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ABSTRACT 

A 3-D spectral/spatial DFT represents an image region using a dense sampling in the frequency domain.  An alternative 
approach is to represent a 3-D DFT by its projection onto a set of functions that capture specific orientation, scale, and 
spectral attributes of the image data.  For this purpose, we have developed a new model for spectral/spatial information 
in images based on three-dimensional Gabor filters.  This model achieves optimal joint localization in space and 
frequency and provides an efficient means of sampling a three-dimensional frequency domain representation of HSI 
data. Since 3-D Gabor filters allow for a large number of spectral/spatial quantities to be used to represent an image 
region, the performance and efficiency of algorithms that use this representation can be improved if methods are 
available to reduce the dimensionality of the model.  Thus, we have derived methods for selecting filters that emphasize 
the most significant spectral/spatial differences between the various classes in a scene. We demonstrate the utility of the 
new model for region classification in AVIRIS data.   
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1. INTRODUCTION 
Texture modeling is useful in many contexts such as terrain classification and object detection. Several different 
approaches for modeling multispectral textures can be found in literature. These include the use of multispectral  
correlation functions1, Markov Random Fields2, and fractals3. Recognition of hyperspectral textures has also been 
studied4,5,6. Hyperspectral sensors produce images with a large number of spectral bands. Since the pixels in a 
hyperspectral image contain a large amount of spectral data for a pixel, smaller region sizes might be used for texture 
recognition. This is especially relevant for remotely sensed imagery where target regions often occupy only a small 
number of pixels. Due to the large amount of data contained in a hyperspectral image, many current algorithms reduce 
the dimensionality of the image data using various techniques such as Principal Components Analysis4 and spectral 
binning6. We employ a combined spectral/spatial representation for hyperspectral data that can effectively exploit spatial 
as well as spectral correlations within a hyperspectral image. 

Gabor filters have received considerable attention in image processing. The Gabor functions achieve optimal joint 
localization in the original and transform domains7. The Gabor functions are also closely related to the human visual 
system and texture interpretation7, 8. Gabor filters can be used to extract components corresponding to different scales 
and orientations from images. 2D Gabor filters have been used for texture segmentation9,10, texture analysis11 and color 
texture recognition12. Gabor filters have also been applied to hyperspectral images using a multiscale opponent 
representation6. 3D Gabor filters have been used to detect motion13 and to extract and track MRI tagging sheets14. We 
design a 3D Gabor filterbank to extract spectral/spatial components with different orientations and scales using the 3D 
representation of a hyperspectral image. The output of the Gabor filterbank defines a set of features that describe an 
image region. We also design a feature selection process that selects the features that emphasize the most significant 
spectral/spatial differences among a set of classes. This reduced set of optimal features is used for region classification. 

2. 3D GABOR FILTERS 
A Gabor filter is a sinusoidal function modulated by a Gaussian envelope.  A 3D spectral/spatial Gabor filter is defined 
in the radiance domain by 
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is the Gaussian component and 
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is the sinusoidal component. The variables, x and y are the spatial variables and λ is the spectral variable. The standard 
deviations (σx,σy,σλ) in (2) describe the size of the Gaussian envelope and define the scale of the filter along the spatial 
and spectral axes. Note that σx, σy and σλ need not be equal and thus the shape of the Gaussian envelope can be 
ellipsoidal.   (Fx,Fy,Fλ) represents the frequency of the sinusoidal component and thus the center frequency of the filter in 
the 3D frequency domain. The orientation of the filter is defined as the unit vector from the origin to the center 
frequency (Fx,Fy,Fλ)  of the filter. Thus, the orientation of a filter with center frequency (Fx,Fy,Fλ)  is given by   
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Due to the symmetry of the filter in the frequency domain, the orientations (φx,φy,φλ) and (−φx,−φy,−φλ) are equivalent. 
Figure 1 depicts a single 3D Gabor filter with orientation (1,0,0) as viewed from three different angles in the radiance 
domain. The light and dark areas represent positive and negative values of the filter respectively. The half peak 
bandwidth of the filter in the frequency domain is shown in Figure 2. Since the standard deviations of a Gaussian 
function in the radiance and frequency domain are inversely proportional, the half peak bandwidth of a filter decreases as 
the scale increases. 
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Figure 1. 3D Gabor filter viewed from 3 different angles 

fλ

fy

fx
Fx-Fx

 
Figure 2. Frequency response of the x-oriented 3D Gabor filter 
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3. FILTERBANK IMPLEMENTATION 
A bank of filters can be constructed to fill the 3D frequency domain by varying both the center frequency (Fx,Fy,Fλ) in 
(3) and the scales (σx,σy,σλ) in (2). Higher frequency filters typically require smaller spatial support and thus have a 
larger half peak bandwidth in the frequency domain. Filters are often placed one octave apart so that adjacent filters with 
the same orientation have center frequencies differing by a factor of two9,12. As an example, we trace the construction of 
a filterbank in the frequency domain with five different scales. We construct our filterbank by first generating a set of 3D 
Gabor filters that have center frequencies (Fx,0,Fλ) on the fx-fλ plane as shown in Figure 3(a). We consider a set of filters 
in the fx-fλ plane with four distinct orientations giving an angular separation of 45 degrees between adjacent orientations 
to give a set of 20 filters with center frequencies on the fx-fλ plane. Each filter in Figure 3(a) is represented by two 
ellipsoids showing the half peak bandwidth of the filter. Filters with equal orientation have their center frequencies on 
the same vector from the origin. For a given orientation, the center frequency of the filter increases and the scale 
decreases as we move radially outward from the origin.  We now rotate and replicate this set of filters in 45 degree steps 
about the fλ axis to obtain the complete 3D filterbank. The process is illustrated by Figure 3 and yields a filterbank with 
65 filters defined along 13 orientations as shown in Figure 3(c). Only the filters with the largest half peak bandwidth are 
visible in Figure 3(c). The corresponding radiance domain Gabor filters for a single scale and thirteen different 
orientations are shown in Figure 4. Each filter in the figure is labeled by its corresponding orientation as defined by (4). 
For our filterbank, the five scales (σx,σy,σλ) are (1.40,1.40,1.40) (2.81,2.81,2.81) (2.81,2.81,5.62) (2.81,2.81,11.23) 
(2.81,2.81,22.47). We truncate filters at 1.5 cosine cycles in the radiance domain so that the final filter sizes are (5x5x5), 
(9x9x9), (9x9x17), (9x9x33) and (9x9x65) pixels respectively. We consider one additional filter that measures the DC 
component. Thus, the total number of filters in our filterbank is 66. All filters are normalized to have unit gain. 
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Figure 3. Gabor filterbank in the frequency domain. (a) 3D bank in fx-fλ plane. (b) fx-fλ plane is rotated to obtain full 3D 

Gabor filterbank. (c) The resulting 3D Gabor filterbank in the frequency domain. 
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Figure 4. Gabor filters for a single scale and 13 orientations. 
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4. EXPERIMENTS 
4.1 Dataset 

We use AVIRIS (Airborne Visible/Infrared Imaging Spectrometer)15 hyperspectral data for our experiment. This 
5m/pixel radiance data was acquired over Pocomoke City, Maryland in 1996 from 20,000 feet altitude. A single band 
image is shown in Figure 5. The size of the Hyperspectral image is 512x3689 pixels and the 224 bands correspond to 
wavelengths ranging from 370nm to 2507nm. All 224 bands are used in our experiment. From the image, we obtain a 
total of 772 sample regions of size 12x12 pixels of the following 11 classes : crop1, crop2, field1, pond, barren1, sand1, 
veg1, veg2, veg3, weed1 and ClassX. Typical samples for each class (except ClassX) are displayed in Figure 6. ClassX 
includes samples that are taken from a variety of regions in the image that don't correspond to any of the other ten 
classes. Half of the 772 samples (386) are used for model training while the other half (386) are used for testing the 
classification algorithm. Within each dataset (training or testing) of 386 samples, 213 samples belong to 10 classes and 
173 samples are from ClassX.  

 
Figure 5. AVIRIS image 

crop1                     crop2                     field1                      pond                      barren1

sand1                     veg1                      veg2                        veg3                       weed1

 
Figure 6. Typical samples from 10 classes 

4.2 Features 

Each 12x12 region is represented by a combination of spectral and Gabor features. The 224-dimensional mean spectral 
vector is used to represent a region's spectral properties. Figure 7 plots the mean spectral vectors for typical samples 
from the 10 specific classes. Let ri(x,y,λ) be the result of filtering a region R with 3D Gabor filter i. The i-th Gabor 
feature for R is defined by the energy 
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where xm, ym and λm denote the maximum values of x,y and λ in ri(x,y,λ) respectively. 

Using the 66 previously defined 3D Gabor filters, we can compute a vector of 66 Gabor features for each region.  
Figure 8 plots the Gabor feature vector for a typical sample of each of the 10 specific classes. 
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Figure 7. Mean spectral vectors for typical samples from 10 classes 

 
Figure 8. Gabor vectors for typical samples from 10 classes 

4.3 Model Training 

The goal of model training is to find a subset of features that maximize the classification rate for the samples in the 
training data. We model the feature vectors for the samples in a class c as normally distributed with mean vector µc and 
covariance matrix Σc. As a measure of the likelihood that a sample s is in class c, we use the Mahalanobis distance16 
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where µc(i) is the i-th element of µc and σc(i) is the standard deviation of feature x(i) for class c. A sample s is classified 
as an instance of the class c for which M(s,c) is the smallest. 

If a sample s has a large Mahalanobis distance with each of the ten specific classes c, then s should be classified as 
unknown. Thus, a threshold must be chosen for this purpose. A classical method of defining this threshold is quantile of 
chi-square distribution, i.e., the percentage of distribution mass enclosed by the threshold contour. If a sample s has a 
Mahalanobis distance that for each of the ten specific classes c lies outside the Mahalanobis distance contour that 
encloses 99% of the distribution for c then s is classified as unknown. 

An optimized feature set is selected using a stepwise optimal algorithm. This algorithm selects a first feature that gives 
the best classification rate over the 213 training samples associated with the predefined classes. Then we add a new 
feature from the remaining features that leads to a maximum increase in the classification rate. The algorithm continues 
by adding new features in this way to maximize the classification rate. The optimum number of features (D') can be 
determined as the number that gives the highest classification rate. 

4.4 Classification Method 

After training, the Gaussian model and optimized features can be used for the classification of test data. For an unknown 
sample, the Mahalanobis distance between the sample's feature vector and the mean vector µc for each of the ten 
predefined classes is calculated using (7). If s falls outside of the 99% quantile for each of the predefined classes, then s 
is classified as unknown. Otherwise s is classified as an instance of the class with which it has the smallest Mahalanobis 
distance. 

4.5 Classification Results 

Figures 9 and 10 plot the classification results for the training and testing datasets. The plots are summarized in Table 1. 
As a comparison, results for an experiment that uses all of the features for the classification of the training and test data 
are also provided. We see that combining spectral and Gabor features during classification yields improved results over 
using spectral or Gabor features in isolation. 

Table 1. Classification results for training and test data.  

Experiment Optimized Feature Sets All Features 

Vector type Train D' Test Train 
Data D Test 

Data 
Spectral 83% 24 82% 77% 224 79% 
Gabor 93% 8 90% 84% 66 83% 

Spectral+Gabor 98% 7 95% 85% 290 85% 
 

An analysis of the experiment reveals some interesting characteristics of the features. Spectral features will often 
misclassify a region with the same materials mixed in the same ratio as a model class even if the region has different 
spatial properties than the model class. In Figure 11(a), the image on the right is a typical crop1 sample, while the image 
on the left (sample_1) is a ClassX sample. Despite the difference in the spatial structure, sample_1 is misclassified as 
crop1 when using spectral features. The two regions have similar mean spectral vectors as shown in Figure 12. This 
sample_1, however, can be correctly distinguished by using Gabor features as shown in Figure 13. The Gabor features 
for crop1 at orientation ( 0,, 2

1
2

1− ) have much greater energy than those in sample_1. By contrast, sample_1 has more 
energy in the (1,0,0), (0,1,0) and ( 0,, 2

1
2

1 ) directions which indicates a more isotropic texture structure. The result of 
the stepwise feature selection process confirms that Gabor filters #1, #6, #16 and #21, are crucial for distinguishing 

Proc. of SPIE Vol. 6966  69660E-6



 

 

sample_1 from the crop1 class. A similar situation occurs for the samples shown in Figure 11 (b),(c) and (d). Each of 
these cases are misclassified using spectral features but are classified correctly using Gabor features. 
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Figure 9. Classification of training data 
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Figure 10. Classification of test data 
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Figure 11. Examples of misclassified sample pairs using only spectral features. Samples on the left of a pair are ClassX 

samples. 
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Figure 12. Spectral mean vector for ClassX sample and crop1 sample in Figure 11(a) 
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Figure 13. Gabor vector for sample_1 and crop1 in Figure 11(a). 

There are also situations where the Gabor features in isolation are not sufficient to correctly classify a sample. Figure 
14(a) shows sample_5 along with another sample from the class barren1. However, sample_5 lies outside the 99% 
contour for class barren1 due to minor texture differences. Figure 14(b) shows sample_6 along with another sample from 
the class field1. The region sample_6 lies outside the 99% contour for class field1 due to small differences in spatial 
structure. Both sample_5 and sample_6 are correctly classified if spectral features are utilized. 

(a)

barren1sample_5

(b)

field1sample_6

 
Figure 14. Examples of misclassified samples when using only Gabor features. 

We see from figures 9 and 10 that the best classification results are achieved by using a combination of spectral and 
Gabor features. The first seven features chosen by the stepwise optimal algorithm in order of importance are 176S, 5S, 
29G, 16G, 1G, 55G, 6G where S indicates a spectral feature and G indicates a Gabor feature. Three of the five Gabor 
features #1 (1,0,0), #6 (0,1,0), and #16 ( 0,, 2

1
2

1 ) are without wavelength dependence while the two filters #29 
( 2

1
2

1 ,0, ) and #55 ( 2
1

2
1

2
1 ,, − ) measure spatial/spectral dependence. Feature #29, for example, measures correlation 

between x and λ. Figures 15 and 16 show samples that have similar spectral properties but significantly different values 
for feature #29. 
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5. SUMMARY AND CONCLUSION 
We have presented an algorithm for hyperspectral region classification by using 3D spectral/spatial Gabor features. We 
designed a 3D Gabor filterbank capable of capturing the energy of spectral/spatial texture at different orientations and 
scales. Three different combinations of feature vectors (Spectral, Gabor, and Spectral+Gabor) were tested in 
classification experiments. The results show that the 3D Gabor features successfully separate samples with similar 
material composition but different texture structure. We have also demonstrated why the 3D Gabor spectral/spatial 
features can be important in the feature selection process. The combined spectral and 3D Gabor features are shown to be 
effective for hyperspectral region classification. 
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Figure 15. Sample that has energy captured by filter #29. Single-band view (a) and 3D iso-surface view (b). 

x

y(c)

λ

x

y

(d)

sample_8

λ

 
Figure 16. Sample that has little energy captured by filter #29. Single-band view (c) and 3D iso-surface view (d) 
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