
Department of Computer Science, Technical Report – Virtual Light Field Group
University College London,
Gower Street,
London WC1E 6BT.

A Visibility Field for Ray Tracing

Jesper Mortensen Mel Slater Pankaj Khanna Insu Yu
(j.mortensen | m.slater | p.khanna | i.yu) @cs.ucl.ac.uk

Department of Computer Science, University College London, Gower Street, London WC1E 6BT

Abstract
This paper exploits a type of visibility data structure, similar to a Virtual Light Field, for accelerated ray
tracing. The data structure supports constant time ray access to a very small but conservative potential
visibility set (PVS) of the original surfaces in the scene; only these have to be searched for a final
intersection determination. The visibility field employed is constructed by choosing a regular point
subdivision over a hemisphere, to obtain a set of directions, and then corresponding to each direction
there is a rectangular grid of parallel beams. Each beam references a set of identifiers corresponding to
objects that intersect it. The beam corresponding to any ray can be looked up in small constant time, and
the set of objects corresponding to the beam can then be searched for intersection with the ray. This final
step can be carried out with any conventional ray traversal technique, and in particular we use a BSP
tree, but only with partitioning planes perpendicular to the direction of the beam. This approach trades
off rendering speed for significant memory usage and pre-processing time. An early implementation of
this technique is described and initial results for a specific class of scenes are presented and shown to
compare favorably with an approach that has been around for quite a while, the single-ray Coherent
Ray Tracing approach of Wald and Slusallek et al.

1. Introduction

There have been significant advances towards real-time

ray tracing in recent years, through the exploitation of
algorithms that are tailor made to perform well on today’s
graphics hardware [PKG97] [CHH02] [WSB*03]
[PBMH02]. We present initial results on a novel strategy to
reduce ray-object intersection traversal time. Every ray
tracing algorithm has to deal with the problem of ray-object
traversal – that is, to find for any ray the nearest surface
that it intersects. This problem has received a great deal of
attention since the introduction of ray tracing into computer
graphics [App68] [Whi80]. All successful methods rely on
a data structure that when traversed by a ray, delivers a set
of objects, the candidate set, or the potentially visible set,
that the ray may intersect. In this paper we present a
modification of this standard approach. We exploit a 4-
dimensional data structure, which is a kind of light field
that instead of storing radiance stores object identifiers.
The data structure is a special instance of a ‘virtual light
field’ (VLF) [Ano04], that we call VLF-RT in this paper. A
ray is used as an array look-up index into the VLF-RT data
structure, and immediately delivers a set of candidate
objects for ray-object intersection testing. That set of
objects, a tiny fraction of the original number in the scene,
may be traversed linearly or by any other method.

We discuss the background literature and state-of-the
art in Section 2. The VLF data structure for ray tracing is
presented in Section 3. In Section 4 we motivate and
describe the use of BSP trees for the final traversal of the
potentially visible set (PVS) returned from the ray lookup

into the VLF-RT. Implementation details are given in
Section 5. Results in the form of comparisons of Coherent
Ray Tracing (CRT) and the VLF-RT method are presented
in Section 6, and conclusions in Section 7, including a
discussion of how dynamic scene changes are very simple
in this method. In this paper we concentrate only on
‘classical’ ray tracing as described by Whitted [Whi80].
For compatibility with CRT all our examples are limited to
polygons, and in our main results, triangles. However, the
method is not bound to polygonal objects.

2. Background

Ray tracing was the first type of global illumination
algorithm introduced into computer graphics [Whi80]. It
very simply and elegantly supports shadows, specular
reflection and transmission, and also solves the problem of
visibility. It does not correctly handle light paths that
involve both diffuse and specular reflections, and this will
not be considered in this paper. The overall benefits of ray
tracing have been discussed many times, for example
[Gla89] for a general overview and standard algorithms,
and [WSBW01] for potential benefits as compared to the
standard graphics pipeline. In the original paper Whitted
pointed out that the vast amount of the time to produce a
ray traced image is taken up by ray-object intersection
calculations.

Many techniques have been developed to try to reduce
this time. These can be classified into object-space
subdivision and ray-space subdivision methods. The former
constructs a scene space subdivision, such that each cell in

2 A Visibility Field for Ray Tracing

the subdivision references a relatively small set of objects,
and ray traversal through this subdivision is relatively
simple and fast. For any given ray the vast majority of
objects are therefore never tested for intersection – only
those that are picked up by the ray traversal scheme are
considered as candidates for intersection. Examples of this
method include bounding extent hierarchies [KK86]
[GS87], direct space subdivision methods – such as
uniform space subdivision [FTI86] [Ama84] [CW88], oc-
trees [Gla84], and BSP trees [Kap85] [Jan86] [SS92]. It
was argued in [SS92] that of these the BSP subdivision
scheme results in the fastest ray traversal, with logarithmic
time in the number of polygons.

Ray classification schemes on the other hand exploit
coherence amongst rays. One example of this was the light
buffer [HG86] which efficiently computed intersections for
‘shadow feeler’ rays. However, a general ray classification
approach that applied to the entire ray tracing process was
provided by [AK87]. Rays were represented as points in
5D space and a 32-tree of ray space was lazily built as each
successive ray was encountered (in fact six 32-trees each
representing one of the six faces of a bounding box around
the scene). Each cell of a 32-tree represents a set of similar
rays, and corresponding to each cell is a candidate set of
objects. Every object in the candidate set is such that at
least one of the rays in the cell intersects it. In other words
a cell of the 32-tree corresponds to a beam in 3D space that
intersects a set of objects – the candidate set for the cell.
The size of the tree depends on the maximum permitted
size of the candidate object set. Now given any new ray, it
is filtered down the tree, its candidate set identified, and
intersections carried out with these. The VLF-RT algorithm
presented in this paper may be thought of as a much more
efficient representation of this same idea – since in this
case similar rays are also grouped together and each such
group of rays has a candidate object set. However, the data
structure is much simpler than the 32-tree, and ray-
candidate set retrieval is look-up rather than a tree
traversal.

Within each of these two broad categories there have
been many proposals for further and substantial
improvement in ray-object traversal speed. For example,
building on the idea of a BSP representation Havran
[HKBZ97] [HBZ98] introduced rope trees to further
accelerate ray-BSP tree traversal. In addition caching
schemes have been introduced to reuse elements of a
solution across several views, exploiting a kind of ray-view
coherence [WS99] [WDP99].

Advances in processor power and graphics hardware
have supported a massive speed up in ray tracing so that
today it is possible to attain interactive speed for millions
of polygons on clusters of consumer PCs [WSB*03]. This
research has relied on space subdivision schemes for fast
ray-intersection solutions, in particular BSP trees, together
with precise organisation of the overall algorithm to fit the
needs of the hardware, and parallel implementation over
PC clusters [WKB*02] [BWS03].

The evidence to date suggests that one scheme in
particular; coherent ray tracing (CRT) [WSBW01] is the
fastest implementation of ray tracing, by possibly several
orders of magnitude. This uses a BSP tree space
subdivision. The implementation is organized so that most

memory accesses fall within the first two caches, which
itself resulted in a speed-up by half an order of magnitude
as reported in the original paper. Moreover, packets of 4
rays are SIMD traced in parallel. We have also
implemented the single ray CRT scheme, and it is with the
results of this that we compare our new approach in
Section 6.

3. Virtual Light Field Ray Tracing

3.1 Data Structure

The virtual light field data structure was originally
inspired by the light field [LH96] [GGSC96] and the type
of representation used is similar to that in [CLF98] and
also to a data structure used for visibility culling in [CC-
OL98]. Whereas light fields typically only store radiance at
the first intersection of a ray with an object, Layered Depth
Images [SGHZ98] maintain radiance information about
each of the surfaces that rays intersect rather than just the
first surface, and in that sense the VLF is also similar to
LDI. However, in VLF-RT we never store radiance, only
object (in fact polygon) identifiers. We have previously
used a general VLF data structure for a view independent
global illumination solution [Ano04] where radiance
information was stored. In this paper we specialize the data
structure specifically for ray tracing, and therefore the
solution is view-dependent, and requires an order of
magnitude less memory. We now describe VLF-RT.

A scene can be enclosed, for example, by a regular
cuboid. Suppose this is a cuboid bound by (-1,-1,-1) to
(1,1,1). Consider the lower face (at z = -1) bounded by
(-1,-1,-1) to (1,1,-1). This is subdivided into n×n square
tiles. Each tile is the base of a beam parallel to the z-axis
that extends infinitely (though only the finite part that
intersects with the scene is of interest). The set of such n×n
parallel beams is called the canonical parallel subfield
(PSF). If l points with spherical coordinates ωi = (θi, φi) are
chosen on the unit hemisphere then l PSFs are defined as
rotations of the canonical PSF by rotating the direction into
the corresponding spherical point. The rotation can be
achieved in any manner that is consistent throughout.

Consider any beam in the canonical PSF. This will
intersect a number of surfaces in the scene. The
corresponding tile stores this sequence of surface
identifiers. The process of finding all the intersections of
surfaces with the tiles of the canonical PSF is
straightforward. If we consider the special case that all
surfaces are planar polygons, then this is similar to polygon
rasterisation, and can be implemented very efficiently.
Given any other PSF, corresponding to direction ωi the
scene can be rotated such that ωi is transformed to the
(0,0,1) direction and then the rasterisation carried out in the
canonical space.

It is critical to choose a parameterisation over the
hemisphere so that no searching is required in order to find
the closest PSF direction to any arbitrary direction – since
such ray lookup is a critical operation during ray tracing.
The method for placing points on the hemisphere uses a
recursive subdivision of a regular tetrahedron, which
partitions the hemisphere into triangles. However, fast

A Visibility Field for Ray Tracing 3

constant time lookup is attained for any arbitrary point on
the hemisphere in order to find the closest stored point to
any given point on the hemisphere. A method that achieved
this was described in [Sla02].

The (finite) set of given PSF directions is denoted Ωl
and ω∈Ωl refers to a particular direction. The tiling
coordinate system is referenced by (s, t) s, t =0,1,…,n-1.
Hence a tile is referenced as (ω, s, t). The set of identifiers
associated with a tile is denoted by S(ω, s, t).

Figure 1: Finding the tiles corresponding to a polygon
edge – the correct ones are the shaded tiles, DDA algorithm
would produce only the marked tiles.

3.2 Constructing the Data Structure

The application of this data structure to ray tracing is

very straightforward. First the data structure as discussed
above is constructed. For each PSFωi the scene is
transformed to the canonical space, and each polygon is
orthographically projected to the base of the PSF, and the
tiles that it covers computed. This can be achieved by
traversing each polygon edge through the tiling to compute
the tiles of all the polygon edges, and then filling in the
non-edge tiles that are inside the polygon. It is important
that the edge-tiling traversal algorithm allow for an 8-
connected path, rather than follow a traditional DDA-style
algorithm. The difference is shown in Figure 1. Such
algorithms are discussed with reference to a 3D context in
[CK90] but are easily adapted to 2D. As each tile (s, t) for
a polygon is found the polygon identifier is written into
S(ωi, s, t). By the end of this process for all PSFs the data
structure is complete.

3.3 Ray-Object Intersections

Now suppose that all identifiers for all tiles in all PSFs
have been computed, and that we require the candidate set
of objects for a ray with direction ω and origin (x, y, z).
Find the direction in Ωl that is closest to ω and suppose
that this is ωj. This can be done with a simple array look-up
as shown in [Sla02]. There will be a rotation matrix Mj
pre-calculated and stored with the PSF that rotates ωj into
(0,0,1). Then (x, y, z)Mj =(xq, yq, zq) will be the point in the
canonical PSF space that corresponds to (x, y, z) in scene
space. In particular the projection (xq, yq,-1) will belong to
a particular tile. The set of identifiers in that tile forms a
PVS set for the ray.

In fact the situation is slightly more complicated. Figure
2 shows a 2D analogue of a condition where a ray would
project to more than one tile. In that case (Rayj) if we only
project the origin of the ray to the base of the PSF it would

pick up tile 4. However, clearly the appropriate candidate
set would be the union of those of tiles 4, 3 and 2.
Therefore two points on each ray should be projected – the
origin, and an end-point. In the case of shadow feeler rays
the end-point is given by the light source position. In the
case of primary or secondary rays the point on the ray that
intersects with the boundary of the scene may be used. If
the projections of these two points are not in the same tile
then the appropriate set of candidate objects is the union of
all tiles that the ray traverses. For a large enough number of
rotations (l) both end-points of the ray will project to the
same tile as the angle between a given direction and its
nearest PSF tends towards zero.

Figure 2: The rays overlap more than one tile.

4. Ray-Tile Traversal

Once a PSF and tile have been identified for a ray the
set of polygons referenced must be searched to find the
nearest ray-polygon intersection (if any). This is a critical
operation. For a sufficient large number of polygons it
turns out to be faster to use a BSP tree to traverse the entire
set of polygons for every ray compared to a linear search of
the polygons within the tiles. The reason is due to the
logarithmic performance of the BSP tree and the linear
performance in the average number of polygons per tile of
the VLF-RT approach. On the other hand the VLF-RT
approach does have the advantage that without any ray
traversal, and simply with a lookup it is possible to reduce
the search space to a very small fraction of its total size.

In order to reduce the linear dependence of the timing
on the mean number of polygons per tile a BSP tree could
equally be used to search the vastly reduced tile space
instead of the entire scene space. In practice, since the
direction of greatest variation amongst the polygons within
a tile is by construction in the direction of the PSF to which
the tile belongs, a BSP tree that subdivided the full 3D
space would be wasteful. Instead, only subdivision planes
that are perpendicular to the direction of the PSF are used.
These subdivisions are mid-point subdivisions along the
tile, and also only intersections between a polygon and a
subdivision plane that occur within the tile boundary are
significant.

5. Implementation Issues

The Visibility Field currently uses the mid-point for the

splitting planes in the 1D BSP trees that exist along each
tile. The polygon identifiers are pushed to the leaves using

4 A Visibility Field for Ray Tracing

a linearised layout for the BSP trees. This saves on
memory, as no internal nodes are explicitly stored, however
in some instances time is spent on traversing deeper than
strictly necessary. The polygons are clipped to the tile
boundaries before testing it against the BSP clipping planes
to avoid unnecessary duplication. During BSP traversal the
recursion is rolled out using an explicit stack, and the
intersection kernel is inlined using a macro.

When intersecting a given ray the nearest PSF is used
and the ray is projected onto this PSF using a line
rasterisation algorithm similar to the one used for tile
rasterisation during initialisation (see Figure 1). Also, the
ray segment is limited by the intersections with the scene
bounding sphere (see Figure 2, Rayi), or if the viewpoint is
inside the scene only the far intersection is used (see Figure
2, Rayj). The intersected tile list (eg. tiles 1-5 for Rayi in
Figure 2) is traversed in front to back order and the ray
segment is limited by the ray tile intersection points, such
that early termination can be applied as soon as an
intersection is found in a tile. Note that the directional
discrepancy between the rays and the PSF has been
exaggerated in Figure 2 to illustrate the point more clearly;
in practice only a small number of tiles are intersected
depending on the tile resolution and directional density.

The single ray CRT approach implemented follows
[WSBW01]. It uses the spatial median for BSP splitting
planes, and the optimized triangle layout described in
[Wal04]. As in the VLF-RT case, the BSP traversal’s
recursion is rolled out using an explicit stack, and the
intersection kernel is directly inlined using a macro. All
other framework code such as ray creation and shading etc.
is shared between the implementations.

6. Results

6.1 Parameters and Hardware

We compared performance of VLF-RT with the CRT

implementation described above. For each method we used
the system and parameters that were fastest. In the case of
the BSP tree for CRT, a parameterisation must be chosen –
specifically the maximum depth of the tree, and the ideal
maximum number of polygons allowed per leaf-node
(subject to the maximum depth). In order to determine
these parameters we ran a series of pre-test experiments
with the scenes described in the sections below, to
determine the best combination of depth and leaf size, and
these were used in the comparative performance tests.

Similarly, tile-BSP tree sizes needed to be determined
for VLF-RT and the same strategy was used. Also we could
vary the tile resolutions, already knowing that greater
resolution would result in faster times. However, of interest
is the graph of performance by number of triangles, and
this is discussed in the next section. All timings were
carried out on a dual 2.8Ghz Xeon workstation with 3GB
memory, using only one processor.

6.2 Performance Curves

We are interested in ray-traversal speed as the number

of polygons n increases. For this purpose we have created

an artificial scene with uniformly distributed random
triangles, see Figure 5. Figure 3 shows the frame time,
averaged over about 15 frames for increasing number of
triangles viewed from two viewpoints one outside the scene
and one from inside.

Figure 3: Average time to render a 512×512 image (un-
shaded primary rays only) of scenes with increasing
numbers of uniformly distributed random triangles.

The results show that the pure linear tiling approaches

scale linearly in the average polygons per tile. So, even the
tile 128×128 parameterisation will be slower than CRT for
some n>45.000. However, it is obvious that the VLF-RT
approach using BSP trees scales better than CRT, for this
type of scene. This comes at a cost though; memory usages
for these scenes range between 25MB to 1GB, and pre-
processing times range from 3-20 minutes.

Figure 4: Frame times and normalised intersections for a
walkthrough of the 16K scene.

6.3 Walkthrough

In the previous section we discussed performance for

static viewpoints, now we consider a walkthrough of one of
these scenes to see how performance varies across frames
when the viewpoint changes during a walkthrough
situation. The scene we will use is the 16K scene shown in
Figure 5. Figure 4 shows the walkthrough timings and
intersections comparing CRT with VLF-RT. The results
show that both methods are sensitive to similar changes in
viewed complexity and camera paths though the variations
for CRT are much more pronounced. The VLF-RT method
results in more stable render times across the frames – this

A Visibility Field for Ray Tracing 5

is due to the fact that though depth complexity is high
across successive views of the considered scene, candidate
search time is quite low.

Figure 5: Images of the random scenes. The 9K triangle
scene on the left is viewed from outside the scene while the
16K scene on the right is viewed from its interior.

7. Conclusions

In this paper we have introduced a new ray-traversal
method, and illustrated its application in classical ray
tracing. The method relies on a very fast lookup to obtain a
candidate set of polygons for any ray, and then these
polygons may be traversed by a BSP tree with partitioning
along only one axis. The results suggest (Figure 3) that this
method perform better than CRT, for the scene used.

In this paper we have only discussed walkthrough
applications. However, real-time ray tracing also demands
the possibility of dynamic changes to objects. This is easily
achievable with the VLF-RT method. When an object is
transformed it must first be deleted from the data structure,
then its geometry transformed and inserted back into the
data structure. Once these operations have been carried out
the ray tracing can be used to render the next frame as
usual. In order to delete an object from the VLF-RT data
structure, all PSFs are visited, and the object rasterised into
the tiling coordinate system as usual, except that in this
case the identifiers of the object are removed rather than
added. Then the polygon’s geometry is transformed, and
reinserted into both the tiling and BSP structures. This
represents ongoing work and will be reported subsequently.

Another line of ongoing work is improving the BSP
splitting plane heuristic moving away from the simple
spatial-median approach. Also a SIMD implementation
tracing 2x2 ray bundles is underway, and results from this
will be reported on in the near future.

Acknowledgements

This research is funded by the UK EPSRC, grant
number GR/R13685/01. Mel Slater is supported by an
EPSRC Senior Research Fellowship. Thanks to Ingo Wald
and Carsten Benthin for helpful suggestions on real time
ray tracing.

References

[App68] APPEL., A.: Some techniques for shading

machine renderings of solids. SJCC, 27–45,
1968.

[Ama84] AMANATIDES, J.: Ray Tracing with
Cones, Computer Graphics (SIGGRAPH),
1884, 18, 129-135.

[AK87] ARVO, J. AND KIRK, D.: Fast Ray
Tracing by Ray Classification, Computer
Graphics (SIGGRAPH), 1987, 21(4), 55-
64.

[BWS03] BENTHIN, C., WALD, I., SLUSALLEK,
P.: A Scalable Approach to Interactive
Global Illumination, Eurographics 2003
22(3) P. Brunet and D. Fellner (eds).

[CLF98] CAMAHORT, E., LERIOS, A., FUSSELL,
D.: Uniformly Sampled Light Fields,
Rendering Techniques 1998: 117-130.

[CHH02] CARR, N.A., HALL, J.D., HART, J.C.: The
Ray Engine, Proc. Graphics Hardware
2002, September 2002.

[CC-OL98] CHRYSANTHOU, Y., COHEN-OR, D.,
LISCHINSKI, D.: Fast Approximate
Quantitative Visibility for Complex Scenes,
Computer Graphics International '98,
Hannover, Germany, June 1998, 220-227.

[CW88] CLEARY, J.G., WYVILL, G. Analysis of
an Algorithm for Fast Ray Tracing Using
Uniform Space Subdivision, The Visual
Computer, 1988, 4, 65-83.

[CK90] COHEN, D., KAUFMAN, A: Scan
Conversion Algorithms for Linear and
Quadratic Objects, in A. Kaufman (ed),
Volume Visualization, 1990, pp 280-300,
IEEE Computer Science Press.

[CPC84] COOK, R.L., PORTER, T., CARPENTER,
L.: Distributed ray tracing. Computer
Graphics, 18(3):137–145, 1984.

[FTI86] FUJIMOTO, A., TANAKA, T., IWATA, K.
(1986) ARTS: Accelerated Ray-Tracing
System, IEEE CG&A 6(4), 16-26.

[GS87] GOLDSMITH, J. and SALMON, J. (1987)
Automatic Creation of Object Hierarchy for
Ray Tracing, IEEE CG&A 7(5), 14-20.

[Gla84] GLASSNER, A.S.: Space Subdivision for
Fast Ray Tracing, IEEE CG&A, 1984,
4(10), 15-22.

[Gla89] GLASSNER, A.: An Introduction to
Raytracing. Academic Press, 1989.

6 A Visibility Field for Ray Tracing

[GGSC96] GORTLER, S., GRZESZCZUK, R.,
SZELISKI, R., COHEN, M.: The
Lumigraph, Computer Graphics
(SIGGRAPH), Annual Conference Series,
1996, 43-52.

[HG86] HAINES, E.A., GREENBERG, D.P.: The
Light Buffer: A Shadow Testing
Accelerator, IEEE CG&A, 1986, 6(9), 6-16.

[HKBZ97] HAVRAN, V., KOPAL, T., BITTNER, J.,
ZARA, J.: Fast Robust BSP Traversal
Algorithm for Ray Tracing, Journal of
Graphics Tools, 2(4):15-24,1997.

[HBZ98] HAVRAN, V., BITTNER, J., ZARA, J.:
Ray Tracing with Rope Trees, Proceedings
of 13th Spring Conference on Computer
Graphics, 130-139, Budmerice, 1998.

[Jan86] JANSEN, F.: Data Structures for Ray
Tracing, in L. Kessener, F. Peters and M.
van Lierop (eds) Data Structures for Raster
Graphics, Eurographics Seminar, 1986, NY
Springer-Verlag, 57-73.

[Kap85] KAPLAN, M.R.: Space-tracing, a constant
time ray tracer, Computer Graphics
(SIGGRAPH 85), 1985, State of the Art in
Image Synthesis notes.

[KK86] KAY, T.L., KAJIYA, J.T.: Ray tracing
complex scenes. Computer Graphics
(SIGGRAPH) 20(4):269–278, August 1986.

[LMW90] LAMPARTER, B., MULLER, H.,
WINCKLER, J.: The Ray-z-Buffer—An
Approach for Ray Tracing Arbitrarily Large
Scenes, Technical Report, Universitat
Freiburg Institut fur Informatik, Apr. 1990.

[LH96] LEVOY M, HANRAHAN, P.: Light Field
Rendering, Computer Graphics
(SIGGRAPH), Annual Conference Series,
1996, 31-42.

[PBMH02] PURCELL, T.J., BUCK, I., MARK, W.R.,
HANRAHAN, P.: Ray Tracing on
Programmable Graphics Hardware, ACM
Transactions on Graphics, 21(3), July
2002, 703-712.

[PKG97] PHARR, M., KOLB, C., GERSHBEIN, R.:
Rendering Complex Scenes with Memory-
Coherent Ray Tracing, Computer Graphics,
1997, 31, Annual Conference Series.

[SGHZ98] SHADE, J., GORTLER, S.J., HE, L. AND
SZELISKI, R: Layered Depth Images,
Computer Graphics Proceedings, Annual
Conference Series (SIGGRAPH), 1998.

[SS92] SUNG, K., SHIRLEY, P.: Ray tracing with
the BSP tree, Graphics, Gems III, pages
271—274, 1992.

[Sla02] SLATER, M. (2002) Constant Time
Queries on Uniformly Distributed Points on
a Hemisphere, Journal of Graphics Tools,
7(1):33-44.

[Ano04] ANONYMOUS: A Virtual Light Field
Approach to Global Illumination, Computer
Graphics International, Crete, Greece, June
16-19, 2004, in press.

[WSBW01] WALD, I., SLUSALLEK, P., BENTHIN,
C., WAGNER, M.: Interactive Rendering
with Coherent Ray Tracing, Eurographics
2001 Proceedings, Computer Graphics
Forum, 20(3), A. Chalmers and T.-M.
Rhyne (eds.), 2001, 153—164.

[WKB*02] WALD, I., KOLLIG, T., BENTHIN, C.,
KELLER, A., SLUSALLEK, P.: Interactive
Global Illumination Using Fast Ray
Tracing, Thirteenth Eurographics
Workshop on Rendering, 2002, P. Debevec
and S. Gibson (eds).

[WSB*03] WALD, I., SCHMITTLER, J., BENTHIN,
C., SLUSALLEK, P., PURCELL, T..J.:
Realtime Ray Tracing and its use for
Interactive Global Illumination, STAR,
Eurographics 2003 22(3) P. Brunet and D.
Fellner (eds.).

[WDP99] WALTER, B., DRETTAKIS, G., PARKER,
S.: Interactive rendering using render cache,
Rendering Techniques ’99, Eurographics,
(D. Lischinski and G.W. Larson, eds.), 19–
30, 1999.

[WS99] WARD, G. AND SIMMONS, M.: The
Holodeck Ray Cache: An Interactive
Rendering System for Global Illumination
in Nondiffuse Environments, ACM
Transactions on Graphics, 1999,
18(4):361-98.

[Whi80] WHITTED, T.: An Improved Illumination
Model for Shaded Display,
Communications of the ACM, 1980, 23(6),
343-349.

[Wal04] WALD, I.: Realtime Ray Tracing and
Interactive Global Illumination, PhD
thesis, Computer Graphics Group, Saarland
University, 2004.

	1. Introduction
	2. Background
	3. Virtual Light Field Ray Tracing
	3.1 Data Structure
	3.2 Constructing the Data Structure
	3.3 Ray-Object Intersections

	4. Ray-Tile Traversal
	5. Implementation Issues
	6. Results
	6.1 Parameters and Hardware
	6.2 Performance Curves
	6.3 Walkthrough

	7. Conclusions
	Acknowledgements
	References

