
Teaching Game Programming Using XNA
Joe Linhoff

DePaul University
243 S. Wabash Avenue

Chicago, IL 60604
(312) 362-5861

jlinhoff@cti.depaul.edu

Amber Settle
DePaul University

243 S. Wabash Avenue
Chicago, IL 60604

(312) 362-5324

asettle@cti.depaul.edu

ABSTRACT
As educators work to expand the audience interested in computer
science, computer gaming programs have blossomed at a variety
of educational institutions. Educators are coming to recognize
that gaming is a compelling way to motivate students to learn
challenging technical concepts such as programming, software
engineering, algorithms, and project management. At the core of
many gaming programs are game development courses, which
teach technical aspects about software development in a
motivating environment. While many game development courses
share a common goal, the structure and goals of game
development courses can be quite diverse. We describe a game
development course that uses the XNA platform to allow a
heterogeneous group of students to gain experience in all aspects
of console game creation, an approach we believe has some
interesting pedagogical benefits.

Categories and Subject Descriptors
K.3.2 [Computers and Information Science Education]

General Terms
Design

Keywords
Supporting courses: game development, using emerging
instructional technologies: XNA.

1. INTRODUCTION
Game development programs and courses have become
increasingly common at universities internationally. Educators
are coming to recognize that game development is both a serious
occupation and a compelling way to motivate students to learn
challenging technical concepts such as programming [1, 4, 7],
software engineering [3, 12], algorithms [5], theoretical computer
science [6] and project management [14]. The resulting courses
have a variety of audiences and goals. Some courses focus on
games as a motivator for introductory students [2, 6, 7], while
others focus on teaching more complex topics to intermediate or
advanced students [3, 8, 12].

As game development courses and programs have matured,
educators have recognized that bringing together diverse student
populations in a gaming course is challenging. Some institutions
design courses specifically for one type of audience, either on the
art and design side [13] or the technical side [3, 12], with the goal
of pushing students to develop a set of focused skills. Others
purposefully integrate art students and technical students together
in the classroom, with the goal of improving the quality of the
final product [8]. The two approaches are not mutually exclusive,
since art or design and technical students can strengthen their
skills while working together on a project. In those situations,
however, it is common to grade the two populations using metrics
relevant to their areas [8].

More unusual, however, is the approach taken in a course taught
at the School of Computer Science, Telecommunications, and
Information Systems at DePaul University (DePaul CTI). GAM
380: Console Game Development Environments is a course that
can be taken by any student in the Game Development Program,
regardless of concentration, as well as other technically-oriented
fields such as Computer Science. Students work on individual
projects for the first part of the course, gaining skills in all areas
of content development, including modeling, animation, sound,
and programming. Only at the end of the course are students
allowed to form teams to work on creating a larger,
comprehensive project. The course uses the XNA platform to
allow a heterogeneous group of students to gain experience in all
aspects of console game creation, an approach we believe has
some interesting pedagogical benefits.

2. CONSOLE GAME DEVELOPMENT
In order to understand the approach taken in GAM 380, it is
important to understand the Game Development Program at
DePaul CTI, including target audience of the degree and the
required development courses.

2.1 Game Development Program
DePaul CTI is one of the largest and most innovative information
technology institutions in the United States. Over 2,000 graduate
students and nearly 1,000 undergraduates are enrolled in 14
Bachelors and 15 Masters degree programs, ranging from
traditional programs like Computer Science to degrees focused on
the digital arts such as Digital Cinema and Animation. Such a
broad range of degree programs is highly unusual and has
attracted large numbers of students during a period of overall
decline in technology education enrollments [10]. Benefiting
most from the influx of new students with an interest in the digital
arts is the Computer Game Development program. DePaul was

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE’08, June 30–July 2, 2008, Madrid, Spain.
Copyright 2008 ACM 978-1-60558-115-6/08/06...$5.00.

250

one of the first liberal arts universities in the United States to offer
a four-year degree in the area. In only 4 years the program has
grown to be the second largest at DePaul CTI with 150 majors.

The Game Development Program offers two tracks: the standard
concentration, designed to be flexible and to accommodate a
variety of interests in game development, design, and production,
and a game programming concentration. Both concentrations
require students to take a number of development courses,
including Game Development I & II that cover 2D and 3D games,
Programming in C/C++ I && II, Action Games Programming
where students create games using C++ and OpenGL, and the
Game Modification Workshop where students modify existing
games. Additionally, students in the game programming
concentration are required to take more traditional computer
science courses such as Data Structures, Computer Systems I &
II, and several computer graphics development courses. GAM
380 is not required in either concentration, although it counts as a
gaming elective in both. As such, it is designed to appeal to
students in both concentrations of the Game Development
program, as well as students in other programs such as Computer
Science.

In support of the Game Development Program, DePaul CTI was
awarded a Microsoft XNA lab grant in June 2007, one of 5 grants
awarded that year. The grant included 20 Xbox 360 consoles, 20
Creator’s Club licenses, and funds to purchase monitors and
upgrade the existing game development labs. As a part of the
grant, the faculty at DePaul CTI intends to develop and/or
redesign 8 courses in the areas of Computer Game Development
and Software Engineering to use the XNA platform. GAM 380 is
the first XNA course and was offered for the first time during Fall
2007.

2.2Course Overview
The goal of GAM 380 is to have every student create and use all
of the major types of content that go into an Xbox 360 game. The
class is designed to take advantage of the content pipeline in
XNA, which is discussed in more detail later in this section. The
only prerequisite for the course is Game Development I, which is
a freshman-level course in game design and development that
uses Game Maker and does not require any previous
programming experience. Because Game Development I is the
only prerequisite for GAM 380, students taking the class may
have never taken a traditional programming course. As such,
GAM 380 can be taken early in the Game Development Program,
something that is unusual for game development courses [2, 7].

The course leads every student through the creation of a font,
icons, 3D models, a camera and object animation paths, skeletal
animations, sounds, scripts, and other supporting content. All
students are also required to edit the program file to change
variables and copy and paste code. Programming is intentionally
deemphasized, and not directly taught. Instead, students are
supplied sample programs, programming references, and also
encouraged to cooperate and share code.

Teams are formed near the end of the course. The final project is
the creation of at least 30 seconds of game play for a “rail
shooter” game in which the camera is moved on path through an
environment. More information about assignments and the
course structure is found in the following sections.

The unusual approach of requiring every student to become
minimally proficient in all areas of content development is a
conscious decision. By doing this, we allow students more direct
exposure to the content pipeline, which is a significant but little
understood part of the development process. By content pipeline
we mean the collection of tools, files, and processes required to
utilize authored content. Advanced game design courses can be
slowed down by the mechanics of creating and moving content
into the game, resulting in student frustration and games that
under represent their abilities. Creating content that reflects their
abilities is crucial for student morale and for student success in
employment after graduation [9].

In addition to requiring students to become familiar with many
aspects of content development, the course is structured to
encourage student sharing of content. After students have turned
in individual work to be graded, they are allowed to share that
content on subsequent assignments. Both artwork and code are
allowed to be shared. Further, students whose content is used by
other students in their assignments are awarded extra credit. It is
our belief that allowing students to share, and implicitly evaluate,
each other’s work in this way provides them with valuable
experience.

In the remainder of the section we discuss the XNA pipeline in
more detail, specify which tools are used in the course and why,
and outline the structure of the course including assignments and
grading.

2.3 XNA Pipeline
Microsoft’s XNA pipeline operates primarily through a visual
interface consistent with the rest of the integrated development
environment. The visual nature of the interface helps students
understand the processes at work.

Content files, such as images or models, are included in the
project and treated much like code files. A properties page
controls how content is imported and processed. This visibility
and control demystifies some of the previously abstruse content
pipeline. Students are able to see all of their content files in one
place and understand how the files are processed and utilized by
their game code. For example, to include a model into a game,
the model is exported from Maya into a standard FBX file. The
FBX file is then included in the game project. XNA provides a
content importer and processor for the FBX format as well as
other standard formats. The model is then available for use in
game code.

The XNA pipeline also provides the ability to copy files directly
to the output directory. This is useful for student script files
which, among other things, are used to position objects in the
world. For non-standard data formats, there is ample
documentation on how to write your own content importer and
processor. For example, XNA does not currently provide
standard support for skeleton animation data. The course takes
advantage of this opportunity to show how to integrate an external
pipeline to import, process, and run animations.

2.4 Course Tools
The major components of the development environment include:
Microsoft Visual C# 2005 Express Edition with Game Studio

251

Express, TortoiseSVN, Paint.NET, Microsoft’s XACT, Audacity,
Maya, and a wiki. All the tools, except Maya, are free for the
students to download and install on their own systems. The
course also uses an instant messaging system to ease
communications.

The Microsoft tools, collectively called the XNA Game Studio,
provide the integrated development environment. Game code is
written and debugged in C#.

TortoiseSVN is a front end to Subversion, the source control
system we use. Each student has their own directory and also
access to a number of folders for shared content, library files, and
other distributions. The source control system is crucial for the
course. It is used to setup the class directory structure, provide
students with starter kits and updates, and define student sandbox
areas. Students also use the system for obtaining help from the
instructor, submitting assignments, backing up their work, and for
team project coordination.

Paint.NET is a simple image editing program used for font and
icon creation, as well as image map manipulation. XACT is used
to prepare and package sound data. Audacity is a simple sound
editing program which allows students to edit .wav files. Students
use Audacity to prepare sounds and setup sound loops.

Autodesk's Maya is an immense 3D package that is the course's
primary modeling, world building, and animation tool. Maya is a
great tool with significant depth. Because of Maya's complexity,
every assignment includes reference to a required Maya book, and
also click by click directions, with screen shots, for creating the
minimally acceptable level of content.

The use of a wiki was suggested by Alex Seropian of Wideload
Games, one of the DePaul CTI Gaming Advisory Board members.
The wiki is used for class-wide distribution of documentation,
code, and assignments. A few assignments also require students
to post to the wiki. For example, they must advertise and explain
how to use content they have added to the shared folders in the
source control repository. The wiki provides a means for project
documentation, collaboration, distribution of code, and as a
message board for frequently asked questions.

Instant messaging allows for quick answers to questions,
particularly about problems with the environment, gives teams an
interactive way to communicate, and provides a way to copy and
paste code between classmates. The instant messaging tool also
allows for voice communication and group conference calls when
appropriate.

2.5 Course Structure
The course is divided into eight modules, which are: fonts and
icons; models; design, budget, and 360 deployment; key-framed
object and camera paths; skeleton-based animation meshes;
projectiles, collision geometry, and “damaged” versions of
models; digitized image maps and sounds, shaders; and game
presentation. Each milestone focuses on the creation, pipeline,
and programming for a specific type of content. The first seven
milestones are self contained and do not depend on prior
milestones.

The following table lists the topics covered by week and the due
dates for each milestone. It should be noted that DePaul
University uses the quarter system, with 10-week quarters
followed by one week of final exams:

Week Topics Milestone
due

1 Hello world; conceptual models; tools;
content pipeline; creating a using a font;

version control

None

2 3D models; Maya; 000ZY; naming; XNA
pipeline; 3D painting

Milestone 1

3 Design and budgets; storyboards; list of
assets; deploying to the Xbox 360;

scripting worlds

Milestone 2

4 Cameras; key-framed paths; DC-pipeline;
dispatch

Milestone 3

5 Skeleton-based animation meshes Milestone 4

6 Projectiles; collision geometry and
response; scoring

Milestone 5

7 Capturing sounds; .wav files; looping;
streaming; image maps; uv mapping

photos; shaders

Milestone 6

8 Integration; input; game loop; loading and
unloading levels; starter kit for final game

Milestone 7

9 Open None

10 Open None

11

Final project 'pitch'

Final project

Table 1: Topics and milestones for GAM 380 by week

The first seven module milestones are done individually. For the
final project, students are given a choice of continuing to work
individually or of forming small two to four person teams. This
approach is designed to ensure that students gain familiarity with
the tools and learn fundamental material without the added
pressures arising from team interactions. It also makes it easier to
assign grades and evaluate student understanding when the early
milestones are completed individually. By postponing team
formation, students can discuss design and development ideas
with other students, solidify their design, test their ideas and code,
experiment with the problem space specific to their design, and
select compatible teammates. The authors more fully address this
approach to game development assignments in another article
[11].

2.6 Grading
Every type of content produced for the course, as well as each
task and project has its own set of requirements. Each module of
the course includes grading points for conforming to the
requirements of that content type. As an example, the table below
shows some of the requirements for a selection of content types:

252

Content type Requirements

Model
geometry

• Created at (0,0,0) with Z forward, Y up
• 1 unit = 1 foot
• Triangles, or quads where not animated

Images • Targa format, RLE
• 24 bit, or 32 bit if alpha needed
• Width and height a power of 2

Sounds • Mono for effects
• Stereo for tunes
• Sampling rate appropriate to sound

Animations • Duration, key first and last frame
• Correctly tagged

All Content • Follows naming conventions internally
• File type, name, and directory correct
• Submitted to source control properly
• Assignment grading requirements
• Quality

Table 2: Course requirements by content type

The students also design their own game level and set budgets for
the different types of assets. The budgets include polygon counts,
sound sizes, image map sizes, and memory usage.

Every milestone is divided into a 90% and a 10% list of
requirements. The 90% requirements are the basic, mechanical
requirements. The 10% section lists a number of possible tasks
that go beyond the basics. The 10% section includes additional
programming or high quality art for students to work on at their
option. For example, the set of requirements for the first
milestone is:
90% (all are required)

 fonta.tga (font image file)
 committed to SVN w/comment
 alpha setup correctly
 characters in full white
 width & height powers of 2, <= 2048
 width & height smallest size for image
 format: TGA, 32 bit, RLE

 s_font.cs (C# code file)
 committed to SVN w/comment
 compiles w/o warnings
 builds and runs
 displays “Hello NAME”

10% (choose any of the following)
 stylized font (art)
 color tinted display of letters (programming)
 proportional font supported (programming)
 animated display of letters (programming)
 icons (as characters) for game (art)

2.7 Results
Student response to the GAM 380 course has been positive.
Twenty five students completed the class in the Fall 2007 quarter.
The class was made up of 1 freshman, 3 sophomores, 10 juniors,
and 11 seniors. Of these, 16 (64%) indicated they were game
development majors, 3 (12%) indicated they were computer
science majors, and the remaining did not indicate a major.
Overall, the results show those with a programming background,
either self declared or computer science majors, did better in the

class. The division between programmers and non-programmers
was not straightforward. Of the 25 students who completed the
class, 3 initially self reported as being more of an artist or
designer and 14 as programmers. The remaining 8 students were
classified based on instructor evaluation. The final count was 16
programmers and 9 non-programmers. The average class grade
for the 16 programmers was 86% compared to 79% for the 9 non-
programmers. The average class grade for the 3 computer science
majors was also 86% versus 79% for the 16 game development
majors.
Of the major assignment types -- 7 individual milestones, 3
quizzes, and one final team project -- the quizzes showed the
biggest difference in scores between programmers and non-
programmers. Programmers scored an average of 80%, while the
non-programmers scored 71%. The milestones and final projects
showed less difference in grades: 79% for programmers versus
74% for non-programmers and 91% for programmers versus 88%
for non-programmers.

3. CONCLUSIONS AND FUTURE WORK
Based on the class goals, the grade data suggests more work needs
to be done to minimize grade results affected by programmer
versus non-programmer skill sets. This is especially applicable to
the impact of the quizzes. However, the results are encouraging.
One possible reading of the data could be that even though game
development is at its foundation a highly technical field there
exists opportunity to mix programmers and non-programmers on
equal footing in a game development class. The programmers
were capable of creating functional models, animations, and
sounds. Likewise, the non-programmers were able to write
scripts, modify code, and shepherd data through the complexities
of the content pipeline. Both groups created successful projects
and solved many problems.

GAM 380 provides benefits to a variety of students. For non-
technical game developers and artists, GAM 380 provides a
healthy insight into some of the inner workings of the content
pipeline. For example, non-technical developers learn the
importance of properly naming objects, how those names are used
by the programmers at the far end of the pipeline, and the why
behind some of the arcane rules intrinsic to game development.
The course gives programmers glimpse into the world of artists
and helps them develop a better understanding of the whole game
development space. This understanding will hopefully help them
write code better suited to the problem space, and, possibly, easier
to use tools.

While the Fall 2007 section of GAM 380 had many junior and
seniors since it was the first undergraduate XNA course to be
taught at DePaul CTI, the focus on content makes it a good
second-year course. It allows students to get a taste of every
aspect of game creation and doesn't depend on programming or
quality art. In short, it allows students to get a taste of all the
disciplines. Hopefully, some of the lessons from this course will
aid students as they progress through modeling, animation, and
programming courses. One of the curricular goals is the
improvement of content quality in the more advanced courses,
which can hopefully be achieved if the students do not have to
expend all their energy on the mechanics of the content pipeline.

253

In the future, we plan to split this course into two courses. One of
the courses will be a slightly more introductory course, possibly
skipping animated meshes and spending more time on path-based
animations. The other will be a more advanced course, run later
in the curriculum, to allow students to create and also program
more advanced content. The goal is to retain the benefits of an
early course in console development as embodied in the
introductory course, while responding to the requests of the
students for more in-depth coverage of content development in
the more advanced course.

While the support provided by the XNA lab grant awarded to
DePaul CTI is both helpful and unusual, the course described in
this paper is accessible to a variety of institutions. Microsoft
announced in February 2008 that XNA Game Studio will be made
available free of charge to students. Further, games created by
students can be made available on Xbox Live for download. Both
large and small institutions can take advantage of the
opportunities for educating students about the console
development pipeline that XNA provides.

4. ACKNOWLEDGMENTS
We are indebted to André Berthiaume for his feedback on this
article. We thank the DePaul CTI gaming faculty and students for
their work on the XNA Lab Grant. This course was supported by
an XNA Lab Grant provided by Microsoft Corporation.

5. REFERENCES
[1] Adams, J.C. 1998. An Object-oriented Capstone Project for

CS-1. In Proceedings of the SIGCSE Technical Symposium
on Computer Science Education, (Atlanta, Georgia, February
1998).

[2] Chamillard, A. 2006. Introductory Game Creation: No
Programming Required. In Proceedings of the SIGCSE
Technical Symposium on Computer Science Education,
(Houston, Texas, March 2006).

[3] Claypool, K. and Claypool, M. 2005. Teaching Software
Engineering Through Game Design. In Proceedings of the
Annual SIGCSE Conference on Innovation and Technology
in Computer Science Education, (Monte De Caparica,
Portugual, June 2005).

[4] Feldman. T.J., and Zelenski, J.D. 1996. The Quest for
Excellence in Designing CS1/CS2 Assignments. In
Proceedings of the SIGCSE Technical Symposium on
Computer Science Education, (Philadelphia, Pennsylvania,
February 1996).

[5] Faltin, N. 1999. Designing Courseware on Algorithms for
Active Learning with Virtual Board Games. In Proceedings

of the Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, (New Orleans,
Louisiana, 1999).

[6] Korte, L., Anderson, S., Good, J., and Pain, H. 2007.
Learning by Game-Building: A Novel Approach to
Theoretical Computer Science Education. In Proceedings of
the Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, (Dundee,
Scotland, UK, June 2007).

[7] Leutenegger, S. and Edgington, J. 2007. A Games First
Approach to Teaching Introductory Programming. In
Proceedings of the SIGCSE Technical Symposium on
Computer Science Education, (Covington, Kentucky, March
2007).

[8] Parberry, I., Kazemzadeh, M., and Roden, T. 2006. The Art
and Science of Game Programming. In Proceedings of the
SIGCSE Technical Symposium on Computer Science
Education, (Houston, Texas, March 2006).

[9] Parberry, I., Roden, T., and Kazemzadeh, M. 2005.
Experience with an Industry-Driven Capstone Course on
Game Programming. In Proceedings of the SIGCSE
Technical Symposium on Computer Science Education, (St.
Louis, Missouri, February 2005).

[10] Perkovic, L. and Settle, A. 2007. Computing Branches Out:
On Revitalizing Computing Education. In Proceedings of the
International Conference on Frontiers in Education:
Computer Science and Computer Engineering, (Las Vegas,
Nevada, June 2007).

[11] Settle, A., Linhoff, J., and Berthiaume, A. A Hybrid
Approach to Projects in Gaming Courses. In GDCSE 2008:
Microsoft Academic Days Conference on Game
Development in Computer Science, (Celebrity Century,
February 28 – March 2, 2008).

[12] Sweedyk, E. and Keller, R. 2005. Fun and Games: A New
Software Engineering Course. In Proceedings of the Annual
SIGCSE Conference on Innovation and Technology in
Computer Science Education, (Monte De Caparica, Portugal,
June 2005).

[13] Tsai, M., Huang, C., and Zeng, J. 2006. Game
Programming Courses for Non Programmers. In
Proceedings of the International Conference on Game
Research and Development, (Perth, Australia, 2006).

[14] Wolz, U. and Pulimood, S. M. 2007. An Integrated
Approach to Project Management through Classic CS III and
Video Game Development. In Proceedings of the SIGCSE
Technical Symposium on Computer Science Education,
(Covington, Kentucky, March 2007).

254

