
Fast Algorithms for Volume Ray Tracing

John Danskin and Pat Hanrahan

Abstract

We examine various simple algorithms that exploit
homogeneity and accumulate2 opacity for tracing
rays through shaded volumes. Most of these meth-
ods have error criteria which allow them to trade
quality for speed. The time vs. quality tradeoff
for these adaptive methods is compared to fixed
step multiresolution methods. These methods are
also useful for general light transport in volumes.

1 Introduction

We are interested in speeding volume ray tracing computa-
tions. We concentrate on the one dimensional problem of
tracing a single ray, or computing the intensity at a point
from a single direction. In addition to being the kernel of
a simple volume ray tracer, this computation can be used
to generate shadow volumes and as an element in more gen-
eral light transport problems. Our data structures will be
view independent to speed the production of animations of
preshaded volumes and interactive viewing.

In [11] Levoy introduced two key concepts which we will
be expanding on: presence acceleration, and CY-Termination.
The first technique allows fast traversal of empty space using
octrees. The second technique terminates front to back ray-
tracing after the opacity accumulated by the ray exceeds a
certain threshold.

We will expand on these two basic ideas:

1.

2.

We exploit homogeneity in the volume dataset, not just
presence.

We gradually take fewer samples and reduce the preci-
sion of our calculation as a ray accumulates opacity in
front to back ray-tracing.

A general motivation for studying these techniques is that
they are continuous, and do not involve binary valued data-
structures or all or nothing decisions. We will relate these
ideas to importance sampling [4]: a fundamental technique
in Monte Carlo integration.

John Danskin jmd@cs.princeton.edu
Pat Hanrahan pmh@cs.princeton.edu
Department of Computer Science
Princeton University
Princeton, BJ 08544-2087

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given

that copying ia by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

1992 Workshop on Volume Visualization/l0/92/Boston, MA

@ 1992 ACM 0-89791-528-3/92/0010/0091 . ..$1.50

In Section 2 we will discuss the light transport equations
which we will be analyzing. In Section 3, we will discuss
importance sampling and its relationship to light transport.
In Section 4, we will preview the proposed acceleration al-
gorithms. In Section 5, we will describe our experiments.
In Section 6, we will discuss our data-structures.. In Section
7., we will describe our algorithms in more detail. In Sec-
tion 8. we will Dresent our results. Finallv. in Section 9. we
will discuss some of the implications of our algorithms ‘and
results.

2 Light Transport

The shaded volume is treated as a mass of glowing jello
where the color and densitv of the iello are samnled alone a
regular three-dimensional .&rid. Color and denscty values”at
iniermediate points are us&y derived using tri-linear inter-
nolation rl11. although higher order interpolation is Dossible.
he limit .thc gamut Gf coyor and density ‘to the ran,, [0 - l]
before pre-multiplication, and store color values premulti-
plied by the density.

To render this volume, we need to find the intensity and
color of the light that would impinge on a given spot of film
in the back of a pinhole camera (for instance). The pinhole
geometry naturally gives rise to the idea of ray tracing. The
origin of the ray is the center of the differential area of film to
be exposed. The direction of the ray is towards the pinhole
in the camera. The value of the ray is the integral of all of
the light found along the ray, scaled by the optical distance
from the light to the film.

Where I is the origin of the ray,, w’ is the unit direction vector
of the ray, a(s) is the different& attenuation at Z+ SW’, and
I(t) is the differential intensity scattered at Z + tw’ in the
direction -3.

The most straightforward volume ray tracing technique
is to turn the nested integral of equation 1 into a nested
summation with equally spaced samples. Here the sample
spacing is assumed to be unity.

z = C

O<i<n

if we define

a(j) = 1 - e
- j-,:+l a(s)ds

and
P(j) = (1 - n 1 - a(j)) (4)

O<J<i

91

we have W(xi) = p(xi)/p*(xi) and f*(x) = w(x)f(~).
I = c (1 - P(i))Z(i) (5)

l<iln

where a(j) is the fraction of light which is stopped by the
material at j. ,l3 i) (the accumulated opacity at i) is the

6 fraction of light w ich is stopped by the material from 0 to
2.

With this insight, we see that in the special case where
n = 2, this sum embodies the Porter-Duff over operator [20].

rgba
overcrgba fg, bg) c

return fg + (1 - fg.alpha) * bg;
3

the resulting alpha can be seen to be

(1 - (1 - fg.alpha)(l - ~g.aZpha)) (6)
which -fits equation 5. Successive applications of the over
function solve equation 5 with O(n) operations instead of the
O(n2

1
operations which result if equation 5 is programmed

naive y. The sum in equation 5 is equivalent to the nested
integral in equation 1 in the limit as the sample spacing
goes to zero [al; 171. We will be concerned with efficiently
approximating this sum.

There has been a lot of work on efficiently and accurately
rendering volumes with large or irregularly shaped voxels.
Max et. al. [17] discuss rendering 3D scalar fields sampled
on the vertices of a space filling arrangement of convex poly-
hedra. Upson and Keeler [23] discuss rendering volumes with
large voxels. Garrity [6], Wilhelms et. al. [25], Shirley and
Tuchman [2:!], and Neeman [18] discuss rendering irregular
volumes and volumes specified on curvilinear grids. We will
assume that our input volume has sufficiently fine resolution
so that the a.pproximation of equation 5 is sufficiently accu-
rate, and also assume that our volume dataset is defined on
a regular grid.

Here is the basic volume ray tracing pseudo code which
we will be modifying to implement our various acceleration
techniques:

rgba TraceCvolume, 0, D, t , maxt) c
rgba c, s;
c = (O,O,O,O>
while (t < maxt) c

s = sample(volume, 0 + t D) ;
c = over(c, s);
t++;

3
return c;

3

3 Importance Sampling

The basis for most of our acceleration techniques is impor-
tance sampling [4]. Importance sampling applied to integrals
means conce:ntrating most of the samples in that portion of
the domain which contributes most to the value [3].

We will follow [3] in the derivation of equations 7
through 10. Suppose we need to determine the value of
f

I,
z) where 3: is sampled from a probability distribution p(z)

w ich is defined on [a, b].

b

E(f) = J f(X)P(X)dX (7)
(I

If we need to sample z from some other probability dis-
tribution p*(z) instead, we can compensate by introducing

J
b

E(f8) = f*(x)P*(xPx
a

J
b

=

a

= Et.0 118)
The expected value of the function is unchanged, but t,he
variance is different:

V(f*) = E(f*2) - E2(f*)

= J b P”(X) n jq~f~tx)~*(+x - E2(f)
= J b P(X)

~ mf2tx)~(x)dx - E2(f) 1:91

Intuitively, this means that we can reduce the variance by
concentrating samples where f2(x)p(x) is relatively large. If
p*(x) = f(x)p(x)/E(f) then V(f) = 0 since then

~(f*~) - E2(f) = J” (f(&$$ - E(f))lp’(Qx = o
n

Cl.0)
Of course this is not immediately useful because we w&dh
not be considering sampling the integral if we knew E(f).
However, consider equation 1.

Z(Z, G) = J T
0

If we divide both sides of the equation by the constant

c =

then we can set

Jo

P(t) = e

+r(s)ds

c

since p(t) is positive and sums to one, it is a probability
distribution function, and we have

I(Z, w') J
T -= c P(WW

0

Since this integral differs only by a constant from the integral
in equation 1, the ideal sampling pattern for this integral will
also be the ideal sampling pattern for equation 1. Plugging
in equation 3, the ideal sampling distribution is

Of course, we don’t know what the value of I(Z, w’) is ahead
of time, and I(t) and p(t) are only available by sampling,
but we can make some qualitative statements about good
sampling technique:

l Sample density should vary linearly with I(t).

l Sample density should vary linearly with p(t) = -1.
l Sample weights should vary inversely with sample den-

sity.

l Sample density calculations are complicated by the
need to calculate the integral p(t) accurately, but ob-
serve that p(t
a constant). B

‘s ideal sample distribution is p(l) (within
iuce we calculate both integrals together

in front to back order, we have a good estimate of p(t)
when we need it.

92

4 Overview of Algorithms

We will discuss the following techniques:

1.

2.

3.

4.

5.

5

Fixed Step Multiresolution: We maintain an average
pyramid of volumes where each successive volume is
half the resolution of the previous one. The level in the
Dvramid at which the algorithm operates is user speci-
&d. A more sophisticat-ed variant‘ of this algorith;n is
due to Levov r131. We use this algorithm as a control
for compariioi with our other alggrithms.

Presence-acceleration uses a maxzT(cr) pyramid (de-
fined below) to maintain the maximum material densitv
in a neighborhood, and an average pyramid to main-
tain average material properties. Samples are taken at
higher levels of the pyramid in regions of low density.

Homogeneity-acceleration uses a range27 pyramid (de-
fined below) to maintain a measure of local homogene-
ity, and an average pyramid to maintain average ma-
terial properties. Samples are taken at higher levels of
the pyramid in regions of high homogeneity [lo].

Russian Roulette [9] [16] [3] probabilistically kills off
some of the front to ack rav-tracing calculations once
they have accumulated opahty excezding some thresh-
old. Surviving calculations are increased in weight so
that the average value returned is unbiased.

B-Acceleration allows the ray calculation to sample
higher in a pyramid as the “optical distance (/3) in-
creases. The idea is that as less and less of the sampled
light reaches the eye, errors in the amount of light Sam-
pled become less important.

The Experiment

We have conducted experiments with a number of plausible
algorithms, separately and combined (Figures 3-5). All of
th; algorithms described below allow & Grne vs. &ccuracy
tradeoff, and so we present plots of image error vs. num-
ber of samples and image error vs. time for each method.
Finding a good metric for image error is a difficult task,
with non-linear perceptual differences abounding. We use
the average three dimensional Manhattan distance between
corresponding pixels of an image, scaled from 0 to 1 as our
metric.

NYNYdist(a, a) = (1a.r - b.rl + 1a.g - b.gl +

1a.b - b.bl + 1a.a - &al)/4 (15)

An average image error of 20% seems to be the maximum
useful error limit. All timings represent user time on an SGI
Power Series 220.

So that readers can make their own decisions about error
tolerances, and so that readers can see what the errors made
by a particular method look like, we have included a table of
images with the graphs. Each entry in the table consists of
three images: the ray traced imane. its dif7 with a reference
image, a& an image representing’ the number of samples
necessary to compute each pixel. The sample images all
have the same scale, so it is possible to compare sample
images from different algorithms, but they have not been
gamma corrected for printing, so quantitative comparisons
of particular pixels are not possible.

Images read (in order of increasing error) from left to
right. Pictures are on top, then diffs, and finally number
of samples.

6 Pyramid Data Structures

Volume pyramids are represented as a set of volumes. The
first level (level 0) of the pyramid is the original data. The

second level of the pyramid has about one eighth as many
entries as the first level. Because the original data is not
necessarily a cube with power of 2 sides, we set the size of
the i-th dimension of level n to:

size[n][i] = maz((size[n - l][i] + 1)/2,1) 06)

until we have a level with dimensions 1 x 1 x 1, which is the
ton Since some of the children of an entrv in the nth level

I

may be outside of the domain of the ori&al dataset, we
define the dataset to take on a constant value outside of its
domain. This is a compact representation for a pointerless
complete octree [24] allowing efficient neighbor, parent and
child calculations.

In the average pyramid, each sample in the nth level of
the pyramid stores the average of it’s eight children in the
n - 1st level of the pyramid. Since we store our data in an 8
bit per channel format, we find it necessary to dither when
averaeine down to maintain overall average node values. A
voxelrn <he average pyramid is the cubic-region supported
bv 8 data values. To samDle within the voxel we aoolv tri-
&ear interpolation [ll] (dthough higher order inter&ition
is possible).

Levoy used average pyramids for gaze directed rendering
[13]. They are a 3D generalization of mip-maps [26].

When ray tracing with the average pyramid, samples can
be taken at anv level. When we samDle at level 1 of the
pyramid, that means that we are takin’g a step of size 2, so
the result of the sample should be the same as if we had
taken 2 steps of size 1 at level 0 (assuming that the samples
values at level 0 are the same as the sampled value at level
2). To achieve this, we apply the following filter:

rgba ScaleColor(int n, rgba ia> c
while (n--> {

ia = over(ia, ia);
3
return ia;

3

This filter is the same as the one proposed in [lo].

We tried storing these scaled values in the pyramid instead
of the averages, but the quantization effects were intolerable
at eight bits per entry. At this point, we use ScaleColor
as a filter for volume access. First trilinear interpolation is
applied, then we scale colors and opacity. A better solution
might be to store levels n > 0 of the pyramid in higher
precision.

In implementing some form of presence-acceleration,
where we want to step quickly over areas of low density,
we need a data structure which allows access to the maxi-
mum densities we might run into in such a big step. Wil-
helms and Van Gelder propose storing child min and max
values in octree nodes to sDeed iso-surface generation 1241.
At first glance, a max pyramid looks like the-right struc’tuie
for us. Unfortunately the max pyramid doesn’t efficiently
solve our problem because a ray taking even a tiny step can
step through three pyramid nodes. The ma227 pyramid re-
places each level 0 voxel in the average pyramid with the
maximum value in the voxel and its 26ne&hbors. Since we
are using trilinear interpolation in the average pyramid, this
means that each max voxel is the maximum of the 64 data
points supporting the 2’7 voxels in the neighborhood. This
calculation can be eased by noticing that adjacent max vox-
els share 48 data points, so the incremental work needed per
max voxel is a little more than computing the max of 16
data points. Higher levels of the ma227 pyramid contain the
same information, but at half the resolution: a second level
max27 pyramid voxel is supported by 27 x 2 x 2 x 2 = 216
voxels and 343 data points. Luckily, this data is summarized
in 8 voxels in the first level of the pyramid. See Figure 1 for
an example of how this works in 2D.

93

.I . . .

: [Vi :

. . . .

Figure 1: Left: 2D neighborhood of voxel V at level 0. Right:
2D neighborhood of Voxel V at level n, showing relevant
neighborhoods ABCD in level n-l. Since the neighborhoods
ABCD span the neighborhood V, the max of neighborhood
V is just the max of neighborhoods ABCD.

Since we are storing worst case information about a neigh-
borhood, interpolation in the maxsr pyramid is inappropri-
ate, and a voxel is supported by a single data point (consid-
ered to be located in the center of the voxel).

The maxa pyramid is useful in its own right; however
we will use it and the analogous minzr pyramid to compute
another pyramid, the range27 pyramid. Each voxel in the
ranges7 pyramid contains- the -&Ianhattan distance (equa-
tion 15) between the scaled RGBo value derived from sam-
pling the minsr pyramid for each channel and the scaled
value derived from sampling the maxsr pyramid for each
channel. Intuitively, whenever this range is small, the re-
gion is nearly homogeneous, and it is safe to take a big step
using an average value for the region. Whenever the range is
large, the region is heterogeneous, and small steps are nec-
essary. Pseudo code to compute the ranges7 map follows:

minV = computeMinVol(v);
maxV = computeMaxVol(v);

forEach(lese1 in v) {
1 = level.;
f orEach(pt in v> {

errorV(leve1, pt 1 =
NYNYdist (

ScaleColor(1, maxV(1, pt)),
ScaleColor(1, minV(1, pt)));

1
I

The ranqezr pyramid will be our primary acceleration
data structure, but we could have used a vaiiancezr pyra-
mid instead IlOl. We chose the ranue?T nvramid because it ., -. _”
h as good wo&‘case behavior. A large voxel high up in a
pyramid could be mostly empty, containing only a very thin
yet totally opaque wall, and yet have low variance because of
the small number of variant pixels. This could lead to dra-
matic image artifacts. The ranges7 pyramid cannot make
this kind of mistake because it encapsulates the extremes of
the local data and not just the average difference from the
mean.

These pyramid datastructures are view independent: the
cost of construction can be amortized over a whole animation
sequence or interactive session.

7 Algorithms

7.1 Fixed Step Multiresolution

Levoy [13] has proposed using an average pyramid or mip-
map [26 to accelerate the tracing of rays that are intended to
cover a 1 arge image area. The density of rays per unit area,
and the number of samples per ray are both decreased to
produce fuzzy pictures very fast. The intended use for this
technique is gaze directed rendering. Bv interoolatinu be-

-

tween adjacent levels of the pyramid when sampling, smooth
variations in the level of detail can be accomplished.

We have implemented a variant of this technique as a
control for more complicated acceleration techniques. The
active resolution level is set bv the user. and the ray tracer
generates an entire picture at that resolution. Inter-ray spac-
ine is unaffected bv the resolution level. but the inter-samnle
spicing within a ;ay is set to pow(2,IkveZ). The jixed siep
multiresolution method at full resolution was used to gen-
erate our reference image. The din images in the figures
represent the Ipixel and channel-wise absolute value of the
difference between the test image and the reference imagse.

Note that for comparison purposes with Levoy’s imple-
mentation in [‘13] our implementation uses almost exac,tly
half as many samples per ray because we do not implement
interpolation between adjacent pyramid levels.

7.2 Presence-Acceleration

We saw in Section 3 that it is not necessary to take many
samples in regions with small contributions to the opacity
and intensity integrals. Presence-acceleration takes advan-
tage of this by using average values to represent large nearly
emptv sample domains. We determine that a sample domain
must-have-a small contribution to the integral by examin-
ine a max?T(ar) ovramid in the locale of interest. If the

-.\ L”

m&mum cy Ll vi ue in the region is less than some user spec-
ified threshold L, the region is approximat,ed with a single
sample: the appropriately weighted value sampled from the
overage pyramid. Recall that we use the ScaleColor filter to
achieve proper weighting. In the special case where k: = 0,
this method is equivalent to Levoy’s method for traversing
empty space without error [ll].

The fol1owin.g pseudo code implements presence accelera-
tion:

rgba Trace(pyramid, max-alpha, k, 0, D, t , maxt) E
rgba c, s;
int level = 0;

c = (0.0.0.0);
while (t < maxt) {

if ((level == 0) I I
Cl1 (sample(max-alpha, level, 0 + t D) <= k)) C

s = sample(pyramid, level, 0 + t D> ;
c = over-cc, s>;
t += pou(2, level++) ;

1 else C
level-- ;

1
1
return c;

1

If (level > 0) then the sample on line [l] must be less
than or equal t,o k in order to make progress. Whenever we
can make progress, we try to move up the tree. Whenever
we cannot make progress, we move down the tree. We can
always make progress at level 0.

7.3 Homogeneity-Acceleration

From the point of view of importance sampling, presence-
acceleration makes two mistakes:

1. It ignores accumulated opacity

2. It moves up the pyramid too fast. In importance sam-
pling, it is desirable to get about the same amount of
“stuff” un.der each sample. Presence-acceleration will
use a single sample for an arbitrarily large region if the
maximum value in that reeion is less than k.

94

Homogeneity-acceleration addresses the second problem,
and also incorporates an optimization outside of importance
sampling. If there is a region where the value of a function
is known, then it isn’t necessary to sample it. In area where
the volume is homogeneous, a single sample from the average
pyramid can provide a good approximation to the region of
homogeneity, regardless of how much “St@’ is in the region.
The ranges7 pyramid defined in Section 6 provides a good
heuristic for deciding whether an average value is a good fit
to the function. Not only is the size of the range of vol-
ume values encapsulated in the range27 pyramid,-but since
the volume values are scaled before the difference is gener-
ated, they represent over(under) estimates of the amount of
integrable “stuff” in the region of interest. The scaline nro-
cess-even correctly accounts for the increase in accum&&ed
opacity across the region, thus these estimates will diverge
appropriately as we move up the pyramid! and the range27
pyramid will limit inappropriate acceleration.

The range heuristic is not perfect in that errors in o affect
the rest of the ray computation, while errors in RGB are in-
dependent, so (Y should be more important. How much more
important depends on what follows in the computation, but
we don’t know anything about the rest of the computation,
because we are proceeding from front to back.

The implementation of homogeneity-acceleration is ex-
actly the same as the implementation of presence-
acceleration except that the maxsr(o) pyramid is replaced
everywhere with the ranges? pyramid.

7.4 Accumulated Opacity Algorithms

As we trace a ray through a volume from front to back, we
accumulate opacity. For instance, if we have an accumulated
p = .6, only 40% of the light we find will make it back to the
eye. This means that any mistakes we make will be similarly
scaled. Hall implemented a weight cutoff mechanism for a
ray tracer [7] and Levoy adapted this technique to volume
ray tracing: any rays which accumulated an (Y larger than
some threshold were terminated. Unfortunately this leads to
a svstematic bias in the imaee rll. We will develon or adant
two techniques to take adv&;age of accumulated opacii
without introducing a systematic bias: Russian Roulette [9 i ,
and p-acceleration.

7.4.1 Russian Roulette

Russian Roulette was developed as a way for parti-
cle transport codes to avoid simulating particles with low
weights without biasing the results. The algorithm reported
in [l] uses Russian Roulette to cut down on the bushiness of
shade trees in classic rav tracers. We use Russian Roulette
to cut down on the average penetration of rays into the vol-
ume.

Think of the ray as a particle. Every time it passes
through a voxel, there is some probability that the parti-
cle w& scattered by some of the material in the voxel.-This
probability p(t) is equal to m(t) at the voxel. We could end
the calculation at t with probability p(t) reporting I(t) as the
color of the particle, but this would lead to a high variance
in reported values. Instead, we tvnicallv modifv the color
of the particle according to the current weight and decrease
the weieht of the oarticle accordine to a(t). (This is the over
operat&.

” 1x1

Decreasing the weight of the particle is accom-
plished by increasing the accumulated p.) This continuous
calculation is correct, but it does the same amount of work
behind the opaque wall as in front of it. What we want is
a method to eliminate some of the computation without bi-
asing the result. In Russian Roulette, we probabilistically
terminate some of the rays which have low weight, but in-
crease the weight (and thus the amount of lieht reported bv)
the survivors go that the total amount of light found in t&6
whole image is not biased. We are also careful to ensure that
the average weight of rays achieving a given ,8 (accumulated

opacity) is also unbiased.

We note that Russian Roulette is a special case of impor-
tance sampling which takes into account accumulated opac-
ity /3(t), but not local luminance I(t).

The pseudo-code below implements Russian Roulette:

rgba Trace(volume, 0, D, t, maxt) C
rgba c;
rgba s;
float weight = 1.0, W;

c = semple(volume, 0 + t D) ;
while (++t < maxt) 1

W = weight * (1 - c.alpha);
if (W < Thresh) c

Pdie = 1 - W / Thresh;
choose x from CO. 1) ;
if (Pdie > x> 1

break ;
1 else C

weight *= l/(1 - Pdie);
1

1
s = sample(volume, 0 + t D>;
c = over(c, scaleRgb(s, weight));

/* note: only RGB are scaled */
1
return c;

1

7.4.2 P-Acceleration

p-acceleration adds the ability to accelerate after accumu-
lating opacity to homogeneity-acceJeration. Referring back
to Section 3, we see that sample density should vary in-
versely with increasing opacity. Intuitively, homogeneity-
acceleration takes weighted samples, in which each sample
has some bounded error. Before these samples are incorpo-
rated into the intensity integral, they are attenuated by the
optical distance along the ray. When the sample value is at-
tenuated, the error in the sample value is attenuated too. It
is reasonable then to attenuate the error estimate sampled
from the ranges7 pyramid before using it.

Note (comparing the tables in Figures 3 and 5) that for
a given value of k, p-acceleration will usually generate an
image with more error than homogeneity-acceleration be-
cause p-acceleration is realistic about the effects of errors
after opacity is accumulated, while homogeneity-acceleration
is relatively paranoid.

We modify line [l] of the code for homogeneity-
acceleration to implement P-acceleration:

rgba Trace(pyramid, range, k, 0, D, t, maxt) 1
rgba c, s;
int level = 0;

c = (O,O,O,O);
while (t < maxt) I

if ((level ==- Oi I I
Cl1 (1 - c0.a) *

(sample(range, level, 0 + t D> <= k)) f
s = sample(pyramid, level, 0 + t D> ;
c = over(c, s>;
t += pou(2, level++) ;

) else {
level-- ;

1
1
return c;

1

Figure 2 has a graph showing the history of a ray traced
using p-acceleration. Notice how the ray skips quickly across

95

empty space until it hits the lobster’s claw, where it samples
carefully until accumulated opacity builds up. Then the ray
accelerates exponentially through the rest of the volume (by
moving up through the pyramid), approximating the rest of
the volume including the lobster’s other claw with only four
samples. The ability to produce these graphs interactively
during rendering was a great debugging aid.

8 Results

All of our experiments were run on the same test data (shown
in Figure 7’). The cylinder head data set was classified and
shaded to include a few very opaque regions, a lot of homo-
geneous nearly transparent regions, and hardly any empty
space (although there is some). Although homogeneity-
acceleration can skip over empty space as well as presence-
acceleration, it needs a fuzzy dataset like this one to signifi-
cantly outperform presence-acceleration.

Figure 3 shows that homogeneity-acceleration and pres-
ence acceleration are about 30% faster than vanilla volume
ray tracing for this dataset when constrained to make no er-
ror. Homogeneity-accelerationis able to degrade image qual-
ity smoothly with increasing Ic, while presence-accelerationis
bimodal, making no error at all, and then suddenly jumping
to 10% error. Presence-accelerationmakes this sudden jump
because the dataset has large regions of low opacity. As soon
as t is large enough to allow Presence-acceleration to move
above level 0 anywhere! it moves quite high in the pyramid.
Homogeneity-acceleratzon degrades more gradually because
(as mentioned above) it’s range values are scaled to take into
account the size of the region sampled. The acceleration
methods generally do better with the number of samples,
than they do with the number of seconds, when compared
to the Fixed Step Multiresolution method, because of the
extra overhead necessary to find the right level for stepping.
Note that if vou are willing to nut UD with 5% imaee error.
homogeneity:acceleration rins about-3 times faster ihan the
vanilla ray tracer (taking less than one sixth as many sam-
ples), and more than twice as fast as the best run of presence-
acceleration which has less than twice the error (k is evenly
spaced in both cases for a fair comparison).

In Figure 4 we can see that Russian roulette does about
10% better than no Russian Roulette as long as the threshold
variable is kept high enough so that the added error is low
(above about .9), but lowering the threshold variable further
doesn’t speed calculations much, while adding noise to the
resulting picture. This result holds for both vanilla Russian
Roulette ind Russian Roulette combined with homogeneity-
acceleration.

Figure 5 demonstrates that p-acceleration clearly dom-
inates Russian Roulette, and is at least a 10% improve-
ment over s:imple homoueneitv-acceleration. Clearlv. given a
homogeneity-&celerati& implementation, p-acce&&ion is
worth the eight extra kevstrokes that it takes to imDlement.
We summa&e the perfo”rmance of p-acceleration compared
to the previous state of the art in Figure 6. If we are will-
ing to accept an image error of 5010, p-acceleration outper-
forms the empty space skipping algorithm in [II] (including
a-Termination) by a factor of 2.74 in this experiment.

9 Discussion

We have ex.tended the volume homoaeneitv ideas of Laur

F, lo], and the volume presence ideas 01 Levoy [ll], by com-
inine. them with imoortance samnline. The resultinE al-

gorith;n is simple and has markedl; &proved performvance
over previous volume ray tracers, while retaining the intrin-
sic image quality advantages of ray tracing as compared to
splatting.

Although ,O-acceleration is fast, it is hardly fast enough
for real time rotation, even with the addition of progressive

and adaptive refinement [2; 151. Splatting [lo] can support
real time rotation, but image quality suffers even at peak
resolution. We exnect that it should be possible to construct
a volume beam tiacer which combines the image quality of
ray tracing with the performance of splatting.

Since the quality of images produced with p-acceleration
degrades smoothly with increasing values of L, it would be
reasonable to use Ic as an interactive or automatic control for
adjusting the speed vs. image quality tradeoff. L could be
tied to the rotation rate for example, so that images could
be generated very quickly while the volume is moving. In
the Fixed Step Multiresolution method, the user picks the
number of samples (or speed), and gets an image with some
error. In p-acceleration the user specifies an error, and the
algorithm picks the number of samples.

We would like to see importance sampling combined with
stratified sampling [8; 161 (also known as quota sampling)
to justify and perhaps refine the commonly used technique
of adantive refinement 12: 19: 151. In stratified samnline.
the sakple space is broken ub into disjoint regions, and-i
fixed number of samples are generated in each region. A
new sample distribution is generated according to the sam-
pled variance of each region, and the sampling proces,s is
repeated until all of the regions achieve an acceptable sam-
pled variance.

Further research in volume rendering and global illumi-
nation of volumes will benefit from a careful studv of the
existing Monte Carlo literature as the problem of tracking
light in a semi-transparent volume is very closely related to
the problem of tracking particles.

10 Acknowledgments

Thanks to Larry Aupperle for thinking of ,f3-acceleration,
pointing us in the right direction., and otherwise making lthis
work possible. David Laur contributed ideas,. structure, ;and
a superb graphics environment. We thank Sdicon Graphics
Incorporated for a generous equipment grant. This resea.rch
was funded in part by the National Information Display Lab-
oratory at David Sarnoff Research Center.

References

PI

PI

[31

[41

t51

[61

[71

PI

Arvo, James and David Kirk “Particle Transport and
Image Synthesis” Computer Graphics Vol. 24, No. 4,
August 1990

Bergman L., H. Fuchs, E. Grant, and S. Spach “Image
rendering by adaptive refinement,” Computer Graphics,
Vol. 20, No. 4, August 1986, pp. 29-37

Carter, I,. L. and E. D. Cashwell “Particle-Transport
Simulation with the Monte Carlo Method” Technical
Information Center, Energy Research and Development
Administration 1975 ISBN o-87079-021-8

Coveyou, R. R., V. R. Cain, and K. J. Yost, “Adjoint
and importance in Monte Carlo application” Nuclear
Science Engineering, No. 27, pp. 219-234 (1967)

Drebin, R.A., L., Carpenter and P. Hanrahan, “Volume
Rendering” Computer Graphics, Vol. 22, No. 4, August
1988, pp. 65-74

Garrity, M., “Ray Tracing Irregular Volume Data,”
Computer Graphics, Vol. 24, No. 5, November 1990

Hall, R., and D. Greenberg “A testbed for realistic im-
age synthesis,” IEEE Computer Graphics and Appbca-
tions, Vol. 3, No. 10, November 1983, pp. 10-20.

Hammersly! J. M., and D. C. Handscomb, “Monte Catrlo
Methods,” m Methuen’s Monographs on Applied Proba-
bility and Statistics, Methuen and Company, Ltd., Lon-
don, 1964..

96

[9] Kahn H., “Use of Different Monte Carlo Sampling Tech-
niques” Symposium on Monte Carlo Methods, Univer-
sity of Florida, March 1954 Credits J. von Neumann
and S. Ulam with the idea of Russian Roulette

[lo] Laur, D.., and P. Hanrahan, “Hierarchical Splatting: A
Progressive Refinement Algorithm for Volume Render-
ing” Computer Graphics Vol. 25, No. 4, July 1991, pp.
285-288

[ll] Levoy, M., “Efficient Ray tracing of Volume Data”
ACM Transactions on Graphics, Vol. 9, No. 3, July
1990

[12] Levoy, M., “Volume Rendering by Adaptive Refine-
ment” The Visual Computer, Vol. 6, No. 1, February
1990, pp. 2-7

[13] Levoy, M., “Gaze-Directed Volume Rendering” Com-
puter Graphics Vol. 24, No. 2, March 1990

[14] Levoy, M., “Display of Surface from Volume Data”
IEEE Computer Graphics and Applications, Vol. 8, No.
3, May 1988, pp. 29-37

[15] Levoy, M.,
ment ,”

“Volume Rendering by Adaptive Refine-
The Visual Computer, Vol. 6, No. 1, February

1990, pp. 2-7

[16] Lux, I., and L., Koblinger “Monte Carlo Particle Trans-
port Methods: Neutron and Photon Calculations” CRC
Press 1990 ISBN o-8493-6074-9

[17] Max, N., P. Hanrahan, and P. Crawfis, “Area and Vol-
ume-Coherence for Efficient Visualization of 3D Scalar
Functions” Computer Graphics, Vol. 24, No. 5, Novem-
ber 1990

[18] Neeman, H., “A Decomposition Algorithm for Visual-
izing Irregular Grids” Computer Graphics, Vol. 24, No.
5, November 1990

[19] Painter, J., and K. Sloan, “Antialiased Ray Tracing by
Adaptive Progressive Refinement,” Computer Graph-
ics, Vol. 23, No. 3, July 1989, pp 281-288.

[20] Porter T., and T. Duff “Cornpositing Digital Images”
Computer Graphics, Vol 18, No. 3, July 1984, pp 253-
259

[21] Sabella, P., “A Rendering Algorithm for Visualizing 3D
Scalar Fields” Computer Grapks Vol. 22, No. 4, Au-
gust 1988, pp. 51-58

[22] Shirley, P., and A. Tuchman, “A Polygonal Approach to
Direct Scalar Volume Rendering” Computer Graphics,
Vol. 24, No. 5, November 1990

[23] Upson C., M. Keeler, “V-BUFFER: Visible Volume
Rendering” Computer Graphics, Vol. 22, No. 4, August
1988, pp. 59-64

[24] Wilhelms, J. and A. Van Gelder “Octrees for Faster
Isosurface Generation,” Computer Graphics, Vol. 24,
No. 5, November 1990

[25] Wiih;lTaz:ri J. Challinger, N. Alper, S. Ramamoorthy,
“Direct Volume Rendering of Curvilinear

Volumes,” Computer Graphics, Vol. 24, No. 5, Novem-
ber 1990

[26] Williams L., “Pyramidal Parametrics,” Computer
Graphics, Vol. 17, No. 3, July, 1983, pp. l-11

;gg

2
300 400 500

1 igu/;
300 400 500

4iJyyygy-x;
300 400 500

Figure 2: The graph shows the history of a ray tracing through
a lobster’s claws (Figure 7). The top graph r6ga(t) plots RGBol
values along the ray at full resolution. Next, sampled rgba(t)
shows the scaled.samples as they appear to the P-acceleration
algorithm. Sample spacing is au indication of speed. Error plots
the value sampled from the range27 pyramid, and the largest
“acceptable” value = k/(1 - a). The latter is too small to be
visible in this graph because of the large amount of accumulated
opacity. Level plots the level in the pyramid that the ray tracer
is sampling in. Vertical lines denote no progress. l/(1 - alpha)
can be thought of as a scaling factor for k. Sum rgba plots the
accumulated color and opacity. Samples plots the total number of
samples. The ray tracer is moving more slowly where the samples
graph is steep. The ray moves quickly through empty space until
it hits a claw: the claw is traced at the lowest resolution until
enough opacity is accumulated, and then the ray tracer accelerates
exponentially through the rest of the volume.

97

4: 1 0.00 1 0.04 1 0.09 1 0.14 1 0.18 1 0.50
image error 0% 1 3% (4% (5% (8% 1 13% -

b--I- l=Tl-Tl
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20

image error image error

Figure 3: lZonlogel2tity-acctleration: Images show performance
of honlogtncity-acceleration for different values of k. Top row
displays resulting images. middle row shows absolute value of
pixel-wise difference of images from referennz image. Ref. irrl-
age was generated wit.h Fired Step Mu[firesolut~on method at
fuU yes. Bottom row shows samples per pixel. Plots show per-
formanceof hol,loge,leity-nccelerntion, pl.estllce-~ccelr:~atio?l. and
Fisetl Step Mulfirrsolu tion. Left plot shows seconds per image.
Right plot shows samples per pixel. Test images are 56 x 64.
dataset is 2.56 x 2.56 x 110.

-o- homog. (k=.02) + r. roulette
/;I ~~ EIyon

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
image ermr image error

Figure ij: z&.4ccelerat ion: images show performanl:e of ,j- occflfnction. Top row displays resulting images. middle row shows
the absolrcte value of pixel-wise difference of the images from refer-
ence image. Ref. image was generated with FiseA Sttp Alaltimso-
lu tion at. full res. Bottom row shows samples per pixel. Plots show
performanceof &nccel~mtion. honlogelltity-n~celtmtion. Hus&n
Roulettewith holllogclleity-acceleration. and Fixed Step .Uultircs-
olutiou Left plot shows seconds per image. Right plot shows sam-
ples per pixel. ‘Test images are 5~5 x 6-l. dataset is 2.56 x 256 x 110.

t homog. accel.

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
image error image error

F’i-? 1 we -2: Russian Roulette: images show performance of Rus-
sian Roulette combined with holllogeneity-ncctleration for differ-
ent values of Thresls. Top row displays resulting images. mid-
dle row shows absolute value of pixel-wise difference of images
from reference image. Ref. image was generated with Fi.ud
Step Multiresolution at full res. Bottom row shows samples peg
pisel. Plots show performance of Russian Roulette by itself. Rus-
sian Roulette with hom.ogelltity-accelerufion. plain hontogmtity-
ncceltmtion, and Fised Step ,~l~ltiresolution. Left plot shows sec-
onds per image. Right plot shows samples per pixel. Test images
are rifi x 64, dataset is 2.5fj x 2.56 x 110.

m reference

m presence acceleration (k=O)

m homogeneity acceleration

beta acceleration

D reference

m presence acceleration (k=O)

m homogeneity acceleration

engine: max image error = 0.05

Figure 6: Samples per pixel and seconds per image for
(from left) vanilla volume ray tracing, ~,‘tsel~(.‘-0~~~lt171tjoll with
k = 0 (Levoy’s algorithm), homogeneity-nc~.elr~ofion. and cJJ-
ncctleration. The dataset is the cylinder head shown in Figure 7.
The rendering geometry is the same. IVe took 56 x 6-I evenly
spaced samples in the image plane.

Plates 1-8: Volume renderings of head data, knee data and chaotic attractor data. Clockwise: sagittal translucent iso-surfaces view of head data
withhigh opacity, single iso-surface view of head data, two translucent iso-surfaces views of head data with different opacity levels, single iso-
surface view of chaotic attractor, translucent iso-surfaces view of chaotic attractor, translucent iso-surfaces view of knee data, and sagittal
translucent iso-surfaces view of knee data with high opacity. Head and knee data from the standard data sets of the UNC at Chapel Hill. (all data
is rendered as 2563 bytes)

V&ina, Fletcher, and Robertson, “Volume Rendering on the MasPar MP-1”

Figure 5: The test image of the SOD dataset.

Montani, Perego, and Scopigno, “Parallel Volume Visualization on a Hypercube Architecture”

99

Figure 9: CT data of an engine block. 128 by 1.28 by 110
voxels rendered with a supersampling of 16 rays per voxel.

Figure 10: CT data of a human spine. 128 by 128 by 107
voxels rendered with a supersampling of 16 rays per voxel.

SchrOder and Stall, “Data Parallel Volume Rendering as Line Drawing”

Upper Left - Volume data set (brain) with surface geometry objects. Upper Right - Volume of brain ventricles (blue) converted to
isosurface. Lower Left -Multimodal Imaging: MRI with EEG colormapped. Lower Right - Volume head with CSG cube subtracted.

Stredney, Yagel, May, and Torello, “Supercomputer Assisted Brain Visualization with an Extended Ray Tracer”

100

Figure 4: Integrated visualization of cortical surface
and cerebral blood vessels. Only blood vessels in the
proximity of the cortex are visualized. Two differ-
ent data sets were used: an MRA showing mainly
blood vessel signal and a 3D gradient-echo sequence
with good grey-matter to cerebrospinal fluid (CSF)
contrast.

Figure 2: Visualization of blood vessels in 3-D MRA.
Topleft: MIP of whole data set. Topright: Targeted
MIP by constraining the MIP to an intracerebral re-
gion. Bottomleft: Visualization according to equa-
tion 14. Bottomright: idem with a larger transition
value c resulting in even more disconnected vascular
structures.

Figure 3: Integrated color display of tumor (green)
and blood vessels (red). All structures are derived
from a single 3-D MRA image data set.

Figure 5: Top and lateral stereoscopic transparent
view of skin, tumor, ventricles and blood vessels.

Vandermeulen, Plets, Ramakers, Suetens, and Marchal
“Integrated Visualization of Brain Anatomy and Cerebral Blood Vessels”

101

Figure 2. Blunt fin near junction with flat plate. Figure 3. Velocity field of test rotating spherical shell.

Figure 4. Incompressible flow around cylindrical post. Figure 5. Flow around post looking down toward plate.

Van Gelder and Wihelms, Interactive Animated Visualization of Flow Fields

102

