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Abstract

Traditional volume rendering requires back-to-front (or front-to-
back) rendering of voxels since the contribution of each voxel is
dependent on the contributions of the voxels in front of and be-
hind it along the viewing direction. In this paper, we introduce the
concept of FreeVoxels, in which the data required for operations
on voxels are pre-computed and stored so that the operations can
be performed independently. Specifically we introduce FreeVoxel
attenuation to achieve order-independent rendering. The advan-
tage of using FreeVoxels goes beyond involving space-time trade-
offs; it introduces incredible flexibility to the process of volume
rendering. In splatting-based volume rendering, we show that the
FreeVoxel data structure can be used to solve problems like attenua-
tion leakage, that occur due to incorrect blending operations on ad-
jacent voxels. In parallel volume rendering, the notion of FreeVox-
els opens new doors by allowing arbitrary static data distribution
with no data migration and synchronization-free rendering without
compromising on load-balancing. We also describe a hierarchical
extension of FreeVoxels that lends itself to multi-resolution render-
ing.

Keywords: Order Independence, Volume Rendering, Parallel and
Distributed Rendering

1 Introduction and Motivation

Research in volume visualization, particularly volume render-
ing[Brodlie and Wood 2001], has focused on important aspects in
the field such as handling large data[Camahort and Chakravarty
1993; Bhaniramka and Demange 2002; Guthe et al. 2002; Guthe
et al. 2002; Wilson et al. 2002], improving quality of render-
ing[Frieder et al. 1985; Drebin et al. 1988; Levoy 1990; Levoy
1992; Williams and Uselton 1996; Dachille et al. 1998; Hadwiger
et al. 2003] and improving rendering efficiency [Nieh and Levoy
1992; Totsuka and Levoy 1993; Lacroute and Levoy 1994; Zwicker
et al. 2001; Garcia and Shen 2002a].

Parallel volume rendering has enjoyed much attention [Hsu
1993][Li et al. 1997][Garcia and Shen 2002b][Takeuchi et al.
2003], motivated by applications([Park et al. 2001; Nadeau et al.
2002]) dealing with large amounts of data. In [Wittenbrink 1998],
it is reported that only few cluster-parallel algorithms have been

developed, for ray casting and Fourier domain volume rendering.
However, splatting on cluster has been left out so far.

Dependency on order-dependent rendering leads to serious dis-
advantages in parallel rendering, like lower potential speed-up, data
distribution issues and serious synchronization problems. These
issues have motivated research in segmentation and data distribu-
tion[Hsu 1993; Camahort and Chakravarty 1993], and synchroniza-
tion. The lower potential speedup is a consequence of the degree
of parallelism being affected by imposed order. Thus data need
to be distributed carefully amongst the different rendering nodes
to minimize communication overhead while rendering overlapping
segments; another restriction on the data segmentation is that the
segments should be necessarily convex and preferably compact.
Despite strategic distribution of data, there is an implicit need for
synchronization between the different nodes involved in rendering
a frame.

Gao et al.[Gao et al. 2003] describe a method of improving
speedup by applying a Plenoptic Opacity Function, computed as
preprocess, to perform visibility culling for volume rendering.
Their method uses a preprocess to construct the data structure that
is used to decide whether a voxel contributes its color to the image
or not; however, front-to-back order is imposed on rendering.

In this paper, we introduce the concept of FreeVoxels that en-
ables operations on individual voxels independent of other voxels
at the cost of constant amount of extra storage per voxel. From
this general concept, we derive FreeVoxel Attenuation that specif-
ically solves the problem of order-independent rendering. Further,
in Section 4.2, we extend this concept to accommodate a single pass
lighting and rendering algorithm by proposing FreeVoxel Color At-
tenuation functions. In order to seamlessly integrate FreeVoxel at-
tenuation in multi-resolution volume hierarchies, that are common
in handling large data sets, we also introduce a novel attenuation fil-
ter to compute the FreeVoxel attenuations for interior nodes in the
hierarchy from those of their children.

As a consequence of order independent rendering due to
FreeVoxel attenuation, we show that in parallel volume rendering,
the constraints on data distribution are eased and there is no need
for synchronization within a frame. Further, restrictions on data
segmentation are eliminated. The FreeVoxel attenuation can also be
used to avoid attenuation leakage problems that arise in traditional
splatting-based volume rendering systems due to incorrect blending
operations. Thus FreeVoxel attenuation goes beyond the obvious
trade-off between memory and speed, and brings in incredible flex-
ibility in data management and elegantly solves other problems as
mentioned above.
Main contributions: The following are the main contributions of
this paper.

• Order-independent rendering: We use FreeVoxel attenuation
to achieve order-independent rendering and hence achieve
highest potential speedup.

• Filtering scheme: We adapt the scheme proposed to cope with
multi-resolution volume rendering by defining a filter on the
FreeVoxel attenuation that enables the building of a hierarchy.



• Avoiding attenuation leakage: We show how the FreeVoxel
attenuation can be used to solve the leakage problem in some
splatting techniques.

The main concepts involved are presented in Section 2, explana-
tions of algorithms in Section 3, applications of the data structure
in 4, and implementation in Section 5.

2 FreeVoxels

FreeVoxels encapsulate all data required by each voxel, to be oper-
ated on independently of which the FreeVoxel attenuation enables
order-independent rendering. This section introduces the concept
of FreeVoxel attenuation and the extension that allows its hierarchi-
cal representation.

2.1 FreeVoxel Attenuation

A five-dimensional Plenoptic function[Adelson and Bergen 1991;
Gao et al. 2003] A(x,y,z,θ ,φ) denotes the attenuation of a ray of
light along the direction (θ ,φ) from a 3D point (x,y,z) to infinity.
Thus

A(x,y,z,θ ,φ) : Ψ×Θ×Φ → α (1)

where Ψ denotes the range of values for the coordinates of a 3D
point in space, θ ∈ [−π/2,π/2] and φ ∈ [0,2π] denote the direction
of light in spherical coordinates and α = [0,1]. A zero value for A
indicates maximum attenuation; it implies that the point (x,y,z) is
totally occluded along the direction (θ ,φ).

The FreeVoxel attenuation is a Plenoptic function defined for a
restricted 3D space (Figure 1). For any point P(x,y,z) in the re-
stricted 3D space, FreeVoxel attenuation in the direction (θ ,φ ), is a
2-dimensional function

AP(θ ,φ) = A(x,y,z,θ ,φ). (2)

Figure 1: Figure shows a ray R and the interval (thickened) along
R where R is attenuated before reaching P

The volume rendering problem involves a transport equation that
regulates the interaction of light and matter in a particle model.
Traditionally, volume rendering algorithms have approximated this
transport equation, along the ray R(θ ,φ) between ray parameters t1
and t2, with an integral equation

IR =
∫ t2

t1
C(t)e−

∫ t
t1

α(s)dsdt (3)

where IR is the intensity along ray R, C(t) is a volume intensity func-
tion (that includes emitted, scattered and reflected light) and α(t) is
the opacity function. Let t1 and t2 describe the entry and exit points
of the ray on the boundary of the restricted space. The exponen-
tial term is the attenuation of a ray until it reaches the point (with

parameter t) on the ray. By definition, the FreeVoxel attenuation is
given by

AP(θ ,φ) = e−
∫ t

t1
α(s)ds

. (4)

The attenuation along a ray between any two points L and M in
the restricted space with parameters tL and tM (t1 < tL < tM < t2)
can be computed as AM/AL.

Employing a zero-order quadrature of the integral along with a
first order approximation of the exponential in Equation 4, we get

AP(θ ,φ) =
k−1

∏
i=1

(1−αi) (5)

where αi are the opacity values for a discrete set of (k− 1) points
before P, along the ray.

2.2 Hierarchy and Attenuation Function Filtering

Volume hierarchies are common in multi-resolution rendering. The
hierarchy consists of voxels at the lowest level and blocks at other
levels. The attributes of each block are computed from the attributes
of its children in the hierarchy. Hierarchical FreeVoxel attenuation
can similarly be computed for a block B, given the attenuations of
its children in the hierarchy AB1,AB2, ...,ABn.

AB = ℑ(AB1,AB2, ...,ABn) (6)

where ℑ is a filter on the individual FreeVoxel attenuations.
We consider the level in the hierarchy as the third dimension to

equation (4) to yield a hierarchical attenuation function

Ah
P(h,θ ,φ) : H×Θ×Φ → α (7)

where H is a set of integers in the range [0,dlognNe].
To summarize, the method involves computation and then stor-

age of the attenuation functions associated with every voxel/block
in each level of the hierarchy.

Clearly the method involves storing large amounts of data that
depends on the chosen representation for the attenuation functions.
Common representations are approximations using Principal Com-
ponent Analysis or Spherical Harmonics[MacRobert 1948; Cabral
et al. 1987; Sillion et al. 1991]. Section 3.1 details our simple
method for storing FreeVoxel attenuation.

3 Algorithms

In this section, we describe the algorithms adopted to construct the
FreeVoxel attenuation, hierarchical attenuation filtering and render-
ing. For the purpose of implementation, without loss of generality,
we discretize and compute the FreeVoxel attenuations along a few
chosen directions. For other directions, the FreeVoxel attenuations
are obtained by bilinear interpolation.

3.1 FreeVoxel Attenuation Construction

We choose 26 ray directions such that they pass through the voxel
centers and one of voxel corners, voxel edge midpoints, and face
midpoints. We compute the FreeVoxel attenuation at each voxel
in the volume along each of the chosen ray directions using ray-
casting. Along each ray, an incrementally accumulated product

Avk
=

k−1

∏
i=1

(1−αvi
)

is updated and stored at each voxel vk.



Figure 2: FreeVoxel Attenuation of a uniformly gray and translucent cube along three different directions (red arrows). The dotted boundaries
show areas where maximum attenuation occurs for each of the three directions.

Figure 2 shows images of a uniformly gray translucent cube
whose voxels all have the same transparency. For illustration, the
images show a view different from the viewing directions (shown
with red arrows) indicate viewing direction. The attenuation can
be seen to increase through the volume along the viewing direction.
Regions of the volume that are totally occluded are shown with dot-
ted boundaries.

Time complexity: The algorithm adopted does not visit any voxel
twice for computing attenuation along a direction. Since, in our
sampling of rays, every ray passes through centers of all the voxels
along its path, the number of unique rays traced is O(N2). Since
for each ray, the attenuation of up to N voxels will be updated, the
method is O(N3).

3.2 Hierarchy and Attenuation Function Filtering

Given a fine resolution of FreeVoxels, computing a hierarchy of
FreeVoxels involves, first constructing a hierarchy of blocks of vox-
els and then the FreeVoxel attenuation for each block in the hierar-
chy. We use an octree hierarchy for the former. The attenuation of
each block is obtained by filtering the FreeVoxel attenuations of its
eight children in the octree. Recall that the attenuation represents
the exponential term in Equation 3. We approximate the integral in
the exponent for a block to be the arithmetic mean of the integrals in
the exponents of its children. Thus, at each value of the parameter t
along a ray

AM = e−
∫ t

t1
αM(s)ds

= e
∑8

i=1 −
∫ t
t1

αi(s)ds

8 = 8

√

8

∏
i=1

ABi
(8)

The subscripts to the functions α denote the block/sub-block under
consideration. Thus geometric mean is chosen as the filter function
in Equation 6.

Figure 3: Blocks in the Octree hierarchy of Attenuation functions.

Storage: The total amount of storage S required in our imple-
mentation is given by S = NB SB where NB is the number of blocks
and SB is the storage required per block. NB is O(N3) since it is
simply the number of nodes in the octree (figure 3) . Each block
stores 27 bytes: 26 bytes for attenuation along 26 directions (with
one byte used to represent each value between 0 and 1) and 1 byte to
store the scalar value of the voxel. Thus the overall storage required
is O(N3) for a cubical volume with N voxels along each side.

3.3 Rendering

The rendering phase is quite straightforward and needs the view-
point and the view frustum information as its only input. The
blocks in each level of the hierarchy are uniformly and statically
distributed amongst the render nodes. Each node, given view frus-
tum information, identifies the blocks to be rendered, their lev-
els in the hierarchy and directions along which attenuations and
hence colors should be computed. The level in the hierarchy is
decided for each block depending on parameters like screen projec-
tion area. For every block rendered, a look-up is performed on the
pre-computed 3D function (equation 7) to obtain Ah

P. At the end of
each frame, the images rendered by each node are added to yield
the final image.

The color C of a block B, is retrieved from filtered color data, and
the contribution I of B to the image is determined independent of
any other block as I = CαBAh

P where αB the filtered opacity value
of the block. Thus, each voxel is rendered independent of any other
voxel.

Rendering each frame involves determination of contribution
made by each block to the image and clearly takes time that is
O(NB) where NB is the number of blocks rendered. If the Freevoxel
attenuation data are uniformly and statically distributed across Rn
render nodes, since there is no dependency between rendering
nodes, the potential speedup can theoretically be Rn.

During the construction of the FreeVoxel attenuation, a floating
point intermediate result is maintained to prevent accrual of errors.
However, at the end of the preprocess, the attenuations are stored
along each direction in one byte and so the resolution of the repre-
sentation is 1.0/256. Thus error is maintained low except when the
viewpoint is inside the volume. In this case, a division is required
(see Section 2.1) and thus there is a slight amplification of error.

4 Applications of FreeVoxels

4.1 Order Independence

In the case of discrete volume data, sampled along a structured
grid, the coordinates of P(Section 2.1), x,y and z take integral val-
ues and P represents a voxel in the volume. A numeric solution



nodes to render for any viewpoint and we can achieve perfect load balancing.
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Figure 4: Static, uniform data distribution a) Distribution of blocks among multiple rendering nodes. b) Blocks being rendered by different
rendering nodes are shown in the hierarchy. Note the round robin distribution of blocks in each level of the hierarchy among the different
rendering nodes.

to the integral equation above is commonly obtained by employ-
ing a zero-order quadrature of the inner integral along with a first
order approximation of the exponential, while the outer integral is
approximated with a finite sum of uniform samples.

IR =
M

∑
k=1

[Ckαk

k−1

∏
i=1

(1−αi)] (9)

Ck is the color derived from the illumination model and αk) is
the transparency of samples along the ray. Since the product term
∏k−1

i=1 (1−αi) is stored for each voxel parameterized on the ray di-
rection R (θ ,φ), the contribution of any one voxel v to the image
can be computed as CvαvA(θ ,φ). Rendering involves a simple ac-
cumulation (by addition) of contributions by each voxel along its
viewing direction. This summation liberates us from order depen-
dency, since we have stored the product term for each voxel and the
summation is order independent.

4.2 Single-pass Lighting and Rendering

The FreeVoxel attenuation of each voxel represents the amount of
light reaching it along different directions. When the volume is
illuminated, the attenuation of a voxel v along the direction from
the light source, L1, is used to scale the amount of light reaching v
from L1. As a result of the pre-computed attenuation, shadows are
visible on voxels with opaque, gray occluders between them and
the light source. The method is applicable to colored light sources
as well, by considering the three channels separately. By append-
ing the FreeVoxel data structure with FreeVoxel Color attenuation
along each direction for each channel, shadow effects due to light
sources through colored voxels can be obtained. Figure 9 shows an
illuminated volume.

Illumination by multiple light sources can also be achieved, by
simply aggregating the effects of individual sources; this compu-
tation still requires only one pass through the volume. When each
voxel is being rendered, the FreeVoxel data structure needs to be
queried for FreeVoxel attenuation once along each direction of illu-
mination and once along the viewing direction.

4.3 Data distribution and Synchronization

The FreeVoxel data structure contains enough information to com-
pute the color contribution of a voxel to the image. Hence no ex-
change of information is required. Since the rendered frame by
each renderer can be composited in any order, no synchronization
is required.

The FreeVoxels (FreeVoxel attenuation functions and the filtered
color hierarchy) constructed during preprocessing are distributed
statically and uniformly across each level in the hierarchy, amongst
the rendering nodes. Static distribution implies that a particular
block B is always rendered by the same rendering node while uni-
form distribution implies that statistically, for a random sequence

of view-points, the expected number of blocks rendered by each
render node will be the same.
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Figure 5: Top: Blending weights for two adjacent splats. Bottom:
Accumulation of splats along the viewing direction.

4.4 Attenuation Leakage-free Splatting

Splatting techniques[Mueller and Crawfis 1998; Zwicker et al.
2001] that use weighted normalization on the opacity value of vox-
els for computing color are faced with the undesirable attenuation
leakage problem. Consider two voxels P and Q (Figure 5) with
transparency values αP and αQ, colors CP and CQ and attenuations
along a particular direction as AP and AQ. Let their normalization
weights be wP and wQ at some point R on screen where their splats
overlap, then their individual colors are given by IP = αP wP CP AP
and IQ = αQ wQ CQ AQ respectively. Note that wP +wQ = 1.

In traditional back-front splatting, one of the splats (say P) would
be in front of the other and the screen color would be computed as

I1 = IP +(1−αP wP)IQ (10)

However using FreeVoxel attenuation, we correctly compute the
screen color to be

I2 = IP + IQ (11)

The difference|I1− I2| is called the attenuation leakage.



Figure 6: Distributed volume rendering using FreeVoxel attenua-
tion does not involve any data migration or synchronization be-
tween rendering nodes. The final image is just an addition of in-
dividual images.

5 Implementation

All experiments were performed on a 2.20GHz Intel Pentium 4
workstation with 512MB RAM. The FreeVoxel data structure has
a size of 27 bytes per block. Twenty-six of these are used to store
FreeVoxel attenuation and one byte to store the scalar value repre-
senting color information.

A memory mapped array employing a 3D Hilbert space filling
curve for linearization[Hilbert 1891; Lawder and King 2001] was
used to store attenuation information. The array is both persistent
and capable of handing large amounts of data (tested positively up
to 4000×2000×2000 elements).

A simple splatting technique was implemented for rendering the
volume data. The splat-shape chosen was a disc with a Gaussian
blending function on the alpha channel to modulate the color I of
the voxel being rendered. The intensity of a pixel xi,yi belonging to
the splat is given by I cos2xi cos2yi, where xi and yi are pixel coor-
dinates with respect to the splat center, scaled to be in [−π/2,π/2].
This formulation guarantees uniform blending as long as, in image
space, the boundary of each rendered splat reaches the center of its
neighbors. In order to ensure this condition and to avoid aliasing
effects, we render each splat as facing the viewer and perform a
non-uniform scaling of the shape depending on the view angle. In-
terestingly, these calculations need not to be computed more than
once per frame when using orthographic projection, where all splats
assume the same shape.

A realistic simulation of multiple rendering nodes was per-
formed by distributing data statically and uniformly amongst mul-
tiple virtual render nodes. The simulation is a good indicator of
actual speedup because speedup is a ratio and also because no com-
munication is required between render nodes until image compo-
sition for each frame rendered. A graph (figure 8) was plotted of
the speedup against the number of nodes simulated. The graph sup-
ports our theory and shows that the speedup is indeed close to the
number of render nodes.

6 Conclusion and Future Work

This paper describes a concept that allows us to render each voxel
independent of other voxels. By doing this, we eliminate the need
for any particular order during rendering. As a result, we can
achieve maximum potential speedup (theoretically) without con-
straints on the data distribution requirements or synchronization be-

Figure 7: 128x128x128 Human brain dataset obtained from CT
scans.

tween render nodes in a distributed volume rendering setup. The
attenuation leakage problem (Section 4.4 ) is solved by using the
FreeVoxel attenuation. Using a cluster for rendering and adopting
the splatting technique, each rendering node independently renders
a frame with data from a static distribution. Thus communication
is required only to accumulate the image for each frame.

This paper also demonstrates a scheme that allows the represen-
tation of the Freevoxel attenuation to be stored hierarchically, which
lends itself to multi-resolution rendering.

We believe that there are a number of improvements that can
be made to the implementation. High quality ray casting as pre-
process, compact representations for the attenuation, cluster imple-
mentations of preprocess and rendering dealing with larger datasets,
incorporating perspective projection and interesting filters are some
of the improvements foreseen.
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