
Equalizer: A Scalable Parallel
Rendering Framework

Stefan Eilemann, Maxim Makhinya, and Renato Pajarola, Member, IEEE Computer Society

Abstract—Continuing improvements in CPU and GPU performances as well as increasing multicore processor and cluster-based
parallelism demand for flexible and scalable parallel rendering solutions that can exploit multipipe hardware accelerated graphics. In
fact, to achieve interactive visualization, scalable rendering systems are essential to cope with the rapid growth of data sets. However,
parallel rendering systems are nontrivial to develop and often only application specific implementations have been proposed. The task
of developing a scalable parallel rendering framework is even more difficult if it should be generic to support various types of data and
visualization applications and at the same time work efficiently on a cluster with distributed graphics cards. In this paper, we introduce a
novel system called Equalizer, a toolkit for scalable parallel rendering based on OpenGL, which provides an application programming
interface (API) to develop scalable graphics applications for a wide range of systems ranging from large distributed visualization
clusters and multiprocessor multipipe graphics systems to single-processor single-pipe desktop machines. We describe the system
architecture and the basic API, discuss its advantages over previous approaches, and present sample configurations and usage
scenarios as well as scalability results.

Index Terms—Parallel rendering, scalable visualization, cluster graphics, immersive environments, display walls.

Ç

1 INTRODUCTION

THE continuing improvements in hardware integration
lead to ever faster CPUs and GPUs, as well as higher

resolution sensor and display devices. Moreover, increased
hardware parallelism is applied in form of multicore CPU
workstations, massive parallel supercomputers, or cluster
systems. Hand in hand goes the rapid growth in complexity
of data sets from numerical simulations, high-resolution 3D
scanning systems, or biomedical imaging, which causes
interactive exploration and visualization of such large data
sets to become a serious challenge. It is thus crucial for a
visualization solution to take advantage of hardware-
accelerated scalable parallel rendering. In this systems
paper, we describe a new scalable parallel rendering
framework called Equalizer that is aimed primarily at
cluster-parallel rendering but works as well in a shared-
memory system. Cluster systems are the main focus
because workstation graphics hardware is developing faster
than high-end graphics (super-) computers can absorb new
developments, and also because clusters offer a better cost-
performance balance.

Previous parallel rendering approaches typically failed
in one of the following system requirements:

1. generic application support, instead of special
domain solution,

2. scalable abstraction of the graphics layer,
3. exploit existing code infrastructure, such as proprie-

tary scene graphs, molecular data structures, level-
of-detail (LOD), and geometry databases.

To date, generic and scalable parallel rendering frame-
works that can be adopted to a wide range of scientific
visualization domains are not yet readily available. Further-
more, flexible configurability to arbitrary cluster and dis-
play wall configurations has also not been addressed in the
past but is of immense practical importance to scientists
depending high-performance interactive visualization as a
scientific tool. In this paper, we present Equalizer, which is
a novel flexible framework for parallel rendering that
supports scalable performance, configuration flexibility, is
minimally invasive with respect to adapting existing visua-
lization applications, and is applicable to virtually any
scientific visualization application domain.

The main contributions that Equalizer introduces in a
single parallel rendering system and which are presented in
this paper are given as follows:

1. novel concept of compound trees for flexible config-
uration of graphics system resources,

2. easy specification of parallel task decomposition and
image compositing choice through compound tree
layouts,

3. automatic decomposition and distributed execution
of rendering tasks according to compound tree,

4. support for parallel surface as well as transparent
(volume) rendering through z-visibility as well as
!-blending compositing,

5. fully decentralized architecture providing network
swap barrier (synchronization) and distributed
objects functionality,

6. support for low-latency distributed frame synchro-
nization and image compositing,

7. minimally invasive programming model.

436 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

. S. Eilemann is with the Eyescale Software, and Visualization and
MultiMedia Laboratory (VMML), University of Zurich, Faubourg de
Hopital 12, 2000 Neuchatel, Switzerland. E-mail: eilemann@gmail.com.

. M. Makhinya and R. Pajarola are with the Visualization and MultiMedia
Laboratory (VMML), Department of Informatics, University of Zurich,
Binzmühlestrasse 14, 8050 Zurich, Switzerland.
E-mail: makhinya@ifi.uzh.ch, pajarola@acm.org.

Manuscript received 5 Feb. 2008; revised 11 July 2008; accepted 22 Aug.
2008; published online 4 Sept. 2008.
Recommended for acceptance by K.-L. Ma.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2008-02-0021.
Digital Object Identifier no. 10.1109/TVCG.2008.104.

1077-2626/09/$25.00 ! 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

Equalizer is open source, available under the LGPL
license from http://www.equalizergraphics.com/, which
allows it to be used both for open source and commercial
applications. It is source-code portable and has been tested
on Linux, Microsoft Windows, and Mac OS X in 32 and 64-
bit modes using both little endian and big endian
processors.

2 RELATED WORK

The early fundamental concepts of parallel rendering have
been laid down in [39] and [13]. A number of domain-
specific parallel rendering algorithms and special-purpose
hardware solutions have been proposed in the past;
however, only few generic parallel rendering frameworks
have been developed.

2.1 Domain-Specific Solutions

Cluster-based parallel rendering has been commercialized
for offline rendering (i.e., distributed ray-tracing) for
computer-generated animated movies or special effects,
since the ray-tracing technique is inherently amenable to
parallelization for offline processing. Other special-purpose
solutions exist for parallel rendering in specific application
domains such as volume rendering [34], [56], [23], [50], [18],
[44] or geovisualization [55], [2], [33], [29]. However, such
specific solutions are typically not applicable as a generic
parallel rendering paradigm and do not translate to
arbitrary scientific visualization and distributed graphics
problems.

Recently in [45], parallel rendering of hierarchical LOD
data has been addressed and a solution specific to sort-first
tile-based parallel rendering has been presented. While the
presented approach is not a generic parallel rendering
system, basic concepts presented in [45] such as load
management and adaptive LOD data traversal can be
carried over to other sort-first parallel rendering solutions.

2.2 Special-Purpose Architectures

Traditionally, high-performance real-time rendering sys-
tems have relied on an integrated proprietary system
architecture, such as the SGI graphics supercomputers.
These special-purpose solutions have become a niche
product as their graphics performance does not keep up
with off-the-shelf workstation graphics hardware and
scalability of clusters. However, cluster systems need more
sophisticated parallel graphics rendering libraries, such as
the one proposed in this paper.

Due to its conceptual simplicity, a number of special-
purpose image compositing hardware solutions for sort-last
parallel rendering have been developed. The proposed
hardware architectures include Sepia [38], [32], Sepia 2 [35],
[36], Lightning 2 [52], Metabuffer [9], [59], MPC Compositor
[43], and PixelFlow [40], [17], of which only a few have
reached the commercial product stage (i.e., Sepia 2 and
MPC Compositor). However, the inherent inflexibility and
setup overhead have limited their distribution and applica-
tion support. Moreover, with the recent advances in the
speed of CPU-GPU interfaces, such as PCI Express and
other modern interconnects, combinations of software and
GPU-based solutions offer more flexibility at comparable
performance.

2.3 Generic Approaches

A number of algorithms and systems for parallel rendering
have been developed in the past. On the one hand, some
general concepts applicable to cluster parallel rendering
have been presented in [41], [42] (sort-first architecture), [49],
[48] (load balancing), [47] (data replication), or [11], [10]
(scalability). On the other hand, specific algorithms have
been developed for cluster-based rendering and composit-
ing such as [3], [12] and [57], [53]. However, these
approaches do not constitute APIs and libraries that can
readily be integrated into existing visualization applications,
although the issue of the design of a parallel graphics
interface has been addressed in [28]. Only few generic APIs
and (cluster-) parallel rendering systems exist, which include
VR Juggler [8] (and its derivatives), Chromium [27] (an
evolution of [26], [24], and [25]), andOpenGLMultipipe SDK
(MPK) [30], [6], [1].

VR Juggler [8], [31] is a graphics framework for virtual
reality applications, which shields the application developer
from the underlying hardware architecture, devices, and
operating system. Its main aim is to make virtual reality
configurations easy to set up and use without the need to
know details about the devices and hardware configuration
but not specifically to provide scalable parallel rendering.
Extensions of VR Juggler, such as for example ClusterJuggler
[7] and NetJuggler [4], are typically based on the replication
of application and data on each cluster node and basically
take care of synchronization issues but fail to provide a
flexible and powerful configuration mechanism that effi-
ciently supports scalable rendering as also noted in [51]. The
presented system is different from VR Juggler in that it fully
supports scalable parallel rendering such as sort-first and
sort-last task decomposition and image compositing, and it

EILEMANN ET AL.: EQUALIZER: A SCALABLE PARALLEL RENDERING FRAMEWORK 437

Fig. 1. Various Equalizer use cases. (a) Immersive CAVE. (b) Display wall. (c) Scalable volume rendering.

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

provides more flexible node configurations, which, for
example, allow specifying arbitrary task decomposition
and image compositing combinations as simple compound
layouts. Furthermore, it is fully distributed, which includes
support for network swap barriers (synchronization), dis-
tributed objects, as well as image compression and transmis-
sion. In contrast to VR Juggler, Equalizer supports multiple
rendering threads per process, which is important for multi-
GPU systems.

While Chromium [27] provides a powerful and trans-
parent abstraction of the OpenGL API, which allows a
flexible configuration of display resources, its main limita-
tion with respect to scalable rendering is that it is focused
on streaming OpenGL commands through a network of
nodes, often initiated from a single source. This has also
been observed in [51]. The problem comes in when the
OpenGL stream is large in size, due to not only containing
OpenGL calls but also the rendered data such as geometry
and image data. Only if the geometry and textures are
mostly static and can be kept in GPU memory on the
graphics card, no significant bottleneck can be expected as
then the OpenGL stream is composed of a relatively small
number of rendering instructions. However, as it is typical
in real-world visualization applications, display and object
settings are interactively manipulated, data and parameters
may change dynamically, and large data sets do not fit
statically in GPU memory but are often dynamically loaded
from out-of-core and/or multiresolution data structures.
This can lead to frequent updates not only of commands
and parameters that have to be distributed but also of the
rendered data itself (geometry and texture), thus causing
the OpenGL stream to expand dramatically. Furthermore,
this stream of function calls and data must be packaged and
broadcast in real-time over the network to multiple nodes
for each rendered frame. This makes CPU performance and
network bandwidth a more likely limiting factor. While
preserving a minimally invasive API, the novel proposed
system is better aimed at scalability as the actual data access
is decentralized in the distributed rendering clients.

The performance experiments in [27] indicate that
Chromium is working quite well when the rendering
problem is fill-rate limited. This is due to the fact that the
OpenGL commands and a noncritical amount of rendering
data can be distributed to multiple nodes without sig-
nificant problems and since the critical fill-rate work is then
performed locally on the graphics hardware.

Chromium also provides some facilities for parallel
application development, namely a sort-last, binary-swap
compositing SPU, and an OpenGL extension providing
synchronization primitives, such as a barrier and sema-
phore. It leaves other problems, such as configuration, task
decomposition, as well as process and thread management
unaddressed, thus making the development of parallel
OpenGL applications harder than with Equalizer. Parallel
Chromium applications tend to be written for one specific
parallel rendering use case, such as for example the sort-
first distributed memory volume renderer [5] or the sort-last
parallel volume renderer Raptor [22]. We are not aware of a
generic Chromium-based application using many-to-one
sort-first or stereo decompositions. This is another differ-
ence to Equalizer, which provides a much more flexible task
decomposition configuration. Applications written once for

Equalizer can easily be run in any different task decom-
position mode and for any physical display configuration
without any changes to the application itself. While
Equalizer provides an abstraction of all entities of the
rendering pipeline (see Sections 4 and 5), Chromium’s
infrastructure is primarily the compositing stage.

MPK [6] implements an effective parallel rendering API
for a shared memory multi-CPU/GPU system. It is similar
to IRIS Performer [46] in that it handles multipipe rendering
by a lean abstraction layer via a conceptual callback
mechanism, and that it runs different application tasks in
parallel. However, MPK is not designed nor meant for
rendering nodes separated by a network. MPK focuses on
providing a parallel rendering framework for a single
application, parts of which are run in parallel on multiple
rendering channels, such as the culling, rendering, and final
image compositing processes. Compared to MPK, Equalizer
supports a fully distributed parallel rendering paradigm
and features a more flexible task decomposition approach.

3 BASIC CONCEPTS

Besides the API, one of the major differences of Equalizer to
Chromium is that it is fully distributed and runs the
application code in parallel. For example, one can set up a
multiscreen display wall with Chromium, streaming the
OpenGL calls to a number of render nodes assigned to
screen tiles of the display wall, as illustrated in Fig. 2c. One
instance of the application is running. In contrast, Equalizer
runs parts of the application in parallel on multiple
rendering channels as illustrated in Fig. 2a.

Equalizer takes care of distributed execution, synchroni-
zation, and final image compositing, while the application
programmer identifies and encapsulates critical parts of the
application, such as culling and rendering. This approach is
considered to be minimally invasive since the existing and
proprietary rendering code can basically be retained. All
rendering is executed directly to an OpenGL context, and at
no point are OpenGL commands sent over the network.

This minimally invasive approach allows the application
to retain its OpenGL rendering code but structures the
implementation to allow for optimal performance. The

438 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

Fig. 2. A traditional OpenGL application (b) and its equivalents when

using Equalizer (a) or Chromium (c).

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

network bandwidth is freed from unnecessary transmission
of excessive graphics commands and data since only the
basic rendering parameters are exchanged between nodes.
Only for the unavoidable final image compositing step in
scalable rendering, frame buffer data between the nodes
must be exchanged. The application can implement efficient
dynamic database updates based on distributed objects or
message passing as these distributed system primitives are
provided by Equalizer.

A major strength of Equalizer is its flexible and scalable
configuration of the parallel rendering tasks, which takes
the notion of a compound tree introduced in MPK [6] to a
distributed cluster environment as discussed in Section 4.5.
Hence, different parallel rendering task decomposition and
image compositing configurations can easily be specified,
see also Fig. 11. For example, efficient direct-send sort-last
image compositing has been demonstrated in [15].

The Equalizer framework does not impose any con-
straints on how the application handles and accesses the
data to be visualized. As such, Equalizer does not provide a
solution to the parallel data access and distribution
problem, which has to be addressed by the application
itself, for example via mechanisms to limit data replication
(e.g., [47]), or out-of-core access to large data sets and
multiresolution representations (e.g., [12]). As demon-
strated in [12], out-of-core data structures are well suited
to provide efficient parallel access to the 3D data from all
rendering nodes, and a wealth of out-of-core approaches
have been provided for volume, polygonal, or point data
sets (e.g., [54], [21], [58], [20], or [19]). Equalizer does not
interfere with or inhibit any solution to this problem, as it is
an orthogonal issue.

Equalizer does address some fundamental problems to
help application developers distribute their data effectively
in the context of parallel rendering. The Equalizer network-
ing layer supports message passing and the creation of
distributed objects. By subclassing a distributed object class,
static and versioned objects can be created. Objects are
addressed on the cluster using a unique identifier, which
allows the remote mapping of the object. Versioned objects
are typically used for frame-specific data, where a new
version for each new frame is created. This version
information is passed correctly by Equalizer to the applica-
tion rendering code. This mechanism allows simple dis-
tribution and multibuffering of data.

Our eqPly and eVolve sample applications use static
distributed objects for submitting the initialization
parameters, e.g., the model filename, and a versioned
distributed object for the camera position and other
frame-specific data.

4 SYSTEM ARCHITECTURE

Equalizer is a parallel rendering framework using a similar
task description concept as MPK [6]. In the following, we
will focus on the basic system aspects of Equalizer, starting
with the interface and application structure followed by the
client-server model employed. One of the main Equalizer
contributions, the compound tree concept, which describes
the hardware resource setup and parallel task decomposi-
tion, is then introduced in detail.

4.1 Interface
Equalizer provides a framework to facilitate the develop-
ment of distributed as well as nondistributed parallel
rendering applications. The programming interface is based
on a set of C++ classes, modeled closely to the resource
hierarchy of a graphics rendering system. The application
subclasses these objects and overrides C++ task methods,
similar to C callbacks. These task methods will be called in
parallel by the framework, depending on the current
configuration. A wrapper interface could be written to
provide C bindings. This parallel rendering interface is
significantly different fromChromium [27] andmore similar
to VR Juggler [8] or MPK [6]. The class framework and in
particular its use is described in more detail in Section 5.

An Equalizer application does not have to select a
particular rendering configuration itself; it is configured by
a system-wide configuration server. The application is
written only against a client library, communicating with
the server, which does not have to be touched by the
developer. The parallel rendering configuration is initia-
lized by the server based on guidelines from the application
or a user-supplied configuration file. The server also
launches and controls the distributed rendering clients
provided by the application. Thus, the application itself can
run unmodified on any configuration, which has been
initialized by the server, and if none is given, the
application will run as a stand-alone process on the node
it has been started.

While on a higher level Equalizer uses a client-server
approach, it is built on a peer-to-peer network layer. This
network layer provides a message-based communication
interface, as needed between any two nodes in the cluster,
e.g., to transmit image data for result recomposition during
scalable rendering. Currently, Equalizer provides an im-
plementation for TCP/IP sockets and InfiniBand. The usage
of MPI as a low-level communication library was not
feasible in the context of Equalizer. Dynamic process
management is only available in MPI 2, which still is not
widespread enough. Furthermore, the communication
patterns for which MPI was designed are significantly
different from Equalizer’s use case. However, this does not
prohibit coupling MPI-based programs with Equalizer.

4.2 Application
The application in Equalizer solely drives the rendering,
that is, it carries out the main rendering loop only but does
not actually execute any rendering. Although depending on
the configuration, the application process may also host one
or more render client threads, as described below. When a
configuration has no additional nodes besides the applica-
tion node, all application code is executed in the same
process, and no network data distribution has to be
implemented.

During initialization of the server, the application
provides a rendering client. The rendering client is often,
especially for simple applications, the same executable as
the application. However, in more sophisticated implemen-
tations, the rendering client may be a thin renderer, which
only contains the application-specific rendering code. The
server deploys this rendering client on all nodes specified in
the configuration. The main rendering loop is quite simple:
The application requests a new frame to be rendered,
synchronizes on the completion of a frame, and processes

EILEMANN ET AL.: EQUALIZER: A SCALABLE PARALLEL RENDERING FRAMEWORK 439

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

events received from the render clients. Fig. 3 shows a
simplified execution model of an Equalizer application. The
rendering client and server are further described in the
following sections.

4.3 Rendering Client
Each Equalizer application provides a rendering client,
which can be the same executable as the application code
itself. In contrast to the application, however, the rendering
client does not need to have a main loop and is completely
controlled by the Equalizer framework. If a configuration
also uses the application node for rendering, then the
rendering happens in different threads within the applica-
tion process. A render client consists of the following
threads: the node main thread, one network receive thread,
and one thread for each graphics card (GPU) to execute
rendering tasks.

The client library implements the main loop, which
receives network events and processes them. Most impor-
tantly, the network data contains the rendering task
parameters computed by the server. Based on this data,
the client library sets up the rendering context and calls the
application-provided task methods. Setting up the render-
ing context consists of using the correct rendering thread,
making the drawable and graphics context current, as well
as providing the task methods with the 2D viewport,
frustum, view matrix, and the data range for sort-last
rendering. The task methods clear the frame buffer as
necessary, execute the OpenGL rendering commands as
well as readback, and assemble partial frame results for
scalable rendering. All tasks have default implementations

so that only the application specific methods have to be
implemented, which typically includes the frameDraw()

method. For example, the default callbacks for frame
recomposition during scalable rendering implement tile-
based assembly for sort-first and stereo decompositions,
and z-buffer or compositing for sort-last rendering of
polygonal data. A detailed description of the API and all
methods can be found in the programming guide [14].

Event handling is implemented by listening asynchro-
nously for events from all windows. Events are transformed
from window-system specific events into generic window
events and dispatched to the correct window. The window
either processes the event locally or converts it into a config-
event to be sent to the application node. The application
node processes the config-events as part of its main
rendering loop. A more detailed description of event
handling can also be found in [14].

In addition to executing the application code in the right
context, the client library implements image compression
and transmission, network swap barrier support, and
distributed object support.

4.4 Equalizer Server

The Equalizer server receives requests from the application
on the visualization system. It serves these requests using
the application’s specific configuration, launching render-
ing clients on the nodes, determining the rendering tasks for
a frame, and synchronizing the completion of frames.

The server maintains the configuration for the applica-
tion. Maintaining the configuration on the server facilitates
an extension to cross-application load balancing, resource
reservation, and further system-wide resource manage-
ment. Each configuration consists of two parts. The first
part is a hierarchical resource description derived from the
physical and logical environment of the application. The
second part consists of the compound tree, which declares
how the resources are used for rendering. The compounds
are the heart of the scalable rendering engine and are
described in detail in the following section.

The resources description given in Table 1 includes the
intuitive entities that make up a typical graphics system, of
which several are used in parallel in a rendering cluster. At
the top of the hierarchy are nodes, which represent a
process, possibly one per CPU-core on each computer
within a cluster. A node contains one or more pipes, which
are threads representing the GPUs in a machine. In turn, a
pipe can have multiple windows, which correspond to
OpenGL onscreen or offscreen drawables. By default, all
windows of a pipe share display lists and other OpenGL
objects. Eventually, a window has one or more channels,
which encapsulate a particular OpenGL viewport in a
window. Note that all tasks for a pipe and its children are
executed in a separate thread.

440 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

Fig. 3. Simplified execution flow of an Equalizer application, omitting

event handling and application-node rendering threads.

TABLE 1
Correspondence between Physical and Logical System Entities

and Equalizer Resources

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

A simple example of resource description and config-
uration is given in Fig. 4, which shows a one-node, single-
pipe, two-window, two-channel resource configuration
driving a TAN Holobench with two projection surfaces.
The corresponding resources configuration file that is read
by the server is also given below. The leaf-node channels
declared in the resource section on the left are used by the
compounds to describe the rendering processes. Another
resource configuration is illustrated in Fig. 12. The
corresponding compounds configuration file is further
detailed in the following section.

4.5 Compound Trees

To describe the parallel rendering task decomposition,
Equalizer uses a compound tree structure similar to MPK [6].
However, the compound definition has been improved in a
few key points to provide a more flexible and powerful
configuration.

First, it does not rely on a hard-coded mode, which
determines the task decomposition and image compositing
stages. Instead, it describes the rendering and compositing
tasks via the compound tree’s structure.

Second, the rendering is asynchronous and not frame-
synchronized as in MPK, where all rendering threads are
synchronized at the end of each frame. Asynchronous
rendering avoids idle times for rendering threads that finish
early. Equalizer introduces a config-latency lconfig, which
defines how many frames the slowest rendering thread is
allowed to fall behind. Hence, at the end of frame i, the
completion of frame i! lconfig will be synchronized. Note
that setting lconfig ¼ 0 enforces a frame synchronicity if
desired. Other synchronization points in Equalizer only
include the completion of image transfers for compositing

and optional swap barriers explicitly defined in the com-
pound tree.

Compounds are a data structure to describe the parallel
execution of rendering tasks in a form of a tree. Each
compound corresponds to some tasks (clear, draw, assem-
ble, readback) and references a channel from the resource
description, which executes the tasks in the given order. A
compound may provide output frames from the readback
task to others and can request input frames from others for
its own assembly task, and output frames are linked to
input frames by name.

Compound trees are a logical description of the rendering
pipeline and only reference the actual physical resources
through their channels. This allows mapping a compound
tree to different physical configurations by simply replacing
the channel IDs. For example, one can test the functionality
of a sort-last configuration by using channels of different
windows on one local workstation.

A simple leaf compound description for rendering a part
of the data set, given by the data range, into a particular
region of the viewport is given in Fig. 5. The data range is a
logical mapping of the data set onto the unit interval and is
left to the application to interpret appropriately. Hence, the
range [0 1

2] indicates that the first half of the data set should
be rendered, for example, the first n

2 triangles of a polygonal
mesh with n faces. The viewport is indicated by the
parameters [x y width height] as fraction of the parent’s
viewport, and in the example, the data are thus rendered
into the left half of the viewport. The resulting frame buffer
data—including per-pixel color and depth—of the render-
ing executed on this channel is read back and made
available to other compounds by the name left_half.

A nonleaf compound performing some image assembly
and compositing task is indicated in Fig. 6. Frame buffer
data are read from two other compounds, which suppo-
sedly execute rendering for part_a and part_b of the data
set in parallel. The compound itself executes, for example,
z-depth visibility compositing of the two input images on
its channel and returns the resulting color frame buffer.

EILEMANN ET AL.: EQUALIZER: A SCALABLE PARALLEL RENDERING FRAMEWORK 441

Fig. 4. A sample Equalizer resource configuration for a TAN Holobench

with the associated render resources.

Fig. 5. Compound executing rendering of a part of the data set into a

given region of the viewport.

Fig. 6. Compound performing image compositing.

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

An example showing how to set up a specific physical
display configuration is given in Fig. 7, which corresponds
to the TAN Holobench configuration shown in Fig. 4 above.
Using the wall parameter, the physical configuration of a
display can be specified, here given in meters where the
coordinate system’s x, y-plane is the horizontal bottom
screen, z extending vertically up, and the origin is the front-
leftmost corner of the two-screen display. Together with an
observer position and orientation, the wall parameters fully
define the view frustum for each output screen.

Leaf compounds execute all tasks by default, but the
focus is often on the draw task with a default assemble and
standard readback task used to pass the resulting image
data on to other compounds for further compositing.
Hence, while leaf compounds execute the rendering in
parallel, nonleaf compounds often correspond, but are not
restricted, to the (parallel) image compositing and assembly
part. The readback or assemble tasks are only active if
output or input frames have been specified, respectively.
Otherwise, the rendered image frame is left in place for
further processing in a parent compound sharing the same
channel.

Note that nonleaf nodes in the compound tree structure
traverse their children first before performing their default
assemble and readback tasks. Furthermore, compounds
only define the logical task decomposition structure, while
its execution is actually performed on the referenced
channels. Therefore, since compounds can share channels,
as often done between a parent and one of its child
compounds, rendered image data can sometimes be left in
place, avoiding readback and transfer to another node.

All attributes as well as the channel are inherited from
the parent compound if not specified otherwise. The
viewport, data range, and eye attributes are used to describe
the decomposition of the parent’s 2D viewport, database
range, and eye passes, respectively. To synchronize the
buffer swap among a group of channels, swap barriers can be
used, which is typically used for multiscreen setups such as
CAVEs or display walls.

In the following, we describe several use-case examples
of the compound tree structure introduced above that
demonstrate how different task decomposition modes can

be specified. More complex configurations can be achieved
by combining these strategies. Note that the physical
resources description, the first part of the configuration
(see also previous section), is omitted in these examples.

4.5.1 Sort-First Configuration

A sort-first compound configuration is shown in Figs. 8 and
11a. The root compound defines the viewport size of the
channel and the frustum from the wall description. While
the first child compound inherits the channel, the other
compounds are executed on different channels. However,
each defines a partial viewport, affecting its local view
frustum corresponding to the sort-first screen subdivision.
All leaf compounds execute the basic clear and draw tasks
and, except for the first child, have to readback the result
into the specified output frames. The root compound
executes the assemble task (sort-first tiled image composit-
ing) once the output frames are available.

4.5.2 Sort-Last Configuration

Figs. 9 and 11b show a sort-last configuration with parallel
image compositing. The leaf compounds execute the
rendering and read back two tiles each to be z-composited
by the other channels. The intermediate compounds execute
the z-compositing in parallel using frame buffer data from
the other channels via the indicated output-input frame
mapping. Once a channel has completed this assemble task
(sort-last z-buffer image compositing) on its tile, the color
frame buffer content is handed over to the root compound,
which puts together the tiles to form the final image. Note
that a compound does not need to read back a tile that is
processed in a parent on the same channel since it is already
in place (e.g., the compounds executed on the “dest”

442 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

Fig. 7. Wall compound.

Fig. 8. Compound tree for a three-to-one sort-first decomposition.

Fig. 9. Compound tree for a three-to-one direct-send sort-last

configuration.

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

channel in Fig. 9). The arrows illustrate the data flow for the
tile being z-composited by the channel named “buffer1,”
according to a direct-send sort-last image compositing [15].

4.5.3 Stereo Sort-First Configuration

Figs. 10 and 11c show a mixture of decomposition
algorithms in a multilevel compound tree. Stereo rendering
is mixed with sort-first decomposition. The first level is a
stereo decomposition for the left and right eyes, which is in
turn parallelized for each eye on two channels using a sort-
first decomposition. The channels used for rendering are
again also used for compositing, which again allows some
image transfer optimizations. Fig. 11c uses anaglyphic
stereo for better readability, but the compound works the
same for quad-buffered stereo.

4.5.4 Multiscreen Configurations

Multiscreen display systems can easily be configured with
Equalizer by assigning one destination channel to each
screen and additionally specifying the rendering decom-
position to generate the different screen images. For
example, it is straightforward to set up any sized display
wall configuration that uses its own nodes that drive the
tiled screens or projectors, or for that matter any additional
nodes not directly driving a display, for parallel rendering
and compositing. Nodes can freely be combined to share
the task of rendering and in a different way to perform the
image compositing task. Thus, the use of physical resources
can be tailored to the particular system and use.

Fig. 12 shows a two-node, three-pipe, three-window,
four-channel configuration driving a four-sided CAVE. In
this example, we again show the mapping to physical
resources where two channels are mapped to one single
pipe and one node contains two pipes. The channels
declared in the resource section are used by the compounds
for rendering. The leaf compounds, which execute the
rendering, use a swap barrier to synchronize their output.

EILEMANN ET AL.: EQUALIZER: A SCALABLE PARALLEL RENDERING FRAMEWORK 443

Fig. 10. Compound tree for a four-to-one stereo/sort-first configuration.

Fig. 11. (a) Sort-first scalable rendering—compound tree in Fig. 8. (b) Sort-last scalable rendering—compound tree in Fig. 9. (c) Stereo separation

and sort-first decomposition—compound tree in Fig. 10.

Fig. 12. A sample Equalizer CAVE configuration with the associated

real-world counterparts.

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

The root compound specifies that the left and right eyes are
used for stereo rendering.

Equalizer’s compound description is extremely flexible
and powerful and can be used to define parallel image
compositing algorithms, such as direct-send or binary-
swap, as well as multilevel decompositions using different
decomposition modes to balance the bottlenecks of the
individual algorithms. A detailed specification can be found
in [14]. Numerous sample configurations are included with
the Equalizer distribution.

5 APPLICATION DEVELOPMENT

A typical, e.g., OpenGL-based, interactive visualization
application’s main loop conceptually looks something like
Fig. 13a. Equalizer extends this model by separating the
rendering operations from the application’s main loop to be
executed inparallel, as shown inFig. 13b.AnEqualizer-based
application subclasses from the provided C++ classes, which
represent typical rendering entities, such as a node, pipe
(GPU), window, and channel (view). The base Equalizer
classes implement the typical use case, so that the program-
mer can focus on implementing the application-dependent
code (more details are given in the programming guide [14]).

The hierarchical node-pipe-window-channel resource de-
scription (see also Fig. 14) results in more flexible applica-
tions than the single “application” class used by VR Juggler.
For example, one node process in Equalizer might have two
pipes, thus using two rendering threads. In VR Juggler, two
processes need to be instantiated on such a dual-GPU
configuration. Furthermore, it allows the programmer to
store the data with the logical entity, for example, context-
specific data in the window class and thread-specific data in
the pipe class.

The most important change for a rendering application to
take advantage of Equalizer is to provide an implementa-
tion of the Channel::frameDraw()method, the principal
rendering routine executed in parallel by Equalizer. Equal-
izer provides a rendering context to this routine, which

consists of the drawable and its OpenGL context, view
frustum parameters, viewport, stereo buffer, and a data
range for sort-last rendering. Based on these parameters, the
application should implement efficient view frustum cul-
ling and rendering of the indicated part of the database.
Therefore, the cull() and draw() functions indicated in
Fig. 13 are called from the frameDraw() method.

Rendering parameters, such as the camera data, are
implemented as a distributed object. The application
subclasses from the base eqNet::Object class and
provides the pointer and size of data to the base class for
network distribution. During initialization, the object is
registered within the rendering session. At the beginning of
each frame, a new version of the object is committed and the
new version is passed to the rendering callbacks by
Equalizer, which synchronize their instance of the object
to the given version.

Fig. 14 shows an UML diagram of the principal Equalizer
classes and how they are subclassed in the polygonal
rendering example (eqPly). Most of the methods over-
written by eqPly just add minor functionality and call the
superclass method to do most of the work. The exception is
the aforementioned method Channel::frameDraw,
which contains the rendering code.

The implementation of multiview rendering, sort-first,
and stereo task decompositions is straightforward: Based on
the resources configuration, Equalizer computes the view
frusta, draw buffer, and rendering tasks for the application
rendering clients. Channel::frameDraw() is executed in
parallel by the framework and should implement efficient
view frustum culling for performance. The resulting image
tiles are gathered and assembled automatically by Equalizer,
based on the compound tree configuration. For sort-first
decomposition, each contributing compound child specifies
a fractional viewport of the destination compound’s
channel, e.g., ½0; 0; 13 ; 1$, ½13 ; 0;

1
3 ; 1$, and ½23 ; 0;

1
3 ; 1$ for a 2D

compound three-way split in the x dimension.1 For a stereo
compound, one compound child only renders the left eye,
whereas the other child renders the right eye.

For sort-last rendering, the application only has to
support the ability to render a subset of the application-
specific database, given by a 1D range interval. A range of
[0, 1] indicates the entire database, while a range of ½a; b$
with 0 % a < b % 1 indicates a proportional subset of the
database. Therefore, a simple sort-last parallel task dis-
tribution for three nodes is achieved by specifying the three
data ranges ½0; 13$, ½

1
3 ;

2
3$, and ½23 ; 1$ in the compound tree of the

resource configuration, each indicating one third of the full
range. The mapping of the range [0, 1] to the actual data is
left to the application.

Advanced applications can provide implementations
for any stage of the rendering, e.g., volume rendering
applications (such as our eVolve demo) can override
Channel::frameAssemble() in order to implement a
back-to-front sorted !-blended assembly of the provided
frame image data.

Sort-first and sort-last rendering can be load-balanced by
updating the viewport split or data range subdivision,
respectively. These values are currently fixed in the

444 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

Fig. 13. (a) A typical execution flow for a single-pipe and (b) a parallel

rendering application.

1. Viewport decomposition syntax is ½x; y; width; height$.

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

compound tree but can be updated by the application based
on its internal rendering statistics if desired. Equalizer is
scheduled to provide simple automatic load balancing
strategies based on its own internal statistics in the near
future.

6 EXPERIMENTAL RESULTS

We conducted our experiments on two different clusters,
which exhibit different GPU performance and network
bandwidth. The first, Hactar, is a six-node rendering cluster
with the following technical specifications: dual 2.2-GHz
AMD Opteron CPUs, 4 Gbytes of RAM, Geforce 7800 GTX
PCIe graphics, and a high-resolution 2,560 & 1,600 pixel
LCD panel per node; Myrinet network and switch. The
second configuration, Horus, consisted of 16 nodes with the
following technical details: dual 2.4-GHz AMD Opteron
CPUs, 4 Gbytes of RAM (one node has two dual-Core 2-GHz
AMD Opterons and 32-Gbyte RAM), Quadro FX4500 PCIe
graphics; 1-Gbps ethernet network and switch.

For most tests, we used a full-size destination channel
with a resolution of 1,280 & 800 on Hactar and 1,280 & 1,024
on Horus, since these are typical window sizes for scalable
parallel rendering. Pixel read, write, and network transmis-
sion performances are given in Table 2. The slower network
image transmission on Horus is due to missing SDP
support, thus showing the influence of network bandwidth.

Our prototype test applications included two 3D view-
ers: eqPly for rendering simple polygonal data, organized
spatially in an octree for better view frustum culling and
sort-last data range selection, and eVolve for 3D texture-
based direct volume rendering. The polygonal data are

rendered using display lists, and each vertex consists of
24 bytes (position þ normal). The volume renderer keeps
the volume data in GPU texture memory using 4 bytes per
voxel (packed scalar þ gradient). Table 3 lists our
experimental test models.

Due to the limitations of the scope of this paper, our
experimental results provide the basic evidence of the
flexibility and scalability potential of Equalizer but do not
cover an extensive range of test data sets, compound
configurations, or cluster sizes. This requires an additional
dedicated and comprehensive performance study. The used
test applications eqPly and eVolve are also not yet fully
optimized with respect to large-scale data management,
culling, or GPU usage.

6.1 Decomposition Modes

The power of Equalizer lies in its flexibility to configure
different scalable task decomposition and image composit-
ing strategies efficiently using the introduced compound
tree structure. Various exemplary use cases have already
been shown, demonstrating the power of the compound
structure in Section 4.5 and also Fig. 1, including tiled
screen rendering (e.g., for display walls or CAVEs),
partitioned rendering of the geometry database (mostly
for scalability), or an eye-separated sort-first parallelized
stereo rendering. The quintessential benefit of Equalizer’s
process model and compound tree structure lies in an
easy-to-configure and very scalable parallel rendering
system. Therefore, we demonstrate various use cases of
the flexible task decomposition possibilities in Equalizer
that demonstrate the potential of the presented system.

EILEMANN ET AL.: EQUALIZER: A SCALABLE PARALLEL RENDERING FRAMEWORK 445

TABLE 2
Pixel Transfer Timings for a Full-Size Image

TABLE 3
Size in Number of Polygons or Voxels of Our Test Models

Fig. 14. UML diagram of the base Equalizer and extended eqPly classes.

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

6.1.1 Sort-Last

Scalable parallel rendering is demonstrated in Fig. 15,
which shows screenshots of eqPly using an eight-to-one
node sort-last rendering setup. The compound tree config-
uration is similar to the example given in Fig. 9 but with
eight instead of three rendering and compositing channels.
Corresponding sort-last scalability results obtained on
Hactar are shown in Fig. 22a.

The eVolve demo application uses a hardware-
accelerated 3D texture-based volume rendering algorithm
[37], where the 3D texture is intersected by some proxy
geometry, a series of view-aligned clipped quadrilaterals.
The scalar and gradient values are interpolated from the
3D texture, and the slices are !-blended back to front. To
improve visual quality, classification of the scalars is
done by preintegration [16].

For sort-last rendering, the volume data range is divided
uniformly into slabs along one dimension, as illustrated in
Fig. 16. Each node renders one slab into a partial image, and
final image assembly is performed by perspective-correct
back-to-front ! compositing of the partial frame data based
on the relative positions of the slabs with respect to the
viewer, see also Fig. 16. Such sort-last volume rendering has

the advantage of scaling both texture and main memory
usage as well as pixel fill rate.

Fig. 17 demonstrates scalable sort-last rendering with
eVolve using an eight-to-one node compound setup. In this
example, final ! compositing of the rendered volume slabs
is performed on the destination display channel. In contrast,
Fig. 18 demonstrates the combination of the (in-place)
direct-send compositing principle [15] with back-to-front !
blending, required by the above outlined direct volume
rendering. This example provides further evidence how
basic parallel rendering features of Equalizer can orthogon-
ally be exploited for specific visualization tasks.

6.1.2 Sort-First

Sort-first parallel rendering can directly be applied for tiled
multiscreen display systems, and it offers the benefit of
simple final image assembly, which does not require a
costly z-depth or !-opacity compositing stage. Fig. 19 shows
a simple four-split tiled sort-first rendering of a polygonal
model that can be used to drive multiple displays of a tiled

446 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

Fig. 15. Destination views of large polygonal models using an eight node
sort-last configuration, with color-coded node contributions for illustra-
tion purposes. (a) David1. (b) Lucy. (c) Thai statue.

Fig. 16. (a) Basic back-to-front compositing order of parallel volume
slabs. (b) Volume divided into a number of slabs. Perspective
compositing order is 4-3-1-2 or 1-4-3-2.

Fig. 17. Sort-last parallel rendering of a large volume data set divided
uniformly into slabs. Lower right window shows final destination channel
with back-to-front !-blended slab images.

Fig. 18. Demonstration of direct-send image compositing in combination
with !-blended volume rendering. Each node renders one volume slab
as well as composites one horizontal image stripe for final assembly,
which is displayed in the upper left window.

Fig. 19. Tiled sort-first parallel rendering using four channels and

showing the final assembled image on the left.

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

wall or render subregions of one single screen as shown in
this example.

A five-sided CAVE configuration is demonstrated in
Fig. 20. A sort-first compound tree distributes the rendering
tasks to five different channels, each rendering and driving
the display of one of the views of the five-sided CAVE.
Final image assembly in a form of a cube environment map
is performed to illustrate the result.

For volume rendering, typically no special programming
is needed when targeting sort-first or stereo decomposi-
tions, since volume rendering is mostly fill-rate limited and
thus scales nicely in this mode. In Fig. 21, we demonstrate
yet another combination of task decomposition modes,
where a red-blue stereo image is generated by: first, stereo
separation of the rendering task for the left and right eye
views, and second, sort-first decomposition of the screen
(see also compound structure in Fig. 10).

6.2 Performance

Performance experiments were performed on theHactar and
Horus parallel rendering clusters mentioned above, which
exhibit different graphics and network bandwidth charac-
teristics. Specific sort-last direct-send image compositing
scalability results can also be found in [15]. In the
performance charts, sort-first decomposition is also denoted

by the shortcut 2D and sort-last parallel rendering is
indicated by DB.

6.2.1 Hactar

In the first benchmarks on Hactar, we measured the
performance of different task decomposition modes. The
Thai statue was used in these experiments and a fixed
camera path of 100 frames was used to obtain the average
frames per second as the result.

In Fig. 22a, we tested n-to-one sort-first as well as sort-
last decompositions. The sort-first compounds use a trivial
tile assembly on the destination channel, while the sort-last
compounds use direct-send compositing. For sort-first
parallel rendering, the speedup heavily depends on the
decomposition of the view frustum and, hence, the tiling of
the window. For this study, the data set is roughly placed in
the middle of the screen such that a simple tiling results in a
fair, though not perfect, load distribution. The graph 2D in
Fig. 22a shows a nice close-to linear speedup for sort-first
rendering, and as expected, the overhead from clipped
primitives is not dominating for small numbers of tiles.
Equalizer also shows excellent scalability with respect to
sort-last rendering, graph DB in Fig. 22a. Image composit-
ing overhead is not manifested at this level of parallelism,
partly also due to the efficient direct-send compositing
algorithm (see also [15]).

The second set of benchmarks in Fig. 22b uses different
approaches to scale the performance during stereo render-
ing. The first graph 2D stereo uses a sort-first decomposition,
where the image is split in half and then assigned to two
nodes for each of the two eye passes, which are assembled on
the destination channel in the parent node into the correct
stereo buffers. The second graph EYE-2D does first a stereo
decomposition, separating into left and right eye rendering

EILEMANN ET AL.: EQUALIZER: A SCALABLE PARALLEL RENDERING FRAMEWORK 447

Fig. 20. Environment cube map frame buffer image of a five-sided CAVE
display configuration. Five sort-first rendering channels generate the
different views in a single window.

Fig. 21. Four-to-one stereo/sort-first parallel volume rendering.

Fig. 22. (a) Sort-first and sort-last many-to-one rendering performance. (b) Different stereo rendering decompositions. (Hactar).

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

tasks, and then a sort-first decomposition into screen tiles.
The graphs in Fig. 22b show a good linear speedup but also
indicate that the more complicated stereo image assembly
and compositing incurs a small overhead factor.

6.2.2 Horus

To evaluate the basic scalability of parallel rendering and
separating out the networking and compositing costs, we
performed some baseline experiments, as reported in
Fig. 23. In this test, we rendered some screen full of trivial
geometry to measure the overall system bottleneck with
respect to pixel readback, transmission, z=! compositing,
and pixel-draw for final display. It is clear that on a single
node this overhead is negligible as the frame buffer data
never leaves the GPU memory. Only for distributed parallel
rendering using multiple nodes the overhead actually limits
the achievable frame rate.

For up to 16 nodes on Horus, we can observe that
polygonal rendering with eqPly is bounded by around
10 FPS for sort-last and 35 for sort-first rendering (Fig. 23a).
Despite different framedata and compositing—back-to-front
!-blending instead of z-depth visibility culling—a similar
trend can also be observed for our volume renderer eVolve in
Fig. 23b. The difference between sort-first (2D) and sort-last
(DB) can be attributed to the significantly different image
assembly stages. For 2D, overall the assembly only needs to
draw one full-resolution image into the destination channel
(although one in parts). On the other hand, the finalDB image
assembly consists of combining many full-resolution images
using z-depth visibility culling (polygonal rendering) or
! blending (volume rendering).

In fact, these maximal distributed rendering frame rates
depend on a number of parameters including: pixel readback
rate, network transmission, pixel draw rate (compositing),
as well as binary frame buffer formats. Most of these
parameters are not yet fully optimized in Equalizer. In
particular, the pixel draw rate is severely limiting the current
frame buffer assembly and image display stage. This is partly
due to a slow (driver) implementation of the OpenGL
glDrawPixels functionality, which may be improved by
implementing z=! compositing using asynchronous texture
uploads and fragment shaders or CPU-based compositing.
Furthermore, the binary frame buffer number format and
packing of color, alpha, and depth channels can also have a
significant impact as implicit format transformations could
be caused in the drivers and these may be executed in
software (on the CPU instead of the GPU). From our
experiments, a number of signs indicate that the latter two
issues are currently the major limiting factors. Furthermore,
network transmission can be improved in the future bymore
sophisticated frame buffer data compression and region-of-
interest selection methods.

The scalability tests reported in Fig. 24 show excellent
speedup factors for large polygonal data sets. Combining
four largemodels (4&David 1mm) to a 225M triangle mesh,
eqPly demonstrates full linear speedup for (direct-send) sort-
last (DB_ds) and near-linear speedup for sort-first (2D)
rendering, as shown in Fig. 24a. Using only a single 56M
triangle David 1-mm model, we can observe in Fig. 24b that
the parallel rendering speedup is dampened as soon as the
individual nodes reach internal frame rates that approach the
maximal distributed rendering bounds. For the 56MDavid 1

448 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

Fig. 23. Maximal frame rate performance considering only the distributed image assembly, compositing, and final display, using trivial geometry for

sort-first and sort-last rendering. (Horus). (a) Polygonal rendering. (b) Volume rendering.

Fig. 24. Frame rate performance of sort-first and sort-last parallel rendering of large polygonal models. (Horus). (a) 225M triangles. (b) 56M triangles.

(c) 28M triangles.

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

mm, this is the case at around 8 to 10 nodes, and for smaller
models such as the 28M triangles Lucy, this limit is hit earlier,
already at around four to six nodes as shown in Fig. 24c.

In Fig. 25, we report our experimental performance
speedup results for 3D texture-based volume rendering.
The achieved numbers demonstrate very good scalability,
up to the maximal distributed rendering performance. In
fact, for the large 5123 voxel volume, we can observe a drastic
performance jump at five nodes, which is most likely due to
the fact that the reduced volume slabs fit more optimally into
the GPU 3D texture memory. The smaller 2563 volume test
shows a similar behavior as the smaller polygonal models
with the performance approaching the maximal bounds
after a certain number of added parallel rendering nodes.

One observation from the above tests is that the sort-first
(2D) polygonal rendering performance does not reach the
maximal performance limit, compare Figs. 24b and 24c with
Fig. 23a, while the sort-last (DB) generally does. From our
current tests and investigations, we conclude that this is
mostly due to the view frustum culling costs, which add an
additional overhead that is not included in Fig. 23a. Our
current hierarchical polygonal mesh management and view
frustum culling has some potential for optimization in that
respect. Optimized hierarchical and multiresolution data
structures and culling methods may reduce this extra
overhead largely. Thus, the advantage of simpler 2D image
compositing, as mentioned above along with Fig. 23, can be
compensated by view frustum culling if it is not fully
optimized.

On the other hand, the simpler view frustum culling in
3D texture-based volume rendering—bounding the proxy
geometry to the view frustum—allows it to better approach
the maximal performance. This is indicated in Fig. 25b,
where 2D and DB reach a performance much closer to the
maximal reported in Fig. 23b.

6.2.3 Comparison to Chromium
Despite Equalizer and Chromium having slightly different
main targets, flexible configuration and scalability on one
side and transparent abstraction of the OpenGL API on the
other side, we provide a limited experimental evaluation
here. For this test, we used a simple display wall configura-
tion as shown in Fig. 26, with a staticmodel, rotating about its
vertical axis, placed such that it nicely covers the different
screens. A standard tile-sort Chromium configuration has
beencompared to a simpleEqualizerdisplay-wall compound

setup. The polygonalmodel is rendered using eqPly anduses
display lists for the static geometry.Usingdisplay lists allows
Chromium to send geometry and texture data once to the
renderingnodes (retainedmode rendering) anddisplay them
repeatedly using glCallLists(), which is inexpensive in terms
of network overhead [5].

According to [27], [5], [51], as well as our own under-
standing, a tile-sort display-wall setup with static geometry
rendered in retained mode should be reasonably favorable
for Chromium because the display lists have to be
transmitted only once over the network, and only simple
display calls will be processed and distributed by Chro-
mium for each rendered frame. Fig. 27 shows the experi-
mental results of the display-wall comparison between
Chromium and Equalizer. One can clearly observe that
while Chromium initially increases performance when
adding nodes, it quickly stagnates and even decreases
when more nodes are added. In contrast, Equalizer
continually improves performance with more added nodes
and only exhibits a smooth drop-off in speedup, due to the
expected synchronization and network overhead as the

EILEMANN ET AL.: EQUALIZER: A SCALABLE PARALLEL RENDERING FRAMEWORK 449

Fig. 25. Frame rate performance of sort-first and sort-last parallel volume rendering. (Horus). (a) 5123 voxels. (b) 2563 voxels.

Fig. 26. Display wall configurations to compare Equalizer and Chromium

using 1, 2, 4, 6, . . . , and 12 screens and rendering nodes.

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

rendered data gets negligible in size per node. This
performance difference may also be due to the fact that
Equalizer can benefit from distributed parallel view
frustum culling.

6.3 Latency and Viewport Size

In these benchmarks, we measure the influence of the
viewport size and latency on the performance, tested with
polygonal rendering using eqPly on Hactar. All tests were
conducted using a sort-last direct-send configuration with
five nodes. Fig. 28a varies the config-latency lconfig from 0 to 6.
One can observe that increasing the latency from a strict
frame synchronization with lconfig ¼ 0 immediately increases
the performance by about 15 percent. This is achieved
through reduced synchronization bottlenecks and better task
pipelining as rendering channels can overlap their draw
tasks between frames. We also notice, as expected, that
further increasing the latency does not further improve
rendering performance, due to other synchronization con-
straints such as image transfers. We can conclude that a
small latency of only one or two frames is sufficient to avoid
most drawbacks of a strictly frame synchronized parallel
rendering execution.

In Fig. 28b, experiments with different viewport sizes for
the destination window are shown, and hence, the amount
of transferred and z-composited pixel data varies accord-
ingly. The graph exhibits the expected asymptotic behavior
toward the constant time composition cost of direct send, as
analyzed in [15], regardless of the viewport size. Since the
composition cost is directly dependent on the viewport size,
the performance approaches and is limited by the constant
time compositing as soon as the draw cost is reduced

sufficiently by parallel load distribution. This is the normal
expected behavior. However, we would like to point out
here that the flexible compound structure allows for
complex combinations of parallel rendering and parallel
compositing where the number of contributing channels
can vary and thus allows for optimized resource usage.

7 DISCUSSION AND CONCLUSION

In this paper, we have presented a state-of-the art
distributed parallel rendering framework, which has been
designed to be minimally invasive in order to facilitate the
porting and development of real-world visualization
applications. Equalizer has also been designed to be as
generic as possible to support development of parallel
rendering applications for different data types.

Themajor strengths of Equalizer are its flexible compound
tree structures, fully distributed rendering support, aswell as
efficient compositing algorithms. Compound trees allow for
easy specification of complex parallel task decomposition
strategies, which are automatically implemented and exe-
cuted by the Equalizer system. The parallel task decomposi-
tion and efficient compositing achieves great scalability for
large data sets as demonstrated by the 225M polygonal mesh
and 5123 volume data sets. The fully distributed design
supports effective network synchronization aswell as shared
objects and remote method invocation, which facilitate the
development of decentralized applications.

Parallel rendering of transparent data is not only
supported for sort-first configurations with application-
side back-to-front traversal but also for sort-last configura-
tions given the data partitioning enables a back-to-front
spatial ordering. This is demonstrated in our eVolve
volume rendering application, which exploits the efficient
!-compositing compound provided in Equalizer.

Scalable sort-first rendering depends on a balanced
distribution of the rendering cost across the different screen
tiles. To achieve this, dynamic tile decomposition must be
supported as well as some basic rendering cost heuristics
for effective load balancing. These extensions pose interest-
ing but also tractable challenges and are lined up for
integration into Equalizer. In fact, efficient load balancing is
an important aspect for parallel applications, and with its
flexible task decomposition abilities, Equalizer offers the
basic structural support that applications can readily use.

Equalizer efficiently supports but does not solve all
problems of parallel rendering for the programmer. As

450 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

Fig. 27. Frame rate performance comparison between Chromium and
Equalizer for tiled display wall configurations of up to 12 screens and
nodes. (Horus).

Fig. 28. Influence of (a) latency and (b) viewport size on rendering performance, using five nodes. (Hactar).

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

mentioned before, load balancing is a focus area, as is an
improved image compression and transport (readback-
transfer-draw) pipeline. While these two problems are
going to be addressed directly in Equalizer, the data
distribution and replication problem may be more of an
application-dependent challenge, which will be supported
by facilitating distributed objects.

The current Equalizer system already goes beyond just
the necessary basic scalable rendering functionality. Never-
theless, we plan to extend the functionality to include also
time-multiplex support, sophisticated automatic load bal-
ancing for sort-first and sort-last task decompositions, as
well as an API to compress and mask the channels’ screen
frames for optimized image transport.

Aside from the core parallel rendering API, in the long
term, we plan to improve the resource management
capabilities of the server by enabling it to handle multiple
applications, resource reservation, and cross-application
load balancing. Furthermore, the creation of a transparent
OpenGL layer with Equalizer as the back end could allow
running existing applications alongside with parallel appli-
cations. Eventually, we will integrate remote visualization
capabilities, for example by supporting the VNC protocol.

ACKNOWLEDGMENTS

This work was supported in part by the Swiss National
Science Foundation under Grant 200021-116329/1. The
authors would like to thank the following institutions and
projects for providing the 3D geometry and volume test
data sets: the Digital Michelangelo Project, Stanford 3D
Scanning Repository, Cyberware, volvis.org, and the Visual
Human Project.

REFERENCES

[1] SGI, “OpenGL Multipipe SDK,” http://www.sgi.com/products/
software/multipipe/sdk/, Technical Publication 007-4516-002,
2002.

[2] G. Agranov and C. Gotsman, “Algorithms for Rendering Realistic
Terrain Image Sequences and Their Parallel Implementation,” The
Visual Computer, vol. 11, no. 9, pp. 455-464, 1995.

[3] J. Ahrens and J. Painter, “Efficient Sort-Last Rendering Using
Compression-Based Image Compositing,” Proc. Eurographics
Workshop Parallel Graphics and Visualization (EGWPGV), 1998.

[4] J. Allard, V. Gouranton, L. Lecointre, E. Melin, and B. Raffin,
“Netjuggler: Running VR Juggler with Multiple Displays on a
Commodity Component Cluster,” Proc. IEEE Virtual Reality Conf.
(VR ’02), pp. 275-276, 2002.

[5] W.E. Bethel, G. Humphreys, B. Paul, and J.D. Brederson, “Sort-
First, Distributed Memory Parallel Visualization and Render-
ing,” Proc. IEEE Symp. Parallel and Large-Data Visualization and
Graphics (PVG ’03), pp. 41-50, 2003.

[6] P. Bhaniramka, P.C.D. Robert, and S. Eilemann, “OpenGL Multi-
pipe SDK: A Toolkit for Scalable Parallel Rendering,” Proc. IEEE
Visualization (VIS ’05), pp. 119-126, 2005.

[7] A. Bierbaum and C. Cruz-Neira, “ClusterJuggler: A Modular
Architecture for Immersive Clustering,” Proc. Workshop Com-
modity Clusters for Virtual Reality, IEEE Virtual Reality Conf.,
2003.

[8] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and
C. Cruz-Neira, “VR Juggler: A Virtual Platform for Virtual
Reality Application Development,” Proc. IEEE Virtual Reality
Conf. (VR ’01), pp. 89-96, 2001.

[9] W. Blanke, C. Bajaj, D. Fussel, and X. Zhang, “The Metabuffer:
A Scalable Multi-Resolution 3-D Graphics System Using
Commodity Rendering Engines,” Technical Report TR2000-16,
Univ. of Texas at Austin, 2000.

[10] X. Cavin and C. Mion, “Pipelined Sort-Last Rendering: Scalability,
Performance and Beyond,” Proc. Eurographics Symp. Parallel
Graphics and Visualization (EGPGV), 2006.

[11] X. Cavin, C. Mion, and A. Filbois, “COTS Cluster-Based Sort-Last
Rendering: Performance Evaluation and Pipelined Implementa-
tion,” Proc. IEEE Visualization (VIS ’05), pp. 111-118, 2005.

[12] W.T. Correa, J.T. Klosowski, and C.T. Silva, “Out-of-Core
Sort-First Parallel Rendering for Cluster-Based Tiled Displays,”
Proc. Eurographics Workshop Parallel Graphics and Visualization
(EGWPGV ’02), pp. 89-96, 2002.

[13] T.W. Crockett, “An Introduction to Parallel Rendering,” Parallel
Computing, vol. 23, pp. 819-843, 1997.

[14] S. Eilemann, “Equalizer Programming Guide,” Technical Report
IFI-2007.11, Dept. of Informatics, Univ. of Zurich, 2007.

[15] S. Eilemann and R. Pajarola, “Direct Send Compositing for Parallel
Sort-Last Rendering,” Proc. Eurographics Symp. Parallel Graphics
and Visualization (EGPGV), 2007.

[16] K. Engel, M. Kraus, and T. Ertl, “High-Quality Pre-Integrated
Volume Rendering Using Hardware-Accelerated Pixel Shading,”
Proc. ACM SIGGRAPH/Eurographics Workshop Graphics Hardware
(GH ’01), pp. 9-16, 2001.

[17] J. Eyles, S. Molnar, J. Poulton, T. Greer, A. Lastra, N. England,
and L. Westover, “PixelFlow: The Realization,” Proc. ACM
SIGGRAPH/Eurographics Workshop Graphics Hardware (GH ’97),
pp. 57-68, 1997.

[18] A. Garcia and H.-W. Shen, “An Interleaved Parallel Volume
Renderer with PC-Clusters,” Proc. Eurographics Workshop Parallel
Graphics and Visualization (EGWPGV ’02), pp. 51-60, 2002.

[19] E. Gobbetti and F. Marton, “Layered Point Clouds: A Simple and
Efficient Multiresolution Structure for Distributing and Rendering
Gigantic Point-Sampled Models,” Computers and Graphics, vol. 28,
no. 1, pp. 815-826, Feb. 2004.

[20] M. Guthe, P. Borodin, Ä. Balazs, and R. Klein, “Real-Time
Appearance Preserving Out-of-Core Rendering with Shadows,”
Proc. Eurographics Workshop Rendering Techniques, pp. 69-80, 2004.

[21] S. Guthe, M. Wand, J. Gonser, and W. Strasser, “Interactive
Rendering of Large Volume Data Sets,” Proc. IEEE Visualization
(VIS ’02), pp. 53-60, 2002.

[22] M. Houston, Raptor, http://graphics.stanford.edu/projects/
raptor/, 2005.

[23] J. Huang, N. Shareef, R. Crawfis, P. Sadayappan, and K. Mueller,
“A Parallel Splatting Algorithm with Occlusion Culling,” Proc.
Eurographics Workshop Parallel Graphics and Visualization
(EGWPGV), 2000.

[24] G. Humphreys, I. Buck, M. Eldridge, and P. Hanrahan, “Dis-
tributed Rendering for Scalable Displays,” Proc. IEEE Super-
computing, Oct. 2000.

[25] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and
P. Hanrahan, “WireGL: A Scalable Graphics System for
Clusters,” Proc. ACM SIGGRAPH ’01, pp. 129-140, 2001.

[26] G. Humphreys and P. Hanrahan, “A Distributed Graphics
System for Large Tiled Displays,” Proc. IEEE Visualization
(VIS ’99), pp. 215-224, Oct. 1999.

[27] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern,
P.D. Kirchner, and J.T. Klosowski, “Chromium: A Stream-
Processing Framework for Interactive Rendering on Clusters,”
ACM Trans. Graphics, vol. 21, no. 3, pp. 693-702, 2002.

[28] H. Igehy, G. Stoll, and P. Hanrahan, “The Design of a Parallel
Graphics Interface,” Proc. ACM SIGGRAPH ’98, pp. 141-150,
July 1998.

[29] A. Johnson, J. Leigh, P. Morin, and P. Van Keken, “GeoWall:
Stereoscopic Visualization for Geoscience Research and Educa-
tion,” IEEE Computer Graphics and Applications, vol. 26, no. 6,
pp. 10-14, Nov./Dec. 2006.

[30] K. Jones, C. Danzer, J. Byrnes, K. Jacobson, P. Bouchaud,
D. Courvoisier, S. Eilemann, and P. Robert, “SGI OpenGL
Multipipe SDK User’s Guide,” Technical Report 007-4239-004,
Silicon Graphics, 2004.

[31] C. Just, A. Bierbaum, A. Baker, and C. Cruz-Neira, “VR Juggler: A
Framework for Virtual Reality Development,” Proc. Immersive
Projection Technology Workshop (IPT), 1998.

[32] P.G. Lever, SEPIA—Applicability to MVC,white paper, Manchester
Visualization Centre (MVC), Univ. of Manchester, 2004.

[33] P. Li, W.H. Duquette, and D.W. Curkendall, “RIVA: A Versatile
Parallel Rendering System for Interactive Scientific Visualization,”
IEEE Trans. Visualization and Computer Graphics, vol. 2, no. 3,
pp. 186-201, Sept. 1996.

EILEMANN ET AL.: EQUALIZER: A SCALABLE PARALLEL RENDERING FRAMEWORK 451

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

[34] P.P. Li, S. Whitman, R. Mendoza, and J. Tsiao, “ParVox: A
Parallel Splatting Volume Rendering System for Distributed
Visualization,” Proc. IEEE Parallel Rendering Symp. (PRS ’97),
pp. 7-14, 1997.

[35] S. Lombeyda, L. Moll, M. Shand, D. Breen, and A. Heirich,
“Scalable Interactive Volume Rendering Using Off-the-Shelf
Components,” Technical Report CACR-2001-189, California Inst.
of Technology, 2001.

[36] S. Lombeyda, L. Moll, M. Shand, D. Breen, and A. Heirich,
“Scalable Interactive Volume Rendering Using Off-the-Shelf
Components,” Proc. IEEE Symp. Parallel and Large-Data Visualiza-
tion and Graphics (PVG ’01), pp. 115-121, 2001.

[37] M. Meissner, U. Hoffmann, and W. Strasser, “Enabling Classifica-
tion and Shading for 3D Texture Mapping Based Volume
Rendering Using OpenGL and Extensions,” Proc. IEEE Visualiza-
tion (VIS ’99), pp. 207-214, 1999.

[38] L. Moll, A. Heirich, and M. Shand, “Sepia: Scalable 3D
Compositing Using PCI Pamette,” Proc. Seventh IEEE Symp.
Field-Programmable Custom Computing Machines (FCCM ’99),
pp. 146-155, 1999.

[39] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A Sorting
Classification of Parallel Rendering,” IEEE Computer Graphics and
Applications, vol. 14, no. 4, pp. 23-32, 1994.

[40] S. Molnar, J. Eyles, and J. Poulton, “PixelFlow: High-Speed
Rendering Using Image Composition,” Proc. ACM SIGGRAPH ’92,
pp. 231-240, 1992.

[41] C. Mueller, “The Sort-Frst Rendering Architecture for High-
Performance Graphics,” Proc. Symp. Interactive 3D Graphics (I3D),
ACM SIGGRAPH ’95, pp. 75-84, 1995.

[42] C. Mueller, “Hierarchical Graphics Databases in Sort-First,” Proc.
IEEE Parallel Rendering Symp. (PRS ’97), p. 49, 1997.

[43] S. Muraki, M. Ogata, K.-L. Ma, K. Koshizuka, K. Kajihara, X. Liu,
Y. Nagano, and K. Shimokawa, “Next-Generation Visual Super-
computing Using PC Clusters with Volume Graphics Hardware
Devices,” Proc. ACM/IEEE Conf. Supercomputing (SC ’01), p. 51,
2001.

[44] W. Nie, J. Sun, J. Jin, X. Li, J. Yang, and J. Zhang, “A Dynamic
Parallel Volume Rendering Computation Mode Based on Clus-
ter,” Proc. Int’l Conf. Computational Science and Its Applications
(ICCSA ’05), vol. 3482, pp. 416-425, 2005.

[45] K. Niski and J.D. Cohen, “Tile-Based Level of Detail for the
Parallel Age,” IEEE Trans. Visualization and Computer Graphics,
vol. 13, no. 6, pp. 1352-1359, Nov./Dec. 2007.

[46] J. Rohlf and J. Helman, “IRIS Performer: A High Performance
Multiprocessing Toolkit for Real-Time 3D Graphics,” Proc. ACM
SIGGRAPH ’94, pp. 381-394, 1994.

[47] R. Samanta, T. Funkhouser, and K. Li, “Parallel Rendering with
K-Way Replication,” Proc. IEEE Symp. Parallel and Large-Data
Visualization and Graphics (PVG ’01), 2001.

[48] R. Samanta, T. Funkhouser, K. Li, and J.P. Singh, “Hybrid Sort-
First and Sort-Last Parallel Rendering with a Cluster of PCs,”
Proc. Eurographics Workshop Graphics Hardware, pp. 97-108, 2000.

[49] R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J.P. Singh, “Load
Balancing for Multi-Projector Rendering Systems,” Proc. Euro-
graphics Workshop Graphics Hardware, pp. 107-116, 1999.

[50] J.P. Schulze and U. Lang, “The Parallelization of the Perspective
Shear-Warp Volume Rendering Algorithm,” Proc. Eurographics
Workshop Parallel Graphics and Visualization (EGWPGV ’02),
pp. 61-70, 2002.

[51] O.G. Staadt, J. Walker, C. Nuber, and B. Hamann, “A Survey and
Performance Analysis of Software Platforms for Interactive
Cluster-Based Multi-Screen Rendering,” Proc. Eurographics Work-
shop Virtual Environments, pp. 261-270, 2003.

[52] G. Stoll, M. Eldridge, D. Patterson, A. Webb, S. Berman, R. Levy,
C. Caywood, M. Taveira, S. Hunt, and P. Hanrahan, “Lightning-2:
A High-Performance Display Subsystem for PC Clusters,” Proc.
ACM SIGGRAPH ’01, pp. 141-148, 2001.

[53] A. Stompel, K.-L. Ma, E.B. Lum, J. Ahrens, and J. Patchett, “SLIC:
Scheduled Linear Image Compositing for Parallel Volume
Rendering,” Proc. IEEE Symp. Parallel and Large-Data Visualization
and Graphics (PVG ’03), pp. 33-40, 2003.

[54] X. Tong, W. Wang, W. Tsang, and Z. Tang, “Efficiently Rendering
Large VolumeData Using TextureMappingHardware,” Proc. Joint
Eurographics-IEEE TCVG Symp. Visualization (VisSym), 1999.

[55] G. Vezina and P.K. Robertson, “Terrain Perspectives on a
Massively Parallel SIMD Computer,” Proc. Computer Graphics Int’l
(CGI ’91), pp. 163-188, 1991.

[56] C.M. Wittenbrink, “Survey of Parallel Volume Rendering
Algorithms,” Proc. Int’l Conf. Parallel and Distributed Processing
Techniques and Applications (PDPTA ’98), pp. 1329-1336, 1998.

[57] D.-L. Yang, J.-C. Yu, and Y.-C. Chung, “Efficient Compositing
Methods for the Sort-Last-Sparse Parallel Volume Rendering
System on Distributed Memory Multicomputers,” J. Supercomput-
ing, vol. 18, no. 2, pp. 201-220, Feb. 2001.

[58] S.-E. Yoon, B. Salomon, R. Gayle, and D. Manocha, “Quick-VDR:
Out-of-Core View-Dependent Rendering of Gigantic Models,”
IEEE Trans. Visualization and Computer Graphics, vol. 11, no. 4,
pp. 369-382, July/Aug. 2005.

[59] X. Zhang, C. Bajaj, and W. Blanke, “Scalable Isosurface
Visualization of Massive Datasets on COTS Clusters,” Proc. IEEE
Symp. Parallel and Large-Data Visualization and Graphics (PVG ’01),
pp. 51-58, 2001.

Stefan Eilemann received the Engineering
Diploma in computer science in 1998. He is a
senior software engineer and CEO at Eyescale
Software, with a specialization in high-perfor-
mance 3D graphics, C++, parallelization of
applications, and distributed systems. He de-
veloped Equalizer as a researcher in the
Visualization and Multimedia Laboratory, Uni-
versity of Zurich. Previously, he was the
technical lead of OpenGL Multipipe SDK in

the Advanced Graphics Division, SGI.

Maxim Makhinya received the BSc and MSc
degrees in computer science from the Moscow
State University in 2004 and 2005, respectively.
He is currently a research assistant and doctoral
student in the Visualization and MultiMedia
Laboratory (VMML), Department of Informatics,
University of Zurich. His research interests
include real-time graphics, parallel rendering,
and high-performance visualization.

Renato Pajarola received the Dipl Inf-Ing ETH
and DrSc Techn degrees in computer science
from the Swiss Federal Institute of Technology
(ETH), Zurich, in 1994 and 1998, respectively.
Following his dissertation, he was a postdoctoral
researcher and lecturer in the Graphics, Visua-
lization and Usability (GVU) Center, Georgia
Institute of Technology. In 1999, he joined the
University of California, Irvine, as an assistant
professor and founded the Computer Graphics

Laboratory. Since 2005, he has been leading the Visualization and
MultiMedia Laboratory (VMML), University of Zurich as an associate
professor in the Department of Informatics. His research interests
include real-time 3D graphics, multiresolution modeling, point-based
graphics, interactive scientific visualization, remote and parallel render-
ing, compression, and interactive 3D multimedia. He has published a
wide range of more than 50 peer-reviewed research articles in top
journals and conferences. He frequently serves on program committees,
such as the IEEE Visualization Conference (2004-2006), Pacific
Graphics (2002-2003, 2007-2008), and Visualization Symposium
(EuroVis; 2001, 2006-2008), and is cochairing the 2007 IEEE/
Eurographics PBG Symposium papers program. He was papers cochair
of the IEEE/Eurographics Symposium on Point-Based Computer
Graphics in 2007 and 2008. He also received a Eurographics Second
Best Paper Award (as coauthor) in 2005. He is a member of the ACM,
ACM SIGGRAPH, and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

452 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

Authorized licensed use limited to: MAIN LIBRARY UNIVERSITY OF ZURICH. Downloaded on March 27, 2009 at 03:56 from IEEE Xplore. Restrictions apply.

