
Information Processing Letters 73 (2000) 125–129

A general method to speed up
fixed-parameter-tractable algorithms

Rolf Niedermeiera, Peter Rossmanithb,∗
a Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Sand 13, D-72076 Tübingen, Germany

b Institut für Informatik, Technische Universität München, Arcisstr. 21, D-80290 München, Germany

Received 14 June 1999; received in revised form 17 November 1999
Communicated by K. Iwama

Abstract

A fixed-parameter-tractable algorithm, or FPT algorithm for short, gets an instance(I, k) as its input and has to decide
whether(I, k) ∈ L for some parameterized problemL. Many parameterized algorithms work in two stages: reduction to a
problem kernel and bounded search tree. Their time complexity is then of the form O(p(|I |) + q(k)ξk), whereq(k) is the
size of the problem kernel. We show how to modify these algorithms to obtain time complexity O(p(|I |) + ξk), if q(k) is
polynomial. 2000 Published by Elsevier Science B.V. All rights reserved.

Keywords:Algorithms; Parameterized complexity

1. Introduction

A parameterized problem usually consists of two
components—the input and aspects of the input that
constitute a parameter. For example, the NP-complete
VERTEX COVER problem has an undirected graphG
as its input and a positive integerk as its parameter;
the question is whether there is a set of at mostk ver-
tices that cover all edges inG. The central question
of parameterized complexity theory [5] is as follows:
Given a parameterized problemL with input sizen
and parameterk, is there an algorithm solvingL in
time f (k)nα , whereα is a constant independent ofk
andn andf is an arbitrary function depending only
onk. A problem with such an algorithm is calledfixed-
parameter-tractableand the corresponding complex-
ity class of problems is called FPT. VERTEX COVER

∗ Corresponding author. Email: rossmani@informatic.tu-
muenchen.de.

is in FPT [1,4,5], the currently best known FPT algo-
rithm running in time faster than O(kn + 1.3kk2) [3,
11,12].

There is, however, a problem concerning the defi-
nition of FPT—the functionf may grow arbitrarily
fast. Thus, there are currently only a few parameter-
ized problems known that have an (exponential) func-
tion f that grows as “slowly” as in the case of VER-
TEX COVER. The development of efficient FPT algo-
rithms hence is an active field of research [5,6,9]. To
the authors’ best knowledge, at least the majority of
efficientFPT algorithms known so far (e.g., [1,6,7,10,
11]) is based on the combination of two standard meth-
ods:bounded search treesandreductions to problem
kernel [5]. Here, we show how to significantly im-
prove all FPT algorithms based on the combination
of these two techniques. Hence, we contribute to the
positive toolkit for designing FPT algorithms, which
according to Downey and Fellows [5, p. 20] belongs

0020-0190/00/$ – see front matter 2000 Published by Elsevier Science B.V. All rights reserved.
PII: S0020-0190(00)00004-1

126 R. Niedermeier, P. Rossmanith / Information Processing Letters 73 (2000) 125–129

to the current research horizons in parameterized com-
plexity: “The positive toolkit for designing FPT algo-
rithms contains several key methods that are very deep
and general—but for which practicality is still not yet
clearly established”. In the following, we provide a
simple, practical, and generally applicable method to
speed up FPT algorithms.

The basic idea of improvement is in a sense tointer-
leavereduction to problem kernel and bounded search
tree method. More specifically, assume that we have
an FPT algorithm running in time O(p(n)+ q(k)ξk),
whereξ is a (small) constant andp andq are polyno-
mials. Moreover,ξk shall be the size of the bounded
search tree andq(k) the size of the problem kernel.
Then our new technique shows how to get rid of the
factorq(k), thus transforming the above algorithm into
a time O(p(n)+ ξk) one. It is important here to note
that this improvement is not due to asymptotic tricks,
but thatq(k) can be replaced by asmallconstant. We
shall just swiftly mention that our technique leads to
a significant improvement of the so-called klam val-
ues (cf. [5, pp. 13–14]) for many problems. For ex-
ample, consider VERTEX COVER again. The first non-
trivial parameterized algorithm for this problem had
running time O(kn+1.32472kk2) [1], recently further
developed to O(kn + 1.29175kk2) and recently even
further to O(kn+ 1.271kk2) [3]. Compare the growth
of the two functions 1.32472kk2 and 1.29175kk2. For
instance, fork = 100 the first one is bounded by
1.64× 1016 and the second by 1.32× 1015, hence
wherek = 100, it improves by a factor of roughly 12.
By way of contrast, the improvement from 1.29175kk2

to 1.29175k is a factor of about 10 000. In this context,
observe that the second improvement involves, due to
our technique, a small constant factor, which, however,
is by magnitudes smaller than 10 000. Summarized,
this shows that for practical parameter sizes (k ≈ 100
is very natural in the case of VERTEX COVER and
many other parameterized problems) our improvement
has a potentially much higher benefit than small (but in
no way trivial) improvements in the exponential baseξ

of the search tree size may have.

2. FPT algorithms

Many FPT algorithms work in two stages [5]:
Firstly, the instance is transformed into an equivalent

one that is smaller in size. To be specific, its size is
bounded by a function that dependson the parameter
only.This stage is calledreduction to problem kernel.
Secondly, the new small instance is solved recursively
by solving several derived instances withsmaller
parameters.Since the parameters in the recursive calls
are smaller, the recursion eventually terminates (either
by finding a solution or by realizing that no solution
exists because ofk 6 0). That stage is calledbounded
search tree.

In the following we describe each stage in more de-
tail and introduce all necessary notation that is needed
to improve the algorithm. We also illustrate some con-
cepts within the example of VERTEX COVER. The in-
stance of VERTEX COVER is an undirected graph and
a parameterk.The question the algorithm must answer
is whether or not a vertex cover of size at mostk ex-
ists. (A vertex cover is a subset of verticesC such that
every edge in the graph is incident to at least one ver-
tex inC.)

2.1. Reduction to problem kernel

Let L be a parameterized problem, i.e.,L consists
of pairs (I, k), whereI has a solution of sizek. In
the case of VERTEX COVER L consists of all(G, k),
whereG is an undirected graph that has a vertex cover
of size k. Reduction to problem kernel consists of
replacing the original instance(I, k) with a new one
(I ′, k′) so that

k′ 6 k, |I ′|6 q(k′),
and

(I, k) ∈L⇔ (I ′, k′) ∈L.
What is particularly important is that the size of the
new instanceI ′ is bounded by a function of the
parameter alone. We call this functionq . In general,
q might be arbitrary, but in this paper we restrictq to
being polynomial as is usually the case for efficient
FPT algorithms.1 In the case of VERTEX COVER,
reduction to problem kernel replaces an instance
(G, k) with an instance(G′, k′), where the new graph
G′ consists of at mostk(k + 1) vertices andk′ 6 k
(see [1,5] for details).

1 In general,k′ 6 k is not necessary. All results also hold ifk′ is
bounded by some polynomial ink.

R. Niedermeier, P. Rossmanith / Information Processing Letters 73 (2000) 125–129 127

LetR denote the function that performs the reduc-
tion to problem kernel, i.e.,R(I, k) = (I ′, k′) and let
P(|I |) be the number of steps required to perform the
reduction. We demandP be bounded by some poly-
nomial. For VERTEX COVER P(|G|) =O(|G|) if the
graph is represented by an adjacency list.

2.2. Bounded search trees

Let (I ′, k′) be an instance after reduction to prob-
lem kernel. Many algorithms solve the problem by
constructing a search tree that looks exhaustively for
solutions. In order to gain efficiency, branches will be
pruned. Pruning of branches is subject chiefly to two
conditions: Either we can be sure that the branch con-
tains no solution or, if there are two branchesA andB
we can pruneB if we can be sure that a solution inB
implies a solution inA of the same size at most. The
main objective to find ever more efficient FPT algo-
rithms involved decreasing the size of the search tree.
In the following we analyze first thesizeof the tree as
well, but then take a look at thetimetaken for process-
ing the tree. The next section building on this analysis
improves the overalltime to traverse the search tree,
but not itssize, which will not be affected at all.

In general, let(I, k) be a node of the search tree.
To solve (I, k), it is replaced by several instances
(I1, k−d1), (I2, k−d2), . . . , (Im, k−dm) so thatdi >
0 and|Ii |6 |I | for all i ∈ {1, . . . ,m} and(I, k) ∈L iff
(Ii , k − di) ∈ L for somei ∈ {1, . . . ,m}. The leaves
consist commonly of those instances withk 6 0.
Since alldi > 0, the children’s parameters are strictly
smaller and the tree has a finite size. An upper bound
on the size of the tree is easy to obtain by solving the
corresponding recurrence for the number of leaves:

Sk = Sk−d1 + Sk−d2 + · · · + Sk−dm.
The solution has the general formSk = 2(p(k)ξk),
where 1/ξ is the smallest positive, real root of the
reflected characteristic polynomial

1− zd1 − zd2 − · · · − zdm
andp(k) is a polynomial [8]. Ifξ is a unique root, as
is almost always the case,p is simply a constant and
thereforeSk =2(ξk). In the following we assume that
ξ is a unique root. If that were not the case, thenp is
not a constant, but some polynomial of degree> 0. In
that caseξk should be replaced byp(k)ξk in the next
section.

Finally, let R(|I |) be the time needed to compute
(I1, k−d1), (I2, k−d2), . . . , (Im, k−dm) from (I, k).
Again we demand thatR(|I |) be bounded polynomi-
ally. The overall time complexity for the second stage
bounded search treeis O(R(q(k))ξk).

3. Accelerating FPT algorithms

In the following, we will deal with a large class of
fixed-parameter-tractable algorithms. Let us summa-
rize the conditions that these algorithms have to un-
dergo: They have to be FPT algorithms that work in
two stages,reduction to problem kernelandbounded
search tree. Reduction to problem kernel takesP(|I |)
steps and results in an instance of size at mostq(k),
where bothP andq are polynomially bounded. The
expansion of a node in the search tree takesR(|I |)
steps, which must also be bounded by some polyno-
mial, the search tree size being O(ξk). The overall time
complexity of the algorithm is then

O
(
P(|I |)+R(q(k))ξk),

where (I, k) is the instance to be solved. In the
following we show how to modify the second stage of
the algorithm in order to improve the time complexity
to

O
(
P(|I |)+ ξk).

Generally, we now use the following algorithm to
expand a node(I, k) in the search tree:

if |I |> c · q(k)
then replace(I, k) with R(I, k) fi;

replace(I, k) with

(I1, k − d1), (I2, k − d2), . . . , (Im, k − dm)
Herec > 1 is a constant that can be chosen with the
aim of further optimizing the running time. There is
a tradeoff in choosingc: The optimal choice depends
on the implementation of the algorithm, but in the end
it affects only the constant factor in the overall time
complexity. Therefore we neglect optimizingc in this
paper.

A closer look shows that we in fact seem toincrease
the time needed to expand a node in the search tree.
This is generally speaking true: Sometimes we apply
reduction to problem kernel prior to splitting into

128 R. Niedermeier, P. Rossmanith / Information Processing Letters 73 (2000) 125–129

recursive calls. However, these additional reductions
to problem kernel alsodecreasethe instance size in
the middle of the search tree. Since the time for
splitting is bounded polynomially in theinstance size,
this also helps todecreasethe time to expand a
node. It proves to be the case that while we waste
time near the root of the search tree, we gain much
more time near the leaves. Note that the technique of
interleavingreduction to problem kernel and bounded
search trees was already used for developing efficient
FPT algorithms for VERTEX COVER [6,12]. There,
however, it was used to reduce the number of case
distinctions in the search tree; it was not considered
with the aim of removing the factorR(q(k)) as we do.

In order to analyze the running time of the above
mathematically, we describe the time to expand a node
(I, k) and all its descendants by a recurrence. LetTk
denote an upper bound on thetime to process(I, k).
The following recurrence exists forTk :

Tk = Tk−d1 + Tk−d2 + · · · + Tk−dm
+O

(
P(q(k))+R(q(k))).

The time to expand(I, k) itself is at most O(P (q(k))+
R(q(k))), since |I | = O(q(k)) since |I | > c · q(k)
is constantly prevented. In order to solve this non-
homogeneous linear recurrence we need a special so-
lution. To get its general solution we add the gen-
eral solution of the corresponding homogeneous recur-
renceTk = Tk−d1+Tk−d2+· · ·+Tk−dm . However, we
already know that all solutions of this homogeneous
recurrence are bounded by O(ξk). Consequently we
are only required to find a small special solution of
the non-homogeneous recurrence. In our case the in-
homogeneity is a polynomial. Therefore, there exists a
special solution that is also a polynomial ink. It is easy
to construct such a special solution explicitly. There is
always a polynomial solution that has the same degree
as the inhomogeneityp. (If r is a polynomial special
solution then

r(k)−
m∑
i=1

r(k − di)= p(k)

and the highest degree monomials on the left side
cannot cancel each other.) All solutions ofTk are
therefore bounded by O(ξk).

In order to illustrate this, let us consider the follow-
ing recurrence.

Tk = 2Tk−1+C · k2+D · k +E,
whereC,D andE are constants that depend on the im-
plementation of the algorithm. The initial conditions
are simple, say,T0 = 0. The reflected characteristic
polynomial is 1−2z and its unique root is12. The gen-
eral solution of the homogeneous recurrence isλ2k for
λ ∈R. Since it is a recurrence of first order, the dimen-
sion of its space of solutions is one, too.

A special solution is

Tk =−Ck2− (4C +D)k − (6C + 2D +E).
The general solution is then

λ2k −Ck2− (4C +D)k − (6C + 2D +E)
and the solution forT0= 0 is

Tk = (6C + 2D+E) · 2k −Ck2

− (4C +D)k − (6C + 2D +E).

4. The modification is necessary

In this section, we show that an improved analysis
alone cannot achieve the speedup of the last section.
That is, the interleaving of reduction to problem kernel
and the bounded search tree really is necessary to
get the claimed improvements. Without modification,
the algorithms in general have a running time of
�(P(|I |)+R(f (k))ξk). As an example, we can again
use VERTEX COVER. Look at Fig. 1 for a definition
of a family of instances of VERTEX COVER defined
for oddk. There is no solution of size6 k, since the
optimal vertex cover has size52k− 3

2 (in the headk−2
vertices and half the vertices of the tail). The graph
contains exactly(k − 1)(k − 2) + 1 vertices in the
head and 3k+1 vertices in the tail (altogetherk2+4).
Reduction to problem kernel does not affect this graph
since the degree of every vertex is at mostk, although
its size is very near the maximum possiblek(k + 1).
Now assume that the unmodified algorithm chooses
edges from right to left. This leads to a search tree
of size 2k, the largest possible. While the algorithm
examines this graph, it removes nodes and edges, but
theheadremains unchanged. Consequently, instances
have size�(k2) duringeachsplitting step. The overall

R. Niedermeier, P. Rossmanith / Information Processing Letters 73 (2000) 125–129 129

Fig. 1. An instance of VERTEX COVER. The following graph is thek = 15 member of a family of instances(Gk, k) for VERTEX COVER. The
graphGk consists of a tree with degreek− 1 and depth 2 to which a path with 3k+ 1 vertices is attached (called thetail). It is easy to see that
the smallest vertex cover forGk has size5

2k − 3
2 and therefore the whole family has no members in VERTEX COVER.

time complexity therefore is the worst possible—
�(k22k). Of course, a better time complexity can also
be achieved by changing the order of choosing edges.
Nevertheless, the time bound is2(k22k) in the worst
case.

After the modification the running time is decreased
tremendously. After thesecondedge is removed andk
decreased by two, the whole head is removed from the
graph.

5. Conclusion

We introduced a new, simple, and prospective tech-
nique for speeding up FPT algorithms based on reduc-
tions to problem kernel and bounded search trees. As a
rule, the potential for improvement due to our method
increases the larger the problem kernel in the under-
lying parameterized problem is. For example, associ-
ated candidate problems (see [5] for details) arek-Leaf
Spanning Tree (problem kernel size O(k2)) [2] and
Hitting Set for Size Three Sets (problem kernel size
O(k3)) [10]. Thus, our method belongs in the toolkit
of every designer of efficient FPT algorithms.

References

[1] R. Balasubramanian, M.R. Fellows, V. Raman, An improved
fixed parameter algorithm for vertex cover, Inform. Process.
Lett. 65 (3) (1998) 163–168.

[2] L. Cai, J. Chen, R.G. Downey, M.R. Fellows, Advice classes
of parameterized tractability, Ann. Pure Appl. Logic 84 (1997)
119–138.

[3] J. Chen, I. Kanj, W. Jia, Vertex cover: Further observations and
further improvements, in: Proc. 25th International Workshop

on Graph-Theoretic Concepts in Computer Science, Ascona,
Switzerland, Lecture Notes in Computer Sci., Springer, Berlin,
1999.

[4] R.G. Downey, M.R. Fellows, Parameterized computational
feasibility, in: P. Clote, J. Remmel (Eds.), Feasible Mathemat-
ics II, Birkhäuser, Boston, MA, 1995, pp. 219–244.

[5] R.G. Downey, M.R. Fellows, Parameterized Complexity,
Springer, Berlin, 1999.

[6] R.G. Downey, M.R. Fellows, U. Stege, Parameterized Com-
plexity: A Framework for Systematically Confronting Compu-
tational Intractability, in: R.L. Graham, Kratochvi, J. Nesetril,
F.S. Roberts (Eds.), Contemporary Trends in Discrete Mathe-
matics: From DIMACS and DIMATIA to the Future, DIMACS
Series in Discrete Mathematics and Theoretical Computer Sci-
ence, Vol. 49, AMS, Providence, RI, 1999, pp. 49–100.

[7] H. Fernau, R. Niedermeier, An efficient exact algorithm for
constraint bipartite vertex cover, in: Proc. 24th Conference
on Mathematical Foundations of Computer Science, Szklarsk
Poreba, Poland, Lecture Notes in Computer Sci., Vol. 1672,
Springer, Berlin, 1999, pp. 387–397.

[8] D.H. Greene, D.E. Knuth, Mathematics for the Analysis
of Algorithms, 2nd edn., Progress in Computer Science,
Birkhäuser, Boston, MA, 1982.

[9] R. Niedermeier, Some prospects for efficient fixed parameter
algorithms (Invited Paper), in: B. Rovan (Ed.), Proc. 25th Con-
ference on Current Trends in Theory and Practice of Informat-
ics (SOFSEM), Lecture Notes in Computer Sci., Vol. 1521,
Springer, Berlin, 1998, pp. 168–185.

[10] R. Niedermeier, P. Rossmanith, An efficient fixed parameter
algorithm for 3-Hitting Set, Technical Report WSI-99-18, WSI
für Informatik, Universität Tübingen, Germany, 1999.

[11] R. Niedermeier, P. Rossmanith, Upper bounds for Vertex Cover
further improved, in: C. Meinel, S. Tison (Eds.), Proc. 16th
Symposium on Theoretical Aspects of Computer Science,
Lecture Notes in Computer Sci., Vol. 1563, Springer, Berlin,
1999, pp. 561–570.

[12] U. Stege, M. Fellows, An improved fixed-parameter-tractable
algorithm for Vertex Cover, Technical Report 318, Department
of Computer Science, ETH Zürich, April 1999.

