every frame that they are clicked. To execute some code while the Button is

being clicked, you wrap the the GUI.RepeatButton function in an if statement. Inside the if statement is the code that will be

executed while the RepeatButton remains clicked.

/* GUI.RepeatButton example */

// JavaScript
function OnGUI () {

if (GUI.RepeatButton (Rect (25, 25, 100, 30), "RepeatButton")) {
// This code is executed every frame that the RepeatButton remains clicked

}
}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

void OnGUI () {
if (GUI.RepeatButton (new Rect (25, 25, 100, 30), "RepeatButton")) {

// This code is executed every frame that the RepeatButton remains clicked
}

}

}

The Repeat Button created by the example code

TextField

The TextField Control is an interactive, editable single-line field containing a text string.

Basic Usage

The TextField will always display a string. You must provide the string to be displayed in the TextField. When edits are made to

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

942 of 1131 12/16/2012 10:12 PM

the string, the TextField function will return the edited string.

/* GUI.TextField example */

// JavaScript
var textFieldString = "text field";

function OnGUI () {
textFieldString = GUI.TextField (Rect (25, 25, 100, 30), textFieldString);

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

private string textFieldString = "text field";

void OnGUI () {
textFieldString = GUI.TextField (new Rect (25, 25, 100, 30), textFieldString);

}

}

The TextField created by the example code

TextArea

The TextArea Control is an interactive, editable multi-line area containing a text string.

Basic Usage

The TextArea will always display a string. You must provide the string to be displayed in the TextArea. When edits are made to

the string, the TextArea function will return the edited string.

/* GUI.TextArea example */

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

943 of 1131 12/16/2012 10:12 PM

// JavaScript
var textAreaString = "text area";

function OnGUI () {
textAreaString = GUI.TextArea (Rect (25, 25, 100, 30), textAreaString);

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

private string textAreaString = "text area";

void OnGUI () {
textAreaString = GUI.TextArea (new Rect (25, 25, 100, 30), textAreaString);

}

}

The TextArea created by the example code

Toggle

The Toggle Control creates a checkbox with a persistent on/off state. The user can change the state by clicking on it.

Basic Usage

The Toggle on/off state is represented by a true/false boolean. You must provide the boolean as a parameter to make the

Toggle represent the actual state. The Toggle function will return a new boolean value if it is clicked. In order to capture this

interactivity, you must assign the boolean to accept the return value of the Toggle function.

/* GUI.Toggle example */

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

944 of 1131 12/16/2012 10:12 PM

// JavaScript
var toggleBool = true;

function OnGUI () {
toggleBool = GUI.Toggle (Rect (25, 25, 100, 30), toggleBool, "Toggle");

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

private bool toggleBool = true;

void OnGUI () {
toggleBool = GUI.Toggle (new Rect (25, 25, 100, 30), toggleBool, "Toggle");

}

}

The Toggle created by the example code

Toolbar

The Toolbar Control is essentially a row of Buttons. Only one of the Buttons on the Toolbar can be active at a time, and it will

remain active until a different Button is clicked. This behavior emulates the behavior of a typical Toolbar. You can define an

arbitrary number of Buttons on the Toolbar.

Basic Usage

The active Button in the Toolbar is tracked through an integer. You must provide the integer as an argument in the function. To

make the Toolbar interactive, you must assign the integer to the return value of the function. The number of elements in the

content array that you provide will determine the number of Buttons that are shown in the Toolbar.

/* GUI.Toolbar example */

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

945 of 1131 12/16/2012 10:12 PM

// JavaScript
var toolbarInt = 0;
var toolbarStrings : String[] = ["Toolbar1", "Toolbar2", "Toolbar3"];

function OnGUI () {
toolbarInt = GUI.Toolbar (Rect (25, 25, 250, 30), toolbarInt, toolbarStrings);

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

private int toolbarInt = 0;
private string[] toolbarStrings = {"Toolbar1", "Toolbar2", "Toolbar3"};

void OnGUI () {
toolbarInt = GUI.Toolbar (new Rect (25, 25, 250, 30), toolbarInt, toolbarStrings);

}

}

The Toolbar created by the example code

SelectionGrid

The SelectionGrid Control is a multi-row Toolbar. You can determine the number of columns and rows in the grid. Only one

Button can be active at time.

Basic Usage

The active Button in the SelectionGrid is tracked through an integer. You must provide the integer as an argument in the

function. To make the SelectionGrid interactive, you must assign the integer to the return value of the function. The number of

elements in the content array that you provide will determine the number of Buttons that are shown in the SelectionGrid. You

also can dictate the number of columns through the function arguments.

/* GUI.SelectionGrid example */

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

946 of 1131 12/16/2012 10:12 PM

// JavaScript
var selectionGridInt : int = 0;
var selectionStrings : String[] = ["Grid 1", "Grid 2", "Grid 3", "Grid 4"];

function OnGUI () {
selectionGridInt = GUI.SelectionGrid (Rect (25, 25, 100, 30), selectionGridInt, selectionStrings, 2);

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

private int selectionGridInt = 0;
private string[] selectionStrings = {"Grid 1", "Grid 2", "Grid 3", "Grid 4"};

void OnGUI () {
selectionGridInt = GUI.SelectionGrid (new Rect (25, 25, 300, 60), selectionGridInt, selectionStrings, 2);

}

}

The SelectionGrid created by the example code

HorizontalSlider

The HorizontalSlider Control is a typical horizontal sliding knob that can be dragged to change a value between

predetermined min and max values.

Basic Usage

The position of the Slider knob is stored as a float. To display the position of the knob, you provide that float as one of the

arguments in the function. There are two additional values that determine the minimum and maximum values. If you want the

slider knob to be adjustable, assign the slider value float to be the return value of the Slider function.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

947 of 1131 12/16/2012 10:12 PM

/* Horizontal Slider example */

// JavaScript
var hSliderValue : float = 0.0;

function OnGUI () {
hSliderValue = GUI.HorizontalSlider (Rect (25, 25, 100, 30), hSliderValue, 0.0, 10.0);

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

private float hSliderValue = 0.0f;

void OnGUI () {
hSliderValue = GUI.HorizontalSlider (new Rect (25, 25, 100, 30), hSliderValue, 0.0f, 10.0f);

}

}

The Horizontal Slider created by the example code

VerticalSlider

The VerticalSlider Control is a typical vertical sliding knob that can be dragged to change a value between predetermined

min and max values.

Basic Usage

The position of the Slider knob is stored as a float. To display the position of the knob, you provide that float as one of the

arguments in the function. There are two additional values that determine the minimum and maximum values. If you want the

slider knob to be adjustable, assign the slider value float to be the return value of the Slider function.

/* Vertical Slider example */

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

948 of 1131 12/16/2012 10:12 PM

// JavaScript
var vSliderValue : float = 0.0;

function OnGUI () {
vSliderValue = GUI.VerticalSlider (Rect (25, 25, 100, 30), vSliderValue, 10.0, 0.0);

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

private float vSliderValue = 0.0f;

void OnGUI () {
vSliderValue = GUI.VerticalSlider (new Rect (25, 25, 100, 30), vSliderValue, 10.0f, 0.0f);

}

}

The Vertical Slider created by the example code

HorizontalScrollbar

The HorizontalScrollbar Control is similar to a Slider Control, but visually similar to Scrolling elements for web browsers or

word processors. This control is used to navigate the ScrollView Control.

Basic Usage

Horizontal Scrollbars are implemented identically to Horizontal Sliders with one exception: There is an additional argument

which controls the width of the Scrollbar knob itself.

/* Horizontal Scrollbar example */

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

949 of 1131 12/16/2012 10:12 PM

// JavaScript
var hScrollbarValue : float;

function OnGUI () {
hScrollbarValue = GUI.HorizontalScrollbar (Rect (25, 25, 100, 30), hScrollbarValue, 1.0, 0.0, 10.0);

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

private float hScrollbarValue;

void OnGUI () {
hScrollbarValue = GUI.HorizontalScrollbar (new Rect (25, 25, 100, 30), hScrollbarValue, 1.0f, 0.0f, 10.0f);

}

}

The Horizontal Scrollbar created by the example code

VerticalScrollbar

The VerticalScrollbar Control is similar to a Slider Control, but visually similar to Scrolling elements for web browsers or word

processors. This control is used to navigate the ScrollView Control.

Basic Usage

Vertical Scrollbars are implemented identically to Vertical Sliders with one exception: There is an additional argument which

controls the height of the Scrollbar knob itself.

/* Vertical Scrollbar example */

// JavaScript
var vScrollbarValue : float;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

950 of 1131 12/16/2012 10:12 PM

function OnGUI () {
vScrollbarValue = GUI. VerticalScrollbar (Rect (25, 25, 100, 30), vScrollbarValue, 1.0, 10.0, 0.0);

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

private float vScrollbarValue;

void OnGUI () {
vScrollbarValue = GUI. VerticalScrollbar (new Rect (25, 25, 100, 30), vScrollbarValue, 1.0f, 10.0f, 0.0f);

}

}

The Vertical Scrollbar created by the example code

ScrollView

ScrollViews are Controls that display a viewable area of a much larger set of Controls.

Basic Usage

ScrollViews require two Rects as arguments. The first Rect defines the location and size of the viewable ScrollView area on

the screen. The second Rect defines the size of the space contained inside the viewable area. If the space inside the

viewable area is larger than the viewable area, Scrollbars will appear as appropriate. You must also assign and provide a 2D

Vector which stores the position of the viewable area that is displayed.

/* ScrollView example */

// JavaScript
var scrollViewVector : Vector2 = Vector2.zero;
var innerText : String = "I am inside the ScrollView";

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

951 of 1131 12/16/2012 10:12 PM

function OnGUI () {
// Begin the ScrollView
scrollViewVector = GUI.BeginScrollView (Rect (25, 25, 100, 100), scrollViewVector, Rect (0, 0, 400, 400));

// Put something inside the ScrollView
innerText = GUI.TextArea (Rect (0, 0, 400, 400), innerText);

// End the ScrollView
GUI.EndScrollView();

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

private Vector2 scrollViewVector = Vector2.zero;
private string innerText = "I am inside the ScrollView";

void OnGUI () {
// Begin the ScrollView
scrollViewVector = GUI.BeginScrollView (new Rect (25, 25, 100, 100), scrollViewVector, new Rect (0, 0, 400, 400))

// Put something inside the ScrollView
innerText = GUI.TextArea (new Rect (0, 0, 400, 400), innerText);

// End the ScrollView
GUI.EndScrollView();

}

}

The ScrollView created by the example code

Window

Windows are drag-able containers of Controls. They can receive and lose focus when clicked. Because of this, they are

implemented slightly differently from the other Controls. Each Window has an id number, and its contents are declared inside a

separate function that is called when the Window has focus.

Basic Usage

Windows are the only Control that require an additional function to work properly. You must provide an id number and a

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

952 of 1131 12/16/2012 10:12 PM

function name to be executed for the Window. Inside the Window function, you create your actual behaviors or contained

Controls.

/* Window example */

// JavaScript
var windowRect : Rect = Rect (20, 20, 120, 50);

function OnGUI () {
windowRect = GUI.Window (0, windowRect, WindowFunction, "My Window");

}

function WindowFunction (windowID : int) {
// Draw any Controls inside the window here

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

private Rect windowRect = new Rect (20, 20, 120, 50);

void OnGUI () {
windowRect = GUI.Window (0, windowRect, WindowFunction, "My Window");

}

void WindowFunction (int windowID) {
// Draw any Controls inside the window here

}

}

The Window created by the example code

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

953 of 1131 12/16/2012 10:12 PM

GUI.changed

To detect if the user did any action in the GUI (clicked a button, dragged a slider, etc), read the GUI.changed value from your

script. This gets set to true when the user has done something, making it easy to validate the user input.

A common scenario would be for a Toolbar, where you want to change a specific value based on which Button in the Toolbar

was clicked. You don't want to assign the value in every call to OnGUI(), only when one of the Buttons has been clicked.

/* GUI.changed example */

// JavaScript
private var selectedToolbar : int = 0;
private var toolbarStrings = ["One", "Two"];

function OnGUI () {
// Determine which button is active, whether it was clicked this frame or not
selectedToolbar = GUI.Toolbar (Rect (50, 10, Screen.width - 100, 30), selectedToolbar, toolbarStrings);

// If the user clicked a new Toolbar button this frame, we'll process their input
if (GUI.changed)
{

print ("The toolbar was clicked");

if (selectedToolbar == 0)
{

print ("First button was clicked");
}
else
{

print ("Second button was clicked");
}

}
}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

private int selectedToolbar = 0;
private string[] toolbarStrings = {"One", "Two"};

void OnGUI () {
// Determine which button is active, whether it was clicked this frame or not
selectedToolbar = GUI.Toolbar (new Rect (50, 10, Screen.width - 100, 30), selectedToolbar, toolbarStrings);

// If the user clicked a new Toolbar button this frame, we'll process their input
if (GUI.changed)
{

Debug.Log("The toolbar was clicked");

if (0 == selectedToolbar)
{

Debug.Log("First button was clicked");
}
else
{

Debug.Log("Second button was clicked");

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

954 of 1131 12/16/2012 10:12 PM

}
}

}

}

GUI.changed will return true if any GUI Control placed before it was manipulated by the user.

Page last updated: 2012-01-17

gui-Customization

Customizing your GUI Controls
Functional Controls are necessary for your game, and the appearance of those controls is very important for the aesthetics of

your game. In UnityGUI, you can fine-tune the appearance of your Controls with many details. Control appearances are

dictated with GUIStyles. By default, when you create a Control without defining a GUIStyle, Unity's default GUIStyle is

applied. This style is internal in Unity and can be used in published games for quick prototyping, or if you choose not to stylize

your Controls.

When you have a large number of different GUIStyles to work with, you can define them all within a single GUISkin. A GUISkin

is no more than a collection of GUIStyles.

How Styles change the look of your GUI Controls

GUIStyles are designed to mimic Cascading Style Sheets (CSS) for web browsers. Many different CSS methodologies have

been adapted, including differentiation of individual state properties for styling, and separation between the content and the

appearance.

Where the Control defines the content, the Style defines the appearance. This allows you to create combinations like a

functional Toggle which looks like a normal Button.

Two Toggle Controls styled differently

The difference between Skins and Styles

As stated earlier, GUISkins are a collection of GUIStyles. Styles define the appearance of a GUI Control. You do not have to

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

955 of 1131 12/16/2012 10:12 PM

use a Skin if you want to use a Style.

A single GUIStyle shown in the Inspector

A single GUISkin shown in the Inspector - observe that it contains multiple GUIStyles

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

956 of 1131 12/16/2012 10:12 PM

Working with Styles
All GUI Control functions have an optional last parameter: the GUIStyle to use for displaying the Control. If this is omitted,

Unity's default GUIStyle will be used. This works internally by applying the name of the control type as a string, so

GUI.Button() uses the "button" style, GUI.Toggle() uses the "toggle" style, etc. You can override the default GUIStyle for a

control by specifying it as the last parameter.

/* Override the default Control Style with a different style in the UnityGUI default Styles */

// JavaScript
function OnGUI () {

// Make a label that uses the "box" GUIStyle.
GUI.Label (Rect (0,0,200,100), "Hi - I'm a label looking like a box", "box");

// Make a button that uses the "toggle" GUIStyle
GUI.Button (Rect (10,140,180,20), "This is a button", "toggle");

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

void OnGUI () {
// Make a label that uses the "box" GUIStyle.
GUI.Label (new Rect (0,0,200,100), "Hi - I'm a label looking like a box", "box");

// Make a button that uses the "toggle" GUIStyle
GUI.Button (new Rect (10,140,180,20), "This is a button", "toggle");

}

}

The controls created by the code example above

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

957 of 1131 12/16/2012 10:12 PM

Making a public variable GUIStyle

When you declare a public GUIStyle variable, all elements of the Style will show up in the Inspector. You can edit all of the

different values there.

/* Overriding the default Control Style with one you've defined yourself */

// JavaScript
var customButton : GUIStyle;

function OnGUI () {
// Make a button. We pass in the GUIStyle defined above as the style to use
GUI.Button (Rect (10,10,150,20), "I am a Custom Button", customButton);

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

public GUIStyle customButton;

void OnGUI () {
// Make a button. We pass in the GUIStyle defined above as the style to use
GUI.Button (new Rect (10,10,150,20), "I am a Custom Button", customButton);

}

}

Changing the different style elements

When you have declared a GUIStyle, you can modify that style in the Inspector. There are a great number of States you can

define, and apply to any type of Control.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

958 of 1131 12/16/2012 10:12 PM

Styles are modified on a per-script, per-GameObject basis

Any Control State must be assigned a Background Color before the specified Text Color will be applied.

For more information about individual GUIStyles, please read the GUIStyle Component Reference page.

Working with Skins
For more complicated GUI systems, it makes sense to keep a collection of styles in one place. This is what a GUISkin does. A

GUISkin contains multiple different Styles, essentially providing a complete face-lift to all GUI Controls.

Creating a new GUISkin

To create a GUISkin, select Assets->Create->GUI Skin from the menu bar. This will create a GUI Skin in your Project Folder.

Select it to see all GUIStyles defined by the Skin in the Inspector.

Applying the skin to a GUI

To use a skin you've created, assign it to GUI.skin in your OnGUI() function.

/* Make a property containing a reference to the skin you want to use */

// JavaScript
var mySkin : GUISkin;

function OnGUI () {
// Assign the skin to be the one currently used.
GUI.skin = mySkin;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

959 of 1131 12/16/2012 10:12 PM

// Make a button. This will get the default "button" style from the skin assigned to mySkin.
GUI.Button (Rect (10,10,150,20), "Skinned Button");

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

public GUISkin mySkin;

void OnGUI () {
// Assign the skin to be the one currently used.
GUI.skin = mySkin;

// Make a button. This will get the default "button" style from the skin assigned to mySkin.
GUI.Button (new Rect (10,10,150,20), "Skinned Button");

}

}

You can switch skins as much as you like throughout a single OnGUI() call.

/* Example of switching skins in the same OnGUI() call */

// JavaScript
var mySkin : GUISkin;

var toggle = true;

function OnGUI () {
// Assign the skin to be the one currently used.
GUI.skin = mySkin;

// Make a toggle. This will get the "button" style from the skin assigned to mySkin.
toggle = GUI.Toggle (Rect (10,10,150,20), toggle, "Skinned Button", "button");

// Assign the currently skin to be Unity's default.
GUI.skin = null;

// Make a button. This will get the default "button" style from the built-in skin.
GUI.Button (Rect (10,35,150,20), "Built-in Button");

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

public GUISkin mySkin;
private bool toggle = true;

void OnGUI () {
// Assign the skin to be the one currently used.
GUI.skin = mySkin;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

960 of 1131 12/16/2012 10:12 PM

// Make a toggle. This will get the "button" style from the skin assigned to mySkin.
toggle = GUI.Toggle (new Rect (10,10,150,20), toggle, "Skinned Button", "button");

// Assign the currently skin to be Unity's default.
GUI.skin = null;

// Make a button. This will get the default "button" style from the built-in skin.
GUI.Button (new Rect (10,35,150,20), "Built-in Button");

}

}

Page last updated: 2012-01-17

gui-Layout

Fixed Layout vs Automatic Layout
There are two different modes you can use to arrange and organize your GUIs: Fixed and Automatic. Up until now, every

UnityGUI example provided in this guide has used Fixed Layout. To use Automatic Layout, write GUILayout instead of GUI

when calling control functions. You do not have to use one Layout mode over the other, and you can use both modes at once

in the same OnGUI() function.

Fixed Layout makes sense to use when you have a pre-designed interface to work from. Automatic Layout makes sense to use

when you don't know how many elements you need up front, or don't want to worry about hand-positioning each Control. For

example, if you are creating a number of different buttons based on Save Game files, you don't know exactly how many

buttons will be drawn. In this case Automatic Layout might make more sense. It is really dependent on the design of your game

and how you want to present your interface.

There are two key differences when using Automatic Layout:

GUILayout is used instead of GUI

No Rect() function is required for Automatic Layout Controls

/* Two key differences when using Automatic Layout */

// JavaScript
function OnGUI () {

// Fixed Layout
GUI.Button (Rect (25,25,100,30), "I am a Fixed Layout Button");

// Automatic Layout
GUILayout.Button ("I am an Automatic Layout Button");

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

void OnGUI () {
// Fixed Layout
GUI.Button (new Rect (25,25,100,30), "I am a Fixed Layout Button");

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

961 of 1131 12/16/2012 10:12 PM

// Automatic Layout
GUILayout.Button ("I am an Automatic Layout Button");

}

}

Arranging Controls
Depending on which Layout Mode you're using, there are different hooks for controlling where your Controls are positioned

and how they are grouped together. In Fixed Layout, you can put different Controls into Groups. In Automatic Layout, you can

put different Controls into Areas, Horizontal Groups, and Vertical Groups

Fixed Layout - Groups

Groups are a convention available in Fixed Layout Mode. They allow you to define areas of the screen that contain multiple

Controls. You define which Controls are inside a Group by using the GUI.BeginGroup() and GUI.EndGroup() functions. All

Controls inside a Group will be positioned based on the Group's top-left corner instead of the screen's top-left corner. This

way, if you reposition the group at runtime, the relative positions of all Controls in the group will be maintained.

As an example, it's very easy to center multiple Controls on-screen.

/* Center multiple Controls on the screen using Groups */

// JavaScript
function OnGUI () {

// Make a group on the center of the screen
GUI.BeginGroup (Rect (Screen.width / 2 - 50, Screen.height / 2 - 50, 100, 100));
// All rectangles are now adjusted to the group. (0,0) is the topleft corner of the group.

// We'll make a box so you can see where the group is on-screen.
GUI.Box (Rect (0,0,100,100), "Group is here");
GUI.Button (Rect (10,40,80,30), "Click me");

// End the group we started above. This is very important to remember!
GUI.EndGroup ();

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

void OnGUI () {
// Make a group on the center of the screen
GUI.BeginGroup (new Rect (Screen.width / 2 - 50, Screen.height / 2 - 50, 100, 100));
// All rectangles are now adjusted to the group. (0,0) is the topleft corner of the group.

// We'll make a box so you can see where the group is on-screen.
GUI.Box (new Rect (0,0,100,100), "Group is here");
GUI.Button (new Rect (10,40,80,30), "Click me");

// End the group we started above. This is very important to remember!
GUI.EndGroup ();

}

}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

962 of 1131 12/16/2012 10:12 PM

The above example centers controls regardless of the screen resolution

You can also nest multiple Groups inside each other. When you do this, each group has its contents clipped to its parent's

space.

/* Using multiple Groups to clip the displayed Contents */

// JavaScript
var bgImage : Texture2D; // background image that is 256 x 32
var fgImage : Texture2D; // foreground image that is 256 x 32
var playerEnergy = 1.0; // a float between 0.0 and 1.0

function OnGUI () {
// Create one Group to contain both images
// Adjust the first 2 coordinates to place it somewhere else on-screen
GUI.BeginGroup (Rect (0,0,256,32));

// Draw the background image
GUI.Box (Rect (0,0,256,32), bgImage);

// Create a second Group which will be clipped
// We want to clip the image and not scale it, which is why we need the second Group
GUI.BeginGroup (Rect (0,0,playerEnergy * 256, 32));

// Draw the foreground image
GUI.Box (Rect (0,0,256,32), fgImage);

// End both Groups
GUI.EndGroup ();
GUI.EndGroup ();

}

// C#
using UnityEngine;
using System.Collections;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

963 of 1131 12/16/2012 10:12 PM

public class GUITest : MonoBehaviour {

// background image that is 256 x 32
public Texture2D bgImage;

// foreground image that is 256 x 32
public Texture2D fgImage;

// a float between 0.0 and 1.0
public float playerEnergy = 1.0f;

void OnGUI () {
// Create one Group to contain both images
// Adjust the first 2 coordinates to place it somewhere else on-screen
GUI.BeginGroup (new Rect (0,0,256,32));

// Draw the background image
GUI.Box (new Rect (0,0,256,32), bgImage);

// Create a second Group which will be clipped
// We want to clip the image and not scale it, which is why we need the second Group
GUI.BeginGroup (new Rect (0,0,playerEnergy * 256, 32));

// Draw the foreground image
GUI.Box (new Rect (0,0,256,32), fgImage);

// End both Groups
GUI.EndGroup ();

GUI.EndGroup ();
}

}

You can nest Groups together to create clipping behaviors

Automatic Layout - Areas

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

964 of 1131 12/16/2012 10:12 PM

Areas are used in Automatic Layout mode only. They are similar to Fixed Layout Groups in functionality, as they define a finite

portion of the screen to contain GUILayout Controls. Because of the nature of Automatic Layout, you will nearly always use

Areas.

In Automatic Layout mode, you do not define the area of the screen where the Control will be drawn at the Control level. The

Control will automatically be placed at the upper-leftmost point of its containing area. This might be the screen. You can also

create manually-positioned Areas. GUILayout Controls inside an area will be placed at the upper-leftmost point of that area.

/* A button placed in no area, and a button placed in an area halfway across the screen. */

// JavaScript
function OnGUI () {

GUILayout.Button ("I am not inside an Area");
GUILayout.BeginArea (Rect (Screen.width/2, Screen.height/2, 300, 300));
GUILayout.Button ("I am completely inside an Area");
GUILayout.EndArea ();

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

void OnGUI () {
GUILayout.Button ("I am not inside an Area");
GUILayout.BeginArea (new Rect (Screen.width/2, Screen.height/2, 300, 300));
GUILayout.Button ("I am completely inside an Area");
GUILayout.EndArea ();

}

}

Notice that inside an Area, Controls with visible elements like Buttons and Boxes will stretch their width to the full length of the

Area.

Automatic Layout - Horizontal and Vertical Groups

When using Automatic Layout, Controls will by default appear one after another from top to bottom. There are plenty of

occasions you will want finer level of control over where your Controls are placed and how they are arranged. If you are using

the Automatic Layout mode, you have the option of Horizontal and Vertical Groups.

Like the other layout Controls, you call separate functions to start or end these groups. The specific functions are

GUILayout.BeginHoriztontal(), GUILayout.EndHorizontal(), GUILayout.BeginVertical(), and GUILayout.EndVertical().

Any Controls inside a Horizontal Group will always be laid out horizontally. Any Controls inside a Vertical Group will always be

laid out vertically. This sounds plain until you start nesting groups inside each other. This allows you to arrange any number of

controls in any imaginable configuration.

/* Using nested Horizontal and Vertical Groups */

// JavaScript
var sliderValue = 1.0;
var maxSliderValue = 10.0;

function OnGUI()
{

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

965 of 1131 12/16/2012 10:12 PM

// Wrap everything in the designated GUI Area
GUILayout.BeginArea (Rect (0,0,200,60));

// Begin the singular Horizontal Group
GUILayout.BeginHorizontal();

// Place a Button normally
if (GUILayout.RepeatButton ("Increase max\nSlider Value"))
{

maxSliderValue += 3.0 * Time.deltaTime;
}

// Arrange two more Controls vertically beside the Button
GUILayout.BeginVertical();
GUILayout.Box("Slider Value: " + Mathf.Round(sliderValue));
sliderValue = GUILayout.HorizontalSlider (sliderValue, 0.0, maxSliderValue);

// End the Groups and Area
GUILayout.EndVertical();
GUILayout.EndHorizontal();
GUILayout.EndArea();

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

private float sliderValue = 1.0f;
private float maxSliderValue = 10.0f;

void OnGUI()
{

// Wrap everything in the designated GUI Area
GUILayout.BeginArea (new Rect (0,0,200,60));

// Begin the singular Horizontal Group
GUILayout.BeginHorizontal();

// Place a Button normally
if (GUILayout.RepeatButton ("Increase max\nSlider Value"))
{

maxSliderValue += 3.0f * Time.deltaTime;
}

// Arrange two more Controls vertically beside the Button
GUILayout.BeginVertical();
GUILayout.Box("Slider Value: " + Mathf.Round(sliderValue));
sliderValue = GUILayout.HorizontalSlider (sliderValue, 0.0f, maxSliderValue);

// End the Groups and Area
GUILayout.EndVertical();
GUILayout.EndHorizontal();
GUILayout.EndArea();

}

}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

966 of 1131 12/16/2012 10:12 PM

Three Controls arranged with Horizontal & Vertical Groups

Using GUILayoutOptions to define some controls
You can use GUILayoutOptions to override some of the Automatic Layout parameters. You do this by providing the options as

the final parameters of the GUILayout Control.

Remember in the Areas example above, where the button stretches its width to 100% of the Area width? We can override that

if we want to.

/* Using GUILayoutOptions to override Automatic Layout Control properties */

//JavaScript
function OnGUI () {

GUILayout.BeginArea (Rect (100, 50, Screen.width-200, Screen.height-100));
GUILayout.Button ("I am a regular Automatic Layout Button");
GUILayout.Button ("My width has been overridden", GUILayout.Width (95));
GUILayout.EndArea ();

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

void OnGUI () {
GUILayout.BeginArea (new Rect (100, 50, Screen.width-200, Screen.height-100));
GUILayout.Button ("I am a regular Automatic Layout Button");
GUILayout.Button ("My width has been overridden", GUILayout.Width (95));
GUILayout.EndArea ();

}

}

For a full list of possible GUILayoutOptions, please read the GUILayoutOption Scripting Reference page.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

967 of 1131 12/16/2012 10:12 PM

Page last updated: 2012-01-18

gui-Extending

There are a number of ways to leverage and extend UnityGUI to meet your needs. Controls can be mixed and created, and

you have a lot of leverage into dictating how user input into the GUI is processed.

Compound Controls
There might be situations in your GUI where two types of Controls always appear together. For example, maybe you are

creating a Character Creation screen, with several Horizontal Sliders. All of those Sliders need a Label to identify them, so the

player knows what they are adjusting. In this case, you could partner every call to GUI.Label() with a call to

GUI.HorizontalSlider(), or you could create a Compound Control which includes both a Label and a Slider together.

/* Label and Slider Compound Control */

// JavaScript
var mySlider : float = 1.0;

function OnGUI () {
mySlider = LabelSlider (Rect (10, 100, 100, 20), mySlider, 5.0, "Label text here");

}

function LabelSlider (screenRect : Rect, sliderValue : float, sliderMaxValue : float, labelText : String) : float {
GUI.Label (screenRect, labelText);
screenRect.x += screenRect.width; // <- Push the Slider to the end of the Label
sliderValue = GUI.HorizontalSlider (screenRect, sliderValue, 0.0, sliderMaxValue);
return sliderValue;

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

private float mySlider = 1.0f;

void OnGUI () {
mySlider = LabelSlider (new Rect (10, 100, 100, 20), mySlider, 5.0f, "Label text here");

}

float LabelSlider (Rect screenRect, float sliderValue, float sliderMaxValue, string labelText) {
GUI.Label (screenRect, labelText);

// <- Push the Slider to the end of the Label
screenRect.x += screenRect.width;

sliderValue = GUI.HorizontalSlider (screenRect, sliderValue, 0.0f, sliderMaxValue);
return sliderValue;

}

}

In this example, calling LabelSlider() and passing the correct arguments will provide a Label paired with a Horizontal Slider.

When writing Compound Controls, you have to remember to return the correct value at the end of the function to make it

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

968 of 1131 12/16/2012 10:12 PM

interactive.

The above Compound Control always creates this pair of Controls

Static Compound Controls

By using Static functions, you can create an entire collection of your own Compound Controls that are self-contained. This

way, you do not have to declare your function in the same script you want to use it.

/* This script is called CompoundControls */

// JavaScript
static function LabelSlider (screenRect : Rect, sliderValue : float, sliderMaxValue : float, labelText : String) : float {

GUI.Label (screenRect, labelText);
screenRect.x += screenRect.width; // <- Push the Slider to the end of the Label
sliderValue = GUI.HorizontalSlider (screenRect, sliderValue, 0.0, sliderMaxValue);
return sliderValue;

}

// C#
using UnityEngine;
using System.Collections;

public class CompoundControls : MonoBehaviour {

public static float LabelSlider (Rect screenRect, float sliderValue, float sliderMaxValue, string labelText) {
GUI.Label (screenRect, labelText);

// <- Push the Slider to the end of the Label
screenRect.x += screenRect.width;

sliderValue = GUI.HorizontalSlider (screenRect, sliderValue, 0.0f, sliderMaxValue);
return sliderValue;

}

}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

969 of 1131 12/16/2012 10:12 PM

By saving the above example in a script called CompoundControls, you can call the LabelSlider() function from any other

script by simply typing CompoundControls.LabelSlider() and providing your arguments.

Elaborate Compound Controls

You can get very creative with Compound Controls. They can be arranged and grouped in any way you like. The following

example creates a re-usable RGB Slider.

/* RGB Slider Compound Control */

// JavaScript
var myColor : Color;

function OnGUI () {
myColor = RGBSlider (Rect (10,10,200,10), myColor);

}

function RGBSlider (screenRect : Rect, rgb : Color) : Color {
rgb.r = GUI.HorizontalSlider (screenRect, rgb.r, 0.0, 1.0);
screenRect.y += 20; // <- Move the next control down a bit to avoid overlapping
rgb.g = GUI.HorizontalSlider (screenRect, rgb.g, 0.0, 1.0);
screenRect.y += 20; // <- Move the next control down a bit to avoid overlapping
rgb.b = GUI.HorizontalSlider (screenRect, rgb.b, 0.0, 1.0);
return rgb;

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

public Color myColor;

void OnGUI () {
myColor = RGBSlider (new Rect (10,10,200,10), myColor);

}

Color RGBSlider (Rect screenRect, Color rgb) {
rgb.r = GUI.HorizontalSlider (screenRect, rgb.r, 0.0f, 1.0f);

// <- Move the next control down a bit to avoid overlapping
screenRect.y += 20;
rgb.g = GUI.HorizontalSlider (screenRect, rgb.g, 0.0f, 1.0f);

// <- Move the next control down a bit to avoid overlapping
screenRect.y += 20;

rgb.b = GUI.HorizontalSlider (screenRect, rgb.b, 0.0f, 1.0f);
return rgb;

}
}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

970 of 1131 12/16/2012 10:12 PM

The RGB Slider created by the example above

Now let's build Compound Controls on top of each other, in order to demonstrate how Compound Controls can be used within

other Compound Controls. To do this, we will create a new RGB Slider like the one above, but we will use the LabelSlider to

do so. This way we'll always have a Label telling us which slider corresponds to which color.

/* RGB Label Slider Compound Control */

// JavaScript
var myColor : Color;

function OnGUI () {
myColor = RGBLabelSlider (Rect (10,10,200,20), myColor);

}

function RGBLabelSlider (screenRect : Rect, rgb : Color) : Color {
rgb.r = CompoundControls.LabelSlider (screenRect, rgb.r, 1.0, "Red");
screenRect.y += 20; // <- Move the next control down a bit to avoid overlapping
rgb.g = CompoundControls.LabelSlider (screenRect, rgb.g, 1.0, "Green");
screenRect.y += 20; // <- Move the next control down a bit to avoid overlapping
rgb.b = CompoundControls.LabelSlider (screenRect, rgb.b, 1.0, "Blue");
return rgb;

}

// C#
using UnityEngine;
using System.Collections;

public class GUITest : MonoBehaviour {

public Color myColor;

void OnGUI () {
myColor = RGBSlider (new Rect (10,10,200,30), myColor);

}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

971 of 1131 12/16/2012 10:12 PM

Color RGBSlider (Rect screenRect, Color rgb) {
rgb.r = CompoundControls.LabelSlider (screenRect, rgb.r, 1.0f, "Red");

// <- Move the next control down a bit to avoid overlapping
screenRect.y += 20;
rgb.g = CompoundControls.LabelSlider (screenRect, rgb.g, 1.0f, "Green");

// <- Move the next control down a bit to avoid overlapping
screenRect.y += 20;

rgb.b = CompoundControls.LabelSlider (screenRect, rgb.b, 1.0f, "Blue");

return rgb;
}

}

The Compound RGB Label Slider created by the above code
Page last updated: 2012-01-17

gui-ExtendingEditor

Introduction
You can create your own custom design tools inside Unity through Editor Windows. Scripts that derive from EditorWindow

instead of MonoBehaviour can leverage both GUI/GUILayout and EditorGUI/EditorGUILayout controls. Alternatively, you can

use Custom Inspectors to expose these GUI controls in your GameObject Inspector.

Editor Windows
You can create any number of custom windows in your app. These behave just like the Inspector, Scene or any other built-in

ones. This is a great way to add a user interface to a sub-system for your game.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

972 of 1131 12/16/2012 10:12 PM

Custom Editor Interface by Serious Games Interactive used for scripting cutscene actions

Making a custom Editor Window involves the following simple steps:

Create a script that derives from EditorWindow.

Use code to trigger the window to display itself.

Implement the GUI code for your tool.

Derive From EditorWindow

In order to make your Editor Window, your script must be stored inside a folder called "Editor". Make a class in this script that

derives from EditorWindow. Then write your GUI controls in the inner OnGUI function.

class MyWindow extends EditorWindow {
 function OnGUI () {
 // The actual window code goes here
 }
}

MyWindow.js - placed in a folder called 'Editor' within your project.

Showing the window

In order to show the window on screen, make a menu item that displays it. This is done by creating a function which is

activated by the MenuItem property.

The default behavior in Unity is to recycle windows (so selecting the menu item again would show existing windows. This is

done by using the function EditorWindow.GetWindow Like this:

class MyWindow extends EditorWindow {
 @MenuItem ("Window/My Window")
 static function ShowWindow () {
 EditorWindow.GetWindow (MyWindow);
 }

 function OnGUI () {
 // The actual window code goes here
 }
}

Showing the MyWindow

This will create a standard, dockable editor window that saves its position between invocations, can be used in custom

layouts, etc. To have more control over what gets created, you can use GetWindowWithRect

Implementing Your Window's GUI

The actual contents of the window are rendered by implementing the OnGUI function. You can use the same UnityGUI classes

you use for your ingame GUI (GUI and GUILayout). In addition we provide some additional GUI controls, located in the

editor-only classes EditorGUI and EditorGUILayout. These classes add to the controls already available in the normal

classes, so you can mix and match at will.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

973 of 1131 12/16/2012 10:12 PM

The following C# code shows how you can add GUI elements to your custom EditorWindow:

using UnityEditor;
using UnityEngine;

public class MyWindow : EditorWindow
{

string myString = "Hello World";
bool groupEnabled;
bool myBool = true;
float myFloat = 1.23f;

// Add menu item named "My Window" to the Window menu
[MenuItem("Window/My Window")]
public static void ShowWindow()
{

//Show existing window instance. If one doesn't exist, make one.
EditorWindow.GetWindow(typeof(MyWindow));

}

void OnGUI()
{

GUILayout.Label ("Base Settings", EditorStyles.boldLabel);
myString = EditorGUILayout.TextField ("Text Field", myString);

groupEnabled = EditorGUILayout.BeginToggleGroup ("Optional Settings", groupEnabled);
myBool = EditorGUILayout.Toggle ("Toggle", myBool);
myFloat = EditorGUILayout.Slider ("Slider", myFloat, -3, 3);

EditorGUILayout.EndToggleGroup ();
}

}

This example results in a window which looks like this:

Custom Editor Window created using supplied example.

For more info, take a look at the example and documentation on the EditorWindow page.

Custom Inspectors
A key to increasing the speed of game creation is to create custom inspectors for commonly used components. For the sake of

example, we'll use this very simple script that always keeps an object looking at a point.

var lookAtPoint = Vector3.zero;

function Update () {
 transform.LookAt (lookAtPoint);
}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

974 of 1131 12/16/2012 10:12 PM

LookAtPoint.js

This will keep an object oriented towards a world-space point. Let's make it cool!

The first step to making it work nicely in the editor is to make the script run even when you're not testing the game. We do this

by adding an ExecuteInEditMode attribute to it:

@script ExecuteInEditMode()

var lookAtPoint = Vector3.zero;

function Update () {
 transform.LookAt (lookAtPoint);
}

Try adding the script to your main camera and drag it around in the Scene view.

Making a Custom Editor

This is all well and good, but we can make the inspector for it a lot nicer by customizing the inspector. To do that we need to

create an Editor for it. Create a JavaScript called LookAtPointEditor in a folder called Editor.

@CustomEditor (LookAtPoint)
class LookAtPointEditor extends Editor {
 function OnInspectorGUI () {
 target.lookAtPoint = EditorGUILayout.Vector3Field ("Look At Point", target.lookAtPoint);
 if (GUI.changed)
 EditorUtility.SetDirty (target);
 }
}

This class has to derive from Editor. The @CustomEditor attribute informs Unity which component it should act as an editor

for.

The code in OnInspectorGUI is exectued whenever Unity displays the inspector. You can put any GUI code in here - it works

just like OnGUI does for games, but is run inside the inspector. Editor defines the target property that you can use to access

the object being inspected.

The EditorUtility.SetDirty code is executed if the user has changed any of the values by checking GUI.changed.

In this case, we make one of the Vector3 fields like is used in the Transform Inspector - like so:

Yay for shiny inspectors

There's a lot more that can be done here, but this will do for now - We've got bigger fish to fry...

Scene View Additions

You can add extra code to the Scene View by implementing an OnSceneGUI in your custom editor. In this case, we'll add a

second set of position handles, letting users drag the look-at point around in the Scene view.

@CustomEditor (LookAtPoint)
class LookAtPointEditor extends Editor {

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

975 of 1131 12/16/2012 10:12 PM

 function OnInspectorGUI () {
 target.lookAtPoint = EditorGUILayout.Vector3Field ("Look At Point", target.lookAtPoint);
 if (GUI.changed)
 EditorUtility.SetDirty (target);
 }

 function OnSceneGUI () {
 target.lookAtPoint = Handles.PositionHandle (target.lookAtPoint, Quaternion.identity);
 if (GUI.changed)
 EditorUtility.SetDirty (target);
 }
}

OnSceneGUI works just like OnInspectorGUI - except it gets run in the scene view. To help you make your editing interface,

you can use the functions defined in Handles class. All functions in there are designed for working in 3D Scene views.

If you want to put 2D GUI objects (GUI, EditorGUI and friends), you need to wrap them in calls to Handles.BeginGUI() and

Handles.EndGUI().

Page last updated: 2012-05-31

Network Reference Guide

Networking is a very large, detailed topic. In Unity, it is extremely simple to create network functionality. However, it is still best

to understand the breadth and depth involved with creating any kind of network game. The following page will explain the

fundamentals of networking concepts, and the Unity-specific executions of these concepts for you to use. If you have never

created a network game before, it is highly recommended that you read this guide in detail before attempting to create one.

High Level Overview
This section will outline all the concepts involved in networking. It will serve as an introduction to deeper topics.

Networking Elements in Unity
This section of the guide will cover Unity's execution of the ideas discussed above.

Network View
Network Views are Components you use to share data across the network. They are extremely important to understand. This

page will explain them in detail.

RPC Details
RPC stands for Remote Procedure Call. It is a way of calling a function on a remote machine. This may be a client calling a

function on the server, or the server calling a function on all or specific clients, etc. This page explains RPC concepts in detail.

State Synchronization
State Synchronization is a method of regularly updating a specific set of data across two or more game instances running on

the network.

Network Instantiate
One difficult subject in networking is ownership of an object. Who controls what? Network Instantiation will determine this logic

for you. This page will explain how to do this. It will also explain the complex alternatives, for situations when you just need

more control.

Master Server
The Master Server is like a game lobby where servers can advertise their presence to clients. It is also a solution to enabling

communication from behind a firewall or home network. When needed it makes it possible to use a technique called NAT

punchthrough (with help from a facilitator) to make sure your players can always connect with each other. This page will

explain how to use the Master Server.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

976 of 1131 12/16/2012 10:12 PM

Minimizing Bandwidth
Every choice you make about where and how to share data will affect the bandwidth your game uses. This page will share

some details about bandwidth usage and how to keep it to a minimum.

 iOS

Special details about networking on iOS
Boot up with Networking for iOS.

 Android

Special details about networking on Android
Page last updated: 2011-02-22

Networking on iOS

iOS and Android

Networking for mobile devices (iOS / Android)
The Unity iOS/Android Networking engine is fully compatible with networking for desktop devices, so your existing networking

code should work on iOS/Android devices. However, you may want to re-engineer your code if it is mainly to be used with

Wi-Fi or cellular networks. Moreover, depending on the mobile, the networking chip may also be the bottleneck since pings

between mobile devices (or between the mobile device and the desktop) are about 40-60 ms, even in high performance Wi-Fi

networks.

Using Networking you can create a game that can be played simultaneously from desktop and iOS over Wi-Fi or cellular

networks. In the latter case, your game server should have a public IP address (accessible through the internet).

Note: EDGE / 3G data connections go to sleep very quickly when no data is sent. Thus sometimes you may need to

"wake-up" networking. Just make the WWW class connect to your site (and yield until it finishes) before making the Unity

networking connection..

Page last updated: 2011-11-08

net-HighLevelOverview

This section covers general networking concepts that should be understood before developing a game with Unity's networking

architecture.

What is Networking?
Networking is communication between two or more computers. A fundamental idea is that of the relationship between the

client (the computer that is requesting information) and the server (the computer responding to the information request). The

server can either be a dedicated host machine used by all clients, or simply a player machine running the game (client) but

also acting as the server for other players. Once a server has been established and a client has connected to it, the two

computers can exchange data as demanded by gameplay.

Creating a network game requires a lot of attention to some very specific details. Even though network actions are easy to

design and create in Unity, networking remains rather complex. A major design decision in Unity is to make networking as

robust and flexible as possible. This means that you, as the game creator, are responsible for things that might be handled in

an automatic but less robust way in other engines. The choices you make potentially have a major effect on the design of your

game, so it is best to make them as early in the design stage as possible. Understanding networking concepts will help you

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

977 of 1131 12/16/2012 10:12 PM

plan your game design well and avoid problems during the implementation.

Networking Approaches
There are two common and proven approaches to structuring a network game which are known as Authoritative Server and

Non-Authoritative Server. Both approaches rely on a server connecting clients and passing information between them. Both

also offer privacy for end users since clients never actually connect directly with each other or have their IP addresses

revealed to other clients.

Authoritative Server

The authoritative server approach requires the server to perform all world simulation, application of game rules and processing

of input from the player clients. Each client sends their input (in the form of keystrokes or requested actions) to the server and

continuously receives the current state of the game from the server. The client never makes any changes to the game state

itself. Instead, it tells the server what it wants to do, and the server then handles the request and replies to the client to explain

what happened as a result.

Fundamentally, there is a layer of separation between what the player wants to do and what actually happens. This allows the

server to listen to every client's requests before deciding how to update the game state.

An advantage of this approach is that it makes cheating much harder for clients. For example, clients do not have the

possibility of cheating by telling the server (and thereby other clients) that an enemy has been killed, since they don't get to

make that decision by themselves. They can only tell the server that a weapon was fired and from there, it is up to the server

to determine whether or not a kill was made.

Another example of an authoritative server would be a multiplayer game that relies on physics. If each client is allowed to run

its own physics simulation then small variations between clients could cause them to drift out of sync with each other gradually.

However, if the simulation of all physics objects is handled on a central server then the updated state can be sent back to the

clients, guaranteeing they are all consistent.

A potential disadvantage with authoritative servers is the time it takes for the messages to travel over the network. If the player

presses a control to move forward and it takes a tenth of a second for the response to return from the server then the delay will

be perceptible to the player. One solution to this is to use so-called client-side prediction. The essence of this technique is

that the client is allowed to update its own local version of the game state but it must be able to receive corrections from the

server's authoritative version where necessary. Typically, this should only be used for simple game actions and not significant

logical changes to game state. For example, it would be unwise to report to a player that an enemy has been killed only for the

server to override this decision.

Since client-side prediction is an advanced subject, we don't attempt to cover it in this guide but books and web resources are

available if you want to investigate it further.

An authoritative server has a greater processing overhead than a non-authoritative one. When the server is not required to

handle all changes to game state, a lot of this load can be distributed between the clients.

Non-Authoritative Server

A non-authoritative server does not control the outcome of every user input. The clients themselves process user input and

game logic locally, then send the result of any determined actions to the server. The server then synchronizes all actions with

the world state. This is easier to implement from a design perspective, as the server really just relays messages between the

clients and does no extra processing beyond what the clients do.

There is no need for any kind of prediction methods as the clients handle all physics and events themselves and relay what

happened to the server. They are the owners of their objects and are the only agents permitted to send local modifications of

those objects over the network.

Methods of Network Communication
Now that we've covered the basic architectures of networked games, we will explore the lower-levels of how clients and

servers can talk to each other.

There are two relevant methods: Remote Procedure Calls and State Synchronization. It is not uncommon to use both

methods at different points in any particular game.

Remote Procedure Calls

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

978 of 1131 12/16/2012 10:12 PM

Remote Procedure Calls (RPCs) are used to invoke functions on other computers across the network, although the "network"

can also mean the message channel between the client and server when they are both running on the same computer. Clients

can send RPCs to the server, and the server can send RPCs to one or more clients. Most commonly, they are used for actions

that happen infrequently. For example, if a client flips a switch to open a door, it can send an RPC to the server telling it that

the door has been opened. The server can then send another RPC to all clients, invoking their local functions to open that

same door. They are used for managing and executing individual events.

State Synchronization

State Synchronization is used to share data that is constantly changing. The best example of this would be a player's position

in an action game. The player is always moving, running around, jumping, etc. All the other players on the network, even the

ones that are not controlling this player locally, need to know where he is and what he is doing. By constantly relaying data

about this player's position, the game can accurately represent that position to the other players.

This kind of data is regularly and frequently sent across the network. Since this data is time-sensitive, and it requires time to

travel across the network from one machine to another, it is important to reduce the amount of data that is sent as far as

possible. In simpler terms, state synchronization naturally requires a lot of bandwidth, so you should aim to use as little

bandwidth as possible.

Connecting servers and clients together

Connecting servers and clients together can be a complex process. Machines can have private or public IP addresses and

they can have local or external firewalls blocking access. Unity networking aims to handle as many situations as possible but

there is no universal solution.

Private addresses are IP addresses which are not accessible directly from the internet (they are also called Network Address

Translation or NAT addresses after the method used to implement them). Simply explained, the private address goes through a

local router which translates the address into a public address. By doing this, many machines with private addresses can use

a single public IP address to communicate with the internet. This is fine until someone elsewhere on the internet wants to

initiate contact with one of the private addresses. The communication must happen via the public address of the router, which

must then pass the message on to the private address. A technique called NAT punchthrough uses a shared server known as

a facilitator to mediate communication in such a way that the private address can be reached from the public address. This

works by having the private address first contact the facilitator, which "punches" a hole through the local router. The facilitator

can now see the public IP address and port which the private address is using. Using this information, any machine on the

internet can now connect directly with the otherwise unreachable private address. (Note that the details of NAT punchthrough

are somewhat more complicated than this in practice.)

Public addresses are more straightforward. Here, the main issue is that connectivity can be blocked by an internal or external

firewall (an internal firewall is one that runs locally on the computer it is protecting). For an internal firewall, the user can be

asked to remove restrictions from a particular port so as to make the game server accessible. An external firewall, by contrast,

is not under the control of the users. Unity can attempt to use NAT punchthrough to get access through an external firewall but

this technique is not guaranteed to succeed. Our testing suggests that it generally works in practice but there doesn't appear

to be any formal research that confirms this finding.

The connectivity issues just mentioned affect servers and clients differently. Client requests involve only outgoing network

traffic which is relatively straightforward. If the client has a public address then this almost always works since outgoing traffic

is typically only blocked on corporate networks that impose severe access restrictions. If the client has a private address it can

connect to all servers except servers with private addresses which cannot do NAT punchthrough (more will be said about this

later). The server end is more complicated because the server needs to be able to accept incoming connections from unknown

sources. With a public address, the server needs to have the game port open to the internet (ie, not blocked by a firewall). or

else it cannot accept any connections from clients and is thus unusable. If the server has a private address it must be able to

do NAT punchthrough to allow connections and clients must also permit NAT punchthrough in order to connect to it.

Unity provides tools to test all these different connectivity situations. When it is established that a connection can be made,

there are two methods by which it can happen: direct connections (where a client needs to know the DNS name or IP address

of the server) and connections via the Master Server. The Master Server allows servers to advertise their presence to clients

which need not know anything about particular game servers beforehand.

Minimizing Network Bandwidth
When working with State Synchronization across multiple clients, you don't necessarily need to synchronize every single detail

in order to make objects appear synchronized. For example, when synchronizing a character avatar you only need to send its

position and rotation between clients. Even though the character itself is much more complex and might contain a deep

Transform hierarchy, data about the entire hierarchy does not need to be shared.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

979 of 1131 12/16/2012 10:12 PM

A lot of data in your game is effectively static, and clients need neither transfer it initially nor synchronize it. Using infrequent or

one-time RPC calls should be sufficient to make a lot of your functionality work. Take advantage of the data you know will exist

in every installation of your game and keep the client working by itself as much as possible. For example, you know that assets

like textures and meshes exist on all installations and they usually don't change, so they will never have to be synchronized.

This is a simple example but it should get you thinking about what data is absolutely critical to share from one client to another.

This is the only data that you should ever share.

It can be difficult to work out exactly what needs to be shared and what doesn't, especially if you have never made a network

game before. Bear in mind that you can use a single RPC call with a level name to make all clients load the entire specified

level and add their own networked elements automatically. Structuring your game to make each client as self-sufficient as

possible will result in reduced bandwidth.

Multiplayer Game Performance
The physical location and performance of the server itself can greatly affect the playability of a game running on it. Clients

which are located a continent away from the server may experience a great deal of lag. This is a physical limitation of the

internet and the only real solution is to arrange for the server to be as close as possible to the clients who will use it, or at least

on the same continent.

Extra Resources
We've collected the following links to additional resources about networking:-

http://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking

http://developer.valvesoftware.com/wiki/Lag_Compensation

http://developer.valvesoftware.com/wiki/Working_With_Prediction

http://www.gamasutra.com/resource_guide/20020916/lambright_01.htm
Page last updated: 2011-11-18

net-UnityNetworkElements

Unity's native networking supports everything discussed on the previous page. Server creation and client connection, sharing

data between connected clients, determining which player controls which objects, and punching through network configuration

variations are all supported out of the box. This page will walk you through the Unity-specific implementation of these

networking practices.

Creating a Server
Before you can begin playing a networked game, you have to determine the different computers you will be communicating

with. To do this, you have to create a server. This can be a machine that is also running the game or it can be a dedicated

machine that is not participating in the game. To create the server, you simply call Network.InitializeServer() from a script.

When you want to connect to an existing server as a client, you call Network.Connect() instead.

In general, you will find it very useful to familiarize yourself with the entire Network class.

Communicating using Network Views
The Network View is a Component that sends data across the network. Network Views make your GameObject capable of

sending data using RPC calls or State Synchronization. The way you use Network Views will determine how your game's

networking behaviors will work. Network Views have few options, but they are incredibly important for your networked game.

For more information on using Network Views, please read the Network View Guide page and Component Reference page.

Remote Procedure Calls
Remote Procedure Calls (RPCs) are functions declared in scripts that are attached to a GameObject that contains a Network

View. The Network View must point to the script which contains the RPC function. The RPC function can then be called from

any script within that GameObject.

For more information on using RPCs in Unity, please read the RPC Details page.

State Synchronization
State Synchronization is the continual sharing of data across all game clients. This way a player's position can be

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

980 of 1131 12/16/2012 10:12 PM

synchronized over all clients, so it seems it is controlled locally when data is actually being delivered over a network. To

synchronize state within a GameObject you just need to add a NetworkView to that object and tell it what to observe. The

observed data is then synchronized across all clients in the game.

For more information on using State Synchronization in Unity, please read the State Synchronization page.

Network.Instantiate()
Network.Instantiate() lets you instantiate a prefab on all clients in a natural and easy way. Essentially this is an Instantiate()

call, but it performs the instantiation on all clients.

Internally Network.Instantiate is simply a buffered RPC call which is executed on all clients (also locally). It allocates a

NetworkViewID and assigns it to the instantiated prefab which makes sure it synchronizes across all clients correctly.

For more information please read the Network Instantiate page.

NetworkLevelLoad()
Dealing with sharing data, state of client players, and loading levels can be a bit overwhelming. The Network Level Load page

contains a helpful example for managing this task.

Master Server
The Master Server helps you match games. When you start a server you connect to the master server, and it provides a list

of all the active servers.

The Master Server is a meeting place for servers and clients where servers are advertised and compatible clients can

connect to running games. This prevents the need for fiddling with IP addresses for all parties involved. It can even help users

host games without them needing to mess with their routers where, under normal circumstances, that would be required. It can

help clients bypass the server's firewall and get to private IP addresses which are normally not accessible through the public

internet. This is done with help from a facilitator which facilitates connection establishment.

For more information please read the Master Server page.

Minimizing Bandwidth
Using the minimum amount of bandwidth to make your game run correctly is essential. There are different methods for sending

data, different techniques for deciding what or when to send and other tricks at your disposal.

For tips and tricks to reduce bandwidth usage, please read the Minimizing Bandwith page.

Debugging Networked Games
Unity comes with several facilities to help you debug your Networked game.

The Network Manager can be used for logging all incoming and outgoing network traffic.1.

Using the Inspector and Hierarchy View effectively you can track object creation and inspect view id's etc.2.

You can launch Unity two times on the same machine, and open different projects in each. On Windows, this can be

done by just launching another Unity instance and opening the project from the project wizard. On Mac OS X, multiple

Unity instances can be opened from the terminal, and a -projectPath argument can be specified:

3.

 /Applications/Unity/Unity.app/Contents/MacOS/Unity -projectPath "/Users/MyUser/MyProjectFold

 /Applications/Unity/Unity.app/Contents/MacOS/Unity -projectPath "/Users/MyUser/MyOtherProjec

Make sure you make the player run in the background when debugging networking because, for example, if you have two

instances running at once, one of them doesn't have focus. This will break the networking loop and cause undesirable results.

You can enable this in Edit->Project Settings->Player in the editor or with Application.runInBackground

Page last updated: 2010-07-19

net-NetworkView

Network Views are the main component involved in sharing data across the network. They allow two kinds of network

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

981 of 1131 12/16/2012 10:12 PM

communication: State Synchronization and Remote Procedure Calls.

Network Views keep watch on particular objects to detect changes. These changes are then shared to the other clients on the

network to ensure the change of state is noted by all of them. This concept is known as state synchronization and you can

read about it further on the State Synchronization page.

There are some situations where you would not want the overhead of synchronizing state between clients, for example, when

sending out the position of a new object or respawned player. Since events like this are infrequent, it does not make sense to

synchronize the state of the involved objects. Instead, you can use a remote procedure call to tell the clients or server to

perform operations like this. More information about Remote Procedure Calls can be found on the RPC manual page.

Technical Details
A Network View is identified across the network by its NetworkViewID which is basically just a identifier which is negotiated to

be unique among the networked machines. It is represented as a 128 bit number but is automatically compressed down to 16

bits when transferred over the network if possible.

Each packet that arrives on the client side needs to be applied to a specific Network View as specified by the NetworkViewID.

Using this, Unity can find the right Network View, unpack the data and apply the incoming packet to the Network View's

observed object.

More details about using Network Views in the Editor can be found on the Network View Component Reference page.

If you use Network.Instantiate() to create your Networked objects, you do not need to worry about allocating Network Views

and assigning them yourself appropriately. It will all work automatically behind the scenes.

However, you can manually set the NetworkViewID values for each Network View by using Network.AllocateViewID. The

Scripting Reference documentation shows an example of how an object can be instantiated manually on every client with an

RPC function and then the NetworkViewID manually set with AllocateViewID.

Page last updated: 2011-11-22

net-RPCDetails

Remote Procedure Calls (RPCs) let you call functions on a remote machine. Invoking an RPC is similar to calling a normal

function and almost as easy but there are some important differences to understand.

An RPC call can have as many parameters as you like but the network bandwidth involved will increase with the

number and size of parameters. You should keep parameters to a minimum in order to get the best performance.

1.

Unlike a normal function call, an RPC needs an additional parameter to denote the recipients of the RPC request.

There are several possible RPC call modes to cover all common use cases. For example, you can easily invoke the

RPC function on all connected machines, on the server alone, on all clients but the one sending the RPC call or on a

specific client.

2.

RPC calls are usually used to execute some event on all clients in the game or pass event information specifically between two

parties, but you can be creative and use them however you like. For example, a server for a game which only starts after four

clients have connected could send an RPC call to all clients as soon as the fourth one connects, thus starting the game. A

client could send RPC calls to everyone to signal that he picked up an item. A server could send an RPC to a particular client

to initialize him right after he connects, for example, to give him his player number, spawn location, team color, etc. A client

could in turn send an RPC only to the server to specify his starting options, such as the color he prefers or the items he has

bought.

Using RPCs
A function must be marked as an RPC before it can be invoked remotely. This is done by prefixing the function in the script

with an RPC attribute:-

// All RPC calls need the @RPC attribute!

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

982 of 1131 12/16/2012 10:12 PM

@RPC
function PrintText (text : String)
{
 Debug.Log(text);
}

All network communication is handled by NetworkView components, so you must attach one to the object whose script

declares the RPC functions before they can be called.

Parameters
You can use the following variable types as parameters to RPCs:-

int

float

string

NetworkPlayer

NetworkViewID

Vector3

Quaternion

For example, the following code invokes an RPC function with a single string parameter:-

networkView.RPC ("PrintText", RPCMode.All, "Hello world");

The first parameter of RPC() is the name of the function to be invoked while the second determines the targets on which it will

be invoked. In this case we invoke the RPC call on everyone who is connected to the server (but the call will not be buffered to

wait for clients who connect later - see below for further details about buffering).

All parameters after the first two are the ones that will be passed to the RPC function and be sent across the network. In this

case, "Hello World" will be sent as a parameter and be passed as the text parameter in the PrintText function.

You can also access an extra internal parameter, a NetworkMessageInfo struct which holds additional information, such as

where the RPC call came from. This information will be passed automatically, so the PrintText function shown above will be

can be declared as:-

@RPC
function PrintText (text : String, info : NetworkMessageInfo)
{
 Debug.Log(text + " from " + info.sender);
}

...while being invoked the same way as before.

As mentioned above, a Network View must be attached to any GameObject which has a script containing RPC functions. If you

are using RPCs exclusively (ie, without state synchronisation) then the Network View's State Synchronization can be set to

Off.

RPC Buffer
RPC calls can also be buffered. Buffered RPC calls are stored up and executed in the order they were issued for each new

client that connects. This can be a useful way to ensure that a latecoming player gets all necessary information to start. A

common scenario is that every player who joins a game should first load a specific level. You could send the details of this

level to all connected players but also buffer it for any who join in the future. By doing this, you ensure that the new player

receives the level information just as if he had been present from the start.

You can also remove calls from the RPC buffer when necessary. Continuing the example above, the game may have moved on

from the starting level by the time a new player joins, so you could remove the original buffered RPC and send a new one to

request the new level.

Page last updated: 2011-11-18

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

983 of 1131 12/16/2012 10:12 PM

net-StateSynchronization

You can enable State Synchronization for a given Network View by choosing either Reliable Delta Compressed or

Unreliable from the State Synchronization drop-down. You must then choose what kind of data will be synchronized using

the Observed property.

Unity can synchronize Transform, Animation, Rigidbody and MonoBehaviour components.

Transforms are serialized by storing position, rotation and scale. Parenting information is not transferred over the network.

Animation serializes each running animation state, that is the time, weight, speed and enabled properties.

Rigidbody serializes position, rotation, velocity and angular velocity.

Scripts (MonoBehaviours) call the function OnSerializeNetworkView().

Reliability and bandwidth
Network Views currently support two reliability levels Reliable Delta Compressed and Unreliable.

Both have their advantages and disadvantages, and the specific details of the game will determine which is the best to use.

For additional information about minimizing bandwidth, please read the Minimizing Bandwidth page.

Reliable Delta Compressed

Reliable Delta Compressed mode will automatically compare the data that was last received by the client to the current

state. If no data has changed since the last update then no data will be sent. However, the data will be compared on a per

property basis. For example, if the Transform's position has changed but its rotation has not then only the position will be sent

across the network. Bandwidth is saved by transmitting only the changed data.

Unity will also ensure that every UDP packet arrives reliably by resending it until receipt is determined. This means that if a

packet is dropped, any packets sent later will not be applied until the dropped packet is re-sent and received. Until then, all

later packets will be kept waiting in a buffer.

Unreliable

In Unreliable mode, Unity will send packets without checking that they have been received. This means that it doesn't know

which information has been received and so it is not safe to send only the changed data - the whole state will be sent with

each update.

Deciding which method to use
The Network layer uses UDP, which is an unreliable, unordered protocol but it can used to send ordered packets reliably, just

like TCP does. To do this, Unity internally uses ACKs and NACKs to control packet transmission, ensuring no packets are

dropped. The downside to using reliable ordered packets is that if a packet is dropped or delayed, everything stops until that

packet has arrived safely. This can cause transmission delays where there is significant network lag.

Unreliable transmission is useful when you know that data will change every frame anyway. For example, in a racing game,

you can practically rely that the player's car is always moving, so the effects of a missed packet will soon be fixed by the next

one.

In general, you should use Unreliable sending where quick, frequent updates are more important than missed packets.

Conversely, when data doesn't change so frequently, you can use reliable delta compression to save bandwidth.

Prediction
When the server has full authority over the world state, the clients only change the game state according to updates they

receive from the server. One problem with this is that the delay introduced by waiting for the server to respond can affect

gameplay. For example, when a player presses a key to move forward, he won't actually move until the updated state is

received from the server. This delay depends on the latency of the connection so the worse the connection the less snappy

the control system becomes.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

984 of 1131 12/16/2012 10:12 PM

One possible solution to this is Client-side Prediction which means the client predicts the expected movement update from

the server by using approximately the same internal model. So the player responds immediately to input but the server sees its

position from the last update. When the state update finally arrives from the server, the client will compare what he predicted

with what actually happened. This might differ because the server might know more about the environment around the player,

the client just knows what he needs to know. Errors in prediction are corrected as they happen and if they are corrected

continuously then the result will smoother and less noticeable.

Dead reckoning or interpolation/extrapolation
It is possible to apply the basic principle of client-side prediction to the opponents of the player. Extrapolation is the process

of storing the last few known values of position, velocity and direction for an opponent and use these to predict where he

should be in the immediate future. When the next state update finally arrives with the correct position, the client state will be

updated with the exact information, which may make the character jump suddenly if the prediction was bad. In FPS games the

behavior of players can be very erratic so this kind of prediction has limited success. If the lag gets high enough the opponent

will jump severely as the prediction errors accumulate.

Interpolation can be used when packets get dropped on the way to the client. This would normally cause the NPC's

movement to pause and then jump to the newest position when the new packet finally arrives. By delaying the world state by

some set amount of time (like 100 ms) and then interpolating between the last known position and the new one, the movement

between these two points, where packets were dropped, will be smooth.

Page last updated: 2011-11-18

net-NetworkInstantiate

The Network.Instantiate function offers a straightforward way to instantiate a prefab on all clients, similar to the effect of

Object.Instantiate on a single client. The instantiating client is the one that controls the object (ie, the Input class is only

accessible from scripts running on the client instance) but changes will be reflected across the network.

The argument list for Network.Instantiate() is as follows:

static function Instantiate (prefab : Object, position : Vector3, rotation : Quaternion, group : int) : Object

As with Object.Instantiate, the first three parameters describe the prefab to be instantiated along with its desired position and

rotation. The group parameter allows you to define subgroups of objects to control the filtering of messages and can be set to

zero if filtering is not required (see the Communication Groups section below).

Technical Details
Behind the scenes, network instantiation is built around an RPC call which contains an identifier for the prefab along with the

position and other details. The RPC call is always buffered in the same manner as other RPC calls, so that instantiated objects

will appear on new clients when they connect. See the RPC page for further details about buffering.

Communication Groups
Communication groups can be used to select the clients that will receive particular messages. For example, two connected

players might be in separate areas of the game world and may never be able to meet. There is thus no reason to transfer

game state between the two player clients but you may still want to allow chat communication between them. In this case,

instantiation would need to be restricted for gameplay objects but not for the objects that implement the chat feature and so

they would be put in separate groups.

Page last updated: 2011-11-22

net-NetworkLevelLoad

Below is a simple example of a way to load a level in a multiplayer game. It makes sure no network messages are being

processed while the level is being loaded. It also makes sure no messages are sent, until everything is ready. Lastly, when the

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

985 of 1131 12/16/2012 10:12 PM

level is loaded it sends a message to all scripts so that they know the level is loaded and can react to that. The

SetLevelPrefix function helps with keeping unwanted networks updates out of a new loaded level. Unwanted updates might

be updates from the previous level for example. The example also uses groups to separate game data and level load

communication into groups. Group 0 is used for game data traffic and group 1 for level loading. Group 0 is blocked while the

level is being loaded but group 1 kept open, it could also ferry chat communication so that can stay open during level loading.

var supportedNetworkLevels : String[] = ["mylevel"];
var disconnectedLevel : String = "loader";
private var lastLevelPrefix = 0;

function Awake ()
{
 // Network level loading is done in a separate channel.
 DontDestroyOnLoad(this);
 networkView.group = 1;
 Application.LoadLevel(disconnectedLevel);
}

function OnGUI ()
{

if (Network.peerType != NetworkPeerType.Disconnected)
{

GUILayout.BeginArea(Rect(0, Screen.height - 30, Screen.width, 30));
GUILayout.BeginHorizontal();

for (var level in supportedNetworkLevels)
{

if (GUILayout.Button(level))
{

Network.RemoveRPCsInGroup(0);
Network.RemoveRPCsInGroup(1);
networkView.RPC("LoadLevel", RPCMode.AllBuffered, level, lastLevelPrefix + 1);

}
}
GUILayout.FlexibleSpace();
GUILayout.EndHorizontal();
GUILayout.EndArea();

}
}

@RPC
function LoadLevel (level : String, levelPrefix : int)
{

lastLevelPrefix = levelPrefix;

// There is no reason to send any more data over the network on the default channel,
// because we are about to load the level, thus all those objects will get deleted anyway
Network.SetSendingEnabled(0, false);

// We need to stop receiving because first the level must be loaded first.
// Once the level is loaded, rpc's and other state update attached to objects in the level are allowed to fire
Network.isMessageQueueRunning = false;

// All network views loaded from a level will get a prefix into their NetworkViewID.
// This will prevent old updates from clients leaking into a newly created scene.
Network.SetLevelPrefix(levelPrefix);
Application.LoadLevel(level);
yield;
yield;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

986 of 1131 12/16/2012 10:12 PM

// Allow receiving data again
Network.isMessageQueueRunning = true;
// Now the level has been loaded and we can start sending out data to clients
Network.SetSendingEnabled(0, true);

for (var go in FindObjectsOfType(GameObject))
go.SendMessage("OnNetworkLoadedLevel", SendMessageOptions.DontRequireReceiver);

}

function OnDisconnectedFromServer ()
{

Application.LoadLevel(disconnectedLevel);
}

@script RequireComponent(NetworkView)

Page last updated: 2009-07-24

net-MasterServer

The Master Server is a meeting place that puts game instances in touch with the player clients who want to connect to them. It

can also hide port numbers and IP addresses and perform other technical tasks that arise when setting up network

connections, such as firewall handling and NAT punchthrough.

Each individual running game instance provides a Game Type to the Master Server. When a player connects and queries the

Master Server for their matching Game Type, the server responds with the list of running games along with the number of

players in each and whether or not a password is needed to play. The two functions used to exchange this data are

MasterServer.RegisterHost() for the Server, and MasterServer.RequestHostList() for the player client.

When calling RegisterHost, you need to pass three arguments - gameTypeName (which is the previously mentioned Game

Type), gameName and comment - for the host being registered. RequestHostList takes as an argument the gameTypeName

of the hosts you are interested in connecting to. All the registered hosts of that type will then be returned to the requesting

client. This is an asynchronous operation and the complete list can be retrieved with PollHostList() after it has arrived in full.

The NAT punchthrough duty of the Master Server is actually handled by a separate process called the Facilitator but Unity's

Master Server runs both services in parallel.

The Game Type is an identifying name that should be unique for each game (although Unity does not offer any central

registration system to guarantee this). It makes sense to choose a distinctive name that is unlikely to be used by anyone else.

If there are several different versions of you game then you may need to warn a user that their client is not compatible with the

running server version. The version information can be passed in the comment field (this is actually binary data and so the

version can be passed in any desired form). The game name is simply the name of the particular game instance as supplied by

whoever set it up.

The comment field can be used in more advanced ways if the Master Server is suitably modified (see below for further

information on how to do this). For example, you could reserve the first ten bytes of the comment field for a password and then

extract the password in the Master Server when it receives the host update. It can then reject the host update if a password

check fails.

Registering a game
Before registering a game, it is important to enable or disable the NAT functionality depending on whether or not it is supported

by the host; you can do this with the useNat parameter of Network.InitializeServer.

A server might be started with code similar to this:-

function OnGUI() {

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

987 of 1131 12/16/2012 10:12 PM

if (GUILayout.Button ("Start Server"))
{

// Use NAT punchthrough if no public IP present
Network.InitializeServer(32, 25002, !Network.HavePublicAddress());
MasterServer.RegisterHost("MyUniqueGameType", "JohnDoes game", "l33t game for all");

}
}

Here we just decide if NAT punchthrough is needed by checking whether or not the machine has a public address. There is a

more sophisticated function available called Network.TestConnection which can tell you if the host machine can do NAT or not.

It also does connectivity testing for public IP addresses to see if a firewall is blocking the game port. Machines which have

public IP addresses always pass the NAT test but if the test fails then the host will not be able to connect to NAT clients. In

such a case, the user should be informed that port forwarding must be enabled for the game to work. Domestic broadband

connections will usually have a NAT address but will not be able to set up port forwarding (since they don't have a personal

public IP address). In these cases, if the NAT test fails, the user should be informed that running a server is inadvisable given

that only clients on the same local network will be able to connect.

If a host enables NAT functionality without needing it then it will still be accessible. However, clients which cannot do NAT

punchthrough might incorrectly think they cannot connect on the basis that the server has NAT enabled.

Connecting to a game
A HostData object is sent during host registrations or queries. It contains the following information about the host:-

booleanuseNat Indicates if the host uses NAT punchthrough.

String gameType The game type of the host.

String gameName The game name of the host.

int connectedPlayers The number of currently connected players/clients.

int playerLimit The maximum number of concurrent players/clients allowed.

String[] IP The internal IP address of the host. On a server with a public address the external and internal

addresses are the same. This field is defined as an array since all the IP addresses associated

with all the active interfaces of the machine need to be checked when connecting internally.

int port The port of the host.

booleanpasswordProtectedIndicates whether you need to supply a password to be able to connect to this host.

String comment Any comment which was set during host registration.

String guid The network GUID of the host. This is needed to connect using NAT punchthrough.

This information can be used by clients to see the connection capabilities of the hosts. When NAT is enabled you need to use

the GUID of the host when connecting. This is automatically handled for you when the HostData is retrieved as you connect.

The connection routine might look something like this:

function Awake() {
MasterServer.RequestHostList("MadBubbleSmashGame");

}

function OnGUI() {
var data : HostData[] = MasterServer.PollHostList();
// Go through all the hosts in the host list
for (var element in data)
{

GUILayout.BeginHorizontal();
var name = element.gameName + " " + element.connectedPlayers + " / " + element.playerLimit;
GUILayout.Label(name);
GUILayout.Space(5);
var hostInfo;
hostInfo = "[";
for (var host in element.ip)

hostInfo = hostInfo + host + ":" + element.port + " ";
hostInfo = hostInfo + "]";
GUILayout.Label(hostInfo);
GUILayout.Space(5);

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

988 of 1131 12/16/2012 10:12 PM

GUILayout.Label(element.comment);
GUILayout.Space(5);
GUILayout.FlexibleSpace();
if (GUILayout.Button("Connect"))
{

// Connect to HostData struct, internally the correct method is used (GUID when using NAT).
Network.Connect(element);

}
GUILayout.EndHorizontal();

}
}

This example prints out all of the relevant host information returned by the Master Server. Other useful data like ping

information or geographic location of hosts can be added to this.

NAT punchthrough
The availability of NAT punchthrough may determine whether or not a particular computer is suitable to use as a server. While

some clients might be able to connect, there are others that might have trouble connecting to any NAT server.

By default, NAT punchthrough is provided with the help of the Master Server but it need not be done this way. The Facilitator

is the process that is actually used for the NAT punchthrough service. If two machines are connected to the Facilitator then it

will appear as if they can both connect to each other as long as it uses the external IP and port. The Master Server is used to

provide this external IP and port information which is otherwise hard to determine. That is why the Master Server and

Facilitator are so tightly integrated. The Master Server and Facilitator have the same IP address by default, to change either

one use MasterServer.ipAddress, MasterServer.port, Network.natFacilitatorIP and Network.natFacilitatorPort

Advanced
Unity Technologies also has a fully deployed Master Server available for testing purposes and this is actually the server that

will be used by default. However, the source code is freely available for anyone to use and the server can be deployed on

Windows, Linux and Mac OS. In addition to simply building the project from source, there might be cases where you want to

modify the way in which the Master Server handles information and how it communicates. For example, you may be able to

optimize the handling of host data or limit the number of clients returned on the host list. Such changes will require

modifications to the source code; information about how to go about this can be found on the Master Server Build page.

Page last updated: 2011-11-22

net-MasterServerBuild

The source code for all the individual networking servers can be downloaded from the Unity website. This includes the

connection tester, facilitator, master server and proxy server.

All source packages include the RakNet 3.732 networking library which handles the basic networking functions and provides

plugins used by the networking servers.

The packages include three different types of project files, ready for compilation:

An Xcode 3.0 project for Mac OS X

A Makefile for Linux and Mac OS X

A Visual Studio 2008 solution

The Xcode and Visual Studio projects can just be opened, compiled and built. To build with the Makefile just run "make". It

should work with a standard compilation setup on Linux and Mac OS X, if you have gcc then it should work. On Linux you

might need to install the ncurses library.

Structure

The Master Server

The Master Server uses an internal database structure to keep track of host information.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

989 of 1131 12/16/2012 10:12 PM

Hosts send messages with the RUM_UPDATE_OR_ADD_ROW message identifier and all their host information embedded.

This is processed in the OnReceive() function in the LightweightDatabaseServer.cpp file. This is where all message initially

appear and therefore a good place to start if you want to trace how a message is processed. A table is created within the

database structure for each game type which is set when you use MasterServer.RegisterHost function. All game types are

grouped together in a table, if the table does not exist it is dynamically created in the CreateDefaultTable() function.

The host information data is modified by the master server. The IP and port of the game which is registering, as seen by the

master server, is injected into the host data. This way we can for sure detect the correct external IP and port in cases where

the host has a private address (NAT address). The IP and port in the host data sent by the game server is the private address

and port and this is stored for later use. If the master server detects that a client is requesting the host data for a game server

and the server has the same IP address then he uses the private address of the server instead of the external one. This is to

handle cases where the client and server are on the same local network, using the same router with NAT addresses. Thus

they will have the same external address and cannot connect to each other through it, they need to use the private addresses

and those will work in this case.

Clients send messages with the ID_DATABASE_QUERY_REQUEST message identifier and what game type they are looking

for. The table or host list is fetched from the database structure and sent to the client. If it isn't found and empty host list is sent.

All messages sent to the master server must contain version information which is checked in the CheckVersion() function. At

the moment each version of Unity will set a new master server version internally and this is checked here. So if the master

server communication routine will change at any point it will be able to detect older versions here and possibly refer to another

version of the master server (if at all needed) or modify the processing of that message to account for differences.

The Facilitator

The facilitator uses the NAT punchthrough plugin from RakNet directly with no modifications. This is essentially just a peer

listening on a port with the NAT punchthrough plugin loaded. When a server and a client with NAT addresses are both

connected to this peer, they will be able to perform NAT punchthrough to connect to each other. When the

Network.InitializeServer uses NAT, the connection is set up automatically for you.

Page last updated: 2011-02-04

net-MinimizingBandwidth

Since network communication is potentially slow compared to other aspects of a game, it is important to reduce it to a

minimum. It is therefore very important to consider how much data you are exchanging and how frequently the exchanges take

place.

How data is synchronized
The amount of network bandwidth used depends heavily on whether you use the Unreliable or the Reliable Delta

Compression mode to synchronize data (the mode is set from the Network View component).

In Unreliable mode, the whole of the object being synchronized will be transmitted on each iteration of the network update

loop. The frequency of this update is determined by the value of Network.sendRate, which is set to 15 updates per second by

default. Unreliable mode ensures frequent updates but any dropped or delayed packets will simply be ignored. This is often

the best synchronization mode to use when objects change state very frequently and the effect of a missed update is very

short-lived. However, you should bear in mind the amount of data that might be sent during each update. For example,

synchronizing a Transform involves transmitting nine float values (three Vector3s with three floats each), which equates to 36

Bytes per update. If the server is running with eight clients and using the default update frequency then it will receive 4,320

KBytes/s (8*36*15) or 34.6Kbits/s and transmit 30.2 KBytes/s (8*7*36*15) or 242Kbits/s. You can reduce the bandwidth

consumption considerably by lowering the frequency of updates, but the default value of 15 is about right for a game where the

action moves quickly.

In Reliable Delta Compressed mode, the data is guaranteed to be sent reliably and arrive in the right order. If packets are

lost then they get retransmitted and if they arrive out of order, they will be buffered until all packets in the sequence have

arrived. Although this ensures that transmitted data is received correctly, the waiting and retransmission tend to increase

bandwidth usage. However, the data is also delta compressed which means only the differences between the last state and

the current state are transmitted. If the state is exactly the same then nothing is sent. The benefit of delta compression thus

depends on how much the state changes and in which properties.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

990 of 1131 12/16/2012 10:12 PM

What data is synchronized
There is plenty of opportunity for creativity in designing the game so that the state appears to be the same on all clients even

though it may not be, strictly. An example of this is where animations are synchronized. If an Animation component is observed

by a Network View then its properties will be synchronized exactly, so the frames of animation will appear exactly the same on

all clients. Although this may be desirable in some cases, typically it will be enough for the character to be seen as walking,

running, jumping, etc. The animations can thus be crudely synchronized simply by sending an integer value to denote which

animation sequence to play. This will save a great deal of bandwidth compared to synchronizing the whole Animation

component.

When to synchronize data
It is often unnecessary to keep the game perfectly in sync on all clients, for example, in cases where the players are

temporarily in different areas of the game world where they won't encounter each other. This can reduce the bandwidth as well

as the load on the server since only the clients that can interact need to be kept in sync. This concept is sometimes referred to

as Relevant Sets (ie, there is a subset of the total game that is relevant to any particular client at any particular time).

Synchronizing clients according to their relevant sets can be handled with RPCs, since they can give greater control over the

destination of a state update.

Level loading

When loading levels, it is seldom necessary to worry about the bandwidth being used since each client can simply wait until all

the others have initialized the level to be played. Level loading can often involve transmitting even quite large data items (such

as images or audio data).

Page last updated: 2011-11-21

net-SocialAPI

Social API is Unity's point of access to social features, such as:

User profiles

Friends lists

Achievements

Statistics / Leaderboards

It provides a unified interface to different social back-ends, such as XBox Live or GameCenter, and is meant to be used

primarily by programmers on the game project.

The Social API is mainly an asynchronous API, and the typical way to use it is by making a function call and registering for a

callback to when that function completes. The asynchronous function may have side effects, such as populating certain state

variables in the API, and the callback could contain data from the server to be processed.

The Social class resides in the UnityEngine namespace and so is always available but the other Social API classes are kept in

their own namespace, UnityEngine.SocialPlatforms. Furthermore, implementations of the Social API are in a sub-namespace,

like SocialPlatforms.GameCenter.

Here is an example (JavaScript) of how one might use the Social API:

import UnityEngine.SocialPlatforms;

function Start () {
 // Authenticate and register a ProcessAuthentication callback
 // This call needs to be made before we can proceed to other calls in the Social API
 Social.localUser.Authenticate (ProcessAuthentication);
}

// This function gets called when Authenticate completes
// Note that if the operation is successful, Social.localUser will contain data from the server.
function ProcessAuthentication (success: boolean) {

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

991 of 1131 12/16/2012 10:12 PM

 if (success) {
 Debug.Log ("Authenticated, checking achievements");

 // Request loaded achievements, and register a callback for processing them
 Social.LoadAchievements (ProcessLoadedAchievements);
 }
 else
 Debug.Log ("Failed to authenticate");
}

// This function gets called when the LoadAchievement call completes
function ProcessLoadedAchievements (achievements: IAchievement[]) {
 if (achievements.Length == 0)
 Debug.Log ("Error: no achievements found");
 else
 Debug.Log ("Got " + achievements.Length + " achievements");

 // You can also call into the functions like this
 Social.ReportProgress ("Achievement01", 100.0, function(result) {
 if (result)
 Debug.Log ("Successfully reported achievement progress");
 else
 Debug.Log ("Failed to report achievement");
 });
}

Here is the same example using C#.

using UnityEngine;
using UnityEngine.SocialPlatforms;

public class SocialExample : MonoBehaviour {

 void Start () {
 // Authenticate and register a ProcessAuthentication callback
 // This call needs to be made before we can proceed to other calls in the Social API
 Social.localUser.Authenticate (ProcessAuthentication);
 }

 // This function gets called when Authenticate completes
 // Note that if the operation is successful, Social.localUser will contain data from the server.
 void ProcessAuthentication (bool success) {
 if (success) {
 Debug.Log ("Authenticated, checking achievements");

 // Request loaded achievements, and register a callback for processing them
 Social.LoadAchievements (ProcessLoadedAchievements);
 }
 else
 Debug.Log ("Failed to authenticate");
 }

 // This function gets called when the LoadAchievement call completes
 void ProcessLoadedAchievements (IAchievement[] achievements) {
 if (achievements.Length == 0)
 Debug.Log ("Error: no achievements found");
 else
 Debug.Log ("Got " + achievements.Length + " achievements");

 // You can also call into the functions like this

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

992 of 1131 12/16/2012 10:12 PM

 Social.ReportProgress ("Achievement01", 100.0, result => {
 if (result)
 Debug.Log ("Successfully reported achievement progress");
 else
 Debug.Log ("Failed to report achievement");
 });
 }
}

For more info on the Social API, check out the Social API Scripting Reference

Page last updated: 2012-01-25

Built-in Shader Guide

If you're looking for the best information for using Unity's built-in shaders, you've come to the right place. Unity includes more

than 40 built-in shaders, and of course you can write many more on your own! This guide will explain each family of the built-in

shaders, and go into detail for each specific shader. With this guide, you'll be able to make the most out of Unity's shaders, to

achieve the effect you're aiming for.

Using Shaders
Shaders in Unity are used through Materials, which essentially combine shader code with parameters like textures. An

in-depth explanation of the Shader/Material relationship can be read here.

Material properties will appear in the Inspector when either the Material itself or a GameObject that uses the Material is

selected. The Material Inspector looks like this:

Each Material will look a little different in the Inspector, depending on the specific shader it is using. The shader iself

determines what kind of properties will be available to adjust in the Inspector. Material inspector is described in detail in

Material reference page. Remember that a shader is implemented through a Material. So while the shader defines the

properties that will be shown in the Inspector, each Material actually contains the adjusted data from sliders, colors, and

textures. The most important thing to remember about this is that a single shader can be used in multiple Materials, but a

single Material cannot use multiple shaders.

Built-in Unity Shaders
Performance of Unity shaders

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

993 of 1131 12/16/2012 10:12 PM

Normal Shader Family

Vertex-Lit

Diffuse

Specular

Bumped Diffuse

Bumped Specular

Parallax Diffuse

Parallax Bumped Specular

Decal

Diffuse Detail

Transparent Shader Family

Transparent Vertex-Lit

Transparent Diffuse

Transparent Specular

Transparent Bumped Diffuse

Transparent Bumped Specular

Transparent Parallax Diffuse

Transparent Parallax Specular

Transparent Cutout Shader Family

Transparent Cutout Vertex-Lit

Transparent Cutout Diffuse

Transparent Cutout Specular

Transparent Cutout Bumped Diffuse

Transparent Cutout Bumped Specular

Self-Illuminated Shader Family

Self-Illuminated Vertex-Lit

Self-Illuminated Diffuse

Self-Illuminated Specular

Self-Illuminated Normal mapped Diffuse

Self-Illuminated Normal mapped Specular

Self-Illuminated Parallax Diffuse

Self-Illuminated Parallax Specular

Reflective Shader Family

Reflective Vertex-Lit

Reflective Diffuse

Reflective Specular

Reflective Bumped Diffuse

Reflective Bumped Specular

Reflective Parallax Diffuse

Reflective Parallax Specular

Reflective Normal Mapped Unlit

Reflective Normal mapped Vertex-lit
Page last updated: 2011-01-20

shader-Performance

There are a number of factors that can affect the overall performance of your game. This page will talk specifically about the

performance considerations for Built-in Shaders. Performance of a shader mostly depends on two things: shader itself and

which Rendering Path is used by the project or specific camera. For performance tips when writing your own shaders, see

ShaderLab Shader Performance page.

Rendering Paths and shader performance
From the rendering paths Unity supports, Deferred Lighting and Vertex Lit paths have the most predictable performance. In

Deferred lighting, each object is generally drawn twice, no matter what lights are affecting it. Similarly, in Vertex Lit each object

is generally drawn once. So then, the performance differences in shaders mostly depend on how many textures they use and

what calculations they do.

Shader Performance in Forward rendering path

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

994 of 1131 12/16/2012 10:12 PM

In Forward rendering path, performance of a shader depends on both the shader itself and the lights in the scene. The

following section explains the details. There are two basic categories of shaders from a performance perspective, Vertex-Lit,

and Pixel-Lit.

Vertex-Lit shaders in Forward rendering path are always cheaper than Pixel-Lit shaders. These shaders work by calculating

lighting based on the mesh vertices, using all lights at once. Because of this, no matter how many lights are shining on the

object, it will only have to be drawn once.

Pixel-Lit shaders calculate final lighting at each pixel that is drawn. Because of this, the object has to be drawn once to get

the ambient & main directional light, and once for each additional light that is shining on it. Thus the formula is N rendering

passes, where N is the final number of pixel lights shining on the object. This increases the load on the CPU to process and

send off commands to the graphics card, and on the graphics card to process the vertices and draw the pixels. The size of the

Pixel-lit object on the screen will also affect the speed at which it is drawn. The larger the object, the slower it will be drawn.

So pixel lit shaders come at performance cost, but that cost allows for some spectacular effects: shadows, normal-mapping,

good looking specular highlights and light cookies, just to name a few.

Remember that lights can be forced into a pixel ("important") or vertex/SH ("not important") mode. Any vertex lights shining on a

Pixel-Lit shader will be calculated based on the object's vertices or whole object, and will not add to the rendering cost or

visual effects that are associated with pixel lights.

General shader performance
Out of Built-in Shaders, they come roughly in this order of increasing complexity:

Unlit. This is just a texture, not affected by any lighting.

VertexLit.

Diffuse.

Normal mapped. This is a bit more expensive than Diffuse: it adds one more texture (normal map), and a couple of

shader instructions.

Specular. This adds specular highlight calculation.

Normal Mapped Specular. Again, this is a bit more expensive than Specular.

Parallax Normal mapped. This adds parallax normal-mapping calculation.

Parallax Normal Mapped Specular. This adds both parallax normal-mapping and specular highlight calculation.

Additionally, Unity has several simplified shaders targeted at mobile platforms, under "Mobile" category. These shaders work

on other platforms as well, so if you can live with their simplifications (e.g. approximate specular, no per-material color support

etc.), try using them!

Page last updated: 2011-01-26

shader-NormalFamily

These shaders are the basic shaders in Unity. They are not specialized in any way and should be suitable for most opaque

objects. They are not suitable if you want your object to be transparent, emitting light etc.

Vertex Lit

Assets needed:

One Base texture, no alpha channel required

Diffuse

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

995 of 1131 12/16/2012 10:12 PM

Assets needed:

One Base texture, no alpha channel required

Specular

Assets needed:

One Base texture with alpha channel for Specular Map

Normal mapped

Assets needed:

One Base texture, no alpha channel required

One Normal map

Normal mapped Specular

Assets needed:

One Base texture with alpha channel for Specular Map

One Normal map

Parallax

Assets needed:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

996 of 1131 12/16/2012 10:12 PM

One Base texture, no alpha channel required

One Normal map

One Height texture with Parallax Depth in the alpha channel

Parallax Specular

Assets needed:

One Base texture with alpha channel for Specular Map

One Normal map

One Height texture with Parallax Depth in the alpha channel

Decal

Assets needed:

One Base texture, no alpha channel required

One Decal texture with alpha channel for Decal transparency

Diffuse Detail

Assets needed:

One Base texture, no alpha channel required

One Detail grayscale texture; with 50% gray being neutral color
Page last updated: 2011-01-26

shader-NormalVertexLit

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

997 of 1131 12/16/2012 10:12 PM

Vertex-Lit Properties
This shader is Vertex-Lit, which is one of the simplest shaders. All lights shining on it are rendered in a single pass and

calculated at vertices only.

Because it is vertex-lit, it won't display any pixel-based rendering effects, such as light cookies, normal mapping, or shadows.

This shader is also much more sensitive to tesselation of the models. If you put a point light very close to a cube using this

shader, the light will only be calculated at the corners. Pixel-lit shaders are much more effective at creating a nice round

highlight, independent of tesselation. If that's an effect you want, you may consider using a pixel-lit shader or increase

tesselation of the objects instead.

Performance
Generally, this shader is very cheap to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-NormalDiffuse

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

998 of 1131 12/16/2012 10:12 PM

Diffuse Properties
Diffuse computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle between it and the

light decreases. The lighting depends only on the this angle, and does not change as the camera moves or rotates around.

Performance
Generally, this shader is cheap to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-NormalSpecular

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

999 of 1131 12/16/2012 10:12 PM

Specular Properties
Specular computes the same simple (Lambertian) lighting as Diffuse, plus a viewer dependent specular highlight. This is called

the Blinn-Phong lighting model. It has a specular highlight that is dependent on surface angle, light angle, and viewing angle.

The highlight is actually just a realtime-suitable way to simulate blurred reflection of the light source. The level of blur for the

highlight is controlled with the Shininess slider in the Inspector.

Additionally, the alpha channel of the main texture acts as a Specular Map (sometimes called "gloss map"), defining which

areas of the object are more reflective than others. Black areas of the alpha will be zero specular reflection, while white areas

will be full specular reflection. This is very useful when you want different areas of your object to reflect different levels of

specularity. For example, something like rusty metal would use low specularity, while polished metal would use high

specularity. Lipstick has higher specularity than skin, and skin has higher specularity than cotton clothes. A well-made

Specular Map can make a huge difference in impressing the player.

Performance
Generally, this shader is moderately expensive to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-NormalBumpedDiffuse

Normal Mapped Properties
Like a Diffuse shader, this computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle

between it and the light decreases. The lighting depends only on the this angle, and does not change as the camera moves or

rotates around.

Normal mapping simulates small surface details using a texture, instead of spending more polygons to actually carve out

details. It does not actually change the shape of the object, but uses a special texture called a Normal Map to achieve this

effect. In the normal map, each pixel's color value represents the angle of the surface normal. Then by using this value instead

of the one from geometry, lighting is computed. The normal map effectively overrides the mesh's geometry when calculating

lighting of the object.

Creating Normal maps

You can import a regular grayscale image and convert it to a Normal Map from within Unity. To learn how to do this, please

read the Normal map FAQ page.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1000 of 1131 12/16/2012 10:12 PM

Technical Details

The Normal Map is a tangent space type of normal map. Tangent space is the space that "follows the surface" of the model

geometry. In this space, Z always points away from the surface. Tangent space Normal Maps are a bit more expensive than

the other "object space" type Normal Maps, but have some advantages:

It's possible to use them on deforming models - the bumps will remain on the deforming surface and will just work.1.

It's possible to reuse parts of the normal map on different areas of a model; or use them on different models.2.

Diffuse Properties
Diffuse computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle between it and the

light decreases. The lighting depends only on the this angle, and does not change as the camera moves or rotates around.

Performance
Generally, this shader is cheap to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-NormalBumpedSpecular

Normal Mapped Properties
Like a Diffuse shader, this computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle

between it and the light decreases. The lighting depends only on the this angle, and does not change as the camera moves or

rotates around.

Normal mapping simulates small surface details using a texture, instead of spending more polygons to actually carve out

details. It does not actually change the shape of the object, but uses a special texture called a Normal Map to achieve this

effect. In the normal map, each pixel's color value represents the angle of the surface normal. Then by using this value instead

of the one from geometry, lighting is computed. The normal map effectively overrides the mesh's geometry when calculating

lighting of the object.

Creating Normal maps

You can import a regular grayscale image and convert it to a Normal Map from within Unity. To learn how to do this, please

read the Normal map FAQ page.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1001 of 1131 12/16/2012 10:12 PM

Technical Details

The Normal Map is a tangent space type of normal map. Tangent space is the space that "follows the surface" of the model

geometry. In this space, Z always points away from the surface. Tangent space Normal Maps are a bit more expensive than

the other "object space" type Normal Maps, but have some advantages:

It's possible to use them on deforming models - the bumps will remain on the deforming surface and will just work.1.

It's possible to reuse parts of the normal map on different areas of a model; or use them on different models.2.

Specular Properties
Specular computes the same simple (Lambertian) lighting as Diffuse, plus a viewer dependent specular highlight. This is called

the Blinn-Phong lighting model. It has a specular highlight that is dependent on surface angle, light angle, and viewing angle.

The highlight is actually just a realtime-suitable way to simulate blurred reflection of the light source. The level of blur for the

highlight is controlled with the Shininess slider in the Inspector.

Additionally, the alpha channel of the main texture acts as a Specular Map (sometimes called "gloss map"), defining which

areas of the object are more reflective than others. Black areas of the alpha will be zero specular reflection, while white areas

will be full specular reflection. This is very useful when you want different areas of your object to reflect different levels of

specularity. For example, something like rusty metal would use low specularity, while polished metal would use high

specularity. Lipstick has higher specularity than skin, and skin has higher specularity than cotton clothes. A well-made

Specular Map can make a huge difference in impressing the player.

Performance
Generally, this shader is moderately expensive to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-NormalParallaxDiffuse

Parallax Normal mapped Properties
Parallax Normal mapped is the same as regular Normal mapped, but with a better simulation of "depth". The extra depth

effect is achieved through the use of a Height Map. The Height Map is contained in the alpha channel of the Normal map. In

the alpha, black is zero depth and white is full depth. This is most often used in bricks/stones to better display the cracks

between them.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1002 of 1131 12/16/2012 10:12 PM

The Parallax mapping technique is pretty simple, so it can have artifacts and unusual effects. Specifically, very steep height

transitions in the Height Map should be avoided. Adjusting the Height value in the Inspector can also cause the object to

become distorted in an odd, unrealistic way. For this reason, it is recommended that you use gradual Height Map transitions or

keep the Height slider toward the shallow end.

Diffuse Properties
Diffuse computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle between it and the

light decreases. The lighting depends only on the this angle, and does not change as the camera moves or rotates around.

Performance
Generally, this shader is on the more expensive rendering side. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-NormalParallaxSpecular

Parallax Normal mapped Properties
Parallax Normal mapped is the same as regular Normal mapped, but with a better simulation of "depth". The extra depth

effect is achieved through the use of a Height Map. The Height Map is contained in the alpha channel of the Normal map. In

the alpha, black is zero depth and white is full depth. This is most often used in bricks/stones to better display the cracks

between them.

The Parallax mapping technique is pretty simple, so it can have artifacts and unusual effects. Specifically, very steep height

transitions in the Height Map should be avoided. Adjusting the Height value in the Inspector can also cause the object to

become distorted in an odd, unrealistic way. For this reason, it is recommended that you use gradual Height Map transitions or

keep the Height slider toward the shallow end.

Specular Properties
Specular computes the same simple (Lambertian) lighting as Diffuse, plus a viewer dependent specular highlight. This is called

the Blinn-Phong lighting model. It has a specular highlight that is dependent on surface angle, light angle, and viewing angle.

The highlight is actually just a realtime-suitable way to simulate blurred reflection of the light source. The level of blur for the

highlight is controlled with the Shininess slider in the Inspector.

Additionally, the alpha channel of the main texture acts as a Specular Map (sometimes called "gloss map"), defining which

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1003 of 1131 12/16/2012 10:12 PM

areas of the object are more reflective than others. Black areas of the alpha will be zero specular reflection, while white areas

will be full specular reflection. This is very useful when you want different areas of your object to reflect different levels of

specularity. For example, something like rusty metal would use low specularity, while polished metal would use high

specularity. Lipstick has higher specularity than skin, and skin has higher specularity than cotton clothes. A well-made

Specular Map can make a huge difference in impressing the player.

Performance
Generally, this shader is on the more expensive rendering side. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-NormalDecal

Decal Properties
This shader is a variation of the VertexLit shader. All lights that shine on it will be rendered as vertex lights by this shader. In

addition to the main texture, this shader makes use of a second texture for additional details. The second "Decal" texture uses

an alpha channel to determine visible areas of the main texture. The decal texture should be supplemental to the main texture.

For example, if you have a brick wall, you can tile the brick texture as the main texture, and use the decal texture with alpha

channel to draw graffiti at different places on the wall.

Performance
This shader is approximately equivalent to the VertexLit shader. It is marginally more expensive due to the second decal

texture, but will not have a noticeable impact.

Page last updated: 2007-09-15

shader-NormalDiffuseDetail

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1004 of 1131 12/16/2012 10:12 PM

Diffuse Detail Properties
This shader is a version of the regular Diffuse shader with additional data. It allows you to define a second "Detail" texture that

will gradually appear as the camera gets closer to it. It can be used on terrain, for example. You can use a base low-resolution

texture and stretch it over the entire terrain. When the camera gets close the low-resolution texture will get blurry, and we don't

want that. To avoid this effect, create a generic Detail texture that will be tiled over the terrain. This way, when the camera gets

close, the additional details appear and the blurry effect is avoided.

The Detail texture is put "on top" of the base texture. Darker colors in the detail texture will darken the main texture and lighter

colors will brighten it. Detail texture are usually gray-ish. For more information on effectively creating Detail textures, please

view this page.

Performance
This shader is pixel-lit, and approximately equivalent to the Diffuse shader. It is marginally more expensive due to additional

texture.

Page last updated: 2007-10-07

shader-TransparentFamily

The Transparent shaders are used for fully- or semi-transparent objects. Using the alpha channel of the Base texture, you can

determine areas of the object which can be more or less transparent than others. This can create a great effect for glass, HUD

interfaces, or sci-fi effects.

Transparent Vertex-Lit

Assets needed:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1005 of 1131 12/16/2012 10:12 PM

One Base texture with alpha channel for Transparency Map

» More details

Transparent Diffuse

Assets needed:

One Base texture with alpha channel for Transparency Map

» More details

Transparent Specular

Assets needed:

One Base texture with alpha channel for combined Transparency Map/Specular Map

Note: One limitation of this shader is that the Base texture's alpha channel doubles as a Specular Map for the Specular

shaders in this family.

» More details

Transparent Normal mapped

Assets needed:

One Base texture with alpha channel for Transparency Map

One Normal map normal map, no alpha channel required

» More details

Transparent Normal mapped Specular

Assets needed:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1006 of 1131 12/16/2012 10:12 PM

One Base texture with alpha channel for combined Transparency Map/Specular Map

One Normal map normal map, no alpha channel required

Note: One limitation of this shader is that the Base texture's alpha channel doubles as a Specular Map for the Specular

shaders in this family.

» More details

Transparent Parallax

Assets needed:

One Base texture with alpha channel for Transparency Map

One Normal map normal map with alpha channel for Parallax Depth

» More details

Transparent Parallax Specular

Assets needed:

One Base texture with alpha channel for combined Transparency Map/Specular Map

One Normal map normal map with alpha channel for Parallax Depth

Note: One limitation of this shader is that the Base texture's alpha channel doubles as a Specular Map for the Specular

shaders in this family.

» More details

Page last updated: 2010-07-13

shader-TransVertexLit

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1007 of 1131 12/16/2012 10:12 PM

Transparent Properties
This shader can make mesh geometry partially or fully transparent by reading the alpha channel of the main texture. In the

alpha, 0 (black) is completely transparent while 255 (white) is completely opaque. If your main texture does not have an alpha

channel, the object will appear completely opaque.

Using transparent objects in your game can be tricky, as there are traditional graphical programming problems that can present

sorting issues in your game. For example, if you see odd results when looking through two windows at once, you're

experiencing the classical problem with using transparency. The general rule is to be aware that there are some cases in

which one transparent object may be drawn in front of another in an unusual way, especially if the objects are intersecting,

enclose each other or are of very different sizes. For this reason, you should use transparent objects if you need them, and try

not to let them become excessive. You should also make your designer(s) aware that such sorting problems can occur, and

have them prepare to change some design to work around these issues.

Vertex-Lit Properties
This shader is Vertex-Lit, which is one of the simplest shaders. All lights shining on it are rendered in a single pass and

calculated at vertices only.

Because it is vertex-lit, it won't display any pixel-based rendering effects, such as light cookies, normal mapping, or shadows.

This shader is also much more sensitive to tesselation of the models. If you put a point light very close to a cube using this

shader, the light will only be calculated at the corners. Pixel-lit shaders are much more effective at creating a nice round

highlight, independent of tesselation. If that's an effect you want, you may consider using a pixel-lit shader or increase

tesselation of the objects instead.

Performance
Generally, this shader is very cheap to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-TransDiffuse

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1008 of 1131 12/16/2012 10:12 PM

Transparent Properties
This shader can make mesh geometry partially or fully transparent by reading the alpha channel of the main texture. In the

alpha, 0 (black) is completely transparent while 255 (white) is completely opaque. If your main texture does not have an alpha

channel, the object will appear completely opaque.

Using transparent objects in your game can be tricky, as there are traditional graphical programming problems that can present

sorting issues in your game. For example, if you see odd results when looking through two windows at once, you're

experiencing the classical problem with using transparency. The general rule is to be aware that there are some cases in

which one transparent object may be drawn in front of another in an unusual way, especially if the objects are intersecting,

enclose each other or are of very different sizes. For this reason, you should use transparent objects if you need them, and try

not to let them become excessive. You should also make your designer(s) aware that such sorting problems can occur, and

have them prepare to change some design to work around these issues.

Diffuse Properties
Diffuse computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle between it and the

light decreases. The lighting depends only on the this angle, and does not change as the camera moves or rotates around.

Performance
Generally, this shader is cheap to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-TransSpecular

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1009 of 1131 12/16/2012 10:12 PM

One consideration for this shader is that the Base texture's alpha channel defines both the Transparent areas as well as the

Specular Map.

Transparent Properties
This shader can make mesh geometry partially or fully transparent by reading the alpha channel of the main texture. In the

alpha, 0 (black) is completely transparent while 255 (white) is completely opaque. If your main texture does not have an alpha

channel, the object will appear completely opaque.

Using transparent objects in your game can be tricky, as there are traditional graphical programming problems that can present

sorting issues in your game. For example, if you see odd results when looking through two windows at once, you're

experiencing the classical problem with using transparency. The general rule is to be aware that there are some cases in

which one transparent object may be drawn in front of another in an unusual way, especially if the objects are intersecting,

enclose each other or are of very different sizes. For this reason, you should use transparent objects if you need them, and try

not to let them become excessive. You should also make your designer(s) aware that such sorting problems can occur, and

have them prepare to change some design to work around these issues.

Specular Properties
Specular computes the same simple (Lambertian) lighting as Diffuse, plus a viewer dependent specular highlight. This is called

the Blinn-Phong lighting model. It has a specular highlight that is dependent on surface angle, light angle, and viewing angle.

The highlight is actually just a realtime-suitable way to simulate blurred reflection of the light source. The level of blur for the

highlight is controlled with the Shininess slider in the Inspector.

Additionally, the alpha channel of the main texture acts as a Specular Map (sometimes called "gloss map"), defining which

areas of the object are more reflective than others. Black areas of the alpha will be zero specular reflection, while white areas

will be full specular reflection. This is very useful when you want different areas of your object to reflect different levels of

specularity. For example, something like rusty metal would use low specularity, while polished metal would use high

specularity. Lipstick has higher specularity than skin, and skin has higher specularity than cotton clothes. A well-made

Specular Map can make a huge difference in impressing the player.

Performance
Generally, this shader is moderately expensive to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1010 of 1131 12/16/2012 10:12 PM

shader-TransBumped Diffuse

Transparent Properties
This shader can make mesh geometry partially or fully transparent by reading the alpha channel of the main texture. In the

alpha, 0 (black) is completely transparent while 255 (white) is completely opaque. If your main texture does not have an alpha

channel, the object will appear completely opaque.

Using transparent objects in your game can be tricky, as there are traditional graphical programming problems that can present

sorting issues in your game. For example, if you see odd results when looking through two windows at once, you're

experiencing the classical problem with using transparency. The general rule is to be aware that there are some cases in

which one transparent object may be drawn in front of another in an unusual way, especially if the objects are intersecting,

enclose each other or are of very different sizes. For this reason, you should use transparent objects if you need them, and try

not to let them become excessive. You should also make your designer(s) aware that such sorting problems can occur, and

have them prepare to change some design to work around these issues.

Normal Mapped Properties
Like a Diffuse shader, this computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle

between it and the light decreases. The lighting depends only on the this angle, and does not change as the camera moves or

rotates around.

Normal mapping simulates small surface details using a texture, instead of spending more polygons to actually carve out

details. It does not actually change the shape of the object, but uses a special texture called a Normal Map to achieve this

effect. In the normal map, each pixel's color value represents the angle of the surface normal. Then by using this value instead

of the one from geometry, lighting is computed. The normal map effectively overrides the mesh's geometry when calculating

lighting of the object.

Creating Normal maps

You can import a regular grayscale image and convert it to a Normal Map from within Unity. To learn how to do this, please

read the Normal map FAQ page.

Technical Details

The Normal Map is a tangent space type of normal map. Tangent space is the space that "follows the surface" of the model

geometry. In this space, Z always points away from the surface. Tangent space Normal Maps are a bit more expensive than

the other "object space" type Normal Maps, but have some advantages:

It's possible to use them on deforming models - the bumps will remain on the deforming surface and will just work.1.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1011 of 1131 12/16/2012 10:12 PM

It's possible to reuse parts of the normal map on different areas of a model; or use them on different models.2.

Diffuse Properties
Diffuse computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle between it and the

light decreases. The lighting depends only on the this angle, and does not change as the camera moves or rotates around.

Performance
Generally, this shader is cheap to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-TransBumped Specular

One consideration for this shader is that the Base texture's alpha channel defines both the Transparent areas as well as the

Specular Map.

Transparent Properties
This shader can make mesh geometry partially or fully transparent by reading the alpha channel of the main texture. In the

alpha, 0 (black) is completely transparent while 255 (white) is completely opaque. If your main texture does not have an alpha

channel, the object will appear completely opaque.

Using transparent objects in your game can be tricky, as there are traditional graphical programming problems that can present

sorting issues in your game. For example, if you see odd results when looking through two windows at once, you're

experiencing the classical problem with using transparency. The general rule is to be aware that there are some cases in

which one transparent object may be drawn in front of another in an unusual way, especially if the objects are intersecting,

enclose each other or are of very different sizes. For this reason, you should use transparent objects if you need them, and try

not to let them become excessive. You should also make your designer(s) aware that such sorting problems can occur, and

have them prepare to change some design to work around these issues.

Normal Mapped Properties
Like a Diffuse shader, this computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle

between it and the light decreases. The lighting depends only on the this angle, and does not change as the camera moves or

rotates around.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1012 of 1131 12/16/2012 10:12 PM

Normal mapping simulates small surface details using a texture, instead of spending more polygons to actually carve out

details. It does not actually change the shape of the object, but uses a special texture called a Normal Map to achieve this

effect. In the normal map, each pixel's color value represents the angle of the surface normal. Then by using this value instead

of the one from geometry, lighting is computed. The normal map effectively overrides the mesh's geometry when calculating

lighting of the object.

Creating Normal maps

You can import a regular grayscale image and convert it to a Normal Map from within Unity. To learn how to do this, please

read the Normal map FAQ page.

Technical Details

The Normal Map is a tangent space type of normal map. Tangent space is the space that "follows the surface" of the model

geometry. In this space, Z always points away from the surface. Tangent space Normal Maps are a bit more expensive than

the other "object space" type Normal Maps, but have some advantages:

It's possible to use them on deforming models - the bumps will remain on the deforming surface and will just work.1.

It's possible to reuse parts of the normal map on different areas of a model; or use them on different models.2.

Specular Properties
Specular computes the same simple (Lambertian) lighting as Diffuse, plus a viewer dependent specular highlight. This is called

the Blinn-Phong lighting model. It has a specular highlight that is dependent on surface angle, light angle, and viewing angle.

The highlight is actually just a realtime-suitable way to simulate blurred reflection of the light source. The level of blur for the

highlight is controlled with the Shininess slider in the Inspector.

Additionally, the alpha channel of the main texture acts as a Specular Map (sometimes called "gloss map"), defining which

areas of the object are more reflective than others. Black areas of the alpha will be zero specular reflection, while white areas

will be full specular reflection. This is very useful when you want different areas of your object to reflect different levels of

specularity. For example, something like rusty metal would use low specularity, while polished metal would use high

specularity. Lipstick has higher specularity than skin, and skin has higher specularity than cotton clothes. A well-made

Specular Map can make a huge difference in impressing the player.

Performance
Generally, this shader is moderately expensive to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-TransParallax Diffuse

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1013 of 1131 12/16/2012 10:12 PM

Transparent Properties
This shader can make mesh geometry partially or fully transparent by reading the alpha channel of the main texture. In the

alpha, 0 (black) is completely transparent while 255 (white) is completely opaque. If your main texture does not have an alpha

channel, the object will appear completely opaque.

Using transparent objects in your game can be tricky, as there are traditional graphical programming problems that can present

sorting issues in your game. For example, if you see odd results when looking through two windows at once, you're

experiencing the classical problem with using transparency. The general rule is to be aware that there are some cases in

which one transparent object may be drawn in front of another in an unusual way, especially if the objects are intersecting,

enclose each other or are of very different sizes. For this reason, you should use transparent objects if you need them, and try

not to let them become excessive. You should also make your designer(s) aware that such sorting problems can occur, and

have them prepare to change some design to work around these issues.

Parallax Normal mapped Properties
Parallax Normal mapped is the same as regular Normal mapped, but with a better simulation of "depth". The extra depth

effect is achieved through the use of a Height Map. The Height Map is contained in the alpha channel of the Normal map. In

the alpha, black is zero depth and white is full depth. This is most often used in bricks/stones to better display the cracks

between them.

The Parallax mapping technique is pretty simple, so it can have artifacts and unusual effects. Specifically, very steep height

transitions in the Height Map should be avoided. Adjusting the Height value in the Inspector can also cause the object to

become distorted in an odd, unrealistic way. For this reason, it is recommended that you use gradual Height Map transitions or

keep the Height slider toward the shallow end.

Diffuse Properties
Diffuse computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle between it and the

light decreases. The lighting depends only on the this angle, and does not change as the camera moves or rotates around.

Performance
Generally, this shader is on the more expensive rendering side. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1014 of 1131 12/16/2012 10:12 PM

shader-TransParallax Specular

One consideration for this shader is that the Base texture's alpha channel defines both the Transparent areas as well as the

Specular Map.

Transparent Properties
This shader can make mesh geometry partially or fully transparent by reading the alpha channel of the main texture. In the

alpha, 0 (black) is completely transparent while 255 (white) is completely opaque. If your main texture does not have an alpha

channel, the object will appear completely opaque.

Using transparent objects in your game can be tricky, as there are traditional graphical programming problems that can present

sorting issues in your game. For example, if you see odd results when looking through two windows at once, you're

experiencing the classical problem with using transparency. The general rule is to be aware that there are some cases in

which one transparent object may be drawn in front of another in an unusual way, especially if the objects are intersecting,

enclose each other or are of very different sizes. For this reason, you should use transparent objects if you need them, and try

not to let them become excessive. You should also make your designer(s) aware that such sorting problems can occur, and

have them prepare to change some design to work around these issues.

Parallax Normal mapped Properties
Parallax Normal mapped is the same as regular Normal mapped, but with a better simulation of "depth". The extra depth

effect is achieved through the use of a Height Map. The Height Map is contained in the alpha channel of the Normal map. In

the alpha, black is zero depth and white is full depth. This is most often used in bricks/stones to better display the cracks

between them.

The Parallax mapping technique is pretty simple, so it can have artifacts and unusual effects. Specifically, very steep height

transitions in the Height Map should be avoided. Adjusting the Height value in the Inspector can also cause the object to

become distorted in an odd, unrealistic way. For this reason, it is recommended that you use gradual Height Map transitions or

keep the Height slider toward the shallow end.

Specular Properties
Specular computes the same simple (Lambertian) lighting as Diffuse, plus a viewer dependent specular highlight. This is called

the Blinn-Phong lighting model. It has a specular highlight that is dependent on surface angle, light angle, and viewing angle.

The highlight is actually just a realtime-suitable way to simulate blurred reflection of the light source. The level of blur for the

highlight is controlled with the Shininess slider in the Inspector.

Additionally, the alpha channel of the main texture acts as a Specular Map (sometimes called "gloss map"), defining which

areas of the object are more reflective than others. Black areas of the alpha will be zero specular reflection, while white areas

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1015 of 1131 12/16/2012 10:12 PM

will be full specular reflection. This is very useful when you want different areas of your object to reflect different levels of

specularity. For example, something like rusty metal would use low specularity, while polished metal would use high

specularity. Lipstick has higher specularity than skin, and skin has higher specularity than cotton clothes. A well-made

Specular Map can make a huge difference in impressing the player.

Performance
Generally, this shader is on the more expensive rendering side. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-TransparentCutoutFamily

The Transparent Cutout shaders are used for objects that have fully opaque and fully transparent parts (no partial

transparency). Things like chain fences, trees, grass, etc.

Transparent Cutout Vertex-Lit

Assets needed:

One Base texture with alpha channel for Transparency Map

» More details

Transparent Cutout Diffuse

Assets needed:

One Base texture with alpha channel for Transparency Map

» More details

Transparent Cutout Specular

Assets needed:

One Base texture with alpha channel for combined Transparency Map/Specular Map

Note: One limitation of this shader is that the Base texture's alpha channel doubles as a Specular Map for the Specular

shaders in this family.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1016 of 1131 12/16/2012 10:12 PM

» More details

Transparent Cutout Bumped

Assets needed:

One Base texture with alpha channel for Transparency Map

One Normal map normal map, no alpha channel required

» More details

Transparent Cutout Bumped Specular

Assets needed:

One Base texture with alpha channel for combined Transparency Map/Specular Map

One Normal map normal map, no alpha channel required

Note: One limitation of this shader is that the Base texture's alpha channel doubles as a Specular Map for the Specular

shaders in this family.

» More details

Page last updated: 2010-07-13

shader-TransCutVertexLit

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1017 of 1131 12/16/2012 10:12 PM

Transparent Cutout Properties
Cutout shader is an alternative way of displaying transparent objects. Differences between Cutout and regular Transparent

shaders are:

This shader cannot have partially transparent areas. Everything will be either fully opaque or fully transparent.

Objects using this shader can cast and receive shadows!

The graphical sorting problems normally associated with Transparent shaders do not occur when using this shader.

This shader uses an alpha channel contained in the Base Texture to determine the transparent areas. If the alpha contains a

blend between transparent and opaque areas, you can manually determine the cutoff point for the which areas will be shown.

You change this cutoff by adjusting the Alpha Cutoff slider.

Vertex-Lit Properties
This shader is Vertex-Lit, which is one of the simplest shaders. All lights shining on it are rendered in a single pass and

calculated at vertices only.

Because it is vertex-lit, it won't display any pixel-based rendering effects, such as light cookies, normal mapping, or shadows.

This shader is also much more sensitive to tesselation of the models. If you put a point light very close to a cube using this

shader, the light will only be calculated at the corners. Pixel-lit shaders are much more effective at creating a nice round

highlight, independent of tesselation. If that's an effect you want, you may consider using a pixel-lit shader or increase

tesselation of the objects instead.

Performance
Generally, this shader is very cheap to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-18

shader-TransCutDiffuse

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1018 of 1131 12/16/2012 10:12 PM

Transparent Cutout Properties
Cutout shader is an alternative way of displaying transparent objects. Differences between Cutout and regular Transparent

shaders are:

This shader cannot have partially transparent areas. Everything will be either fully opaque or fully transparent.

Objects using this shader can cast and receive shadows!

The graphical sorting problems normally associated with Transparent shaders do not occur when using this shader.

This shader uses an alpha channel contained in the Base Texture to determine the transparent areas. If the alpha contains a

blend between transparent and opaque areas, you can manually determine the cutoff point for the which areas will be shown.

You change this cutoff by adjusting the Alpha Cutoff slider.

Diffuse Properties
Diffuse computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle between it and the

light decreases. The lighting depends only on the this angle, and does not change as the camera moves or rotates around.

Performance
Generally, this shader is cheap to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-18

shader-TransCutSpecular

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1019 of 1131 12/16/2012 10:12 PM

One consideration for this shader is that the Base texture's alpha channel defines both the Transparent areas as well as the

Specular Map.

Transparent Cutout Properties
Cutout shader is an alternative way of displaying transparent objects. Differences between Cutout and regular Transparent

shaders are:

This shader cannot have partially transparent areas. Everything will be either fully opaque or fully transparent.

Objects using this shader can cast and receive shadows!

The graphical sorting problems normally associated with Transparent shaders do not occur when using this shader.

This shader uses an alpha channel contained in the Base Texture to determine the transparent areas. If the alpha contains a

blend between transparent and opaque areas, you can manually determine the cutoff point for the which areas will be shown.

You change this cutoff by adjusting the Alpha Cutoff slider.

Specular Properties
Specular computes the same simple (Lambertian) lighting as Diffuse, plus a viewer dependent specular highlight. This is called

the Blinn-Phong lighting model. It has a specular highlight that is dependent on surface angle, light angle, and viewing angle.

The highlight is actually just a realtime-suitable way to simulate blurred reflection of the light source. The level of blur for the

highlight is controlled with the Shininess slider in the Inspector.

Additionally, the alpha channel of the main texture acts as a Specular Map (sometimes called "gloss map"), defining which

areas of the object are more reflective than others. Black areas of the alpha will be zero specular reflection, while white areas

will be full specular reflection. This is very useful when you want different areas of your object to reflect different levels of

specularity. For example, something like rusty metal would use low specularity, while polished metal would use high

specularity. Lipstick has higher specularity than skin, and skin has higher specularity than cotton clothes. A well-made

Specular Map can make a huge difference in impressing the player.

Performance
Generally, this shader is moderately expensive to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-18

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1020 of 1131 12/16/2012 10:12 PM

shader-TransCutBumpedDiffuse

Transparent Cutout Properties
Cutout shader is an alternative way of displaying transparent objects. Differences between Cutout and regular Transparent

shaders are:

This shader cannot have partially transparent areas. Everything will be either fully opaque or fully transparent.

Objects using this shader can cast and receive shadows!

The graphical sorting problems normally associated with Transparent shaders do not occur when using this shader.

This shader uses an alpha channel contained in the Base Texture to determine the transparent areas. If the alpha contains a

blend between transparent and opaque areas, you can manually determine the cutoff point for the which areas will be shown.

You change this cutoff by adjusting the Alpha Cutoff slider.

Normal Mapped Properties
Like a Diffuse shader, this computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle

between it and the light decreases. The lighting depends only on the this angle, and does not change as the camera moves or

rotates around.

Normal mapping simulates small surface details using a texture, instead of spending more polygons to actually carve out

details. It does not actually change the shape of the object, but uses a special texture called a Normal Map to achieve this

effect. In the normal map, each pixel's color value represents the angle of the surface normal. Then by using this value instead

of the one from geometry, lighting is computed. The normal map effectively overrides the mesh's geometry when calculating

lighting of the object.

Creating Normal maps

You can import a regular grayscale image and convert it to a Normal Map from within Unity. To learn how to do this, please

read the Normal map FAQ page.

Technical Details

The Normal Map is a tangent space type of normal map. Tangent space is the space that "follows the surface" of the model

geometry. In this space, Z always points away from the surface. Tangent space Normal Maps are a bit more expensive than

the other "object space" type Normal Maps, but have some advantages:

It's possible to use them on deforming models - the bumps will remain on the deforming surface and will just work.1.

It's possible to reuse parts of the normal map on different areas of a model; or use them on different models.2.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1021 of 1131 12/16/2012 10:12 PM

Diffuse Properties
Diffuse computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle between it and the

light decreases. The lighting depends only on the this angle, and does not change as the camera moves or rotates around.

Performance
Generally, this shader is cheap to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-18

shader-TransCutBumpedSpecular

One consideration for this shader is that the Base texture's alpha channel defines both the Transparent areas as well as the

Specular Map.

Transparent Cutout Properties
Cutout shader is an alternative way of displaying transparent objects. Differences between Cutout and regular Transparent

shaders are:

This shader cannot have partially transparent areas. Everything will be either fully opaque or fully transparent.

Objects using this shader can cast and receive shadows!

The graphical sorting problems normally associated with Transparent shaders do not occur when using this shader.

This shader uses an alpha channel contained in the Base Texture to determine the transparent areas. If the alpha contains a

blend between transparent and opaque areas, you can manually determine the cutoff point for the which areas will be shown.

You change this cutoff by adjusting the Alpha Cutoff slider.

Normal Mapped Properties
Like a Diffuse shader, this computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle

between it and the light decreases. The lighting depends only on the this angle, and does not change as the camera moves or

rotates around.

Normal mapping simulates small surface details using a texture, instead of spending more polygons to actually carve out

details. It does not actually change the shape of the object, but uses a special texture called a Normal Map to achieve this

effect. In the normal map, each pixel's color value represents the angle of the surface normal. Then by using this value instead

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1022 of 1131 12/16/2012 10:12 PM

of the one from geometry, lighting is computed. The normal map effectively overrides the mesh's geometry when calculating

lighting of the object.

Creating Normal maps

You can import a regular grayscale image and convert it to a Normal Map from within Unity. To learn how to do this, please

read the Normal map FAQ page.

Technical Details

The Normal Map is a tangent space type of normal map. Tangent space is the space that "follows the surface" of the model

geometry. In this space, Z always points away from the surface. Tangent space Normal Maps are a bit more expensive than

the other "object space" type Normal Maps, but have some advantages:

It's possible to use them on deforming models - the bumps will remain on the deforming surface and will just work.1.

It's possible to reuse parts of the normal map on different areas of a model; or use them on different models.2.

Specular Properties
Specular computes the same simple (Lambertian) lighting as Diffuse, plus a viewer dependent specular highlight. This is called

the Blinn-Phong lighting model. It has a specular highlight that is dependent on surface angle, light angle, and viewing angle.

The highlight is actually just a realtime-suitable way to simulate blurred reflection of the light source. The level of blur for the

highlight is controlled with the Shininess slider in the Inspector.

Additionally, the alpha channel of the main texture acts as a Specular Map (sometimes called "gloss map"), defining which

areas of the object are more reflective than others. Black areas of the alpha will be zero specular reflection, while white areas

will be full specular reflection. This is very useful when you want different areas of your object to reflect different levels of

specularity. For example, something like rusty metal would use low specularity, while polished metal would use high

specularity. Lipstick has higher specularity than skin, and skin has higher specularity than cotton clothes. A well-made

Specular Map can make a huge difference in impressing the player.

Performance
Generally, this shader is moderately expensive to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-18

shader-SelfIllumFamily

The Self-Illuminated shaders will emit light only onto themselves based on an attached alpha channel. They do not require

any Lights to shine on them to emit this light. Any vertex lights or pixel lights will simply add more light on top of the

self-illumination.

This is mostly used for light emitting objects. For example, parts of the wall texture could be self-illuminated to simulate lights or

displays. It can also be useful to light power-up objects that should always have consistent lighting throughout the game,

regardless of the lights shining on it.

Self-Illuminated Vertex-Lit

Assets needed:

One Base texture, no alpha channel required

One Illumination texture with alpha channel for Illumination Map

» More details

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1023 of 1131 12/16/2012 10:12 PM

Self-Illuminated Diffuse

Assets needed:

One Base texture, no alpha channel required

One Illumination texture with alpha channel for Illumination Map

» More details

Self-Illuminated Specular

Assets needed:

One Base texture with alpha channel for Specular Map

One Illumination texture with alpha channel for Illumination Map

» More details

Self-Illuminated Bumped

Assets needed:

One Base texture, no alpha channel required

One Normal map normal map with alpha channel for Illumination

» More details

Self-Illuminated Bumped Specular

Assets needed:

One Base texture with alpha channel for Specular Map

One Normal map normal map with alpha channel for Illumination Map

» More details

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1024 of 1131 12/16/2012 10:12 PM

Self-Illuminated Parallax

Assets needed:

One Base texture, no alpha channel required

One Normal map normal map with alpha channel for Illumination Map & Parallax Depth combined

Note: One consideration of this shader is that the Bumpmap texture's alpha channel doubles as a Illumination and the

Parallax Depth.

» More details

Self-Illuminated Parallax Specular

Assets needed:

One Base texture with alpha channel for Specular Map

One Normal map normal map with alpha channel for Illumination Map & Parallax Depth combined

Note: One consideration of this shader is that the Bumpmap texture's alpha channel doubles as a Illumination and the

Parallax Depth.

» More details

Page last updated: 2010-07-13

shader-SelfIllumVertexLit

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1025 of 1131 12/16/2012 10:12 PM

Self-Illuminated Properties
This shader allows you to define bright and dark parts of the object. The alpha channel of a secondary texture will define

areas of the object that "emit" light by themselves, even when no light is shining on it. In the alpha channel, black is zero light,

and white is full light emitted by the object. Any scene lights will add illumination on top of the shader's illumination. So even if

your object does not emit any light by itself, it will still be lit by lights in your scene.

Vertex-Lit Properties
This shader is Vertex-Lit, which is one of the simplest shaders. All lights shining on it are rendered in a single pass and

calculated at vertices only.

Because it is vertex-lit, it won't display any pixel-based rendering effects, such as light cookies, normal mapping, or shadows.

This shader is also much more sensitive to tesselation of the models. If you put a point light very close to a cube using this

shader, the light will only be calculated at the corners. Pixel-lit shaders are much more effective at creating a nice round

highlight, independent of tesselation. If that's an effect you want, you may consider using a pixel-lit shader or increase

tesselation of the objects instead.

Performance
Generally, this shader is cheap to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-SelfIllumDiffuse

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1026 of 1131 12/16/2012 10:12 PM

Self-Illuminated Properties
This shader allows you to define bright and dark parts of the object. The alpha channel of a secondary texture will define

areas of the object that "emit" light by themselves, even when no light is shining on it. In the alpha channel, black is zero light,

and white is full light emitted by the object. Any scene lights will add illumination on top of the shader's illumination. So even if

your object does not emit any light by itself, it will still be lit by lights in your scene.

Diffuse Properties
Diffuse computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle between it and the

light decreases. The lighting depends only on the this angle, and does not change as the camera moves or rotates around.

Performance
Generally, this shader is cheap to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-SelfIllumSpecular

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1027 of 1131 12/16/2012 10:12 PM

Self-Illuminated Properties
This shader allows you to define bright and dark parts of the object. The alpha channel of a secondary texture will define

areas of the object that "emit" light by themselves, even when no light is shining on it. In the alpha channel, black is zero light,

and white is full light emitted by the object. Any scene lights will add illumination on top of the shader's illumination. So even if

your object does not emit any light by itself, it will still be lit by lights in your scene.

Specular Properties
Specular computes the same simple (Lambertian) lighting as Diffuse, plus a viewer dependent specular highlight. This is called

the Blinn-Phong lighting model. It has a specular highlight that is dependent on surface angle, light angle, and viewing angle.

The highlight is actually just a realtime-suitable way to simulate blurred reflection of the light source. The level of blur for the

highlight is controlled with the Shininess slider in the Inspector.

Additionally, the alpha channel of the main texture acts as a Specular Map (sometimes called "gloss map"), defining which

areas of the object are more reflective than others. Black areas of the alpha will be zero specular reflection, while white areas

will be full specular reflection. This is very useful when you want different areas of your object to reflect different levels of

specularity. For example, something like rusty metal would use low specularity, while polished metal would use high

specularity. Lipstick has higher specularity than skin, and skin has higher specularity than cotton clothes. A well-made

Specular Map can make a huge difference in impressing the player.

Performance
Generally, this shader is moderately expensive to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-SelfIllumBumpedDiffuse

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1028 of 1131 12/16/2012 10:12 PM

Self-Illuminated Properties
This shader allows you to define bright and dark parts of the object. The alpha channel of a secondary texture will define

areas of the object that "emit" light by themselves, even when no light is shining on it. In the alpha channel, black is zero light,

and white is full light emitted by the object. Any scene lights will add illumination on top of the shader's illumination. So even if

your object does not emit any light by itself, it will still be lit by lights in your scene.

Normal Mapped Properties
Like a Diffuse shader, this computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle

between it and the light decreases. The lighting depends only on the this angle, and does not change as the camera moves or

rotates around.

Normal mapping simulates small surface details using a texture, instead of spending more polygons to actually carve out

details. It does not actually change the shape of the object, but uses a special texture called a Normal Map to achieve this

effect. In the normal map, each pixel's color value represents the angle of the surface normal. Then by using this value instead

of the one from geometry, lighting is computed. The normal map effectively overrides the mesh's geometry when calculating

lighting of the object.

Creating Normal maps

You can import a regular grayscale image and convert it to a Normal Map from within Unity. To learn how to do this, please

read the Normal map FAQ page.

Technical Details

The Normal Map is a tangent space type of normal map. Tangent space is the space that "follows the surface" of the model

geometry. In this space, Z always points away from the surface. Tangent space Normal Maps are a bit more expensive than

the other "object space" type Normal Maps, but have some advantages:

It's possible to use them on deforming models - the bumps will remain on the deforming surface and will just work.1.

It's possible to reuse parts of the normal map on different areas of a model; or use them on different models.2.

Diffuse Properties
Diffuse computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle between it and the

light decreases. The lighting depends only on the this angle, and does not change as the camera moves or rotates around.

Performance
Generally, this shader is cheap to render. For more details, please view the Shader Peformance page.

Page last updated: 2012-08-23

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1029 of 1131 12/16/2012 10:12 PM

shader-SelfIllumBumpedSpecular

Self-Illuminated Properties
This shader allows you to define bright and dark parts of the object. The alpha channel of a secondary texture will define

areas of the object that "emit" light by themselves, even when no light is shining on it. In the alpha channel, black is zero light,

and white is full light emitted by the object. Any scene lights will add illumination on top of the shader's illumination. So even if

your object does not emit any light by itself, it will still be lit by lights in your scene.

Normal Mapped Properties
Like a Diffuse shader, this computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle

between it and the light decreases. The lighting depends only on the this angle, and does not change as the camera moves or

rotates around.

Normal mapping simulates small surface details using a texture, instead of spending more polygons to actually carve out

details. It does not actually change the shape of the object, but uses a special texture called a Normal Map to achieve this

effect. In the normal map, each pixel's color value represents the angle of the surface normal. Then by using this value instead

of the one from geometry, lighting is computed. The normal map effectively overrides the mesh's geometry when calculating

lighting of the object.

Creating Normal maps

You can import a regular grayscale image and convert it to a Normal Map from within Unity. To learn how to do this, please

read the Normal map FAQ page.

Technical Details

The Normal Map is a tangent space type of normal map. Tangent space is the space that "follows the surface" of the model

geometry. In this space, Z always points away from the surface. Tangent space Normal Maps are a bit more expensive than

the other "object space" type Normal Maps, but have some advantages:

It's possible to use them on deforming models - the bumps will remain on the deforming surface and will just work.1.

It's possible to reuse parts of the normal map on different areas of a model; or use them on different models.2.

Specular Properties
Specular computes the same simple (Lambertian) lighting as Diffuse, plus a viewer dependent specular highlight. This is called

the Blinn-Phong lighting model. It has a specular highlight that is dependent on surface angle, light angle, and viewing angle.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1030 of 1131 12/16/2012 10:12 PM

The highlight is actually just a realtime-suitable way to simulate blurred reflection of the light source. The level of blur for the

highlight is controlled with the Shininess slider in the Inspector.

Additionally, the alpha channel of the main texture acts as a Specular Map (sometimes called "gloss map"), defining which

areas of the object are more reflective than others. Black areas of the alpha will be zero specular reflection, while white areas

will be full specular reflection. This is very useful when you want different areas of your object to reflect different levels of

specularity. For example, something like rusty metal would use low specularity, while polished metal would use high

specularity. Lipstick has higher specularity than skin, and skin has higher specularity than cotton clothes. A well-made

Specular Map can make a huge difference in impressing the player.

Performance
Generally, this shader is moderately expensive to render. For more details, please view the Shader Peformance page.

Page last updated: 2012-08-23

shader-SelfIllumParallaxDiffuse

Self-Illuminated Properties
This shader allows you to define bright and dark parts of the object. The alpha channel of a secondary texture will define

areas of the object that "emit" light by themselves, even when no light is shining on it. In the alpha channel, black is zero light,

and white is full light emitted by the object. Any scene lights will add illumination on top of the shader's illumination. So even if

your object does not emit any light by itself, it will still be lit by lights in your scene.

Parallax Normal mapped Properties
Parallax Normal mapped is the same as regular Normal mapped, but with a better simulation of "depth". The extra depth

effect is achieved through the use of a Height Map. The Height Map is contained in the alpha channel of the Normal map. In

the alpha, black is zero depth and white is full depth. This is most often used in bricks/stones to better display the cracks

between them.

The Parallax mapping technique is pretty simple, so it can have artifacts and unusual effects. Specifically, very steep height

transitions in the Height Map should be avoided. Adjusting the Height value in the Inspector can also cause the object to

become distorted in an odd, unrealistic way. For this reason, it is recommended that you use gradual Height Map transitions or

keep the Height slider toward the shallow end.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1031 of 1131 12/16/2012 10:12 PM

Diffuse Properties
Diffuse computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle between it and the

light decreases. The lighting depends only on the this angle, and does not change as the camera moves or rotates around.

Performance
Generally, this shader is on the more expensive rendering side. For more details, please view the Shader Peformance page.

Page last updated: 2012-08-23

shader-SelfIllumParallaxSpecular

Self-Illuminated Properties
This shader allows you to define bright and dark parts of the object. The alpha channel of a secondary texture will define

areas of the object that "emit" light by themselves, even when no light is shining on it. In the alpha channel, black is zero light,

and white is full light emitted by the object. Any scene lights will add illumination on top of the shader's illumination. So even if

your object does not emit any light by itself, it will still be lit by lights in your scene.

Parallax Normal mapped Properties
Parallax Normal mapped is the same as regular Normal mapped, but with a better simulation of "depth". The extra depth

effect is achieved through the use of a Height Map. The Height Map is contained in the alpha channel of the Normal map. In

the alpha, black is zero depth and white is full depth. This is most often used in bricks/stones to better display the cracks

between them.

The Parallax mapping technique is pretty simple, so it can have artifacts and unusual effects. Specifically, very steep height

transitions in the Height Map should be avoided. Adjusting the Height value in the Inspector can also cause the object to

become distorted in an odd, unrealistic way. For this reason, it is recommended that you use gradual Height Map transitions or

keep the Height slider toward the shallow end.

Specular Properties
Specular computes the same simple (Lambertian) lighting as Diffuse, plus a viewer dependent specular highlight. This is called

the Blinn-Phong lighting model. It has a specular highlight that is dependent on surface angle, light angle, and viewing angle.

The highlight is actually just a realtime-suitable way to simulate blurred reflection of the light source. The level of blur for the

highlight is controlled with the Shininess slider in the Inspector.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1032 of 1131 12/16/2012 10:12 PM

Additionally, the alpha channel of the main texture acts as a Specular Map (sometimes called "gloss map"), defining which

areas of the object are more reflective than others. Black areas of the alpha will be zero specular reflection, while white areas

will be full specular reflection. This is very useful when you want different areas of your object to reflect different levels of

specularity. For example, something like rusty metal would use low specularity, while polished metal would use high

specularity. Lipstick has higher specularity than skin, and skin has higher specularity than cotton clothes. A well-made

Specular Map can make a huge difference in impressing the player.

Performance
Generally, this shader is on the more expensive rendering side. For more details, please view the Shader Peformance page.

Page last updated: 2012-08-23

shader-ReflectiveFamily

Reflective shaders will allow you to use a Cubemap which will be reflected on your mesh. You can also define areas of more

or less reflectivity on your object through the alpha channel of the Base texture. High relectivity is a great effect for glosses,

oils, chrome, etc. Low reflectivity can add effect for metals, liquid surfaces, or video monitors.

Reflective Vertex-Lit

Assets needed:

One Base texture with alpha channel for defining reflective areas

One Reflection Cubemap for Reflection Map

» More details

Reflective Diffuse

Assets needed:

One Base texture with alpha channel for defining reflective areas

One Reflection Cubemap for Reflection Map

» More details

Reflective Specular

Assets needed:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1033 of 1131 12/16/2012 10:12 PM

One Base texture with alpha channel for defining reflective areas & Specular Map combined

One Reflection Cubemap for Reflection Map

Note: One consideration for this shader is that the Base texture's alpha channel will double as both the reflective areas and

the Specular Map.

» More details

Reflective Normal mapped

Assets needed:

One Base texture with alpha channel for defining reflective areas

One Reflection Cubemap for Reflection Map

One Normal map normal map, no alpha channel required

» More details

Reflective Normal Mapped Specular

Assets needed:

One Base texture with alpha channel for defining reflective areas & Specular Map combined

One Reflection Cubemap for Reflection Map

One Normal map normal map, no alpha channel required

Note: One consideration for this shader is that the Base texture's alpha channel will double as both the reflective areas and

the Specular Map.

» More details

Reflective Parallax

Assets needed:

One Base texture with alpha channel for defining reflective areas

One Reflection Cubemap for Reflection Map

One Normal map normal map, with alpha channel for Parallax Depth

» More details

Reflective Parallax Specular

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1034 of 1131 12/16/2012 10:12 PM

Assets needed:

One Base texture with alpha channel for defining reflective areas & Specular Map

One Reflection Cubemap for Reflection Map

One Normal map normal map, with alpha channel for Parallax Depth

Note: One consideration for this shader is that the Base texture's alpha channel will double as both the reflective areas and

the Specular Map.

» More details

Reflective Normal mapped Unlit

Assets needed:

One Base texture with alpha channel for defining reflective areas

One Reflection Cubemap for Reflection Map

One Normal map normal map, no alpha channel required

» More details

Reflective Normal mapped Vertex-Lit

Assets needed:

One Base texture with alpha channel for defining reflective areas

One Reflection Cubemap for Reflection Map

One Normal map normal map, no alpha channel required

» More details

Page last updated: 2010-07-13

shader-ReflectiveVertexLit

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1035 of 1131 12/16/2012 10:12 PM

Reflective Properties
This shader will simulate reflective surfaces such as cars, metal objects etc. It requires an environment Cubemap which will

define what exactly is reflected. The main texture's alpha channel defines the strength of reflection on the object's surface. Any

scene lights will add illumination on top of what is reflected.

Vertex-Lit Properties
This shader is Vertex-Lit, which is one of the simplest shaders. All lights shining on it are rendered in a single pass and

calculated at vertices only.

Because it is vertex-lit, it won't display any pixel-based rendering effects, such as light cookies, normal mapping, or shadows.

This shader is also much more sensitive to tesselation of the models. If you put a point light very close to a cube using this

shader, the light will only be calculated at the corners. Pixel-lit shaders are much more effective at creating a nice round

highlight, independent of tesselation. If that's an effect you want, you may consider using a pixel-lit shader or increase

tesselation of the objects instead.

Performance
Generally, this shader is not too expensive to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-ReflectiveDiffuse

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1036 of 1131 12/16/2012 10:12 PM

Reflective Properties
This shader will simulate reflective surfaces such as cars, metal objects etc. It requires an environment Cubemap which will

define what exactly is reflected. The main texture's alpha channel defines the strength of reflection on the object's surface. Any

scene lights will add illumination on top of what is reflected.

Diffuse Properties
Diffuse computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle between it and the

light decreases. The lighting depends only on the this angle, and does not change as the camera moves or rotates around.

Performance
Generally, this shader is cheap to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-ReflectiveSpecular

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1037 of 1131 12/16/2012 10:12 PM

One consideration for this shader is that the Base texture's alpha channel will double as both the Reflection Map and the

Specular Map.

Reflective Properties
This shader will simulate reflective surfaces such as cars, metal objects etc. It requires an environment Cubemap which will

define what exactly is reflected. The main texture's alpha channel defines the strength of reflection on the object's surface. Any

scene lights will add illumination on top of what is reflected.

Specular Properties
Specular computes the same simple (Lambertian) lighting as Diffuse, plus a viewer dependent specular highlight. This is called

the Blinn-Phong lighting model. It has a specular highlight that is dependent on surface angle, light angle, and viewing angle.

The highlight is actually just a realtime-suitable way to simulate blurred reflection of the light source. The level of blur for the

highlight is controlled with the Shininess slider in the Inspector.

Additionally, the alpha channel of the main texture acts as a Specular Map (sometimes called "gloss map"), defining which

areas of the object are more reflective than others. Black areas of the alpha will be zero specular reflection, while white areas

will be full specular reflection. This is very useful when you want different areas of your object to reflect different levels of

specularity. For example, something like rusty metal would use low specularity, while polished metal would use high

specularity. Lipstick has higher specularity than skin, and skin has higher specularity than cotton clothes. A well-made

Specular Map can make a huge difference in impressing the player.

Performance
Generally, this shader is moderately expensive to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-ReflectiveBumpedDiffuse

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1038 of 1131 12/16/2012 10:12 PM

Reflective Properties
This shader will simulate reflective surfaces such as cars, metal objects etc. It requires an environment Cubemap which will

define what exactly is reflected. The main texture's alpha channel defines the strength of reflection on the object's surface. Any

scene lights will add illumination on top of what is reflected.

Normal Mapped Properties
Like a Diffuse shader, this computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle

between it and the light decreases. The lighting depends only on the this angle, and does not change as the camera moves or

rotates around.

Normal mapping simulates small surface details using a texture, instead of spending more polygons to actually carve out

details. It does not actually change the shape of the object, but uses a special texture called a Normal Map to achieve this

effect. In the normal map, each pixel's color value represents the angle of the surface normal. Then by using this value instead

of the one from geometry, lighting is computed. The normal map effectively overrides the mesh's geometry when calculating

lighting of the object.

Creating Normal maps

You can import a regular grayscale image and convert it to a Normal Map from within Unity. To learn how to do this, please

read the Normal map FAQ page.

Technical Details

The Normal Map is a tangent space type of normal map. Tangent space is the space that "follows the surface" of the model

geometry. In this space, Z always points away from the surface. Tangent space Normal Maps are a bit more expensive than

the other "object space" type Normal Maps, but have some advantages:

It's possible to use them on deforming models - the bumps will remain on the deforming surface and will just work.1.

It's possible to reuse parts of the normal map on different areas of a model; or use them on different models.2.

Diffuse Properties
Diffuse computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle between it and the

light decreases. The lighting depends only on the this angle, and does not change as the camera moves or rotates around.

Performance
Generally, this shader is cheap to render. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1039 of 1131 12/16/2012 10:12 PM

shader-ReflectiveBumpedSpecular

One consideration for this shader is that the Base texture's alpha channel will double as both the Reflection Map and the

Specular Map.

Reflective Properties
This shader will simulate reflective surfaces such as cars, metal objects etc. It requires an environment Cubemap which will

define what exactly is reflected. The main texture's alpha channel defines the strength of reflection on the object's surface. Any

scene lights will add illumination on top of what is reflected.

Normal Mapped Properties
Like a Diffuse shader, this computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle

between it and the light decreases. The lighting depends only on the this angle, and does not change as the camera moves or

rotates around.

Normal mapping simulates small surface details using a texture, instead of spending more polygons to actually carve out

details. It does not actually change the shape of the object, but uses a special texture called a Normal Map to achieve this

effect. In the normal map, each pixel's color value represents the angle of the surface normal. Then by using this value instead

of the one from geometry, lighting is computed. The normal map effectively overrides the mesh's geometry when calculating

lighting of the object.

Creating Normal maps

You can import a regular grayscale image and convert it to a Normal Map from within Unity. To learn how to do this, please

read the Normal map FAQ page.

Technical Details

The Normal Map is a tangent space type of normal map. Tangent space is the space that "follows the surface" of the model

geometry. In this space, Z always points away from the surface. Tangent space Normal Maps are a bit more expensive than

the other "object space" type Normal Maps, but have some advantages:

It's possible to use them on deforming models - the bumps will remain on the deforming surface and will just work.1.

It's possible to reuse parts of the normal map on different areas of a model; or use them on different models.2.

Specular Properties

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1040 of 1131 12/16/2012 10:12 PM

Specular computes the same simple (Lambertian) lighting as Diffuse, plus a viewer dependent specular highlight. This is called

the Blinn-Phong lighting model. It has a specular highlight that is dependent on surface angle, light angle, and viewing angle.

The highlight is actually just a realtime-suitable way to simulate blurred reflection of the light source. The level of blur for the

highlight is controlled with the Shininess slider in the Inspector.

Additionally, the alpha channel of the main texture acts as a Specular Map (sometimes called "gloss map"), defining which

areas of the object are more reflective than others. Black areas of the alpha will be zero specular reflection, while white areas

will be full specular reflection. This is very useful when you want different areas of your object to reflect different levels of

specularity. For example, something like rusty metal would use low specularity, while polished metal would use high

specularity. Lipstick has higher specularity than skin, and skin has higher specularity than cotton clothes. A well-made

Specular Map can make a huge difference in impressing the player.

Performance
Generally, this shader is moderately expensive to render. For more details, please view the Shader Peformance page.

Page last updated: 2010-07-14

shader-ReflectiveParallaxDiffuse

Reflective Properties
This shader will simulate reflective surfaces such as cars, metal objects etc. It requires an environment Cubemap which will

define what exactly is reflected. The main texture's alpha channel defines the strength of reflection on the object's surface. Any

scene lights will add illumination on top of what is reflected.

Parallax Normal mapped Properties
Parallax Normal mapped is the same as regular Normal mapped, but with a better simulation of "depth". The extra depth

effect is achieved through the use of a Height Map. The Height Map is contained in the alpha channel of the Normal map. In

the alpha, black is zero depth and white is full depth. This is most often used in bricks/stones to better display the cracks

between them.

The Parallax mapping technique is pretty simple, so it can have artifacts and unusual effects. Specifically, very steep height

transitions in the Height Map should be avoided. Adjusting the Height value in the Inspector can also cause the object to

become distorted in an odd, unrealistic way. For this reason, it is recommended that you use gradual Height Map transitions or

keep the Height slider toward the shallow end.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1041 of 1131 12/16/2012 10:12 PM

Diffuse Properties
Diffuse computes a simple (Lambertian) lighting model. The lighting on the surface decreases as the angle between it and the

light decreases. The lighting depends only on the this angle, and does not change as the camera moves or rotates around.

Performance
Generally, this shader is on the more expensive rendering side. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-ReflectiveParallaxSpecular

One consideration for this shader is that the Base texture's alpha channel will double as both the Reflection Map and the

Specular Map.

Reflective Properties
This shader will simulate reflective surfaces such as cars, metal objects etc. It requires an environment Cubemap which will

define what exactly is reflected. The main texture's alpha channel defines the strength of reflection on the object's surface. Any

scene lights will add illumination on top of what is reflected.

Parallax Normal mapped Properties
Parallax Normal mapped is the same as regular Normal mapped, but with a better simulation of "depth". The extra depth

effect is achieved through the use of a Height Map. The Height Map is contained in the alpha channel of the Normal map. In

the alpha, black is zero depth and white is full depth. This is most often used in bricks/stones to better display the cracks

between them.

The Parallax mapping technique is pretty simple, so it can have artifacts and unusual effects. Specifically, very steep height

transitions in the Height Map should be avoided. Adjusting the Height value in the Inspector can also cause the object to

become distorted in an odd, unrealistic way. For this reason, it is recommended that you use gradual Height Map transitions or

keep the Height slider toward the shallow end.

Specular Properties
Specular computes the same simple (Lambertian) lighting as Diffuse, plus a viewer dependent specular highlight. This is called

the Blinn-Phong lighting model. It has a specular highlight that is dependent on surface angle, light angle, and viewing angle.

The highlight is actually just a realtime-suitable way to simulate blurred reflection of the light source. The level of blur for the

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1042 of 1131 12/16/2012 10:12 PM

highlight is controlled with the Shininess slider in the Inspector.

Additionally, the alpha channel of the main texture acts as a Specular Map (sometimes called "gloss map"), defining which

areas of the object are more reflective than others. Black areas of the alpha will be zero specular reflection, while white areas

will be full specular reflection. This is very useful when you want different areas of your object to reflect different levels of

specularity. For example, something like rusty metal would use low specularity, while polished metal would use high

specularity. Lipstick has higher specularity than skin, and skin has higher specularity than cotton clothes. A well-made

Specular Map can make a huge difference in impressing the player.

Performance
Generally, this shader is on the more expensive rendering side. For more details, please view the Shader Peformance page.

Page last updated: 2007-05-08

shader-ReflectiveBumpedUnlit

Reflective Properties
This shader will simulate reflective surfaces such as cars, metal objects etc. It requires an environment Cubemap which will

define what exactly is reflected. The main texture's alpha channel defines the strength of reflection on the object's surface. Any

scene lights will add illumination on top of what is reflected.

Normal mapped Properties
This shader does not use normal-mapping in the traditional way. The normal map does not affect any lights shining on the

object, because the shader does not use lights at all. The normal map will only distort the reflection map.

Special Properties
This shader is special because it does not respond to lights at all, so you don't have to worry about performance reduction

from use of multiple lights. It simply displays the reflection cube map on the model. The reflection is distorted by the normal

map, so you get the benefit of detailed reflection. Because it does not respond to lights, it is quite cheap. It is somewhat of a

specialized use case, but in those cases it does exactly what you want as cheaply as possible.

Performance
Generally, this shader is quite cheap to render. For more details, please view the Shader Peformance page.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1043 of 1131 12/16/2012 10:12 PM

Page last updated: 2010-07-13

shader-ReflectiveBumpedVertexLit

Reflective Properties
This shader will simulate reflective surfaces such as cars, metal objects etc. It requires an environment Cubemap which will

define what exactly is reflected. The main texture's alpha channel defines the strength of reflection on the object's surface. Any

scene lights will add illumination on top of what is reflected.

Vertex-Lit Properties
This shader is Vertex-Lit, which is one of the simplest shaders. All lights shining on it are rendered in a single pass and

calculated at vertices only.

Because it is vertex-lit, it won't display any pixel-based rendering effects, such as light cookies, normal mapping, or shadows.

This shader is also much more sensitive to tesselation of the models. If you put a point light very close to a cube using this

shader, the light will only be calculated at the corners. Pixel-lit shaders are much more effective at creating a nice round

highlight, independent of tesselation. If that's an effect you want, you may consider using a pixel-lit shader or increase

tesselation of the objects instead.

Special Properties
This shader is a good alternative to Reflective Normal mapped. If you do not need the object itself to be affected by pixel lights,

but do want the reflection to be affected by a normal map, this shader is for you. This shader is vertex-lit, so it is rendered

more quickly than its Reflective Normal mapped counterpart.

Performance
Generally, this shader is not expensive to render. For more details, please view the Shader Peformance page.

Page last updated: 2010-07-13

Rendering-Tech

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1044 of 1131 12/16/2012 10:12 PM

This section explains the technical details behind various aspects of Unity's rendering engine.

Deferred Lighting Rendering Path

Forward Rendering Path Details

Vertex Lit Rendering Path Details

Hardware Requirements for Unity's Graphics Features
Page last updated: 2011-11-08

RenderTech-DeferredLighting

This page details the Deferred Lighting rendering path. See this article for a technical overview of deferred lighting.

The Deferred Lighting rendering path is the one with the highest lighting and shadow fidelity. There is no limit on the number

of lights that can affect an object and all lights are evaluated per-pixel, which means that they all interact correctly with normal

maps, etc. Additionally, all lights can have cookies and shadows.

Deferred lighting has the advantage that the processing overhead of lighting is proportional to the size of the light onscreen, no

matter how many objects it illuminates. Therefore, performance can be improved by keeping lights small. Deferred lighting also

has highly consistent and predictable behaviour. The effect of each light is computed per-pixel, so there are no lighting

computations that break down on large triangles etc.

On the downside, deferred lighting has no real support for anti-aliasing and can't handle semi-transparent objects (these must

be rendered using Forward Rendering). There is also no support for the Mesh Renderer's Receive Shadows flag and culling

masks are only supported in a limited way.

Requirements
Deferred lighting is only available in Unity Pro. It requires a graphics card with Shader Model 3.0 (or later), support for Depth

render textures and two-sided stencil buffers. Most graphics cards made after 2004 support deferred lighting, including

GeForce FX and later, Radeon X1300 and later, Intel 965 / GMA X3100 and later. However, it is not currently available on

mobile platforms nor Flash.

Performance Considerations
The rendering overhead of realtime lights in deferred lighting is proportional to the number of pixels illuminated by the light and

not dependent on scene complexity. So small point or spot lights are very cheap to render and if they are fully or partially

occluded by scene objects then they are even cheaper.

Of course, lights with shadows are much more expensive than lights without shadows. In deferred lighting, shadow-casting

objects still need to be rendered once or more for each shadow-casting light. Furthermore, the lighting shader that applies

shadows has a higher rendering overhead than the one used when shadows are disabled.

Implementation Details
When Deferred Lighting is used, the rendering process in Unity happens in three passes:-

Base Pass: objects are rendered to produce screen-space buffers with depth, normals, and specular power.1.

Lighting pass: the previously generated buffers are used to compute lighting into another screen-space buffer.2.

Final pass: objects are rendered again. They fetch the computed lighting, combine it with color textures and add any

ambient/emissive lighting.

3.

Objects with shaders that can't handle deferred lighting are rendered after this process is complete, using the forward

rendering path.

Base Pass

The base pass renders each object once. View space normals and specular power are rendered into a single ARGB32 Render

Texture (with normals in RGB channels and specular power in A). If the platform and hardware allow the Z buffer to be read as

a texture then depth is not explicitly rendered. If the Z buffer can't be accessed as a texture then depth is rendered in an

additional rendering pass using shader replacement.

The result of the base pass is a Z buffer filled with the scene contents and a Render Texture with normals and specular power.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1045 of 1131 12/16/2012 10:12 PM

Lighting Pass

The lighting pass computes lighting based on depth, normals and specular power. Lighting is computed in screen space, so

the time it takes to process is independent of scene complexity. The lighting buffer is a single ARGB32 Render Texture, with

diffuse lighting in the RGB channels and monochrome specular lighting in the A channel. Lighting values are logarithmically

encoded to provide greater dynamic range than is usually possible with an ARGB32 texture. The only lighting model available

with deferred rendering is Blinn-Phong.

Point and spot lights that do not cross the camera's near plane are rendered as 3D shapes, with the Z buffer's test against the

scene enabled. This makes partially or fully occluded point and spot lights very cheap to render. Directional lights and

point/spot lights that cross the near plane are rendered as fullscreen quads.

If a light has shadows enabled then they are also rendered and applied in this pass. Note that shadows do not come for "free";

shadow casters need to be rendered and a more complex light shader must be applied.

The only lighting model available is Blinn-Phong. If a different model is wanted you can modify the lighting pass shader, by

placing the modified version of the Internal-PrePassLighting.shader file from the Built-in shaders into a folder named

"Resources" in your "Assets" folder.

Final Pass

The final pass produces the final rendered image. Here all objects are rendered again with shaders that fetch the lighting,

combine it with textures and add any emissive lighting. Lightmaps are also applied in the final pass. Close to the camera,

realtime lighting is used, and only baked indirect lighting is added. This crossfades into fully baked lighting further away from

the camera.

Page last updated: 2012-08-17

RenderTech-ForwardRendering

This page describes details of Forward rendering path.

Forward Rendering path renders each object in one or more passes, depending on lights that affect the object. Lights

themselves are also treated differently by Forward Rendering, depending on their settings and intensity.

Implementation Details

In Forward Rendering, some number of brightest lights that affect each object are rendered in fully per-pixel lit mode. Then, up

to 4 point lights are calculated per-vertex. The other lights are computed as Spherical Harmonics (SH), which is much faster

but is only an approximation. Whether a light will be per-pixel light or not is dependent on this:

Lights that have their Render Mode set to Not Important are always per-vertex or SH.

Brightest directional light is always per-pixel.

Lights that have their Render Mode set to Important are always per-pixel.

If the above results in less lights than current Pixel Light Count Quality Setting, then more lights are rendered per-pixel, in

order of decreasing brightness.

Rendering of each object happens as follows:

Base Pass applies one per-pixel directional light and all per-vertex/SH lights.

Other per-pixel lights are rendered in additional passes, one pass for each light.

For example, if there is some object that's affected by a number of lights (a circle in a picture below, affected by lights A to H):

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1046 of 1131 12/16/2012 10:12 PM

Let's assume lights A to H have the same color & intensity, all all of them have Auto rendering mode, so they would be sorted

in exactly this order for this object. The brightest lights will be rendered in per-pixel lit mode (A to D), then up to 4 lights in

per-vertex lit mode (D to G), and finally the rest of lights in SH (G to H):

Note that light groups overlap; for example last per-pixel light blends into per-vertex lit mode so there are less "light popping"

as objects and lights move around.

Base Pass

Base pass renders object with one per-pixel directional light and all SH lights. This pass also adds any lightmaps, ambient and

emissive lighting from the shader. Directional light rendered in this pass can have Shadows. Note that Lightmapped objects do

not get illumination from SH lights.

Additional Passes

Additional passes are rendered for each additional per-pixel light that affect this object. Lights in these passes can't have

shadows (so in result, Forward Rendering supports one directional light with shadows).

Performance Considerations
Spherical Harmonics lights are very fast to render. They have a tiny cost on the CPU, and are actually free for the GPU to

apply (that is, base pass always computes SH lighting; but due to the way SH lights work, the cost is exactly the same no

matter how many SH lights are there).

The downsides of SH lights are:

They are computed at object's vertices, not pixels. This means they do not support light Cookies or normal maps.

SH lighting is very low frequency. You can't have sharp lighting transitions with SH lights. They are also only affecting the

diffuse lighting (too low frequency for specular highlights).

SH lighting is is not local; point or spot SH lights close to some surface will "look wrong".

In summary, SH lights are often good enough for small dynamic objects.

Page last updated: 2010-07-08

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1047 of 1131 12/16/2012 10:12 PM

RenderTech-VertexLit

This page describes details of Vertex Lit rendering path.

Vertex Lit path generally renders each object in one pass, with lighting from all lights calculated at object vertices.

It's the fastest rendering path and has widest hardware support (however, keep in mind: it does not work on consoles).

Since all lighting is calculated at vertex level, this rendering path does not support most of per-pixel effects: shadows, normal

mapping, light cookies, highly detailed specular highlights are not supported.

Page last updated: 2010-09-15

RenderTech-HardwareRequirements

Summary
 PC/Mac iOS/Android Flash 360/PS3

Deferred lighting SM3.0, GPU support - - Yes

Forward rendering SM2.0 OpenGL ES 2.0 Yes Yes

Vertex Lit rendering Yes Yes Yes -

Realtime Shadows SM2.0, GPU support - Kind-of Yes

Image Effects Most need SM2.0 Most need OpenGL ES 2.0 Kind-of Yes

Vertex Shaders SM1.1 OpenGL ES 2.0 Yes Yes

Pixel Shaders SM2.0 OpenGL ES 2.0 Yes Yes

Fixed Function Shaders Yes Yes Yes -

Realtime Shadows
Realtime Shadows currently work on desktop & console platforms. On desktops, they generally need Shader Model 2.0

capable GPU. On Windows (Direct3D), the GPU also needs to support shadow mapping features; most discrete GPUs

support that since 2003 and most integrated GPUs support that since 2007. Technically, on Direct3D 9 the GPU has to

support D16/D24X8 or DF16/DF24 texture formats; and on OpenGL it has to support GL_ARB_depth_texture extension.

Flash does support realtime shadows, but due to lack of depth bias and shader limitations, they can have self-shadowing

artifacts (increase light's shadow bias) and somewhat more "hard" edges.

Mobile shadows (iOS/Android) require OpenGL ES 2.0 and GL_OES_depth_texture extension. Most notably, the extension is

not present on Tegra-based Android devices, so shadows do not work there.

Image Effects
Image Effects require render-to-texture functionality, which is generally supported on anything made in this millenium. However,

all except the simplest effects require quite programmable pixel shaders, so for all practical purposes they require Shader

Model 2.0 on desktop (discrete GPUs since 2003; integrated GPUs since 2005) and OpenGL ES 2.0 on mobile platforms.

Some image effects work on Flash, but quite a lot of them do not; either due to no support for non-power-of-two textures,

shader limitations or lacking features like depth texture support.

Shaders
In Unity, you can write fixed function or programmable shaders. Fixed function is supported everywhere except consoles (Xbox

360 & Playstation 3). Programmable shaders default to Shader Model 2.0 (desktop) and OpenGL ES 2.0 (mobile). On desktop

platforms, it is possible to target Shader Model 1.1 for vertex shaders.

Page last updated: 2012-11-16

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1048 of 1131 12/16/2012 10:12 PM

SL-Reference

Shaders in Unity can be written in one of three different ways:

as surface shaders,

as vertex and fragment shaders and

as fixed function shaders.

The shader tutorial can guide you on choosing the right type for your needs.

Regardless of which type you choose, the actual meat of the shader code will always be wrapped in a language called

ShaderLab, which is used to organize the shader structure. It looks like this:

Shader "MyShader" {
 Properties {
 _MyTexture ("My Texture", 2D) = "white" { }
 // other properties like colors or vectors go here as well
 }
 SubShader {
 // here goes the 'meat' of your
 // - surface shader or
 // - vertex and program shader or
 // - fixed function shader
 }
 SubShader {
 // here goes a simpler version of the SubShader above than can run on older graphics cards
 }
}

We recommend that you start by reading about some basic concepts of the ShaderLab syntax in the sections listed below and

then to move on to read about surface shaders or vertex and fragment shaders in other sections. Since fixed function shaders

are written using ShaderLab only, you will find more information about them in the ShaderLab reference itself.

The reference below includes plenty of examples for the different types of shaders. For even more examples of surface

shaders in particular, you can get the source of Unity's built-in shaders from the Resources section. Unity's Image Effects

package contains a lot of interesting vertex and fragment shaders.

Read on for shader reference, and check out the shader tutorial as well!

Writing Surface Shaders

Surface Shader Examples

Custom Lighting models in Surface Shaders

Surface Shader Lighting Examples

Surface Shaders with DX11 Tessellation

Writing vertex and fragment shaders

Accessing shader properties in Cg

Providing vertex data to vertex programs

Built-in shader include files

Predefined shader preprocessor macros

Built-in state variables in shader programs

GLSL Shader Programs

ShaderLab syntax: Shader

ShaderLab syntax: Properties

ShaderLab syntax: SubShader

ShaderLab syntax: Pass

ShaderLab syntax: Color, Material, Lighting

ShaderLab syntax: Culling & Depth Testing

ShaderLab syntax: Texture Combiners

ShaderLab syntax: Fog

ShaderLab syntax: Alpha testing

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1049 of 1131 12/16/2012 10:12 PM

ShaderLab syntax: Blending

ShaderLab syntax: Pass Tags

ShaderLab syntax: Name

ShaderLab syntax: BindChannels

ShaderLab syntax: UsePass

ShaderLab syntax: GrabPass

ShaderLab syntax: SubShader Tags

ShaderLab syntax: Fallback

ShaderLab syntax: other commands

Advanced ShaderLab topics

Unity's Rendering Pipeline

Performance Tips when Writing Shaders

Rendering with Replaced Shaders

Using Depth Textures

Camera's Depth Texture

Platform Specific Rendering Differences

Shader Level of Detail

ShaderLab builtin values
Page last updated: 2011-01-14

SL-SurfaceShaders

Writing shaders that interact with lighting is complex. There are different light types, different shadow options, different

rendering paths (forward and deferred rendering), and the shader should somehow handle all that complexity.

Surface Shaders in Unity is a code generation approach that makes it much easier to write lit shaders than using low level

vertex/pixel shader programs. Note that there is no custom languages, magic or ninjas involved in Surface Shaders; it just

generates all the repetitive code that would have to be written by hand. You still write shader code in Cg / HLSL.

For some examples, take a look at Surface Shader Examples and Surface Shader Custom Lighting Examples.

How it works
You define a "surface function" that takes any UVs or data you need as input, and fills in output structure SurfaceOutput.

SurfaceOutput basically describes properties of the surface (it's albedo color, normal, emission, specularity etc.). You write this

code in Cg / HLSL.

Surface Shader compiler then figures out what inputs are needed, what outputs are filled and so on, and generates actual

vertex&pixel shaders, as well as rendering passes to handle forward and deferred rendering.

Standard output structure of surface shaders is this:

struct SurfaceOutput {
 half3 Albedo;
 half3 Normal;
 half3 Emission;
 half Specular;
 half Gloss;
 half Alpha;
};

Samples
See Surface Shader Examples, Surface Shader Custom Lighting Examples and Surface Shader Tessellation pages.

Surface Shader compile directives
Surface shader is placed inside CGPROGRAM..ENDCG block, just like any other shader. The differences are:

It must be placed inside SubShader block, not inside Pass. Surface shader will compile into multiple passes itself.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1050 of 1131 12/16/2012 10:12 PM

It uses #pragma surface ... directive to indicate it's a surface shader.

The #pragma surface directive is:

 #pragma surface surfaceFunction lightModel [optionalparams]

Required parameters:

surfaceFunction - which Cg function has surface shader code. The function should have the form of void surf (Input

IN, inout SurfaceOutput o), where Input is a structure you have defined. Input should contain any texture

coordinates and extra automatic variables needed by surface function.

lightModel - lighting model to use. Built-in ones are Lambert (diffuse) and BlinnPhong (specular). See Custom Lighting

Models page for how to write your own.

Optional parameters:

alpha - Alpha blending mode. Use this for semitransparent shaders.

alphatest:VariableName - Alpha testing mode. Use this for transparent-cutout shaders. Cutoff value is in float

variable with VariableName.

vertex:VertexFunction - Custom vertex modification function. See Tree Bark shader for example.

finalcolor:ColorFunction - Custom final color modification function. See Surface Shader Examples.

exclude_path:prepass or exclude_path:forward - Do not generate passes for given rendering path.

addshadow - Add shadow caster & collector passes. Commonly used with custom vertex modification, so that shadow

casting also gets any procedural vertex animation.

dualforward - Use dual lightmaps in forward rendering path.

fullforwardshadows - Support all shadow types in Forward rendering path.

decal:add - Additive decal shader (e.g. terrain AddPass).

decal:blend - Semitransparent decal shader.

softvegetation - Makes the surface shader only be rendered when Soft Vegetation is on.

noambient - Do not apply any ambient lighting or spherical harmonics lights.

novertexlights - Do not apply any spherical harmonics or per-vertex lights in Forward rendering.

nolightmap - Disables lightmap support in this shader (makes a shader smaller).

nodirlightmap - Disables directional lightmaps support in this shader (makes a shader smaller).

noforwardadd - Disables Forward rendering additive pass. This makes the shader support one full directional light, with

all other lights computed per-vertex/SH. Makes shaders smaller as well.

approxview - Computes normalized view direction per-vertex instead of per-pixel, for shaders that need it. This is faster,

but view direction is not entirely correct when camera gets close to surface.

halfasview - Pass half-direction vector into the lighting function instead of view-direction. Half-direction will be computed

and normalized per vertex. This is faster, but not entirely correct.

tessellate:TessFunction - use DX11 GPU tessellation; the function computes tessellation factors. See Surface

Shader Tessellation for details.

Additionally, you can write #pragma debug inside CGPROGRAM block, and then surface compiler will spit out a lot of

comments of the generated code. You can view that using Open Compiled Shader in shader inspector.

Surface Shader input structure
The input structure Input generally has any texture coordinates needed by the shader. Texture coordinates must be named

"uv" followed by texture name (or start it with "uv2" to use second texture coordinate set).

Additional values that can be put into Input structure:

float3 viewDir - will contain view direction, for computing Parallax effects, rim lighting etc.

float4 with COLOR semantic - will contain interpolated per-vertex color.

float4 screenPos - will contain screen space position for reflection effects. Used by WetStreet shader in Dark Unity for

example.

float3 worldPos - will contain world space position.

float3 worldRefl - will contain world reflection vector if surface shader does not write to o.Normal. See Reflect-

Diffuse shader for example.

float3 worldNormal - will contain world normal vector if surface shader does not write to o.Normal.

float3 worldRefl; INTERNAL_DATA - will contain world reflection vector if surface shader writes to o.Normal. To

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1051 of 1131 12/16/2012 10:12 PM

get the reflection vector based on per-pixel normal map, use WorldReflectionVector (IN, o.Normal). See

Reflect-Bumped shader for example.

float3 worldNormal; INTERNAL_DATA - will contain world normal vector if surface shader writes to o.Normal. To

get the normal vector based on per-pixel normal map, use WorldNormalVector (IN, o.Normal).

Further Documentation
Surface Shader Examples

Custom Lighting models in Surface Shaders

Surface Shader Lighting Examples

Surface Shaders with DX11 Tessellation
Page last updated: 2012-11-16

SL-SurfaceShaderExamples

Here are some examples of Surface Shaders. The examples below focus on using built-in lighting models; examples on how

to implement custom lighting models are in Surface Shader Lighting Examples.

Simple
We'll start with a very simple shader and build up on that. Here's a shader that just sets surface color to "white". It uses built-in

Lambert (diffuse) lighting model.

 Shader "Example/Diffuse Simple" {

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf Lambert

 struct Input {

 float4 color : COLOR;

 };

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = 1;

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

Here's how it looks like on a model with two lights set up:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1052 of 1131 12/16/2012 10:12 PM

Texture
An all-white object is quite boring, so let's add a texture. We'll add a Properties block to the shader, so we get a texture

selector in our Material. Other changes are in bold below.

 Shader "Example/Diffuse Texture" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf Lambert

 struct Input {

 float2 uv_MainTex;

 };

 sampler2D _MainTex;

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1053 of 1131 12/16/2012 10:12 PM

Normal mapping
Let's add some normal mapping:

 Shader "Example/Diffuse Bump" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 _BumpMap ("Bumpmap", 2D) = "bump" {}

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf Lambert

 struct Input {

 float2 uv_MainTex;

 float2 uv_BumpMap;

 };

 sampler2D _MainTex;

 sampler2D _BumpMap;

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;

 o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1054 of 1131 12/16/2012 10:12 PM

Rim Lighting
Now, try to add some Rim Lighting to highlight the edges of an object. We'll add some emissive light based on angle between

surface normal and view direction. For that, we'll use viewDir built-in surface shader variable.

 Shader "Example/Rim" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 _BumpMap ("Bumpmap", 2D) = "bump" {}

 _RimColor ("Rim Color", Color) = (0.26,0.19,0.16,0.0)

 _RimPower ("Rim Power", Range(0.5,8.0)) = 3.0

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf Lambert

 struct Input {

 float2 uv_MainTex;

 float2 uv_BumpMap;

 float3 viewDir;

 };

 sampler2D _MainTex;

 sampler2D _BumpMap;

 float4 _RimColor;

 float _RimPower;

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;

 o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));

 half rim = 1.0 - saturate(dot (normalize(IN.viewDir), o.Normal));

 o.Emission = _RimColor.rgb * pow (rim, _RimPower);

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1055 of 1131 12/16/2012 10:12 PM

Detail Texture
For a different effect, let's add a detail texture that is combined with the base texture. Detail texture uses the same UVs, but

usually different Tiling in the Material, so we have to use different input UV coordinates.

 Shader "Example/Detail" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 _BumpMap ("Bumpmap", 2D) = "bump" {}

 _Detail ("Detail", 2D) = "gray" {}

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf Lambert

 struct Input {

 float2 uv_MainTex;

 float2 uv_BumpMap;

 float2 uv_Detail;

 };

 sampler2D _MainTex;

 sampler2D _BumpMap;

 sampler2D _Detail;

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;

 o.Albedo *= tex2D (_Detail, IN.uv_Detail).rgb * 2;

 o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

Using a checker texture does not make much practical sense, but illustrates what happens:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1056 of 1131 12/16/2012 10:12 PM

Detail Texture in Screen Space
How about a detail texture in screen space? It does not make much sense for a soldier head model, but illustrates how a

built-in screenPos input might be used:

 Shader "Example/ScreenPos" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 _Detail ("Detail", 2D) = "gray" {}

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf Lambert

 struct Input {

 float2 uv_MainTex;

 float4 screenPos;

 };

 sampler2D _MainTex;

 sampler2D _Detail;

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;

 float2 screenUV = IN.screenPos.xy / IN.screenPos.w;

 screenUV *= float2(8,6);

 o.Albedo *= tex2D (_Detail, screenUV).rgb * 2;

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

I removed normal mapping from the shader above, just to make it shorter:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1057 of 1131 12/16/2012 10:12 PM

Cubemap Reflection
Here's a shader that does cubemapped reflection using built-in worldRefl input. It's actually very similar to built-in

Reflective/Diffuse shader:

 Shader "Example/WorldRefl" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 _Cube ("Cubemap", CUBE) = "" {}

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf Lambert

 struct Input {

 float2 uv_MainTex;

 float3 worldRefl;

 };

 sampler2D _MainTex;

 samplerCUBE _Cube;

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb * 0.5;

 o.Emission = texCUBE (_Cube, IN.worldRefl).rgb;

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

And since it assigns the reflection color as Emission, we get a very shiny soldier:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1058 of 1131 12/16/2012 10:12 PM

If you want to do reflections that are affected by normal maps, it needs to be slightly more involved: INTERNAL_DATA needs to

be added to the Input structure, and WorldReflectionVector function used to compute per-pixel reflection vector after

you've written the Normal output.

 Shader "Example/WorldRefl Normalmap" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 _BumpMap ("Bumpmap", 2D) = "bump" {}

 _Cube ("Cubemap", CUBE) = "" {}

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf Lambert

 struct Input {

 float2 uv_MainTex;

 float2 uv_BumpMap;

 float3 worldRefl;

 INTERNAL_DATA

 };

 sampler2D _MainTex;

 sampler2D _BumpMap;

 samplerCUBE _Cube;

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb * 0.5;

 o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));

 o.Emission = texCUBE (_Cube, WorldReflectionVector (IN, o.Normal)).rgb;

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

Here's a normal mapped shiny soldier:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1059 of 1131 12/16/2012 10:12 PM

Slices via World Space Position
Here's a shader that "slices" the object by discarding pixels in nearly horizontal rings. It does that by using clip() Cg/HLSL

function based on world position of a pixel. We'll use worldPos built-in surface shader variable.

 Shader "Example/Slices" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 _BumpMap ("Bumpmap", 2D) = "bump" {}

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 Cull Off

 CGPROGRAM

 #pragma surface surf Lambert

 struct Input {

 float2 uv_MainTex;

 float2 uv_BumpMap;

 float3 worldPos;

 };

 sampler2D _MainTex;

 sampler2D _BumpMap;

 void surf (Input IN, inout SurfaceOutput o) {

 clip (frac((IN.worldPos.y+IN.worldPos.z*0.1) * 5) - 0.5);

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;

 o.Normal = UnpackNormal (tex2D (_BumpMap, IN.uv_BumpMap));

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1060 of 1131 12/16/2012 10:12 PM

Normal Extrusion with Vertex Modifier
It is possible to use a "vertex modifier" function that will modify incoming vertex data in the vertex shader. This can be used for

procedural animation, extrusion along normals and so on. Surface shader compilation directive vertex:functionName is

used for that, with a function that takes inout appdata_full parameter.

Here's a shader that moves vertices along their normals by the amount specified in the material:

 Shader "Example/Normal Extrusion" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 _Amount ("Extrusion Amount", Range(-1,1)) = 0.5

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf Lambert vertex:vert

 struct Input {

 float2 uv_MainTex;

 };

 float _Amount;

 void vert (inout appdata_full v) {

 v.vertex.xyz += v.normal * _Amount;

 }

 sampler2D _MainTex;

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

Moving vertices along their normals makes a fat soldier:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1061 of 1131 12/16/2012 10:12 PM

Custom data computed per-vertex
Using a vertex modifier function it is also possible to compute custom data in a vertex shader, which then will be passed to the

surface shader function per-pixel. The same compilation directive vertex:functionName is used, but the function should

take two parameters: inout appdata_full and out Input. You can fill in any Input member that is not a built-in value

there.

Example below defines a custom float3 customColor member, which is computed in a vertex function:

 Shader "Example/Custom Vertex Data" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf Lambert vertex:vert

 struct Input {

 float2 uv_MainTex;

 float3 customColor;

 };

 void vert (inout appdata_full v, out Input o) {

 UNITY_INITIALIZE_OUTPUT(Input,o);

 o.customColor = abs(v.normal);

 }

 sampler2D _MainTex;

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;

 o.Albedo *= IN.customColor;

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

In this example customColor is set to the absolute value of the normal:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1062 of 1131 12/16/2012 10:12 PM

More practical uses could be computing any per-vertex data that is not provided by built-in Input variables; or optimizing shader

computations. For example, it's possible to compute Rim lighting at object's vertices, instead of doing that in the surface shader

per-pixel.

Final Color Modifier
It is possible to use a "final color modifier" function that will modify final color computed by the shader. Surface shader

compilation directive finalcolor:functionName is used for that, with a function that takes Input IN,

SurfaceOutput o, inout fixed4 color parameters.

Here's a simple shader that applies tint to final color. This is different from just applying tint to surface Albedo color: this tint will

also affect any color that came from lightmaps, light probes and similar extra sources.

 Shader "Example/Tint Final Color" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 _ColorTint ("Tint", Color) = (1.0, 0.6, 0.6, 1.0)

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf Lambert finalcolor:mycolor

 struct Input {

 float2 uv_MainTex;

 };

 fixed4 _ColorTint;

 void mycolor (Input IN, SurfaceOutput o, inout fixed4 color)

 {

 color *= _ColorTint;

 }

 sampler2D _MainTex;

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1063 of 1131 12/16/2012 10:12 PM

Custom Fog with Final Color Modifier
Common use case for final color modifier (see above) would be implementing completely custom Fog. Fog needs to affect the

final computed pixel shader color, which is exactly what the finalcolor modifier does.

Here's a shader that applies fog tint based on distance from screen center. This combines both the vertex modifier with custom

vertex data (fog) and final color modifier. When used in forward rendering additive pass, Fog needs to fade to black color, and

this example handles that as well with a check for UNITY_PASS_FORWARDADD.

 Shader "Example/Fog via Final Color" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 _FogColor ("Fog Color", Color) = (0.3, 0.4, 0.7, 1.0)

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf Lambert finalcolor:mycolor vertex:myvert

 struct Input {

 float2 uv_MainTex;

 half fog;

 };

 void myvert (inout appdata_full v, out Input data)

 {

 UNITY_INITIALIZE_OUTPUT(Input,v);

 float4 hpos = mul (UNITY_MATRIX_MVP, v.vertex);

 data.fog = min (1, dot (hpos.xy, hpos.xy) * 0.1);

 }

 fixed4 _FogColor;

 void mycolor (Input IN, SurfaceOutput o, inout fixed4 color)

 {

 fixed3 fogColor = _FogColor.rgb;

 #ifdef UNITY_PASS_FORWARDADD

 fogColor = 0;

 #endif

 color.rgb = lerp (color.rgb, fogColor, IN.fog);

 }

 sampler2D _MainTex;

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1064 of 1131 12/16/2012 10:12 PM

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

Page last updated: 2012-11-16

SL-SurfaceShaderLighting

When writing Surface Shaders, you're describing properties of a surface (albedo color, normal, ...) and the lighting interaction

is computed by a Lighting Model. Built-in lighting models are Lambert (diffuse lighting) and BlinnPhong (specular lighting).

Sometimes you might want to use a custom lighting model, and it is possible to do that in Surface Shaders. Lighting model is

nothing more than a couple of Cg/HLSL functions that match some conventions. The built-in Lambert and BlinnPhong

models are defined in Lighting.cginc file inside Unity ({unity install path}/Data/CGIncludes/Lighting.cginc on

Windows, /Applications/Unity/Unity.app/Contents/CGIncludes/Lighting.cginc on Mac).

Lighting Model declaration
Lighting model is a couple of regular functions with names starting with Lighting. They can be declared anywhere in your

shader file or one of included files. The functions are:

half4 LightingName (SurfaceOutput s, half3 lightDir, half atten); This is used in forward

rendering path for light models that are not view direction dependent (e.g. diffuse).

1.

half4 LightingName (SurfaceOutput s, half3 lightDir, half3 viewDir, half atten); This is

used in forward rendering path for light models that are view direction dependent.

2.

half4 LightingName_PrePass (SurfaceOutput s, half4 light); This is used in deferred lighting path.3.

Note that you don't need to declare all functions. A lighting model either uses view direction or it does not. Similarly, if the

lighting model will not work in deferred lighting, you just do not declare _PrePass function, and all shaders that use it will

compile to forward rendering only.

Decoding directional lightmaps needs to be customized in some circumstances in a similar fashion as the lighting function for

forward and deferred lighting. Use one of the functions below depending on whether your light model is view direction

dependent or not. Both functions handle forward and deferred lighting rendering paths automatically.

half4 LightingName_DirLightmap (SurfaceOutput s, fixed4 color, fixed4 scale, bool1.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1065 of 1131 12/16/2012 10:12 PM

surfFuncWritesNormal); This is used for light models that are not view direction dependent (e.g. diffuse).

half4 LightingName_DirLightmap (SurfaceOutput s, fixed4 color, fixed4 scale, half3

viewDir, bool surfFuncWritesNormal, out half3 specColor); This is used for light models that are

view direction dependent.

2.

Examples
Surface Shader Lighting Examples

Page last updated: 2012-01-23

SL-SurfaceShaderLightingExamples

Here are some examples of custom lighting models in Surface Shaders. General Surface Shader examples are in this page.

Because Deferred Lighting does not play well with some custom per-material lighting models, in most examples below we

make the shaders compile to Forward Rendering only.

Diffuse
We'll start with a shader that uses built-in Lambert lighting model:

 Shader "Example/Diffuse Texture" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf Lambert

 struct Input {

 float2 uv_MainTex;

 };

 sampler2D _MainTex;

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

Here's how it looks like with a texture and without an actual texture (one directional light is in the scene):

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1066 of 1131 12/16/2012 10:12 PM

Now, let's do exactly the same, but write out our own lighting model instead of using built-in Lambert one. Surface Shader

Lighting Models are just some functions that we need to write. Here's a simple Lambert one. Note that the "shader part" itself

did not change at all (grayed out):

 Shader "Example/Diffuse Texture" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf SimpleLambert

 half4 LightingSimpleLambert (SurfaceOutput s, half3 lightDir, half atten) {

 half NdotL = dot (s.Normal, lightDir);

 half4 c;

 c.rgb = s.Albedo * _LightColor0.rgb * (NdotL * atten * 2);

 c.a = s.Alpha;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1067 of 1131 12/16/2012 10:12 PM

 return c;

 }

 struct Input {

 float2 uv_MainTex;

 };

 sampler2D _MainTex;

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

So our simple Diffuse lighting model is LightingSimpleLambert function. It computes lighting by doing a dot product

between surface normal and light direction, and then applies light attenuation and color.

Diffuse Wrap
Here's Wrapped Diffuse - a modification of Diffuse lighting, where illumination "wraps around" the edges of objects. It's useful

for faking subsurface scattering effect. Again, the surface shader itself did not change at all, we're just using different lighting

function.

 Shader "Example/Diffuse Wrapped" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf WrapLambert

 half4 LightingWrapLambert (SurfaceOutput s, half3 lightDir, half atten) {

 half NdotL = dot (s.Normal, lightDir);

 half diff = NdotL * 0.5 + 0.5;

 half4 c;

 c.rgb = s.Albedo * _LightColor0.rgb * (diff * atten * 2);

 c.a = s.Alpha;

 return c;

 }

 struct Input {

 float2 uv_MainTex;

 };

 sampler2D _MainTex;

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1068 of 1131 12/16/2012 10:12 PM

Toon Ramp
Here's a "Ramp" lighting model that uses a texture ramp to define how surface responds to angle between light and the

normal. This can be used for variety of effects, including Toon lighting.

 Shader "Example/Toon Ramp" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 _Ramp ("Shading Ramp", 2D) = "gray" {}

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf Ramp

 sampler2D _Ramp;

 half4 LightingRamp (SurfaceOutput s, half3 lightDir, half atten) {

 half NdotL = dot (s.Normal, lightDir);

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1069 of 1131 12/16/2012 10:12 PM

 half diff = NdotL * 0.5 + 0.5;

 half3 ramp = tex2D (_Ramp, float2(diff)).rgb;

 half4 c;

 c.rgb = s.Albedo * _LightColor0.rgb * ramp * (atten * 2);

 c.a = s.Alpha;

 return c;

 }

 struct Input {

 float2 uv_MainTex;

 };

 sampler2D _MainTex;

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1070 of 1131 12/16/2012 10:12 PM

Simple Specular
Here's a simple specular lighting model. It's quite simple to what built-in BlinnPhong actually does; we just put it here to

illustrate how it's done.

 Shader "Example/Simple Specular" {

 Properties {

 _MainTex ("Texture", 2D) = "white" {}

 }

 SubShader {

 Tags { "RenderType" = "Opaque" }

 CGPROGRAM

 #pragma surface surf SimpleSpecular

 half4 LightingSimpleSpecular (SurfaceOutput s, half3 lightDir, half3 viewDir, half atten)

 half3 h = normalize (lightDir + viewDir);

 half diff = max (0, dot (s.Normal, lightDir));

 float nh = max (0, dot (s.Normal, h));

 float spec = pow (nh, 48.0);

 half4 c;

 c.rgb = (s.Albedo * _LightColor0.rgb * diff + _LightColor0.rgb * spec) * (atten * 2);

 c.a = s.Alpha;

 return c;

 }

 struct Input {

 float2 uv_MainTex;

 };

 sampler2D _MainTex;

 void surf (Input IN, inout SurfaceOutput o) {

 o.Albedo = tex2D (_MainTex, IN.uv_MainTex).rgb;

 }

 ENDCG

 }

 Fallback "Diffuse"

 }

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1071 of 1131 12/16/2012 10:12 PM

Page last updated: 2010-09-14

SL-SurfaceShaderTessellation

Surface Shaders have some support for DirectX 11 GPU Tessellation. Idea is:

Tessellation is indicated by tessellate:FunctionName modifier. That function computes triangle edge and inside

tessellation factors.

When tessellation is used, "vertex modifier" (vertex:FunctionName) is invoked after tessellation, for each generated

vertex in the domain shader. Here you'd typically to displacement mapping.

Surface shaders can optionally compute phong tessellation to smooth model surface even without any displacement

mapping.

Current limitations of tessellation support:

Only triangle domain - no quads, no isoline tessellation.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1072 of 1131 12/16/2012 10:12 PM

When tessellation is used, shader is automatically compiled into Shader Model 5.0 target, which means it will only work on

DX11.

No GPU tessellation, displacement in the vertex modifier
Let's start with a surface shader that does some displacement mapping without using tessellation. It just moves vertices along

their normals based on amount coming from a displacement map:

 Shader "Tessellation Sample" {

 Properties {

 _MainTex ("Base (RGB)", 2D) = "white" {}

 _DispTex ("Disp Texture", 2D) = "gray" {}

 _NormalMap ("Normalmap", 2D) = "bump" {}

 _Displacement ("Displacement", Range(0, 1.0)) = 0.3

 _Color ("Color", color) = (1,1,1,0)

 _SpecColor ("Spec color", color) = (0.5,0.5,0.5,0.5)

 }

 SubShader {

 Tags { "RenderType"="Opaque" }

 LOD 300

 CGPROGRAM

 #pragma surface surf BlinnPhong addshadow fullforwardshadows vertex:disp nolightmap

 #pragma target 5.0

 struct appdata {

 float4 vertex : POSITION;

 float4 tangent : TANGENT;

 float3 normal : NORMAL;

 float2 texcoord : TEXCOORD0;

 };

 sampler2D _DispTex;

 float _Displacement;

 void disp (inout appdata v)

 {

 float d = tex2Dlod(_DispTex, float4(v.texcoord.xy,0,0)).r * _Displacement;

 v.vertex.xyz += v.normal * d;

 }

 struct Input {

 float2 uv_MainTex;

 };

 sampler2D _MainTex;

 sampler2D _NormalMap;

 fixed4 _Color;

 void surf (Input IN, inout SurfaceOutput o) {

 half4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;

 o.Albedo = c.rgb;

 o.Specular = 0.2;

 o.Gloss = 1.0;

 o.Normal = UnpackNormal(tex2D(_NormalMap, IN.uv_MainTex));

 }

 ENDCG

 }

 FallBack "Diffuse"

 }

The above shader is fairly standard, points of intetest:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1073 of 1131 12/16/2012 10:12 PM

Vertex modifier disp samples the displacement map and moves vertices along their normals.

It uses custom "vertex data input" structure (appdata) instead of default appdata_full. This is not needed yet, but it's

more efficient for tessellation to use as small structure as possible.

Since our vertex data does not have 2nd UV coordinate, we add nolightmap directive to exclude lightmaps.

Here's how some simple objects would look like with this shader:

Fixed amount of tessellation
Let's add fixed amount of tessellation, i.e. the same tessellation level for the whole mesh. This approach is suitable if your

model's faces are roughly the same size on screen. Some script could then change the tessellation level from code, based on

distance to the camera.

 Shader "Tessellation Sample" {

 Properties {

 _Tess ("Tessellation", Range(1,32)) = 4

 _MainTex ("Base (RGB)", 2D) = "white" {}

 _DispTex ("Disp Texture", 2D) = "gray" {}

 _NormalMap ("Normalmap", 2D) = "bump" {}

 _Displacement ("Displacement", Range(0, 1.0)) = 0.3

 _Color ("Color", color) = (1,1,1,0)

 _SpecColor ("Spec color", color) = (0.5,0.5,0.5,0.5)

 }

 SubShader {

 Tags { "RenderType"="Opaque" }

 LOD 300

 CGPROGRAM

 #pragma surface surf BlinnPhong addshadow fullforwardshadows vertex:disp tessellate

 #pragma target 5.0

 struct appdata {

 float4 vertex : POSITION;

 float4 tangent : TANGENT;

 float3 normal : NORMAL;

 float2 texcoord : TEXCOORD0;

 };

 float _Tess;

 float4 tessFixed()

 {

 return _Tess;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1074 of 1131 12/16/2012 10:12 PM

 }

 sampler2D _DispTex;

 float _Displacement;

 void disp (inout appdata v)

 {

 float d = tex2Dlod(_DispTex, float4(v.texcoord.xy,0,0)).r * _Displacement;

 v.vertex.xyz += v.normal * d;

 }

 struct Input {

 float2 uv_MainTex;

 };

 sampler2D _MainTex;

 sampler2D _NormalMap;

 fixed4 _Color;

 void surf (Input IN, inout SurfaceOutput o) {

 half4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;

 o.Albedo = c.rgb;

 o.Specular = 0.2;

 o.Gloss = 1.0;

 o.Normal = UnpackNormal(tex2D(_NormalMap, IN.uv_MainTex));

 }

 ENDCG

 }

 FallBack "Diffuse"

 }

The tessellation function, tessFixed in our shader, returns four tessellation factors as a single float4 value: tree factors for

each edge of the triangle, and one factor for the inside of the triangle. Here, we just return a constant value that is set in

material properties.

Distance-based tessellation
We can also change tessellation level based on distance from the camera. For example, we could define two distance values;

distance at which tessellation is at maximum (say, 10 meters), and distance towards which tessellation level gradually

decreases (say, 20 meters).

 Shader "Tessellation Sample" {

 Properties {

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1075 of 1131 12/16/2012 10:12 PM

 _Tess ("Tessellation", Range(1,32)) = 4

 _MainTex ("Base (RGB)", 2D) = "white" {}

 _DispTex ("Disp Texture", 2D) = "gray" {}

 _NormalMap ("Normalmap", 2D) = "bump" {}

 _Displacement ("Displacement", Range(0, 1.0)) = 0.3

 _Color ("Color", color) = (1,1,1,0)

 _SpecColor ("Spec color", color) = (0.5,0.5,0.5,0.5)

 }

 SubShader {

 Tags { "RenderType"="Opaque" }

 LOD 300

 CGPROGRAM

 #pragma surface surf BlinnPhong addshadow fullforwardshadows vertex:disp tessellate

 #pragma target 5.0

 #include "Tessellation.cginc"

 struct appdata {

 float4 vertex : POSITION;

 float4 tangent : TANGENT;

 float3 normal : NORMAL;

 float2 texcoord : TEXCOORD0;

 };

 float _Tess;

 float4 tessDistance (appdata v0, appdata v1, appdata v2) {

 float minDist = 10.0;

 float maxDist = 25.0;

 return UnityDistanceBasedTess(v0.vertex, v1.vertex, v2.vertex, minDist, m

 }

 sampler2D _DispTex;

 float _Displacement;

 void disp (inout appdata v)

 {

 float d = tex2Dlod(_DispTex, float4(v.texcoord.xy,0,0)).r * _Displacement;

 v.vertex.xyz += v.normal * d;

 }

 struct Input {

 float2 uv_MainTex;

 };

 sampler2D _MainTex;

 sampler2D _NormalMap;

 fixed4 _Color;

 void surf (Input IN, inout SurfaceOutput o) {

 half4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;

 o.Albedo = c.rgb;

 o.Specular = 0.2;

 o.Gloss = 1.0;

 o.Normal = UnpackNormal(tex2D(_NormalMap, IN.uv_MainTex));

 }

 ENDCG

 }

 FallBack "Diffuse"

 }

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1076 of 1131 12/16/2012 10:12 PM

Here the tessellation function takes three parameters; the vertex data of three triangle corners before tessellation. This is

needed to compute tessellation levels, which depend on vertex positions now. We include a built-in helper file

Tessellation.cginc and call UnityDistanceBasedTess function from it to do all the work. That function computes

distance of each vertex to the camera and derives final tessellation factors.

Edge length based tessellation
Purely distance based tessellation is good only when triangle sizes are quite similar. In the image above, you can see that

objects that have small triangles are tessellated too much, while objects that have large triangles aren't tessellated enough.

Instead, tessellation levels could be computed based on triangle edge length on the screen - the longer the edge, the larger

tessellation factor should be applied.

 Shader "Tessellation Sample" {

 Properties {

 _EdgeLength ("Edge length", Range(2,50)) = 15

 _MainTex ("Base (RGB)", 2D) = "white" {}

 _DispTex ("Disp Texture", 2D) = "gray" {}

 _NormalMap ("Normalmap", 2D) = "bump" {}

 _Displacement ("Displacement", Range(0, 1.0)) = 0.3

 _Color ("Color", color) = (1,1,1,0)

 _SpecColor ("Spec color", color) = (0.5,0.5,0.5,0.5)

 }

 SubShader {

 Tags { "RenderType"="Opaque" }

 LOD 300

 CGPROGRAM

 #pragma surface surf BlinnPhong addshadow fullforwardshadows vertex:disp tessellate

 #pragma target 5.0

 #include "Tessellation.cginc"

 struct appdata {

 float4 vertex : POSITION;

 float4 tangent : TANGENT;

 float3 normal : NORMAL;

 float2 texcoord : TEXCOORD0;

 };

 float _EdgeLength;

 float4 tessEdge (appdata v0, appdata v1, appdata v2)

 {

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1077 of 1131 12/16/2012 10:12 PM

 return UnityEdgeLengthBasedTess (v0.vertex, v1.vertex, v2.vertex, _EdgeLe

 }

 sampler2D _DispTex;

 float _Displacement;

 void disp (inout appdata v)

 {

 float d = tex2Dlod(_DispTex, float4(v.texcoord.xy,0,0)).r * _Displacement;

 v.vertex.xyz += v.normal * d;

 }

 struct Input {

 float2 uv_MainTex;

 };

 sampler2D _MainTex;

 sampler2D _NormalMap;

 fixed4 _Color;

 void surf (Input IN, inout SurfaceOutput o) {

 half4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;

 o.Albedo = c.rgb;

 o.Specular = 0.2;

 o.Gloss = 1.0;

 o.Normal = UnpackNormal(tex2D(_NormalMap, IN.uv_MainTex));

 }

 ENDCG

 }

 FallBack "Diffuse"

 }

Here again, we just call UnityEdgeLengthBasedTess function from Tessellation.cginc to do all the actual work.

For performance reasons, it's advisable to call UnityEdgeLengthBasedTessCull function instead, which will do patch

frustum culling. This makes the shader a bit more expensive, but saves a lot of GPU work for parts of meshes that are outside

of camera's view.

Phong Tessellation

Phong Tessellation modifies positions of the subdivided faces so that the resulting surface follows the mesh normals a bit. It's

quite an effective way of making low-poly meshes become more smooth.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1078 of 1131 12/16/2012 10:12 PM

Unity's surface shaders can compute Phong tessellation automatically using tessphong:VariableName compilation

directive. Here's an example shader:

 Shader "Phong Tessellation" {

 Properties {

 _EdgeLength ("Edge length", Range(2,50)) = 5

 _Phong ("Phong Strengh", Range(0,1)) = 0.5

 _MainTex ("Base (RGB)", 2D) = "white" {}

 _Color ("Color", color) = (1,1,1,0)

 }

 SubShader {

 Tags { "RenderType"="Opaque" }

 LOD 300

 CGPROGRAM

 #pragma surface surf Lambert vertex:dispNone tessellate:tessEdge tessphong:_Phong

 #include "Tessellation.cginc"

 struct appdata {

 float4 vertex : POSITION;

 float3 normal : NORMAL;

 float2 texcoord : TEXCOORD0;

 };

 void dispNone (inout appdata v) { }

 float _Phong;

 float _EdgeLength;

 float4 tessEdge (appdata v0, appdata v1, appdata v2)

 {

 return UnityEdgeLengthBasedTess (v0.vertex, v1.vertex, v2.vertex, _EdgeLength);

 }

 struct Input {

 float2 uv_MainTex;

 };

 fixed4 _Color;

 sampler2D _MainTex;

 void surf (Input IN, inout SurfaceOutput o) {

 half4 c = tex2D (_MainTex, IN.uv_MainTex) * _Color;

 o.Albedo = c.rgb;

 o.Alpha = c.a;

 }

 ENDCG

 }

 FallBack "Diffuse"

 }

Here's a comparison between regular shader (top row) and one that uses Phong tessellation (bottom row). You can see that

even without any displacement mapping, the surface becomes more round.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1079 of 1131 12/16/2012 10:12 PM

Page last updated: 2012-09-18

SL-ShaderPrograms

ShaderLab shaders encompass more than just "hardware shaders". They do many things. They describe properties that are

displayed in the Material Inspector, contain multiple shader implementations for different graphics hardware, configure fixed

function hardware state and so on. The actual programmable shaders - like vertex and fragment programs - are just a part of

the whole ShaderLab's "shader" concept. Take a look at shader tutorial for a basic introduction. Here we'll call the low-level

hardware shaders shader programs.

If you want to write shaders that interact with lighting, take a look at Surface Shaders documentation. The rest of this

page will assume shaders that do not interact with Unity lights (e.g. special effects, Image Effects etc.)

Shader programs are written in Cg / HLSL language, by embedding "snippets" in the shader text, somewhere inside the Pass

command. They usually look like this:

 Pass {

 // ... the usual pass state setup ...

 CGPROGRAM

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1080 of 1131 12/16/2012 10:12 PM

 // compilation directives for this snippet, e.g.:

 #pragma vertex vert

 #pragma fragment frag

 // the Cg code itself

 ENDCG

 // ... the rest of pass setup ...

 }

Cg snippets
Cg program snippets are written between CGPROGRAM and ENDCG.

At the start of the snippet compilation directives can be given as #pragma statements. Directives indicating which shader

functions to compile:

#pragma vertex name - compile function name as the vertex shader.

#pragma fragment name - compile function name as the fragment shader.

#pragma geometry name - compile function name as DX10 geometry shader. Having this option automatically turns on

#pragma target 4.0, see below.

#pragma hull name - compile function name as DX11 hull shader. Having this option automatically turns on #pragma

target 5.0, see below.

#pragma domain name - compile function name as DX11 domain shader. Having this option automatically turns on

#pragma target 5.0, see below.

Other compilation directives:

#pragma target name - which shader target to compile to. See shader targets for details.

#pragma only_renderers space separated names - compile shader only for given renderers. By default shaders are

compiled for all renderers. See renderers for details.

#pragma exclude_renderers space separated names - do not compile shader for given renderers. By default shaders

are compiled for all renderers. See renderers for details.

#pragma glsl - when compiling shaders for desktop OpenGL platforms, convert Cg/HLSL into GLSL (instead of default

setting which is ARB vertex/fragment programs). Use this to enable derivative instructions, texture sampling with explicit

LOD levels, etc.

#pragma glsl_no_auto_normalization - when compiling shaders for mobile GLSL (iOS/Android), turn off automatic

normalization of normal & tangent vectors. By default, normals and tangents are normalized in the vertex shader on

iOS/Android platforms.

#pragma fragmentoption option - adds option to the compiled OpenGL fragment program. See the ARB fragment

program specification for a list of allowed options. This directive has no effect on vertex programs or programs that are

compiled to non-OpenGL targets.

Each snippet must contain a vertex program, a fragment program, or both. Thus a #pragma vertex or #pragma fragment

directive is required, or both.

Shader targets
By default, Unity compiles shaders into roughly shader model 2.0 equivalent. Using #pragma target allows shaders to be

compiled into other capability levels. Currently these targets are supported:

#pragma target 2.0 (default) - roughly shader model 2.0

Shader Model 2.0 on Direct3D 9.

ARB_vertex_program with 256 instruction limit and ARB_fragment_program with 96 instruction limit (32 texture + 64

arithmetic), 16 temporary registers and 4 texture indirections.

#pragma target 3.0 - compile to shader model 3.0:

Shader Model 3.0 on Direct3D 9.

ARB_vertex_program with no instruction limit and ARB_fragment_program with 1024 instruction limit (512 texture + 512

arithmetic), 32 temporary registers and 4 texture indirections. It is possible to override these limits using #pragma

profileoption directive. E.g. #pragma profileoption MaxTexIndirections=256 raises texture indirections

limit to 256. Note that some shader model 3.0 features, like derivative instructions, aren't supported by

ARB_vertex_program/ARB_fragment_program. You can use #pragma glsl to translate to GLSL instead which has

fewer restrictions.

When compiling to 3.0 or larger target, both vertex and fragment programs need to be present.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1081 of 1131 12/16/2012 10:12 PM

#pragma target 4.0 - compile to DX10 shader model 4.0. This target is currently only supported by DirectX 11 renderer.

#pragma target 5.0 - compile to DX11 shader model 5.0. This target is currently only supported by DirectX 11 renderer.

Rendering platforms
Unity supports several rendering APIs (e.g. Direct3D 9 and OpenGL), and by default all shader programs are compiled into for

supported renderers. You can indicate which renderers to compile to using #pragma only_renderers or #pragma

exclude_renderers directives. This is useful if you know you will only target Mac OS X (where there's no Direct3D), or only

Windows (where Unity defaults to D3D), or if some particular shader is only possible in one renderer and not others. Currently

supported renderer names are:

d3d9 - Direct3D 9.

d3d11 - Direct3D 11.

opengl - OpenGL.

gles - OpenGL ES 2.0.

xbox360 - Xbox 360.

ps3 - PlayStation 3.

flash - Flash.

For example, this line would only compile shader into D3D9 mode:

 #pragma only_renderers d3d9

Subsections
Accessing shader properties in Cg

Providing vertex data to vertex programs

Built-in shader include files

Predefined shader preprocessor macros

Built-in state variables in shader programs

GLSL Shader Programs
Page last updated: 2012-11-16

SL-PropertiesInPrograms

Shader declares Material properties in a Properties block. If you want to access some of those properties in a shader program,

you need to declare a Cg/HLSL variable with the same name and a matching type. An example is provided in Shader Tutorial:

Vertex and Fragment Programs.

For example these shader properties:

_MyColor ("Some Color", Color) = (1,1,1,1)
_MyVector ("Some Vector", Vector) = (0,0,0,0)
_MyFloat ("My float", Float) = 0.5
_MyTexture ("Texture", 2D) = "white" {}
_MyCubemap ("Cubemap", CUBE) = "" {}

would be declared for access in Cg/HLSL code as:

fixed4 _MyColor; // low precision type is enough for colors
float4 _MyVector;
float _MyFloat;
sampler2D _MyTexture;
samplerCUBE _MyCubemap;

Cg can also accept uniform keyword, but it is not necessary:

uniform float4 _MyColor;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1082 of 1131 12/16/2012 10:12 PM

Property types in ShaderLab map to Cg/HLSL variable types this way:

Color and Vector properties map to float4, half4 or fixed4 variables.

Range and Float properties map to float, half or fixed variables.

Texture properties map to sampler2D variables for regular (2D) textures; Cubemaps map to samplerCUBE; and 3D

textures map to sampler3D.
Page last updated: 2012-09-04

SL-VertexProgramInputs

For Cg/HLSL vertex programs, the vertex data must be passed in as a structure. Several commonly used vertex structures are

defined in UnityCG.cginc include file, and in most cases it's enough just to use them. The structures are:

appdata_base: vertex consists of position, normal and one texture coordinate.

appdata_tan: vertex consists of position, tangent, normal and one texture coordinate.

appdata_full: vertex consists of position, tangent, normal, two texture coordinates and color.

For example, this shader colors the mesh based on it's normals and just uses appdata_base as vertex program input:

Shader "VertexInputSimple" {
 SubShader {
 Pass {
 CGPROGRAM
 #pragma vertex vert
 #pragma fragment frag
 #include "UnityCG.cginc"

 struct v2f {
 float4 pos : SV_POSITION;
 fixed4 color : COLOR;
 };

 v2f vert (appdata_base v)
 {
 v2f o;
 o.pos = mul (UNITY_MATRIX_MVP, v.vertex);
 o.color.xyz = v.normal * 0.5 + 0.5;
 o.color.w = 1.0;
 return o;
 }

 fixed4 frag (v2f i) : COLOR0 { return i.color; }
 ENDCG
 }
 }
}

If you want to access different vertex data, you have to declare vertex structure yourself. The structure members must be

from the following list:

float4 vertex is the vertex position

float3 normal is the vertex normal

float4 texcoord is the first UV coordinate

float4 texcoord1 is the second UV coordinate

float4 tangent is the tangent vector (used for normal mapping)

float4 color is per-vertex color

Examples

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1083 of 1131 12/16/2012 10:12 PM

Visualizing UVs

The following shader example uses vertex position and first texture coordinate as vertex shader input (defined in structure

appdata). It is very useful to debug UV coordinates of the mesh. UV coordinates are visualized as red and green colors, and

coordinates outside of 0..1 range have additional blue tint applied.

Shader "!Debug/UV 1" {
SubShader {
 Pass {
 Fog { Mode Off }
CGPROGRAM
#pragma vertex vert
#pragma fragment frag

// vertex input: position, UV
struct appdata {
 float4 vertex : POSITION;
 float4 texcoord : TEXCOORD0;
};

struct v2f {
 float4 pos : SV_POSITION;
 float4 uv : TEXCOORD0;
};
v2f vert (appdata v) {
 v2f o;
 o.pos = mul(UNITY_MATRIX_MVP, v.vertex);
 o.uv = float4(v.texcoord.xy, 0, 0);
 return o;
}
half4 frag(v2f i) : COLOR {
 half4 c = frac(i.uv);
 if (any(saturate(i.uv) - i.uv))
 c.b = 0.5;
 return c;
}
ENDCG
 }
}
}

Debug UV1 shader applied to a torus knot model

Similarly, this shader vizualizes the second UV set of the model:

Shader "!Debug/UV 2" {

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1084 of 1131 12/16/2012 10:12 PM

SubShader {
 Pass {
 Fog { Mode Off }
CGPROGRAM
#pragma vertex vert
#pragma fragment frag

// vertex input: position, second UV
struct appdata {
 float4 vertex : POSITION;
 float4 texcoord1 : TEXCOORD1;
};

struct v2f {
 float4 pos : SV_POSITION;
 float4 uv : TEXCOORD0;
};
v2f vert (appdata v) {
 v2f o;
 o.pos = mul(UNITY_MATRIX_MVP, v.vertex);
 o.uv = float4(v.texcoord1.xy, 0, 0);
 return o;
}
half4 frag(v2f i) : COLOR {
 half4 c = frac(i.uv);
 if (any(saturate(i.uv) - i.uv))
 c.b = 0.5;
 return c;
}
ENDCG
 }
}
}

Visualizing vertex colors

The following shader uses vertex position and per-vertex colors as vertex shader input (defined in structure appdata).

Shader "!Debug/Vertex color" {
SubShader {
 Pass {
 Fog { Mode Off }
CGPROGRAM
#pragma vertex vert
#pragma fragment frag

// vertex input: position, color
struct appdata {
 float4 vertex : POSITION;
 fixed4 color : COLOR;
};

struct v2f {
 float4 pos : SV_POSITION;
 fixed4 color : COLOR;
};
v2f vert (appdata v) {
 v2f o;
 o.pos = mul(UNITY_MATRIX_MVP, v.vertex);
 o.color = v.color;
 return o;

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1085 of 1131 12/16/2012 10:12 PM

}
fixed4 frag (v2f i) : COLOR0 { return i.color; }
ENDCG
 }
}
}

Debug Colors shader applied to a model that has illumination baked into colors

Visualizing normals

The following shader uses vertex position and normal as vertex shader input (defined in structure appdata). Normal's X,Y,Z

components are visualized as R,G,B colors. Because the normal components are in -1..1 range, we scale and bias them so

that the output colors are in displayable 0..1 range.

Shader "!Debug/Normals" {
SubShader {
 Pass {
 Fog { Mode Off }
CGPROGRAM
#pragma vertex vert
#pragma fragment frag

// vertex input: position, normal
struct appdata {
 float4 vertex : POSITION;
 float3 normal : NORMAL;
};

struct v2f {
 float4 pos : SV_POSITION;
 fixed4 color : COLOR;
};
v2f vert (appdata v) {
 v2f o;
 o.pos = mul(UNITY_MATRIX_MVP, v.vertex);
 o.color.xyz = v.normal * 0.5 + 0.5;
 o.color.w = 1.0;
 return o;
}
fixed4 frag (v2f i) : COLOR0 { return i.color; }
ENDCG
 }
}
}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1086 of 1131 12/16/2012 10:12 PM

Debug Normals shader applied to a model. You can see that the model has hard shading edges.

Visualizing tangents and binormals

Tangent and binormal vectors are used for normal mapping. In Unity only the tangent vector is stored in vertices, and binormal

is derived from normal and tangent.

The following shader uses vertex position and tangent as vertex shader input (defined in structure appdata). Tangent's X,Y,Z

components are visualized as R,G,B colors. Because the normal components are in -1..1 range, we scale and bias them so

that the output colors are in displayable 0..1 range.

Shader "!Debug/Tangents" {
SubShader {
 Pass {
 Fog { Mode Off }
CGPROGRAM
#pragma vertex vert
#pragma fragment frag

// vertex input: position, tangent
struct appdata {
 float4 vertex : POSITION;
 float4 tangent : TANGENT;
};

struct v2f {
 float4 pos : SV_POSITION;
 fixed4 color : COLOR;
};
v2f vert (appdata v) {
 v2f o;
 o.pos = mul(UNITY_MATRIX_MVP, v.vertex);
 o.color = v.tangent * 0.5 + 0.5;
 return o;
}
fixed4 frag (v2f i) : COLOR0 { return i.color; }
ENDCG
 }
}
}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1087 of 1131 12/16/2012 10:12 PM

Debug Tangents shader applied to a model.

The following shader visualizes binormals. It uses vertex position, normal and tangent as vertex input. Binormal is calculated

from normal and tangent. Just like normal or tangent, it needs to be scaled and biased into a displayable 0..1 range.

Shader "!Debug/Binormals" {
SubShader {
 Pass {
 Fog { Mode Off }
CGPROGRAM
#pragma vertex vert
#pragma fragment frag

// vertex input: position, normal, tangent
struct appdata {
 float4 vertex : POSITION;
 float3 normal : NORMAL;
 float4 tangent : TANGENT;
};

struct v2f {
 float4 pos : SV_POSITION;
 float4 color : COLOR;
};
v2f vert (appdata v) {
 v2f o;
 o.pos = mul(UNITY_MATRIX_MVP, v.vertex);
 // calculate binormal
 float3 binormal = cross(v.normal, v.tangent.xyz) * v.tangent.w;
 o.color.xyz = binormal * 0.5 + 0.5;
 o.color.w = 1.0;
 return o;
}
fixed4 frag (v2f i) : COLOR0 { return i.color; }
ENDCG
 }
}
}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1088 of 1131 12/16/2012 10:12 PM

Debug Binormals shader applied to a model. Pretty!
Page last updated: 2012-09-04

SL-BuiltinIncludes

Unity contains several files that can be used by your shader programs to bring in predefined variables and helper functions.

This is done by the standard #include directive, e.g.:

 CGPROGRAM

 // ...

 #include "UnityCG.cginc"

 // ...

 ENDCG

Shader include files in Unity are with .cginc extension, and the built-in ones are:

HLSLSupport.cginc - (automatically included) Helper macros and definitions for cross-platform shader compilation.

UnityCG.cginc - commonly used global variables and helper functions.

AutoLight.cginc - lighting & shadowing functionality, e.g. surface shaders use this file internally.

Lighting.cginc - standard surface shader lighting models; automatically included when you're writing surface shaders.

TerrainEngine.cginc - helper functions for Terrain & Vegetation shaders.

These files are found inside Unity application ({unity install path}/Data/CGIncludes/UnityCG.cginc on Windows,

/Applications/Unity/Unity.app/Contents/CGIncludes/UnityCG.cginc on Mac), if you want to take a look at what exactly is

done in any of the helper code.

HLSLSupport.cginc
This file is automatically included when compiling shaders. It mostly declares various preprocessor macros to aid in multi-

platform shader development.

UnityCG.cginc
This file is often included in Unity shaders to bring in many helper functions and definitions.

Data structures in UnityCG.cginc

struct appdata_base: vertex shader input with position, normal, one texture coordinate.

struct appdata_tan: vertex shader input with position, normal, tangent, one texture coordinate.

struct appdata_full: vertex shader input with position, normal, tangent, vertex color and two texture coordinates.

struct appdata_img: vertex shader input with position and one texture coordinate.

Generic helper functions in UnityCG.cginc

float3 WorldSpaceViewDir (float4 v) - returns world space direction (not normalized) from given object space

vertex position towards the camera.

float3 ObjSpaceViewDir (float4 v) - returns object space direction (not normalized) from given object space

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1089 of 1131 12/16/2012 10:12 PM

vertex position towards the camera.

float2 ParallaxOffset (half h, half height, half3 viewDir) - calculates UV offset for parallax normal

mapping.

fixed Luminance (fixed3 c) - converts color to luminance (grayscale).

fixed3 DecodeLightmap (fixed4 color) - decodes color from Unity lightmap (RGBM or dLDR depending on

platform).

float4 EncodeFloatRGBA (float v) - encodes [0..1) range float into RGBA color, for storage in low precision

render target.

float DecodeFloatRGBA (float4 enc) - decodes RGBA color into a float.

Similarly, float2 EncodeFloatRG (float v) and float DecodeFloatRG (float2 enc) that use two color

channels.

float2 EncodeViewNormalStereo (float3 n) - encodes view space normal into two numbers in 0..1 range.

float3 DecodeViewNormalStereo (float4 enc4) - decodes view space normal from enc4.xy.

Forward rendering helper functions in UnityCG.cginc

These functions are only useful when using forward rendering (ForwardBase or ForwardAdd pass types).

float3 WorldSpaceLightDir (float4 v) - computes world space direction (not normalized) to light, given object

space vertex position.

float3 ObjSpaceLightDir (float4 v) - computes object space direction (not normalized) to light, given object

space vertex position.

float3 Shade4PointLights (...) - computes illumination from four point lights, with light data tightly packed into

vectors. Forward rendering uses this to compute per-vertex lighting.

Vertex-lit helper functions in UnityCG.cginc

These functions are only useful when using per-vertex lit shaders ("Vertex" pass type).

float3 ShadeVertexLights (float4 vertex, float3 normal) - computes illumination from four per-vertex

lights and ambient, given object space position & normal.
Page last updated: 2012-09-04

SL-BuiltinMacros

When compiling shader programs, Unity defines several preprocessor macros.

Target platform
SHADER_API_OPENGL - desktop OpenGL

SHADER_API_D3D9 - Direct3D 9

SHADER_API_XBOX360 - Xbox 360

SHADER_API_PS3 - PlayStation 3

SHADER_API_D3D11 - desktop Direct3D 11

SHADER_API_GLES - OpenGL ES 2.0 (desktop or mobile), use presence of SHADER_API_MOBILE to determine.

SHADER_API_FLASH - Flash Stage3D

SHADER_API_D3D11_9X - Direct3D 11 target for Windows RT

Additionally, SHADER_TARGET_GLSL is defined when the target shading language is GLSL (always true when

SHADER_API_GLES is defined; and can be true for SHADER_API_OPENGL when #pragma glsl is used).

SHADER_API_MOBILE is defined for SHADER_API_GLES when compiling for "mobile" platform (iOS/Android); and not defined

when compiling for "desktop" (NativeClient).

Platform difference helpers
Direct use of these platform macros is discouraged, since it's not very future proof. For example, if you're writing a shader that

checks for D3D9, then maybe in the future the check should be extended to include D3D11. Instead, Unity defines several

helper macros (in HLSLSupport.cginc) to help with that.

UNITY_ATTEN_CHANNEL - which channel of light attenuation texture contains the data; used in per-pixel lighting code.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1090 of 1131 12/16/2012 10:12 PM

Defined to either 'r' or 'a'.

UNITY_HALF_TEXEL_OFFSET - defined on platforms that need a half-texel offset adjustment in mapping texels to pixels

(e.g. Direct3D 9).

UNITY_UV_STARTS_AT_TOP - always defined with value or 1 or 0; value of one is on platforms where texture V

coordinate is zero at "top of the texture". Direct3D-like platforms use value of 1; OpenGL-like platforms use value of 0.

UNITY_MIGHT_NOT_HAVE_DEPTH_TEXTURE - defined if a platform might emulate shadow maps or depth textures by

manually rendering depth into a texture.

UNITY_PROJ_COORD(a) - given a 4-component vector, return a texture coordinate suitable for projected texture reads.

On most platforms this returns the given value directly.

UNITY_NEAR_CLIP_VALUE - defined to the value of near clipping plane; Direct3D-like platforms use 0.0 while

OpenGL-like platforms use -1.0.

UNITY_COMPILER_CG, UNITY_COMPILER_HLSL or UNITY_COMPILER_HLSL2GLSL determine which underlying

shader compiler is used; use in case of subtle syntax differences force you to write different shader code.

UNITY_CAN_COMPILE_TESSELLATION - defined when the shader compiler "understands" tessellation shader HLSL

syntax (currently only D3D11).

UNITY_INITIALIZE_OUTPUT(type,name) - initialize variable name of given type to zero.

Constant buffer macros
Direct3D 11 groups all shader variables into "constant buffers". Most of Unity's built-in variables are already grouped, but for

variables in your own shaders it might be more optimal to put them into separate constant buffers depending on expected

frequency of updates.

Use CBUFFER_START(name) and CBUFFER_END macros for that:

 CBUFFER_START(MyRarelyUpdatedVariables)

 float4 _SomeGlobalValue;

 CBUFFER_END

Surface shader pass indicators
When Surface Shaders are compiled, they end up generating a lot of code for various passes to do lighting. When compiling

each pass, one of the following macros is defined:

UNITY_PASS_FORWARDBASE - forward rendering base pass (main directional light, lightmaps, SH).

UNITY_PASS_FORWARDADD - forward rendering additive pass (one light per pass).

UNITY_PASS_PREPASSBASE - deferred lighting base pass (renders normals & specular exponent).

UNITY_PASS_PREPASSFINAL - deferred lighting final pass (applies lighting & textures).

UNITY_PASS_SHADOWCASTER - shadow caster rendering pass.

UNITY_PASS_SHADOWCOLLECTOR - shadow "gathering" pass for directional light shadows.

Page last updated: 2012-11-16

SL-BuiltinStateInPrograms

Often in shader programs you need to access some global state, for example, the current model*view*projection matrix, the

current ambient color, and so on. There's no need to declare these variables for the built-in state, you can just use them in

shader programs.

Built-in matrices
Matrices (float4x4) supported:

UNITY_MATRIX_MVP

Current model*view*projection matrix

UNITY_MATRIX_MV

Current model*view matrix

UNITY_MATRIX_P

Current projection matrix

UNITY_MATRIX_T_MV

Transpose of model*view matrix

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1091 of 1131 12/16/2012 10:12 PM

UNITY_MATRIX_IT_MV

Inverse transpose of model*view matrix

UNITY_MATRIX_TEXTURE0 to UNITY_MATRIX_TEXTURE3

Texture transformation matrices

Built-in vectors
Vectors (float4) supported:

UNITY_LIGHTMODEL_AMBIENT

Current ambient color.
Page last updated: 2010-08-18

SL-GLSLShaderPrograms

In addition to using Cg/HSL shader programs, OpenGL Shading Language (GLSL) shaders can be written directly.

However, use of raw GLSL is only recommended for testing, or when you know you will only target Mac OS X or OpenGL

ES 2.0 compatible mobile devices. In majority of normal cases, Unity will cross-compile Cg/HLSL into optimized GLSL (this is

done by default for mobile platforms, and can be optionally turned on for desktop platforms via #pragma glsl).

GLSL snippets
GLSL program snippets are written between GLSLPROGRAM and ENDGLSL keywords.

In GLSL, all shader function entry points have to be called main(). When Unity loads the GLSL shader, it loads the source

once for the vertex program, with VERTEX preprocessor define, and once more for the fragment program, with FRAGMENT

preprocessor define. So the way to separate vertex and fragment program parts in GLSL snippet is to surround them with

#ifdef VERTEX .. #endif and #ifdef FRAGMENT .. #endif. Each GLSL snippet must contain both a vertex program and a

fragment program.

Standard include files match those provided for Cg shaders; they just have .glslinc extension: UnityCG.glslinc.

Vertex shader inputs come from predefined GLSL variables (gl_Vertex, gl_MultiTexCoord0, ...) or are user defined attributes.

Usually only the tangent vector needs a user defined attribute:

 attribute vec4 Tangent;

Data from vertex to fragment programs is passed through varying variables, for example:

 varying vec3 lightDir; // vertex shader computes this, fragment shader uses this

Page last updated: 2012-01-02

SL-Shader

Shader is the root command of a shader file. Each file must define one (and only one) Shader. It specifies how any objects

whose material uses this shader are rendered.

Syntax
Shader "name" { [Properties] Subshaders [Fallback] } Defines a shader. It will appear in the material inspector listed under

name. Shaders optionally can define a list of properties that show up as material settings. After this comes a list of

SubShaders, and optionally a fallback.

Details

Properties

Shaders can have a list of properties. Any properties declared in a shader are shown in the material inspector inside Unity.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1092 of 1131 12/16/2012 10:12 PM

Typical properties are the object color, textures, or just arbitrary values to be used by the shader.

SubShaders & Fallback

Each shader is comprised of a list of sub-shaders. You must have at least one. When loading a shader, Unity will go through

the list of subshaders, and pick the first one that is supported by the end user's machine. If no subshaders are supported,

Unity will try to use fallback shader.

Different graphic cards have different capabilities. This raises an eternal issue for game developers; you want your game to

look great on the latest hardware, but don't want it to be available only to those 3% of the population. This is where

subshaders come in. Create one subshader that has all the fancy graphic effects you can dream of, then add more

subshaders for older cards. These subshaders may implement the effect you want in a slower way, or they may choose not to

implement some details.

Examples
Here is one of the simplest shaders possible:

// colored vertex lighting
Shader "Simple colored lighting" {
 // a single color property
 Properties {
 _Color ("Main Color", Color) = (1,.5,.5,1)
 }
 // define one subshader
 SubShader {
 Pass {
 Material {
 Diffuse [_Color]
 }
 Lighting On
 }
 }
}

This shader defines a color property _Color (that shows up in material inspector as Main Color) with a default value of (1, 0.5,

0.5, 1). Then a single subshader is defined. The subshader consists of one Pass that turns on vertex lighting and sets up

basic material for it.

Subsections
ShaderLab syntax: Properties

ShaderLab syntax: SubShader

ShaderLab syntax: Pass

ShaderLab syntax: Color, Material, Lighting

ShaderLab syntax: Culling & Depth Testing

ShaderLab syntax: Texture Combiners

ShaderLab syntax: Fog

ShaderLab syntax: Alpha testing

ShaderLab syntax: Blending

ShaderLab syntax: Pass Tags

ShaderLab syntax: Name

ShaderLab syntax: BindChannels

ShaderLab syntax: UsePass

ShaderLab syntax: GrabPass

ShaderLab syntax: SubShader Tags

ShaderLab syntax: Fallback

ShaderLab syntax: other commands
Page last updated: 2008-06-16

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1093 of 1131 12/16/2012 10:12 PM

SL-Properties

Shaders can define a list of parameters to be set by artists in Unity's material inspector. The Properties block in the shader file

defines them.

Syntax
Properties { Property [Property ...] }

Defines the property block. Inside braces multiple properties are defined as follows.

name ("display name", Range (min, max)) = number

Defines a float property, represented as a slider from min to max in the inspector.

name ("display name", Color) = (number,number,number,number)

Defines a color property.

name ("display name", 2D) = "name" { options }

Defines a 2D texture property.

name ("display name", Rect) = "name" { options }

Defines a rectangle (non power of 2) texture property.

name ("display name", Cube) = "name" { options }

Defines a cubemap texture property.

name ("display name", Float) = number

Defines a float property.

name ("display name", Vector) = (number,number,number,number)

Defines a four component vector property.

Details
Each property inside the shader is referenced by name (in Unity, it's common to start shader property names with

underscore). The property will show up in material inspector as display name. For each property a default value is given after

equals sign:

For Range and Float properties it's just a single number.

For Color and Vector properties it's four numbers in parentheses.

For texture (2D, Rect, Cube) the default value is either an empty string, or one of builtin default textures: "white", "black",

"gray" or "bump".

Later on in the shader, property values are accessed using property name in square brackets: [name].

Example

Properties {
 // properties for water shader
 _WaveScale ("Wave scale", Range (0.02,0.15)) = 0.07 // sliders
 _ReflDistort ("Reflection distort", Range (0,1.5)) = 0.5
 _RefrDistort ("Refraction distort", Range (0,1.5)) = 0.4
 _RefrColor ("Refraction color", Color) = (.34, .85, .92, 1) // color
 _ReflectionTex ("Environment Reflection", 2D) = "" {} // textures
 _RefractionTex ("Environment Refraction", 2D) = "" {}
 _Fresnel ("Fresnel (A) ", 2D) = "" {}
 _BumpMap ("Bumpmap (RGB) ", 2D) = "" {}
}

Texture property options

The options inside curly braces of the texture property are optional. The available options are:

TexGen texgenmode: Automatic texture coordinate generation mode for this texture. Can be one of ObjectLinear,

EyeLinear, SphereMap, CubeReflect, CubeNormal; these correspond directly to OpenGL texgen modes. Note that

TexGen is ignored if custom vertex programs are used.

LightmapMode If given, this texture will be affected by per-renderer lightmap parameters. That is, the texture to use can

be not in the material, but taken from the settings of the Renderer instead, see Renderer scripting documentation.

Example

// EyeLinear texgen mode example
Shader "Texgen/Eye Linear" {

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1094 of 1131 12/16/2012 10:12 PM

 Properties {
 _MainTex ("Base", 2D) = "white" { TexGen EyeLinear }
 }
 SubShader {
 Pass {
 SetTexture [_MainTex] { combine texture }
 }
 }
}

Page last updated: 2012-02-29

SL-SubShader

Each shader in Unity consists of a list of subshaders. When Unity has to display a mesh, it will find the shader to use, and pick

the first subshader that runs on the user's graphics card.

Syntax
Subshader { [Tags] [CommonState] Passdef [Passdef ...] }

Defines the subshader as optional tags, common state and a list of pass definitions.

Details
A subshader defines a list of rendering passes and optionally setup any state that is common to all passes. Additionally,

subshader specific Tags can be set up.

When Unity chooses which subshader to render with, it renders an object once for each Pass defined (and possibly more due

to light interactions). As each render of the object is an expensive operation, you want to define the shader in minimum amount

of passes possible. Of course, sometimes on some graphics hardware the needed effect can't be done in a single pass; then

you have no choice but to use multiple passes.

Each pass definition can be a regular Pass, a Use Pass or a Grab Pass.

Any statements that are allowed in a Pass definition can also appear in Subshader block. This will make all passes use this

"shared" state.

Example

// ...
SubShader {
 Pass {
 Lighting Off
 SetTexture [_MainTex] {}
 }
}
// ...

This subshader defines a single Pass that turns off any lighting and just displays a mesh with texture named _MainTex.

Page last updated: 2009-10-19

SL-Pass

The Pass block causes the geometry of an object to be rendered once.

Syntax

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1095 of 1131 12/16/2012 10:12 PM

Pass { [Name and Tags] [RenderSetup] [TextureSetup] }

The basic pass command contains an optional list of render setup commands, optionally followed by a list of textures to

use.

Name and tags
A Pass can define its Name and arbitrary number of Tags - name/value strings that communicate Pass' intent to the rendering

engine.

Render Setup
A pass sets up various states of the graphics hardware, for example should alpha blending be turned on, should fog be used,

and so on. The commands are these:

Material { Material Block }

Defines a material to use in a vertex lighting pipeline. See material page for details.

Lighting On | Off

Turn vertex lighting on or off. See material page for details.

Cull Back | Front | Off

Set polygon culling mode.

ZTest (Less | Greater | LEqual | GEqual | Equal | NotEqual | Always)

Set depth testing mode.

ZWrite On | Off

Set depth writing mode.

Fog { Fog Block }

Set fog parameters.

AlphaTest (Less | Greater | LEqual | GEqual | Equal | NotEqual | Always) CutoffValue

Turns on alpha testing.

Blend SourceBlendMode DestBlendMode

Sets alpha blending mode.

Color Color value

Sets color to use if vertex lighting is turned off.

ColorMask RGB | A | 0 | any combination of R, G, B, A

Set color writing mask. Writing ColorMask 0 turns off rendering to all color channels.

Offset OffsetFactor , OffsetUnits

Set depth offset. Note that this command intentionally only accepts constants (i.e., not shader parameters) as of Unity

3.0.

SeparateSpecular On | Off

Turns separate specular color for vertex lighting on or off. See material page for details.

ColorMaterial AmbientAndDiffuse | Emission

Uses per-vertex color when computing vertex lighting. See material page for details.

Texture Setup
After the render state setup, you can specify a number of textures and their combining modes to apply using SetTexture

commands:

SetTexture texture property { [Combine options] }

The texture setup configures fixed function multitexturing pipeline, and is ignored if custom fragment shaders are used.

Details

Per-pixel Lighting

The per-pixel lighting pipeline works by rendering objects in multiple passes. Unity renders the object once to get ambient and

any vertex lights in. Then it renders each pixel light affecting the object in a separate additive pass. See Render Pipeline for

details.

Per-vertex Lighting

Per-vertex lighting is the standard Direct3D/OpenGL lighting model that is computed for each vertex. Lighting on turns it on.

Lighting is affected by Material block, ColorMaterial and SeparateSpecular commands. See material page for details.

See Also
There are several special passes available for reusing common functionality or implementing various high-end effects:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1096 of 1131 12/16/2012 10:12 PM

UsePass includes named passes from another shader.

GrabPass grabs the contents of the screen into a texture, for use in a later pass.

Subsections
ShaderLab syntax: Color, Material, Lighting

ShaderLab syntax: Culling & Depth Testing

ShaderLab syntax: Texture Combiners

ShaderLab syntax: Fog

ShaderLab syntax: Alpha testing

ShaderLab syntax: Blending

ShaderLab syntax: Pass Tags

ShaderLab syntax: Name

ShaderLab syntax: BindChannels
Page last updated: 2012-01-17

SL-Material

The material and lighting parameters are used to control the built-in vertex lighting. Vertex lighting is the standard

Direct3D/OpenGL lighting model that is computed for each vertex. Lighting on turns it on. Lighting is affected by Material

block, ColorMaterial and SeparateSpecular commands.

Per-pixel lights are usually implemented with custom vertex/fragment programs and don't use vertex lighting. For these you

don't use any of the commands described here, instead you define your own vertex and fragment programs where you do all

lighting, texturing and anything else yourself.

Vertex Coloring & Lighting is the first effect to gets calculated for any rendered geometry. It operates on the vertex level, and

calculates the base color that is used before textures are applied.

Syntax
The top level commands control whether to use fixed function lighting or not, and some configuration options. The main setup

is in the Material Block, detailed further below.

Color Color

Sets the object to a solid color. A color is either four RGBA values in parenthesis, or a color property name in square

brackets.

Material { Material Block }

The Material block is used to define the material properties of the object.

Lighting On | Off

For the settings defined in the Material block to have any effect, you must enable Lighting with the Lighting On

command. If lighting is off instead, the color is taken straight from the Color command.

SeparateSpecular On | Off

This command makes specular lighting be added to the end of the shader pass, so specular lighting is unaffected by

texturing. Only has effect when Lighting On is used.

ColorMaterial AmbientAndDiffuse | Emission

makes per-vertex color be used instead of the colors set in the material. AmbientAndDiffuse replaces Ambient and

Diffuse values of the material; Emission replaces Emission value of the material.

Material Block

This contains settings for how the material reacts to the light. Any of these properties can be left out, in which case they

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1097 of 1131 12/16/2012 10:12 PM

default to black (i.e. have no effect).

Diffuse Color

The diffuse color component. This is an object's base color.

Ambient Color

The ambient color component. This is the color the object has when it's hit by the ambient light set in the

RenderSettings.

Specular Color

The color of the object's specular highlight.

Shininess Number

The sharpness of the highlight, between 0 and 1. At 0 you get a huge highlight that looks a lot like diffuse lighting, at 1

you get a tiny speck.

Emission Color

The color of the object when it is not hit by any light.

The full color of lights hitting the object is:

 Ambient * RenderSettings ambient setting +

 (Light Color * Diffuse + Light Color * Specular) + Emission

The light parts of the equation (within parenthesis) is repeated for all lights that hit the object.

Typically you want to keep the Diffuse and Ambient colors the same (all builtin Unity shaders do this).

Examples
Always render object in pure red:

Shader "Solid Red" {
 SubShader {
 Pass { Color (1,0,0,0) }
 }
}

Basic Shader that colors the object white and applies vertex lighting:

Shader "VertexLit White" {
 SubShader {
 Pass {
 Material {
 Diffuse (1,1,1,1)
 Ambient (1,1,1,1)
 }
 Lighting On
 }
 }
}

An extended version that adds material color as a property visible in Material Inspector:

Shader "VertexLit Simple" {
 Properties {
 _Color ("Main Color", COLOR) = (1,1,1,1)
 }
 SubShader {
 Pass {
 Material {
 Diffuse [_Color]
 Ambient [_Color]
 }

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1098 of 1131 12/16/2012 10:12 PM

 Lighting On
 }
 }
}

And finally, a full fledged vertex-lit shader (see also SetTexture reference page):

Shader "VertexLit" {
 Properties {
 _Color ("Main Color", Color) = (1,1,1,0)
 _SpecColor ("Spec Color", Color) = (1,1,1,1)
 _Emission ("Emmisive Color", Color) = (0,0,0,0)
 _Shininess ("Shininess", Range (0.01, 1)) = 0.7
 _MainTex ("Base (RGB)", 2D) = "white" {}
 }
 SubShader {
 Pass {
 Material {
 Diffuse [_Color]
 Ambient [_Color]
 Shininess [_Shininess]
 Specular [_SpecColor]
 Emission [_Emission]
 }
 Lighting On
 SeparateSpecular On
 SetTexture [_MainTex] {
 Combine texture * primary DOUBLE, texture * primary
 }
 }
 }
}

Page last updated: 2009-07-27

SL-CullAndDepth

Culling is an optimization that does not render polygons facing away from the viewer. All polygons have a front and a back

side. Culling makes use of the fact that most objects are closed; if you have a cube, you will never see the sides facing away

from you (there is always a side facing you in front of it) so we don't need to draw the sides facing away. Hence the term:

Backface culling.

The other feature that makes rendering looks correct is Depth testing. Depth testing makes sure that only the closest surfaces

objects are drawn in a scene.

Syntax
Cull Back | Front | Off

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1099 of 1131 12/16/2012 10:12 PM

Controls which sides of polygons should be culled (not drawn)

Back Don't render polygons facing away from the viewer (default).

Front Don't render polygons facing towards the viewer. Used for turning objects inside-out.

Off Disables culling - all faces are drawn. Used for special effects.

ZWrite On | Off

Controls whether pixels from this object are written to the depth buffer (default is On). If you're drawng solid objects,

leave this on. If you're drawing semitransparent effects, switch to ZWrite Off. For more details read below.

ZTest Less | Greater | LEqual | GEqual | Equal | NotEqual | Always

How should depth testing be performed. Default is LEqual (draw objects in from or at the distance as existing objects;

hide objects behind them).

Offset Factor , Units

Allows you specify a depth offset with two parameters. factor and units. Factor scales the maximum Z slope, with

respect to X or Y of the polygon, and units scale the minimum resolvable depth buffer value. This allows you to force

one polygon to be drawn on top of another although they are actually in the same position. For example Offset 0, -1

pulls the polygon closer to the camera ignoring the polygon's slope, whereas Offset -1, -1 will pull the polygon even

closer when looking at a grazing angle.

Examples
This object will render only the backfaces of an object:

Shader "Show Insides" {
 SubShader {
 Pass {
 Material {
 Diffuse (1,1,1,1)
 }
 Lighting On
 Cull Front
 }
 }
}

Try to apply it to a cube, and notice how the geometry feels all wrong when you orbit around it. This is because you're only

seeing the inside parts of the cube.

Transparent shader with depth writes

Usually semitransparent shaders do not write into the depth buffer. However, this can create draw order problems, especially

with complex non-convex meshes. If you want to fade in & out meshes like that, then using a shader that fills in the depth

buffer before rendering transparency might be useful.

Semitransparent object; left: standard Transparent/Diffuse shader; right: shader that writes to depth buffer.

Shader "Transparent/Diffuse ZWrite" {
Properties {

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1100 of 1131 12/16/2012 10:12 PM

 _Color ("Main Color", Color) = (1,1,1,1)
 _MainTex ("Base (RGB) Trans (A)", 2D) = "white" {}
}
SubShader {
 Tags {"Queue"="Transparent" "IgnoreProjector"="True" "RenderType"="Transparent"}
 LOD 200

 // extra pass that renders to depth buffer only
 Pass {
 ZWrite On
 ColorMask 0
 }

 // paste in forward rendering passes from Transparent/Diffuse
 UsePass "Transparent/Diffuse/FORWARD"
}
Fallback "Transparent/VertexLit"
}

Debugging Normals

The next one is more interesting; first we render the object with normal vertex lighting, then we render the backfaces in bright

pink. This has the effects of highlighting anywhere your normals need to be flipped. If you see physically-controlled objects

getting 'sucked in' by any meshes, try to assign this shader to them. If any pink parts are visible, these parts will pull in

anything unfortunate enough to touch it.

Here we go:

Shader "Reveal Backfaces" {
 Properties {
 _MainTex ("Base (RGB)", 2D) = "white" { }
 }
 SubShader {
 // Render the front-facing parts of the object.
 // We use a simple white material, and apply the main texture.
 Pass {
 Material {
 Diffuse (1,1,1,1)
 }
 Lighting On
 SetTexture [_MainTex] {
 Combine Primary * Texture
 }
 }

 // Now we render the back-facing triangles in the most
 // irritating color in the world: BRIGHT PINK!
 Pass {
 Color (1,0,1,1)
 Cull Front
 }
 }
}

Glass Culling

Controlling Culling is useful for more than debugging backfaces. If you have transparent objects, you quite often want to show

the backfacing side of an object. If you render without any culling (Cull Off), you'll most likely have some rear faces

overlapping some of the front faces.

Here is a simple shader that will work for convex objects (spheres, cubes, car windscreens).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1101 of 1131 12/16/2012 10:12 PM

Shader "Simple Glass" {
 Properties {
 _Color ("Main Color", Color) = (1,1,1,0)
 _SpecColor ("Spec Color", Color) = (1,1,1,1)
 _Emission ("Emmisive Color", Color) = (0,0,0,0)
 _Shininess ("Shininess", Range (0.01, 1)) = 0.7
 _MainTex ("Base (RGB)", 2D) = "white" { }
 }

 SubShader {
 // We use the material in many passes by defining them in the subshader.
 // Anything defined here becomes default values for all contained passes.
 Material {
 Diffuse [_Color]
 Ambient [_Color]
 Shininess [_Shininess]
 Specular [_SpecColor]
 Emission [_Emission]
 }
 Lighting On
 SeparateSpecular On

 // Set up alpha blending
 Blend SrcAlpha OneMinusSrcAlpha

 // Render the back facing parts of the object.
 // If the object is convex, these will always be further away
 // than the front-faces.
 Pass {
 Cull Front
 SetTexture [_MainTex] {
 Combine Primary * Texture
 }
 }
 // Render the parts of the object facing us.
 // If the object is convex, these will be closer than the
 // back-faces.
 Pass {
 Cull Back
 SetTexture [_MainTex] {
 Combine Primary * Texture
 }
 }
 }
}

Page last updated: 2012-09-05

SL-SetTexture

After the basic vertex lighting has been calculated, textures are applied. In ShaderLab this is done using SetTexture

command.

SetTexture commands have no effect when fragment programs are used; as in that case pixel operations are completely

described in the shader.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1102 of 1131 12/16/2012 10:12 PM

Texturing is the place to do old-style combiner effects. You can have multiple SetTexture commands inside a pass - all textures

are applied in sequence, like layers in a painting program. SetTexture commands must be placed at the end of a Pass.

Syntax
SetTexture [TexturePropertyName] { Texture Block }

Assigns a texture. TextureName must be defined as a texture property. How to apply the texture is defined inside the

TextureBlock.

The texture block controls how the texture is applied. Inside the texture block can be up to three commands: combine,

matrix and constantColor.

Texture block combine command
combine src1 * src2

Multiplies src1 and src2 together. The result will be darker than either input.

combine src1 + src2

Adds src1 and src2 together. The result will be lighter than either input.

combine src1 - src2

Subtracts src2 from src1.

combine src1 +- src2

Adds src1 to src2, then subtracts 0.5 (a signed add).

combine src1 lerp (src2) src3

Interpolates between src3 and src1, using the alpha of src2. Note that the interpolation is opposite direction: src1 is

used when alpha is one, and src3 is used when alpha is zero.

combine src1 * src2 + src3

Multiplies src1 with the alpha component of src2, then adds src3.

combine src1 * src2 +- src3

Multiplies src1 with the alpha component of src2, then does a signed add with src3.

combine src1 * src2 - src3

Multiplies src1 with the alpha component of src2, then subtracts src3.

All the src properties can be either one of previous, constant, primary or texture.

Previous is the the result of the previous SetTexture.

Primary is the color from the lighting calculation or the vertex color if it is bound.

Texture is the color of the texture specified by [_TextureName] in the SetTexture (see above).

Constant is the color specified in ConstantColor.

Modifiers:

The formulas specified above can optionally be followed by the keywords Double or Quad to make the resulting color 2x

or 4x as bright.

All the src properties, except lerp argument, can optionally be preceded by one - to make the resulting color negated.

All the src properties can be followed by alpha to take only the alpha channel.

Texture block constantColor command
ConstantColor color

Defines a constant color that can be used in the combine command.

Texture block matrix command
matrix [MatrixPropertyName]

Transforms texture coordinates used in this command with the given matrix.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1103 of 1131 12/16/2012 10:12 PM

Details

Before fragment programs existed, older graphics cards used a layered approach to textures. The textures are applied one

after each other, modifying the color that will be written to the screen. For each texture, the texture is typically combined with

the result of the previous operation.

Note that on "true fixed function" devices (OpenGL, OpenGL ES 1.1, Wii) the value of each SetTexture stage is clamped to

0..1 range. Everywhere else (Direct3D, OpenGL ES 2.0) the range may or may not be higher. This might affect SetTexture

stages that can produce values higher than 1.0.

Separate Alpha & Color computation
By default, the combiner formula is used for calculating both the RGB and alpha component of the color. Optionally, you can

specify a separate formula for the alpha calculation. This looks like this:

SetTexture [_MainTex] { combine previous * texture, previous + texture }

Here, we multiply the RGB colors and add the alpha.

Specular highlights
By default the primary color is the sum of the diffuse, ambient and specular colors (as defined in the Lighting calculation). If

you specify SeparateSpecular On in the pass options, the specular color will be added in after the combiner calculation,

rather than before. This is the default behavior of the built-in VertexLit shader.

Graphics hardware support
Modern graphics cards with fragment shader support ("shader model 2.0" on desktop, OpenGL ES 2.0 on mobile) support all

SetTexture modes and at least 4 texture stages (many of them support 8). If you're running on really old hardware (made

before 2003 on PC, or before iPhone3GS on mobile), you might have as low as two texture stages. The shader author should

write separate SubShaders for the cards he or she wants to support.

Examples

Alpha Blending Two Textures
This small examples takes two textures. First it sets the first combiner to just take the _MainTex, then is uses the alpha

channel of _BlendTex to fade in the RGB colors of _BlendTex

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1104 of 1131 12/16/2012 10:12 PM

Shader "Examples/2 Alpha Blended Textures" {
 Properties {
 _MainTex ("Base (RGB)", 2D) = "white" {}
 _BlendTex ("Alpha Blended (RGBA) ", 2D) = "white" {}
 }
 SubShader {
 Pass {
 // Apply base texture
 SetTexture [_MainTex] {
 combine texture
 }
 // Blend in the alpha texture using the lerp operator
 SetTexture [_BlendTex] {
 combine texture lerp (texture) previous
 }
 }
 }
}

Alpha Controlled Self-illumination
This shader uses the alpha component of the _MainTex to decide where to apply lighting. It does this by applying the texture

to two stages; In the first stage, the alpha value of the texture is used to blend between the vertex color and solid white. In the

second stage, the RGB values of the texture are multiplied in.

Shader "Examples/Self-Illumination" {
 Properties {
 _MainTex ("Base (RGB) Self-Illumination (A)", 2D) = "white" {}
 }
 SubShader {
 Pass {
 // Set up basic white vertex lighting
 Material {
 Diffuse (1,1,1,1)
 Ambient (1,1,1,1)
 }
 Lighting On

 // Use texture alpha to blend up to white (= full illumination)
 SetTexture [_MainTex] {
 constantColor (1,1,1,1)
 combine constant lerp(texture) previous
 }
 // Multiply in texture
 SetTexture [_MainTex] {
 combine previous * texture
 }
 }
 }
}

We can do something else for free here, though; instead of blending to solid white, we can add a self-illumination color and

blend to that. Note the use of ConstantColor to get a _SolidColor from the properties into the texture blending.

Shader "Examples/Self-Illumination 2" {
 Properties {
 _IlluminCol ("Self-Illumination color (RGB)", Color) = (1,1,1,1)
 _MainTex ("Base (RGB) Self-Illumination (A)", 2D) = "white" {}
 }

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1105 of 1131 12/16/2012 10:12 PM

 SubShader {
 Pass {
 // Set up basic white vertex lighting
 Material {
 Diffuse (1,1,1,1)
 Ambient (1,1,1,1)
 }
 Lighting On

 // Use texture alpha to blend up to white (= full illumination)
 SetTexture [_MainTex] {
 // Pull the color property into this blender
 constantColor [_IlluminCol]
 // And use the texture's alpha to blend between it and
 // vertex color
 combine constant lerp(texture) previous
 }
 // Multiply in texture
 SetTexture [_MainTex] {
 combine previous * texture
 }
 }
 }
}

And finally, we take all the lighting properties of the vertexlit shader and pull that in:

Shader "Examples/Self-Illumination 3" {
 Properties {
 _IlluminCol ("Self-Illumination color (RGB)", Color) = (1,1,1,1)
 _Color ("Main Color", Color) = (1,1,1,0)
 _SpecColor ("Spec Color", Color) = (1,1,1,1)
 _Emission ("Emmisive Color", Color) = (0,0,0,0)
 _Shininess ("Shininess", Range (0.01, 1)) = 0.7
 _MainTex ("Base (RGB)", 2D) = "white" {}
 }

 SubShader {
 Pass {
 // Set up basic vertex lighting
 Material {
 Diffuse [_Color]
 Ambient [_Color]
 Shininess [_Shininess]
 Specular [_SpecColor]
 Emission [_Emission]
 }
 Lighting On

 // Use texture alpha to blend up to white (= full illumination)
 SetTexture [_MainTex] {
 constantColor [_IlluminCol]
 combine constant lerp(texture) previous
 }
 // Multiply in texture
 SetTexture [_MainTex] {
 combine previous * texture
 }
 }
 }

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1106 of 1131 12/16/2012 10:12 PM

}

Page last updated: 2012-08-17

SL-Fog

Fog parameters are controlled with Fog command.

Fogging blends the color of the generated pixels down towards a constant color based on distance from camera. Fogging does

not modify a blended pixel's alpha value, only its RGB components.

Syntax
Fog { Fog Commands }

Specify fog commands inside curly braces.

Mode Off | Global | Linear | Exp | Exp2

Defines fog mode. Default is global, which translates to Off or Exp2 depending whether fog is turned on in Render

Settings.

Color ColorValue

Sets fog color.

Density FloatValue

Sets density for exponential fog.

Range FloatValue , FloatValue

Sets near & far range for linear fog.

Details
Default fog settings are based on Render Settings: fog mode is either Exp2 or Off; density & color taken from settings as well.

Note that if you use fragment programs, Fog settings of the shader will still be applied. On platforms where there is no fixed

function Fog functionality, Unity will patch shaders at runtime to support the requested Fog mode.

Page last updated: 2010-08-18

SL-AlphaTest

The alpha test is a last chance to reject a pixel from being written to the screen.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1107 of 1131 12/16/2012 10:12 PM

After the final output color has been calculated, the color can optionally have its alpha value compared to a fixed value. If the

test fails, the pixel is not written to the display.

Syntax
AlphaTest Off

Render all pixels (default).

AlphaTest comparison AlphaValue

Set up the alpha test to only render pixels whose alpha value is within a certain range.

Comparison

Comparison is one of the following words:

Greater Only render pixels whose alpha is greater than AlphaValue.

GEqual Only render pixels whose alpha is greater than or equal to AlphaValue.

Less Only render pixels whose alpha value is less than AlphaValue.

LEqual Only render pixels whose alpha value is less than or equal to from AlphaValue.

Equal Only render pixels whose alpha value equals AlphaValue.

NotEqual Only render pixels whose alpha value differs from AlphaValue.

Always Render all pixels. This is functionally equivalent to AlphaTest Off.

Never Don't render any pixels.

AlphaValue

A floating-point number between 0 and 1. This can also be a variable reference to a float or range property, in which case it

should be written using the standard square bracket notation ([VariableName]).

Details
The alpha test is important when rendering concave objects with transparent parts. The graphics card maintains a record of

the depth of every pixel written to the screen. If a new pixel is further away than one already rendered, the new pixel is not

written to the display. This means that even with Blending, objects will not show through.

In this figure, the tree on the left is rendered using AlphaTest. Note how the pixels in it are either completely transparent or

opaque. The center tree is rendered using only Alpha Blending - notice how transparent parts of nearby branches cover the

distant leaves because of the depth buffer. The tree on the right is rendered using the last example shader - which implements

a combination of blending and alpha testing to hide any artifacts.

Examples
The simplest possible example, assign a texture with an alpha channel to it. The object will only be visible where alpha is

greater than 0.5

Shader "Simple Alpha Test" {
Properties {

_MainTex ("Base (RGB) Transparency (A)", 2D) = "" {}
}

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1108 of 1131 12/16/2012 10:12 PM

SubShader {
Pass {

// Only render pixels with an alpha larger than 50%
AlphaTest Greater 0.5
SetTexture [_MainTex] { combine texture }

}
}

}

This is not much good by itself. Let us add some lighting and make the cutoff value tweakable:

Shader "Cutoff Alpha" {
Properties {

_MainTex ("Base (RGB) Transparency (A)", 2D) = "" {}
_Cutoff ("Alpha cutoff", Range (0,1)) = 0.5

}
SubShader {

Pass {
// Use the Cutoff parameter defined above to determine
// what to render.
AlphaTest Greater [_Cutoff]
Material {

Diffuse (1,1,1,1)
Ambient (1,1,1,1)

}
Lighting On
SetTexture [_MainTex] { combine texture * primary }

}
}

}

When rendering plants and trees, many games have the hard edges typical of alpha testing. A way around that is to render the

object twice. In the first pass, we use alpha testing to only render pixels that are more than 50% opaque. In the second pass,

we alpha-blend the graphic in the parts that were cut away, without recording the depth of the pixel. We might get a bit of

confusion as further away branches overwrite the nearby ones, but in practice, that is hard to see as leaves have a lot of

visual detail in them.

Shader "Vegetation" {
Properties {

_Color ("Main Color", Color) = (.5, .5, .5, .5)
_MainTex ("Base (RGB) Alpha (A)", 2D) = "white" {}
_Cutoff ("Base Alpha cutoff", Range (0,.9)) = .5

}
SubShader {

// Set up basic lighting
Material {

Diffuse [_Color]
Ambient [_Color]

}
Lighting On

// Render both front and back facing polygons.
Cull Off

// first pass:
// render any pixels that are more than [_Cutoff] opaque
Pass {

AlphaTest Greater [_Cutoff]
SetTexture [_MainTex] {

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1109 of 1131 12/16/2012 10:12 PM

combine texture * primary, texture
}

}

// Second pass:
// render in the semitransparent details.
Pass {

// Dont write to the depth buffer
ZWrite off
// Don't write pixels we have already written.
ZTest Less
// Only render pixels less or equal to the value
AlphaTest LEqual [_Cutoff]

// Set up alpha blending
Blend SrcAlpha OneMinusSrcAlpha

SetTexture [_MainTex] {
combine texture * primary, texture

}
}

}
}

Note that we have some setup inside the SubShader, rather than in the individual passes. Any state set in the SubShader is

inherited as defaults in passes inside it.

Page last updated: 2008-04-27

SL-Blend

Blending is used to make transparent objects.

When graphics are rendered, after all shaders have executed and all textures have been applied, the pixels are written to the

screen. How they are combined with what is already there is controlled by the Blend command.

Syntax
Blend Off

Turn off blending

Blend SrcFactor DstFactor

Configure & enable blending. The generated color is multiplied by the SrcFactor. The color already on screen is

multiplied by DstFactor and the two are added together.

Blend SrcFactor DstFactor, SrcFactorA DstFactorA

Same as above, but use different factors for blending the alpha channel.

BlendOp Min | Max | Sub | RevSub

Instead of adding blended colors together, do a different operation on them.

Properties

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1110 of 1131 12/16/2012 10:12 PM

All following properties are valid for both SrcFactor & DstFactor. Source refers to the calculated color, Destination is the color

already on the screen.

One The value of one - use this to let either the source or the destination color come through fully.

Zero The value zero - use this to remove either the source or the destination values.

SrcColor The value of this stage is multiplied by the source color value.

SrcAlpha The value of this stage is multiplied by the source alpha value.

DstColor The value of this stage is multiplied by frame buffer source color value.

DstAlpha The value of this stage is multiplied by frame buffer source alpha value.

OneMinusSrcColor The value of this stage is multiplied by (1 - source color).

OneMinusSrcAlpha The value of this stage is multiplied by (1 - source alpha).

OneMinusDstColor The value of this stage is multiplied by (1 - destination color).

OneMinusDstAlpha The value of this stage is multiplied by (1 - destination alpha).

Details
Below are the most common blend types:

Blend SrcAlpha OneMinusSrcAlpha // Alpha blending
Blend One One // Additive
Blend OneMinusDstColor One // Soft Additive
Blend DstColor Zero // Multiplicative
Blend DstColor SrcColor // 2x Multiplicative

Example
Here is a small example shader that adds a texture to whatever is on the screen already:

Shader "Simple Additive" {
 Properties {
 _MainTex ("Texture to blend", 2D) = "black" {}
 }
 SubShader {
 Tags { "Queue" = "Transparent" }
 Pass {
 Blend One One
 SetTexture [_MainTex] { combine texture }
 }
 }
}

And a more complex one, Glass. This is a two-pass shader:

The first pass renders a lit, alpha-blended texture on to the screen. The alpha channel decides the transparency.1.

The second pass renders a reflection cubemap on top of the alpha-blended window, using additive transparency.2.

Shader "Glass" {
 Properties {
 _Color ("Main Color", Color) = (1,1,1,1)
 _MainTex ("Base (RGB) Transparency (A)", 2D) = "white" {}
 _Reflections ("Base (RGB) Gloss (A)", Cube) = "skybox" { TexGen CubeReflect }
 }
 SubShader {
 Tags { "Queue" = "Transparent" }
 Pass {
 Blend SrcAlpha OneMinusSrcAlpha
 Material {
 Diffuse [_Color]
 }
 Lighting On
 SetTexture [_MainTex] {

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1111 of 1131 12/16/2012 10:12 PM

 combine texture * primary double, texture * primary
 }
 }
 Pass {
 Blend One One
 Material {
 Diffuse [_Color]
 }
 Lighting On
 SetTexture [_Reflections] {
 combine texture
 Matrix [_Reflection]
 }
 }
 }
}

Page last updated: 2012-05-31

SL-PassTags

Passes use tags to tell how and when they expect to be rendered to the rendering engine.

Syntax
Tags { "TagName1" = "Value1" "TagName2" = "Value2" }

Specifies TagName1 to have Value1, TagName2 to have Value2. You can have as many tags as you like.

Details
Tags are basically key-value pairs. Inside a Pass tags are used to control which role this pass has in the lighting pipeline

(ambient, vertex lit, pixel lit etc.) and some other options. Note that the following tags recognized by Unity 'must be inside Pass

section and not inside SubShader!

LightMode tag

LightMode tag defines Pass' role in the lighting pipeline. See render pipeline for details. These tags are rarely used manually;

most often shaders that need to interact with lighting are written as Surface Shaders and then all those details are taken care

of.

Possible values for LightMode tag are:

Always: Always rendered; no lighting is applied.

ForwardBase: Used in Forward rendering, ambient, main directional light and vertex/SH lights are applied.

ForwardAdd: Used in Forward rendering; additive per-pixel lights are applied, one pass per light.

PrepassBase: Used in Deferred Lighting, renders normals & specular exponent.

PrepassFinal: Used in Deferred Lighting, renders final color by combining textures, lighting & emission.

Vertex: Used in Vertex Lit rendering when object is not lightmapped; all vertex lights are applied.

VertexLMRGBM: Used in Vertex Lit rendering when object is lightmapped; on platforms where lightmap is RGBM

encoded.

VertexLM: Used in Vertex Lit rendering when object is lightmapped; on platforms where lightmap is double-LDR encoded

(generally mobile platforms & old dekstop GPUs).

ShadowCaster: Renders object as shadow caster.

ShadowCollector: Gathers object's shadows into screen-space buffer for Forward rendering path.

RequireOptions tag

A pass can indicate that it should only be rendered when some external conditions are met. This is done by using

RequireOptions tag, whose value is a string of space separated options. Currently the options supported by Unity are:

SoftVegetation: Render this pass only if Soft Vegetation is on in Quality Settings.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1112 of 1131 12/16/2012 10:12 PM

See Also
SubShaders can be given Tags as well, see SubShader Tags.

Page last updated: 2012-01-26

SL-Name

Syntax
Name "PassName"

Gives the PassName name to the current pass.

Details
A pass can be given a name so that a UsePass command can reference it.

Page last updated: 2008-06-16

SL-BindChannels

BindChannels command allows you to specify how vertex data maps to the graphics hardware.

BindChannels has no effect when programmable vertex shaders are used, as in that case bindings are controlled by vertex

shader inputs.

By default, Unity figures out the bindings for you, but in some cases you want custom ones to be used.

For example you could map the primary UV set to be used in the first texture stage and the secondary UV set to be used in the

second texture stage; or tell the hardware that vertex colors should be taken into account.

Syntax
BindChannels { Bind "source", target }

Specifies that vertex data source maps to hardware target.

Source can be one of:

Vertex: vertex position

Normal: vertex normal

Tangent: vertex tangent

Texcoord: primary UV coordinate

Texcoord1: secondary UV coordinate

Color: per-vertex color

Target can be one of:

Vertex: vertex position

Normal: vertex normal

Tangent: vertex tangent

Texcoord0, Texcoord1, ...: texture coordinates for corresponding texture stage

Texcoord: texture coordinates for all texture stages

Color: vertex color

Details
Unity places some restrictions on which sources can be mapped to which targets. Source and target must match for Vertex,

Normal, Tangent and Color. Texture coordinates from the mesh (Texcoord and Texcoord1) can be mapped into texture

coordinate targets (Texcoord for all texture stages, or TexcoordN for a specific stage).

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1113 of 1131 12/16/2012 10:12 PM

There are two typical use cases for BindChannels:

Shaders that take vertex colors into account.

Shaders that use two UV sets.

Examples

// Maps the first UV set to the first texture stage
// and the second UV set to the second texture stage
BindChannels {
 Bind "Vertex", vertex
 Bind "texcoord", texcoord0
 Bind "texcoord1", texcoord1
}

// Maps the first UV set to all texture stages
// and uses vertex colors
BindChannels {
 Bind "Vertex", vertex
 Bind "texcoord", texcoord
 Bind "Color", color
}

Page last updated: 2008-04-27

SL-UsePass

The UsePass command uses named passes from another shader.

Syntax
UsePass "Shader/Name"

Inserts all passes with a given name from a given shader. Shader/Name contains the name of the shader and the name of the

pass, separated by a slash character. Note that only first supported subshader is taken into account.

Details
Some of the shaders could reuse existing passes from other shaders, reducing code duplication. For example, in most pixel lit

shaders the ambient or vertex lighting passes are the same as in the corresponding VertexLit shaders. The UsePass command

does just that - it includes a given pass from another shader. As an example the following command uses the pass with the

name "BASE" from the builtin Specular shader:

 UsePass "Specular/BASE"

In order for UsePass to work, a name must be given to the pass one wishes to use. The Name command inside the pass gives

it a name:

 Name "MyPassName"

Note that internally all pass names are uppercased, so UsePass must refer to the name in uppercase.

Page last updated: 2012-04-25

SL-GrabPass

GrabPass is a special passtype - it grabs the contents of the screen where the object is about to be drawn into a texture. This

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1114 of 1131 12/16/2012 10:12 PM

texture can be used in subsequent passes to do advanced image based effects.

Syntax
The GrabPass belongs inside a subshader. It can take two forms:

Just GrabPass { } will grab current screen contents into a texture. The texture can be accessed in further passes by

_GrabTexture name. Note: this form of grab pass will do the expensive screen grabbing operation for each object that

uses it!

GrabPass { "TextureName" } will grab screen contents into a texture, but will only do that once per frame for the first

object that uses the given texture name. The texture can be accessed in further passes by the given texture name. This is

a more performant way when you have multiple objects using grab pass in the scene.

Additionally, GrabPass can use Name and Tags commands.

Example
Here is an expensive way to invert the colors of what was rendered before:

Shader "GrabPassInvert" {
 SubShader {
 // Draw ourselves after all opaque geometry
 Tags { "Queue" = "Transparent" }

 // Grab the screen behind the object into _GrabTexture
 GrabPass { }

 // Render the object with the texture generated above, and invert it's colors
 Pass {
 SetTexture [_GrabTexture] { combine one-texture }
 }
 }
}

This shader has two passes: First pass grabs whatever is behind the object at the time of rendering, then applies that in the

second pass. Now of course, the same effect could be achieved much cheaper using an invert blend mode.

See Also
Regular Pass command

Page last updated: 2012-07-10

SL-SubshaderTags

Subshaders use tags to tell how and when they expect to be rendered to the rendering engine.

Syntax
Tags { "TagName1" = "Value1" "TagName2" = "Value2" }

Specifies TagName1 to have Value1, TagName2 to have Value2. You can have as many tags as you like.

Details
Tags are basically key-value pairs. Inside a SubShader tags are used to determine rendering order and other parameters of a

subshader. Note that the following tags recognized by Unity must be inside SubShader section and not inside Pass!

Rendering Order - Queue tag

You can determine in which order your objects are drawn using the Queue tag. A Shader decides which render queue its

objects belong to, this way any Transparent shaders make sure they are drawn after all opaque objects and so on.

There are four pre-defined render queues, but there can be more queues in between the predefined ones. The predefined

queues are:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1115 of 1131 12/16/2012 10:12 PM

Background - this render queue is rendered before any others. It is used for skyboxes and the like.

Geometry (default) - this is used for most objects. Opaque geometry uses this queue.

AlphaTest - alpha tested geometry uses this queue. It's a separate queue from Geometry one since it's more efficient to

render alpha-tested objects after all solid ones are drawn.

Transparent - this render queue is rendered after Geometry and AlphaTest, in back-to-front order. Anything alpha-

blended (i.e. shaders that don't write to depth buffer) should go here (glass, particle effects).

Overlay - this render queue is meant for overlay effects. Anything rendered last should go here (e.g. lens flares).

Shader "Transparent Queue Example" {
 SubShader {
 Tags {"Queue" = "Transparent" }
 Pass {
 // rest of the shader body...
 }
 }
}

An example illustrating how to render something in the transparent queue

Geometry render queue optimizes the drawing order of the objects for best performance. All other render queues sort objects

by distance, starting rendering from the furthest ones and ending with the closest ones.

For special uses in-between queues can be used. Internally each queue is represented by integer index; Background is 1000,

Geometry is 2000, AlphaTest is 2450, Transparent is 3000 and Overlay is 4000. If a shader uses a queue like this:

Tags { "Queue" = "Geometry+1" }

This will make the object be rendered after all opaque objects, but before transparent objects, as render queue index will be

2001 (geometry plus one). This is useful in situations where you want some objects be always drawn between other sets of

objects. For example, in most cases transparent water should be drawn after opaque objects but before transparent objects.

RenderType tag

RenderType tag categorizes shaders into several predefined groups, e.g. is is an opaque shader, or an alpha-tested shader

etc. This is used by Shader Replacement and in some cases used to produce camera's depth texture.

IgnoreProjector tag

If IgnoreProjector tag is given and has a value of "True", then an object that uses this shader will not be affected by

Projectors. This is mostly useful on semitransparent objects, because there is no good way for Projectors to affect them.

See Also
Passes can be given Tags as well, see Pass Tags.

Page last updated: 2012-06-21

SL-Fallback

After all Subshaders a Fallback can be defined. It basically says "if none of subshaders can run on this hardware, try using the

ones from another shader".

Syntax
Fallback "name"

Fallback to shader with a given name.

Fallback Off

Explicitly state that there is no fallback and no warning should be printed, even if no subshaders can run on this

hardware.

Details

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1116 of 1131 12/16/2012 10:12 PM

A fallback statement has the same effect as if all subshaders from the other shader would be inserted into its place.

Example

Shader "example" {
 // properties and subshaders here...
 Fallback "otherexample"
}

Page last updated: 2008-04-27

SL-Other

Category
Category is a logical grouping of any commands below it. This is mostly used to "inherit" rendering state. For example, your

shader might have multiple subshaders, and each of them requires fog to be off, blending set to additive, etc. You can use

Category for that:

Shader "example" {
Category {
 Fog { Mode Off }
 Blend One One
 SubShader {
 // ...
 }
 SubShader {
 // ...
 }
 // ...
}
}

Category block only affects shader parsing, it's exactly the same as "pasting" any state set inside Category into all blocks

below it. It does not affect shader execution speed at all.

Page last updated: 2009-07-24

SL-AdvancedTopics

Read those to improve your ShaderLab-fu!

Unity's Rendering Pipeline

Performance Tips when Writing Shaders

Rendering with Replaced Shaders

Using Depth Textures

Camera's Depth Texture

Platform Specific Rendering Differences

Shader Level of Detail
Page last updated: 2008-06-23

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1117 of 1131 12/16/2012 10:12 PM

SL-RenderPipeline

Shaders define both how an object looks by itself (its material properties) and how it reacts to the light. Because lighting

calculations must be built into the shader, and there are many possible light & shadow types, writing quality shaders that "just

work" would be an involved task. To make it easier, Unity 3 introduces Surface Shaders, where all the lighting, shadowing,

lightmapping, forward vs. deferred lighting things are taken care of automatically.

This document describes the pecularities of Unity's lighting & rendering pipeline and what happens behind the scenes of

Surface Shaders.

Rendering Paths
How lighting is applied and which Passes of the shader are used depends on which Rendering Path is used. Each pass in a

shader communicates its lighting type via Pass Tags.

In Deferred Lighting, PrepassBase and PrepassFinal passes are used.

In Forward Rendering, ForwardBase and ForwardAdd passes are used.

In Vertex Lit, Vertex, VertexLMRGBM and VertexLM passes are used.

In any of the above, to render Shadows, ShadowCaster and ShadowCollector passes are used.

Deferred Lighting path
PrepassBase pass renders normals & specular exponent; PrepassFinal pass renders final color by combining textures,

lighting & emissive material properties. All regular in-scene lighting is done separately in screen-space. See Deferred Lighting

for details.

Forward Rendering path
ForwardBase pass renders ambient, lightmaps, main directional light and not important (vertex/SH) lights at once.

ForwardAdd pass is used for any additive per-pixel lights; one invocation per object illuminated by such light is done. See

Forward Rendering for details.

If forward rendering is used, but a shader does not have forward-suitable passes (i.e. neither ForwardBase nor

ForwardAdd pass types are present), then that object is rendered just like it would in Vertex Lit path, see below.

Vertex Lit Rendering path
Since vertex lighting is most often used on platforms that do not support programmable shaders, Unity can't create multiple

shader permutations internally to handle lightmapped vs. non-lightmapped cases. So to handle lightmapped and

non-lightmapped objects, multiple passes have to be written explicitly.

Vertex pass is used for non-lightmapped objects. All lights are rendered at once, using a fixed function OpenGL/Direct3D

lighting model (Blinn-Phong)

VertexLMRGBM pass is used for lightmapped objects, when lightmaps are RGBM encoded (this happens on most

desktops and consoles). No realtime lighting is applied; pass is expected to combine textures with a lightmap.

VertexLMM pass is used for lightmapped objects, when lightmaps are double-LDR encoded (this happens on mobiles and

old desktops). No realtime lighting is applied; pass is expected to combine textures with a lightmap.
Page last updated: 2012-07-31

SL-ShaderPerformance

Use Common sense ;)
Compute only things that you need; anything that is not actually needed can be eliminated. For example, supporting

per-material color is nice to make a shader more flexible, but if you always leave that color set to white then it's useless

computations performed for each vertex or pixel rendered on screen.

Another thing to keep in mind is frequency of computations. Usually there are many more pixels rendered (hence their pixel

shaders executed) than there are vertices (vertex shader executions); and more vertices than objects being rendered. So

generally if you can, move computations out of pixel shader into the vertex shader; or out of shaders completely and set the

values once from a script.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1118 of 1131 12/16/2012 10:12 PM

Less Generic Surface Shaders
Surface Shaders are great for writing shaders that interact with lighting. However, their default options are tuned for "general

case". In many cases, you can tweak them to make shaders run faster or at least be smaller:

approxview directive for shaders that use view direction (i.e. Specular) will make view direction be normalized per-vertex

instead of per-pixel. This is approximate, but often good enough.

halfasview for Specular shader types is even faster. Half-vector (halfway between lighting direction and view vector) will

be computed and normalized per vertex, and lighting function will already receive half-vector as a parameter instead of

view vector.

noforwardadd will make a shader fully support only one directional light in Forward rendering. The rest of the lights can

still have an effect as per-vertex lights or spherical harmonics. This is great to make shader smaller and make sure it

always renders in one pass, even with multiple lights present.

noambient will disable ambient lighting and spherical harmonics lights on a shader. This can be slightly faster.

Precision of computations
When writing shaders in Cg/HLSL, there are three basic number types: float, half and fixed (as well as vector & matrix

variants of them, e.g. half3 and float4x4):

float: high precision floating point. Generally 32 bits, just like float type in regular programming languages.

half: medium precision floating point. Generally 16 bits, with a range of -60000 to +60000 and 3.3 decimal digits of

precision.

fixed: low precision fixed point. Generally 11 bits, with a range of -2.0 to +2.0 and 1/256th precision.

Use lowest precision that is possible; this is especially important on mobile platforms like iOS and Android. Good rules of

thumb are:

For colors and unit length vectors, use fixed.

For others, use half if range and precision is fine; otherwise use float.

On mobile platforms, the key is to ensure as much as possible stays in low precision in the fragment shader. On most mobile

GPUs, applying swizzles to low precision (fixed/lowp) types is costly; converting between fixed/lowp and higher precision types

is quite costly as well.

Alpha Testing
Fixed function AlphaTest or it's programmable equivalent, clip(), has different performance characteristics on different

platforms:

Generally it's a small advantage to use it to cull out totally transparent pixels on most platforms.

However, on PowerVR GPUs found in iOS and some Android devices, alpha testing is expensive. Do not try to use it as

"performance optimization" there, it will be slower.

Color Mask
On some platforms (mostly mobile GPUs found in iOS and Android devices), using ColorMask to leave out some channels

(e.g. ColorMask RGB) can be expensive, so only use it if really necessary.

Page last updated: 2011-01-13

SL-ShaderReplacement

Some rendering effects require rendering a scene with a different set of shaders. For example, good edge detection would

need a texture with scene normals, so it could detect edges where surface orientations differ. Other effects might need a

texture with scene depth, and so on. To achieve this, it is possible to render the scene with replaced shaders of all objects.

Shader replacement is done from scripting using Camera.RenderWithShader or Camera.SetReplacementShader functions.

Both functions take a shader and a replacementTag.

It works like this: the camera renders the scene as it normally would. the objects still use their materials, but the actual shader

that ends up being used is changed:

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1119 of 1131 12/16/2012 10:12 PM

If replacementTag is empty, then all objects in the scene are rendered with the given replacement shader.

If replacementTag is not empty, then for each object that would be rendered:

The real object's shader is queried for the tag value.

If it does not have that tag, object is not rendered.

A subshader is found in the replacement shader that has a given tag with the found value. If no such subshader is

found, object is not rendered.

Now that subshader is used to render the object.

So if all shaders would have, for example, a "RenderType" tag with values like "Opaque", "Transparent", "Background",

"Overlay", you could write a replacement shader that only renders solid objects by using one subshader with

RenderType=Solid tag. The other tag types would not be found in the replacement shader, so the objects would be not

rendered. Or you could write several subshaders for different "RenderType" tag values. Incidentally, all built-in Unity shaders

have a "RenderType" tag set.

Shader replacement tags in built-in Unity shaders
All built-in Unity shaders have a "RenderType" tag set that can be used when rendering with replaced shaders. Tag values

are the following:

Opaque: most of the shaders (Normal, Self Illuminated, Reflective, terrain shaders).

Transparent: most semitransparent shaders (Transparent, Particle, Font, terrain additive pass shaders).

TransparentCutout: masked transparency shaders (Transparent Cutout, two pass vegetation shaders).

Background: Skybox shaders.

Overlay: GUITexture, Halo, Flare shaders.

TreeOpaque: terrain engine tree bark.

TreeTransparentCutout: terrain engine tree leaves.

TreeBillboard: terrain engine billboarded trees.

Grass: terrain engine grass.

GrassBillboard: terrain engine billboarded grass.

Built-in scene depth/normals texture
A Camera has a built-in capability to render depth or depth+normals texture, if you need that in some of your effects. See

Camera Depth Texture page. Note that in some cases (depending on the hardware), the depth and depth+normals textures

can internally be rendered using shader replacement. So it is important to have the correct "RenderType" tag in your shaders.

Page last updated: 2012-06-21

SL-DepthTextures

It is possible to create Render Textures where each pixel contains a high precision "depth" value (see

RenderTextureFormat.Depth). This is mostly used when some effects need scene's depth to be available (for example, soft

particles, screen space ambient occlusion, translucency would all need scene's depth).

Pixel values in the depth texture range from 0 to 1 with a nonlinear distribution. Precision is usually 24 or 16 bits, depending on

depth buffer used. When reading from depth texture, a high precision value in 0..1 range is returned. If you need to get

distance from the camera, or otherwise linear value, you should compute that manually.

Depth textures in Unity are implemented differently on different platforms.

On Direct3D 9 (Windows), depth texture is either a native depth buffer, or a single channel 32 bit floating point texture

("R32F" Direct3D format).

Graphics card must support either native depth buffer (INTZ format) or floating point render textures in order for them to

work.

When rendering into the depth texture, fragment program must output the value needed.

When reading from depth texture, red component of the color contains the high precision value.

On OpenGL (Mac OS X), depth texture is the native OpenGL depth buffer (see ARB_depth_texture).

Graphics card must support OpenGL 1.4 or ARB_depth_texture extension.

Depth texture corresponds to Z buffer contents that are rendered, it does not use the result from the fragment

program.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1120 of 1131 12/16/2012 10:12 PM

OpenGL ES 2.0 (iOS/Android) is very much like OpenGL above.

GPU must support GL_OES_depth_texture extension.

Direct3D 11 (Windows) has native depth texture capability just like OpenGL.

Flash (Stage3D) uses a color-encoded depth texture to emulate the high precision required for it.

Using depth texture helper macros
Most of the time depth textures are used to render depth from the camera. UnityCG.cginc include file contains some

macros to deal with the above complexity in this case:

UNITY_TRANSFER_DEPTH(o): computes eye space depth of the vertex and outputs it in o (which must be a float2). Use

it in a vertex program when rendering into a depth texture. On platforms with native depth textures this macro does nothing

at all, because Z buffer value is rendered implicitly.

UNITY_OUTPUT_DEPTH(i): returns eye space depth from i (which must be a float2). Use it in a fragment program when

rendering into a depth texture. On platforms with native depth textures this macro always returns zero, because Z buffer

value is rendered implicitly.

COMPUTE_EYEDEPTH(i): computes eye space depth of the vertex and outputs it in o. Use it in a vertex program when

not rendering into a depth texture.

DECODE_EYEDEPTH(i): given high precision value from depth texture i, returns corresponding eye space depth. This

macro just returns i*FarPlane on Direct3D. On platforms with native depth textures it linearizes and expands the value to

match camera's range.

For example, this shader would render depth of its objects:

Shader "Render Depth" {
SubShader {
 Tags { "RenderType"="Opaque" }
 Pass {
 Fog { Mode Off }
CGPROGRAM
#pragma vertex vert
#pragma fragment frag
#include "UnityCG.cginc"

struct v2f {
 float4 pos : SV_POSITION;
 float2 depth : TEXCOORD0;
};

v2f vert (appdata_base v) {
 v2f o;
 o.pos = mul (UNITY_MATRIX_MVP, v.vertex);
 UNITY_TRANSFER_DEPTH(o.depth);
 return o;
}

half4 frag(v2f i) : COLOR {
 UNITY_OUTPUT_DEPTH(i.depth);
}
ENDCG
 }
}
}

Page last updated: 2012-09-04

SL-CameraDepthTexture

In Unity a Camera can generate a depth or depth+normals texture. This is a minimalistic G-buffer texture that can be used for

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1121 of 1131 12/16/2012 10:12 PM

post-processing effects or to implement custom lighting models (e.g. light pre-pass). Camera actually builds the depth texture

using Shader Replacement feature, so it's entirely possible to do that yourself, in case you need a different G-buffer setup.

Camera's depth texture can be turned on using Camera.depthTextureMode variable from script.

There are two possible depth texture modes:

DepthTextureMode.Depth: a depth texture.

DepthTextureMode.DepthNormals: depth and view space normals packed into one texture.

DepthTextureMode.Depth texture
This builds a screen-sized depth texture.

DepthTextureMode.DepthNormals texture
This builds a screen-sized 32 bit (8 bit/channel) texture, where view space normals are encoded into R&G channels, and

depth is encoded in B&A channels. Normals are encoded using Stereographic projection, and depth is 16 bit value packed into

two 8 bit channels.

UnityCG.cginc include file has a helper function DecodeDepthNormal to decode depth and normal from the encoded

pixel value. Returned depth is in 0..1 range.

For examples on how to use the depth and normals texture, please refer to the EdgeDetection image effect in the Shader

Replacement example project or SSAO Image Effect.

Tips & Tricks
When implementing complex shaders or Image Effects, keep Rendering Differences Between Platforms in mind. In particular,

using depth texture in an Image Effect often needs special handling on Direct3D + Anti-Aliasing.

In some cases, the depth texture might come directly from the native Z buffer. If you see artifacts in your depth texture, make

sure that the shaders that use it do not write into the Z buffer (use ZWrite Off).

Under the hood
Depth texture can come directly from the actual depth buffer, or be rendered in a separate pass, depending on the rendering

path used and the hardware. When the depth texture is rendered in a separate pass, this is done through Shader

Replacement. Hence it is important to have correct "RenderType" tag in your shaders.

Page last updated: 2012-09-04

SL-PlatformDifferences

Unity runs on various platforms, and in some cases there are differences in how things behave. Most of the time Unity hides

the differences from you, but sometimes you can still bump into them.

Render Texture Coordinates
Vertical texture coordinate conventions differ between Direct3D, OpenGL and OpenGL ES:

In Direct3D, the coordinate is zero at the top, and increases downwards.

In OpenGL and OpenGL ES, the coordiante is zero at the bottom, and increases upwards.

Most of the time this does not really matter, except when rendering into a Render Texture. In that case, Unity internally flips

rendering upside down when rendering into a texture on Direct3D, so that the conventions match between the platforms.

One case where this does not happen, is when Image Effects and Anti-Aliasing is used. In this case, Unity renders to screen to

get anti-aliasing, and then "resolves" rendering into a RenderTexture for further processing with an Image Effect. The resulting

source texture for an image effect is not flipped upside down on Direct3D (unlike all other Render Textures).

If your Image Effect is a simple one (processes one texture at a time), this does not really matter, because Graphics.Blit takes

care of that.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1122 of 1131 12/16/2012 10:12 PM

However, if you're processing more than one RenderTexture together in your Image Effect, most likely they will come out

at different vertical orientations (only in Direct3D-like platforms, and only when anti-aliasing is used). You need to manually

"flip" the screen texture upside down in your vertex shader, like this:

// On D3D when AA is used, the main texture & scene depth texture
// will come out in different vertical orientations.
// So flip sampling of the texture when that is the case (main texture
// texel size will have negative Y).
#if UNITY_UV_STARTS_AT_TOP
if (_MainTex_TexelSize.y < 0)
 uv.y = 1-uv.y;
#endif

Check out Edge Detection scene in Shader Replacement sample project for an example of this. Edge detection there uses

both screen texture and Camera's Depth+Normals texture.

AlphaTest and programmable shaders
Some platforms, most notably mobile (OpenGL ES 2.0) and Direct3D 11, do not have fixed function alpha testing functionality.

When you are using programmable shaders, it's advised to use Cg/HLSL clip() function in the pixel shader instead.

Direct3D 11 shader compiler is more picky about syntax
Direct3D 9 and OpenGL use NVIDIA's Cg to compile shaders, but Direct3D 11 (and Xbox 360) use Microsoft's HLSL shader

compiler. HLSL compiler is more picky about various subtle shader errors. For example, it won't accept function output values

that aren't initialized properly.

Most common places where you'd run into this:

Surface shader vertex modifier that has an "out" parameter. Make sure to initialize the output like this:

 void vert (inout appdata_full v, out Input o)

 {

 UNITY_INITIALIZE_OUTPUT(Input,o);

 // ...

 }

Partially initialized values, e.g. a function returning float4, but the code only sets .xyz values of it. Make sure to set all

values, or change to float3 if you only need those.

Using OpenGL Shading Language (GLSL) shaders with OpenGL ES 2.0
OpenGL ES 2.0 provides only limited native support for OpenGL Shading Language (GLSL), for instance OpenGL ES 2.0

layer provides no built-in parameters to the shader.

Unity implements built-in parameters for you exactly in the same way as OpenGL does, however following built-in parameters

are missing:

gl_ClipVertex

gl_SecondaryColor

gl_DepthRange

halfVector property of the gl_LightSourceParameters structure

gl_FrontFacing

gl_FrontLightModelProduct

gl_BackLightModelProduct

gl_BackMaterial

gl_Point

gl_PointSize

gl_ClipPlane

gl_EyePlaneR, gl_EyePlaneS, gl_EyePlaneT, gl_EyePlaneQ

gl_ObjectPlaneR, gl_ObjectPlaneS, gl_ObjectPlaneT, gl_ObjectPlaneQ

gl_Fog

iPad2 and MSAA and alpha-blended geometry

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1123 of 1131 12/16/2012 10:12 PM

There is a bug in apple driver resulting in artifacts when MSAA is enabled and alpha-blended geometry is drawn with non

RGBA colorMask. To prevent artifacts we force RGBA colorMask when this configuration is encountered, though it will render

built-in Glow FX unusable (as it needs DST_ALPHA for intensity value). Also, please update your shaders if you wrote them

yourself (see "Render Setup -> ColorMask" in Pass Docs).

Page last updated: 2012-11-16

SL-ShaderLOD

Shader Level of Detail (LOD) works by only using shaders or subshaders that have their LOD value less than a given number.

By default, allowed LOD level is infinite, that is, all shaders that are supported by the user's hardware can be used. However,

in some cases you might want to drop shader details, even if the hardware can support them. For example, some cheap

graphics cards might support all the features, but are too slow to use them. So you may want to not use parallax normal

mapping on them.

Shader LOD can be either set per individual shader (using Shader.maximumLOD), or globally for all shaders (using

Shader.globalMaximumLOD).

In your custom shaders, use LOD command to set up LOD value for any subshader.

Built-in shaders in Unity have their LODs set up this way:

VertexLit kind of shaders = 100

Decal, Reflective VertexLit = 150

Diffuse = 200

Diffuse Detail, Reflective Bumped Unlit, Reflective Bumped VertexLit = 250

Bumped, Specular = 300

Bumped Specular = 400

Parallax = 500

Parallax Specular = 600

Page last updated: 2010-09-25

SL-BuiltinValues

Unity provides a handful of builtin values for your shaders: things like current object's transformation matrices, time etc.

You just use them in ShaderLab like you'd use any other property, the only difference is that you don't have to declare it

somewhere - they are "built in".

Using them in programmable shaders requires including UnityCG.cginc file.

Transformations
float4x4 UNITY_MATRIX_MVP

Current model*view*projection matrix

float4x4 UNITY_MATRIX_MV

Current model*view matrix

float4x4 UNITY_MATRIX_P

Current projection matrix

float4x4 UNITY_MATRIX_T_MV

Transpose of model*view matrix

float4x4 UNITY_MATRIX_IT_MV

Inverse transpose of model*view matrix

float4x4 UNITY_MATRIX_TEXTURE0 to UNITY_MATRIX_TEXTURE3

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1124 of 1131 12/16/2012 10:12 PM

Texture transformation matrices

float4x4 _Object2World

Current model matrix

float4x4 _World2Object

Inverse of current world matrix

float3 _WorldSpaceCameraPos

World space position of the camera

float4 unity_Scale

xyz components unused; .w contains scale for uniformly scaled objects.

Lighting

In plain ShaderLab, you access the following properties by appending zero at the end: e.g. the light's model*light color is

_ModelLightColor0. In Cg shaders, they are exposed as arrays with a single element, so the same in Cg is

_ModelLightColor[0].

Name Type Value

_ModelLightColor float4 Material's Main * Light color

_SpecularLightColor float4 Material's Specular * Light color

_ObjectSpaceLightPos float4 Light's position in object space. w component is 0 for directional lights, 1 for other lights

_Light2World float4x4 Light to World space matrix

_World2Light float4x4 World to Light space matrix

_Object2Light float4x4 Object to Light space matrix

Various
float4 _Time : Time (t/20, t, t*2, t*3), use to animate things inside the shaders

float4 _SinTime : Sine of time: (t/8, t/4, t/2, t)

float4 _CosTime : Cosine of time: (t/8, t/4, t/2, t)

float4 _ProjectionParams :

x is 1.0 or -1.0, negative if currently rendering with a flipped projection matrix

y is camera's near plane

z is camera's far plane

w is 1/FarPlane.

float4 _ScreenParams :

x is current render target width in pixels

y is current render target height in pixels

z is 1.0 + 1.0/width

w is 1.0 + 1.0/height

Page last updated: 2012-09-04

Scripting Concepts

Layers

Layer-Based Collision Detection.

What is a Tag?

Rigidbody Sleeping
Page last updated: 2007-11-16

Layers

Layers are most commonly used by Cameras to render only a part of the scene, and by Lights to illuminate only parts of the

scene. But they can also used by raycasting to selectively ignore colliders or to create collisions.

Creating Layers
The first step is to create a new layer, which we can then assign to a GameObject. To create a new layer, open the Edit menu

and select Project Settings->Tags.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1125 of 1131 12/16/2012 10:12 PM

We create a new layer in one of the empty User Layers. We choose layer 8.

Assigning Layers
Now that you have created a new layer, you have to assign the layer to one of the game objects.

In the tag manager we assigned the Player layer to be in layer 8.

Drawing only a part of the scene with the camera's culling mask
Using the camera's culling mask, you can selectively render objects which are in one particular layer. To do this, select the

camera that should selectively render objects.

Modify the culling mask by checking or unchecking layers in the culling mask property.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1126 of 1131 12/16/2012 10:12 PM

Casting Rays Selectively
Using layers you can cast rays and ignore colliders in specific layers. For example you might want to cast a ray only against

the player layer and ignore all other colliders.

The Physics.Raycast function takes a bitmask, where each bit determines if a layer will be ignored or not. If all bits in the

layerMask are on, we will collide against all colliders. If the layerMask = 0, we will never find any collisions with the ray.

// JavaScript example.

// bit shift the index of the layer to get a bit mask
var layerMask = 1 << 8;
// Does the ray intersect any objects which are in the player layer.
if (Physics.Raycast (transform.position, Vector3.forward, Mathf.Infinity, layerMask))
 print ("The ray hit the player");

// C# example.

int layerMask = 1 << 8;

// Does the ray intersect any objects which are in the player layer.
if (Physics.Raycast(transform.position, Vector3.forward, Mathf.Infinity, layerMask))
 Debug.Log("The ray hit the player");

In the real world you want to do the inverse of that however. We want to cast a ray against all colliders except those in the

Player layer.

// JavaScript example.
function Update () {
 // Bit shift the index of the layer (8) to get a bit mask
 var layerMask = 1 << 8;
 // This would cast rays only against colliders in layer 8.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1127 of 1131 12/16/2012 10:12 PM

 // But instead we want to collide against everything except layer 8. The ~ operator does this, it inverts a bitmask.
 layerMask = ~layerMask;

 var hit : RaycastHit;
 // Does the ray intersect any objects excluding the player layer
 if (Physics.Raycast (transform.position, transform.TransformDirection (Vector3.forward), hit, Mathf.Infinity, layerMask)) {
 Debug.DrawRay (transform.position, transform.TransformDirection (Vector3.forward) * hit.distance, Color.yellow);
 print ("Did Hit");
 } else {
 Debug.DrawRay (transform.position, transform.TransformDirection (Vector3.forward) *1000, Color.white);
 print ("Did not Hit");
 }
}

// C# example.
void Update () {
 // Bit shift the index of the layer (8) to get a bit mask
 int layerMask = 1 << 8;

 // This would cast rays only against colliders in layer 8.
 // But instead we want to collide against everything except layer 8. The ~ operator does this, it inverts a bitmask.
 layerMask = ~layerMask;

 RaycastHit hit;
 // Does the ray intersect any objects excluding the player layer
 if (Physics.Raycast(transform.position, transform.TransformDirection (Vector3.forward), out hit, Mathf.Infinity, layerMask))
 Debug.DrawRay(transform.position, transform.TransformDirection (Vector3.forward) * hit.distance, Color.yellow);
 Debug.Log("Did Hit");
 } else {
 Debug.DrawRay(transform.position, transform.TransformDirection (Vector3.forward) *1000, Color.white);
 Debug.Log("Did not Hit");
 }
}

When you don't pass a layerMask to the Raycast function, it will only ignore colliders that use the IgnoreRaycast layer. This is

the easiest way to ignore some colliders when casting a ray.

Page last updated: 2012-05-28

Layer Based Collision detection

In Unity 3.x we introduce Layer-Based collision detection, which is a way to make Game Objects collide with another specific

Game Objects that are tied up to specific layers.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1128 of 1131 12/16/2012 10:12 PM

Objects Colliding with their own layer.

In the image above you can see 6 GameObjects, (3 planes, 3 cubes) and the "Collision Matrix" to the right that states which

Objects can collide with which layer. In the example, we have set the Collision Matrix in a way that only GameObjects that

belong to same layers can collide.

Setting GameObjects to detect Collisions Based on Layers.

Select a layer your Game Objects will belong to1.

Repeat 1 for each Game Object until you have finished assigning your Game Objects to the layers.2.

Open the Physics Preference Panel by clicking on Edit->Project Settings->Physics.3.

Select which layers on the Collision Matrix will interact with the other layers by checking them.4.

Page last updated: 2010-09-22

Tags

A Tag is a word which you link to one or more GameObjects. For instance, you might define �Player� and �Enemy� Tags

for player-controlled characters and non-player characters respectively; a �Collectable� Tag could be defined for items the

player can collect in the Scene; and so on. Clearly, Tags are intended to identify GameObjects for scripting purposes. We can

use them to write script code to find a GameObject by looking for any object that contains our desired Tag. This is achieved

using the GameObject.FindWithTag() function.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1129 of 1131 12/16/2012 10:12 PM

For example:

// Instantiates respawnPrefab at the location
// of the game object with tag "Respawn"

var respawnPrefab : GameObject;
var respawn = GameObject.FindWithTag ("Respawn");
Instantiate (respawnPrefab, respawn.position, respawn.rotation);

This saves us having to manually add our GameObjects to a script�s exposed properties using drag and drop -- a useful

timesaver if the same script code is being used in a number of GameObjects. Another example is a Trigger Collider control

script which needs to work out whether the player is interacting with an enemy, as opposed to, say, a random prop or

collectable item. Tags make this kind of test easy.

Applying a Tag
The Inspector will show the Tag and Layer drop-down menus just below any GameObject�s name. To apply a Tag to a

GameObject, simply open the Tags drop-down and choose the Tag you require:

The GameObject will now be associated with this Tag.

Creating new Tags
To create a new Tag, click the �Add new tag...� option at the end of the drop-down menu. This will open up the Tag

Manager in the Inspector. The Tag Manager is described here.

Layers appear similar to Tags, but are used to define how Unity should render GameObjects in the Scene. See the Layers

page for more information.

Hints
A GameObject can only have one Tag assigned to it.

Unity includes some built-in Tags which do not appear in the Tag Manager:

"Untagged"

"Respawn"

"Finish"

"EditorOnly"

"MainCamera"

"Player"

and "GameController".

You can use any word you like as a Tag. (You can even use short phrases, but you may need to widen the Inspector to see

the tag's full name.)

Page last updated: 2008-02-08

RigidbodySleeping

When Rigidbodies fall to rest - a box landing on the floor - they will start sleeping. Sleeping is an optimization which allows the

Physics Engine to stop processing those rigidbodies. This way you can have huge amounts of rigidbodies in your scene as

long as you make sure that they normally don't move.

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1130 of 1131 12/16/2012 10:12 PM

Rigidbody sleeping happens completely automatically. Whenever a rigidbody is slower than the sleepAngularVelocity and

sleepVelocity it will start falling asleep. After a few frames of resting it will then be set to sleep. When the body is sleeping, no

collision detection or simulation will be performed anymore. This saves a lot of CPU cycles.

Rigidbodies automatically wake up when:

another rigidbody collides with the sleeping rigidbody

another rigidbody connected through a joint is moving.

when modifying a property of the rigidbody

when adding forces.

So if you want to make rigidbodies fall to rest, don't modify their properties or add forces when they are about to go into sleep

mode.

There are two variables that you can tune to make sure your rigidbodies automatically fall to rest: Rigidbody.sleepVelocity and

Rigidbody.sleepAngularVelocity. Those two variables are initialized to the sleepVelocity and sleepAngularVelocity variable

defined in the Physics Manager (Edit -> Project Settings -> Physics).

Rigidbodies can also be forced to sleep using rigidbody.Sleep. This is useful to start rigidbodies in a rest state when loading a

new level.

Kinematic rigidbodies wake up sleeping rigidbodies. Static Colliders do not. If you have a sleeping rigidbody and you move a

static collider (A collider without a Rigidbody attached) into the rigidbody or pull it from underneath the rigidbody, the sleeping

rigidbody will not awake. If you move a Kinematic Rigidbody out from underneath normal Rigidbodies that are at rest on top of

it, the sleeping Rigidbodies will "wake up" and be correctly calculated again in the physics update. So if you have a lot of Static

Colliders that you want to move around and have different objects fall on them correctly, use Kinematic Rigidbody Colliders.

Kinematic rigidbodies - they will not be calculated during the physics update since they are not going anywhere. If you move a

Kinematic Rigidbody out from underneath normal Rigidbodies that are at rest on top of it, the sleeping Rigidbodies will "wake

up" and be correctly calculated again in the physics update. So if you have a lot of Static Colliders that you want to move

around and have different objects fall on them correctly, use Kinematic Rigidbody Colliders.

Page last updated: 2007-11-16

Unity Manual (printable) http://docs.unity3d.com/Documentation/printable.html

1131 of 1131 12/16/2012 10:12 PM

