
Department of Computer Science,                                       Technical Report – Virtual Light Field Group 
University College London, 
Gower Street, 
London WC1E 6BT. 

A Visibility Field for Ray Tracing 
 

Jesper Mortensen          Mel Slater          Pankaj Khanna          Insu Yu 
( j.mortensen | m.slater | p.khanna | i.yu ) @cs.ucl.ac.uk 

 
Department of Computer Science, University College London, Gower Street, London WC1E 6BT 

 

Abstract 
This paper exploits a type of visibility data structure, similar to a Virtual Light Field, for accelerated ray 
tracing. The data structure supports constant time ray access to a very small but conservative potential 
visibility set (PVS) of the original surfaces in the scene; only these have to be searched for a final 
intersection determination. The visibility field employed is constructed by choosing a regular point 
subdivision over a hemisphere, to obtain a set of directions, and then corresponding to each direction 
there is a rectangular grid of parallel beams. Each beam references a set of identifiers corresponding to 
objects that intersect it. The beam corresponding to any ray can be looked up in small constant time, and 
the set of objects corresponding to the beam can then be searched for intersection with the ray. This final 
step can be carried out with any conventional ray traversal technique, and in particular we use a BSP 
tree, but only with partitioning planes perpendicular to the direction of the beam. This approach trades 
off rendering speed for significant memory usage and pre-processing time. An early implementation of 
this technique is described and initial results for a specific class of scenes are presented and shown to 
compare favorably with an approach that has been around for quite a while, the single-ray Coherent 
Ray Tracing approach of Wald and Slusallek et al. 

 

1. Introduction 
 
There have been significant advances towards real-time 

ray tracing in recent years, through the exploitation of 
algorithms that are tailor made to perform well on today’s 
graphics hardware [PKG97] [CHH02] [WSB*03] 
[PBMH02]. We present initial results on a novel strategy to 
reduce ray-object intersection traversal time. Every ray 
tracing algorithm has to deal with the problem of ray-object 
traversal – that is, to find for any ray the nearest surface 
that it intersects. This problem has received a great deal of 
attention since the introduction of ray tracing into computer 
graphics [App68] [Whi80]. All successful methods rely on 
a data structure that when traversed by a ray, delivers a set 
of objects, the candidate set, or the potentially visible set, 
that the ray may intersect. In this paper we present a 
modification of this standard approach. We exploit a 4-
dimensional data structure, which is a kind of light field 
that instead of storing radiance stores object identifiers. 
The data structure is a special instance of a ‘virtual light 
field’ (VLF) [Ano04], that we call VLF-RT in this paper. A 
ray is used as an array look-up index into the VLF-RT data 
structure, and immediately delivers a set of candidate 
objects for ray-object intersection testing. That set of 
objects, a tiny fraction of the original number in the scene, 
may be traversed linearly or by any other method. 

We discuss the background literature and state-of-the 
art in Section 2. The VLF data structure for ray tracing is 
presented in Section 3. In Section 4 we motivate and 
describe the use of BSP trees for the final traversal of the 
potentially visible set (PVS) returned from the ray lookup 

into the VLF-RT. Implementation details are given in 
Section 5. Results in the form of comparisons of Coherent 
Ray Tracing (CRT) and the VLF-RT method are presented 
in Section 6, and conclusions in Section 7, including a 
discussion of how dynamic scene changes are very simple 
in this method. In this paper we concentrate only on 
‘classical’ ray tracing as described by Whitted [Whi80]. 
For compatibility with CRT all our examples are limited to 
polygons, and in our main results, triangles. However, the 
method is not bound to polygonal objects. 
 
2. Background 
 

Ray tracing was the first type of global illumination 
algorithm introduced into computer graphics [Whi80]. It 
very simply and elegantly supports shadows, specular 
reflection and transmission, and also solves the problem of 
visibility. It does not correctly handle light paths that 
involve both diffuse and specular reflections, and this will 
not be considered in this paper. The overall benefits of ray 
tracing have been discussed many times, for example 
[Gla89] for a general overview and standard algorithms, 
and [WSBW01] for potential benefits as compared to the 
standard graphics pipeline.  In the original paper Whitted 
pointed out that the vast amount of the time to produce a 
ray traced image is taken up by ray-object intersection 
calculations.  

Many techniques have been developed to try to reduce 
this time. These can be classified into object-space 
subdivision and ray-space subdivision methods. The former 
constructs a scene space subdivision, such that each cell in 
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the subdivision references a relatively small set of objects, 
and ray traversal through this subdivision is relatively 
simple and fast. For any given ray the vast majority of 
objects are therefore never tested for intersection – only 
those that are picked up by the ray traversal scheme are 
considered as candidates for intersection. Examples of this 
method include bounding extent hierarchies [KK86] 
[GS87], direct space subdivision methods – such as 
uniform space subdivision [FTI86] [Ama84] [CW88], oc-
trees [Gla84], and BSP trees [Kap85] [Jan86] [SS92]. It 
was argued in [SS92] that of these the BSP subdivision 
scheme results in the fastest ray traversal, with logarithmic 
time in the number of polygons. 

Ray classification schemes on the other hand exploit 
coherence amongst rays. One example of this was the light 
buffer [HG86] which efficiently computed intersections for 
‘shadow feeler’ rays. However, a general ray classification 
approach that applied to the entire ray tracing process was 
provided by [AK87]. Rays were represented as points in 
5D space and a 32-tree of ray space was lazily built as each 
successive ray was encountered (in fact six 32-trees each 
representing one of the six faces of a bounding box around 
the scene). Each cell of a 32-tree represents a set of similar 
rays, and corresponding to each cell is a candidate set of 
objects. Every object in the candidate set is such that at 
least one of the rays in the cell intersects it. In other words 
a cell of the 32-tree corresponds to a beam in 3D space that 
intersects a set of objects – the candidate set for the cell. 
The size of the tree depends on the maximum permitted 
size of the candidate object set. Now given any new ray, it 
is filtered down the tree, its candidate set identified, and 
intersections carried out with these. The VLF-RT algorithm 
presented in this paper may be thought of as a much more 
efficient representation of this same idea – since in this 
case similar rays are also grouped together and each such 
group of rays has a candidate object set. However, the data 
structure is much simpler than the 32-tree, and ray-
candidate set retrieval is look-up rather than a tree 
traversal. 

Within each of these two broad categories there have 
been many proposals for further and substantial 
improvement in ray-object traversal speed. For example, 
building on the idea of a BSP representation Havran 
[HKBZ97] [HBZ98] introduced rope trees to further 
accelerate ray-BSP tree traversal. In addition caching 
schemes have been introduced to reuse elements of a 
solution across several views, exploiting a kind of ray-view 
coherence [WS99] [WDP99]. 

Advances in processor power and graphics hardware 
have supported a massive speed up in ray tracing so that 
today it is possible to attain interactive speed for millions 
of polygons on clusters of consumer PCs [WSB*03]. This 
research has relied on space subdivision schemes for fast 
ray-intersection solutions, in particular BSP trees, together 
with precise organisation of the overall algorithm to fit the 
needs of the hardware, and parallel implementation over 
PC clusters [WKB*02] [BWS03]. 

The evidence to date suggests that one scheme in 
particular; coherent ray tracing (CRT) [WSBW01] is the 
fastest implementation of ray tracing, by possibly several 
orders of magnitude. This uses a BSP tree space 
subdivision. The implementation is organized so that most 

memory accesses fall within the first two caches, which 
itself resulted in a speed-up by half an order of magnitude 
as reported in the original paper. Moreover, packets of 4 
rays are SIMD traced in parallel. We have also 
implemented the single ray CRT scheme, and it is with the 
results of this that we compare our new approach in 
Section 6. 
 
3. Virtual Light Field Ray Tracing 
 
3.1 Data Structure  
 

The virtual light field data structure was originally 
inspired by the light field [LH96] [GGSC96] and the type 
of representation used is similar to that in [CLF98] and 
also to a data structure used for visibility culling in [CC-
OL98]. Whereas light fields typically only store radiance at 
the first intersection of a ray with an object, Layered Depth 
Images [SGHZ98] maintain radiance information about 
each of the surfaces that rays intersect rather than just the 
first surface, and in that sense the VLF is also similar to 
LDI.  However, in VLF-RT we never store radiance, only 
object (in fact polygon) identifiers. We have previously 
used a general VLF data structure for a view independent 
global illumination solution [Ano04] where radiance 
information was stored. In this paper we specialize the data 
structure specifically for ray tracing, and therefore the 
solution is view-dependent, and requires an order of 
magnitude less memory. We now describe VLF-RT. 

A scene can be enclosed, for example, by a regular 
cuboid. Suppose this is a cuboid bound by (-1,-1,-1) to 
(1,1,1). Consider the lower face (at z = -1) bounded by      
(-1,-1,-1) to (1,1,-1). This is subdivided into n×n square 
tiles. Each tile is the base of a beam parallel to the z-axis 
that extends infinitely (though only the finite part that 
intersects with the scene is of interest). The set of such n×n
parallel beams is called the canonical parallel subfield 
(PSF). If l points with spherical coordinates ωi = (θi, φi) are 
chosen on the unit hemisphere then l PSFs are defined as 
rotations of the canonical PSF by rotating the direction into 
the corresponding spherical point. The rotation can be 
achieved in any manner that is consistent throughout. 

Consider any beam in the canonical PSF. This will 
intersect a number of surfaces in the scene. The 
corresponding tile stores this sequence of surface 
identifiers. The process of finding all the intersections of 
surfaces with the tiles of the canonical PSF is 
straightforward. If we consider the special case that all 
surfaces are planar polygons, then this is similar to polygon 
rasterisation, and can be implemented very efficiently. 
Given any other PSF, corresponding to direction ωi the 
scene can be rotated such that ωi is transformed to the 
(0,0,1) direction and then the rasterisation carried out in the 
canonical space. 

It is critical to choose a parameterisation over the 
hemisphere so that no searching is required in order to find 
the closest PSF direction to any arbitrary direction – since 
such ray lookup is a critical operation during ray tracing. 
The method for placing points on the hemisphere uses a 
recursive subdivision of a regular tetrahedron, which 
partitions the hemisphere into triangles. However, fast 
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constant time lookup is attained for any arbitrary point on 
the hemisphere in order to find the closest stored point to 
any given point on the hemisphere. A method that achieved 
this was described in [Sla02].  

The (finite) set of given PSF directions is denoted Ωl
and ω∈Ωl refers to a particular direction. The tiling 
coordinate system is referenced by (s, t) s, t =0,1,…,n-1. 
Hence a tile is referenced as (ω, s, t). The set of identifiers 
associated with a tile is denoted by S(ω, s, t). 
 

Figure 1: Finding the tiles corresponding to a polygon 
edge – the correct ones are the shaded tiles, DDA algorithm 
would produce only the marked tiles.  
 
3.2 Constructing the Data Structure 

 
The application of this data structure to ray tracing is 

very straightforward. First the data structure as discussed 
above is constructed. For each PSFωi the scene is 
transformed to the canonical space, and each polygon is 
orthographically projected to the base of the PSF, and the 
tiles that it covers computed. This can be achieved by 
traversing each polygon edge through the tiling to compute 
the tiles of all the polygon edges, and then filling in the 
non-edge tiles that are inside the polygon. It is important 
that the edge-tiling traversal algorithm allow for an 8-
connected path, rather than follow a traditional DDA-style 
algorithm. The difference is shown in Figure 1. Such 
algorithms are discussed with reference to a 3D context in 
[CK90] but are easily adapted to 2D. As each tile (s, t) for 
a polygon is found the polygon identifier is written into 
S(ωi, s, t). By the end of this process for all PSFs the data 
structure is complete. 
 
3.3 Ray-Object Intersections 
 

Now suppose that all identifiers for all tiles in all PSFs 
have been computed, and that we require the candidate set 
of objects for a ray with direction ω and origin (x, y, z). 
Find the direction in Ωl that is closest to ω and suppose 
that this is ωj. This can be done with a simple array look-up 
as shown in [Sla02]. There will be a rotation matrix Mj
pre-calculated and stored with the PSF that rotates ωj into 
(0,0,1). Then (x, y, z)Mj =(xq, yq, zq) will be the point in the 
canonical PSF space that corresponds to (x, y, z) in scene 
space. In particular the projection (xq, yq,-1) will belong to 
a particular tile. The set of identifiers in that tile forms a 
PVS set for the ray. 

In fact the situation is slightly more complicated. Figure 
2 shows a 2D analogue of a condition where a ray would 
project to more than one tile. In that case (Rayj) if we only 
project the origin of the ray to the base of the PSF it would 

pick up tile 4. However, clearly the appropriate candidate 
set would be the union of those of tiles 4, 3 and 2. 
Therefore two points on each ray should be projected – the 
origin, and an end-point. In the case of shadow feeler rays 
the end-point is given by the light source position. In the 
case of primary or secondary rays the point on the ray that 
intersects with the boundary of the scene may be used. If 
the projections of these two points are not in the same tile 
then the appropriate set of candidate objects is the union of 
all tiles that the ray traverses. For a large enough number of 
rotations (l) both end-points of the ray will project to the 
same tile as the angle between a given direction and its 
nearest PSF tends towards zero. 

Figure 2: The rays overlap more than one tile. 
 
4. Ray-Tile Traversal  
 

Once a PSF and tile have been identified for a ray the 
set of polygons referenced must be searched to find the 
nearest ray-polygon intersection (if any). This is a critical 
operation. For a sufficient large number of polygons it 
turns out to be faster to use a BSP tree to traverse the entire 
set of polygons for every ray compared to a linear search of 
the polygons within the tiles. The reason is due to the 
logarithmic performance of the BSP tree and the linear 
performance in the average number of polygons per tile of 
the VLF-RT approach. On the other hand the VLF-RT 
approach does have the advantage that without any ray 
traversal, and simply with a lookup it is possible to reduce 
the search space to a very small fraction of its total size. 

In order to reduce the linear dependence of the timing 
on the mean number of polygons per tile a BSP tree could 
equally be used to search the vastly reduced tile space 
instead of the entire scene space. In practice, since the 
direction of greatest variation amongst the polygons within 
a tile is by construction in the direction of the PSF to which 
the tile belongs, a BSP tree that subdivided the full 3D 
space would be wasteful. Instead, only subdivision planes 
that are perpendicular to the direction of the PSF are used. 
These subdivisions are mid-point subdivisions along the 
tile, and also only intersections between a polygon and a 
subdivision plane that occur within the tile boundary are 
significant. 
 
5. Implementation Issues 

 
The Visibility Field currently uses the mid-point for the 

splitting planes in the 1D BSP trees that exist along each 
tile. The polygon identifiers are pushed to the leaves using 
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a linearised layout for the BSP trees. This saves on 
memory, as no internal nodes are explicitly stored, however 
in some instances time is spent on traversing deeper than 
strictly necessary. The polygons are clipped to the tile 
boundaries before testing it against the BSP clipping planes 
to avoid unnecessary duplication. During BSP traversal the 
recursion is rolled out using an explicit stack, and the 
intersection kernel is inlined using a macro. 

When intersecting a given ray the nearest PSF is used 
and the ray is projected onto this PSF using a line 
rasterisation algorithm similar to the one used for tile 
rasterisation during initialisation (see Figure 1). Also, the 
ray segment is limited by the intersections with the scene 
bounding sphere (see Figure 2, Rayi), or if the viewpoint is 
inside the scene only the far intersection is used (see Figure 
2, Rayj). The intersected tile list (eg. tiles 1-5 for Rayi in 
Figure 2) is traversed in front to back order and the ray 
segment is limited by the ray tile intersection points, such 
that early termination can be applied as soon as an 
intersection is found in a tile. Note that the directional 
discrepancy between the rays and the PSF has been 
exaggerated in Figure 2 to illustrate the point more clearly; 
in practice only a small number of tiles are intersected 
depending on the tile resolution and directional density. 

The single ray CRT approach implemented follows 
[WSBW01]. It uses the spatial median for BSP splitting 
planes, and the optimized triangle layout described in 
[Wal04]. As in the VLF-RT case, the BSP traversal’s 
recursion is rolled out using an explicit stack, and the 
intersection kernel is directly inlined using a macro. All 
other framework code such as ray creation and shading etc. 
is shared between the implementations. 
 
6. Results 

 
6.1 Parameters and Hardware 

 
We compared performance of VLF-RT with the CRT 

implementation described above. For each method we used 
the system and parameters that were fastest. In the case of 
the BSP tree for CRT, a parameterisation must be chosen – 
specifically the maximum depth of the tree, and the ideal 
maximum number of polygons allowed per leaf-node 
(subject to the maximum depth). In order to determine 
these parameters we ran a series of pre-test experiments 
with the scenes described in the sections below, to 
determine the best combination of depth and leaf size, and 
these were used in the comparative performance tests.  

Similarly, tile-BSP tree sizes needed to be determined 
for VLF-RT and the same strategy was used. Also we could 
vary the tile resolutions, already knowing that greater 
resolution would result in faster times. However, of interest 
is the graph of performance by number of triangles, and 
this is discussed in the next section. All timings were 
carried out on a dual 2.8Ghz Xeon workstation with 3GB 
memory, using only one processor. 
 
6.2 Performance Curves 

 
We are interested in ray-traversal speed as the number 

of polygons n increases. For this purpose we have created 

an artificial scene with uniformly distributed random 
triangles, see Figure 5. Figure 3 shows the frame time, 
averaged over about 15 frames for increasing number of 
triangles viewed from two viewpoints one outside the scene 
and one from inside. 

 

Figure 3: Average time to render a 512×512 image (un-
shaded primary rays only) of scenes with increasing 
numbers of uniformly distributed random triangles. 

 
The results show that the pure linear tiling approaches 

scale linearly in the average polygons per tile. So, even the 
tile 128×128 parameterisation will be slower than CRT for 
some n>45.000. However, it is obvious that the VLF-RT 
approach using BSP trees scales better than CRT, for this 
type of scene. This comes at a cost though; memory usages 
for these scenes range between 25MB to 1GB, and pre-
processing times range from 3-20 minutes. 
 

Figure 4: Frame times and normalised intersections for a 
walkthrough of the 16K scene. 
 
6.3 Walkthrough 

 
In the previous section we discussed performance for 

static viewpoints, now we consider a walkthrough of one of 
these scenes to see how performance varies across frames 
when the viewpoint changes during a walkthrough 
situation. The scene we will use is the 16K scene shown in 
Figure 5. Figure 4 shows the walkthrough timings and 
intersections comparing CRT with VLF-RT.  The results 
show that both methods are sensitive to similar changes in 
viewed complexity and camera paths though the variations 
for CRT are much more pronounced. The VLF-RT method 
results in more stable render times across the frames – this 
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is due to the fact that though depth complexity is high 
across successive views of the considered scene, candidate 
search time is quite low. 

 

Figure 5: Images of the random scenes. The 9K triangle 
scene on the left is viewed from outside the scene while the 
16K scene on the right is viewed from its interior. 

 
7. Conclusions 
 

In this paper we have introduced a new ray-traversal 
method, and illustrated its application in classical ray 
tracing. The method relies on a very fast lookup to obtain a 
candidate set of polygons for any ray, and then these 
polygons may be traversed by a BSP tree with partitioning 
along only one axis. The results suggest (Figure 3) that this 
method perform better than CRT, for the scene used. 

In this paper we have only discussed walkthrough 
applications. However, real-time ray tracing also demands 
the possibility of dynamic changes to objects. This is easily 
achievable with the VLF-RT method. When an object is 
transformed it must first be deleted from the data structure, 
then its geometry transformed and inserted back into the 
data structure. Once these operations have been carried out 
the ray tracing can be used to render the next frame as 
usual. In order to delete an object from the VLF-RT data 
structure, all PSFs are visited, and the object rasterised into 
the tiling coordinate system as usual, except that in this 
case the identifiers of the object are removed rather than 
added. Then the polygon’s geometry is transformed, and 
reinserted into both the tiling and BSP structures. This 
represents ongoing work and will be reported subsequently. 

Another line of ongoing work is improving the BSP 
splitting plane heuristic moving away from the simple 
spatial-median approach. Also a SIMD implementation 
tracing 2x2 ray bundles is underway, and results from this 
will be reported on in the near future. 
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