
F. W. KROON The Intrinsic Difficulty

of Recurs ive Funct ions

A b s t r a c t . This paper deals with a philosophical question that arises within the theory
of computat ional complexity: how to understand the notion of INTRINSIC complexity or
difficulty, as opposed to notions of difficulty that depend on the particular computational
model used. The paper uses ideas from Blum's abstract approach to complexity theory to
develop an extensional approach to this question. Among other things, it shows how such
an approach gives detailed confirmation of the view that subrecursive hierarchies tend to
rank functions in terms of their intrinsic, and not just their model-dependent, difficulty,
and it shows how the approach allows us to model the idea that intrinsic difficulty is a

fuzzy concept.

Key words: recursive functions, computational complexity, subrecursive hierarchies.

I n t r o d u c t i o n

Thanks to the massive evidence in favour of the Church-Turing thesis, we are
accustomed to thinking of effectiveness as an absolute or intrinsic notion: a
proper ty of functions and sets ra ther than of algorithmic ways of representing
functions and sets. 1 What about the notion of difficulty? Here mat ters look
less promising. We may think that effective functions and problems tha t
cannot be computed or solved when applied to small arguments, even if all
the space and t ime of the physical universe is at the disposal of the fastest
computer tha t physics can allow for, must surely count as difficult for any
agent and in any situation. But it is not hard to convince oneself that while
effectiveness is a logico-mathematical absolute, the same is not true of such
a notion of difficulty. From the point of view of possible universes where
space and t ime are infinite and mat te r continuously replenished, difficulty of
this kind will not seem such an important notion.

1For a good summary, see [9]. [26] contains a sensitive discussion of the extent to which
the Church-Turing Thesis admits of proof.

Presented by J a n Z y g m u n t ; Received August 8, 1994;

Studia Logica 56: 427-454, 1996.
�9 1996 Kluwer Academic Publishers. Printed in the Netherlands.

428 F. W. Kroon

This paper is about absolute or intrinsic notions of (comparat ive)dif-
ficulty that are not seriously subject to such complaints. 2 The problems
facing such notions are formidable. Consider again the main body of evi-
dence favouring Church's Thesis: the fact that a host of different ways of
delineating a class of effective or computable functions all happen to pick out
the same class of functions. In the case of the notion of difficulty, however,
we usually have in mind-some designated way of delineating this class. The
problem that then inevitably arises is that any fine-grained classification of
functions in terms of the complexity of associated definitions or algorithms
may really be quite parochial even though there is nothing parochial about
the class of all the functions thus classified. This is so even if we rank func-
tions in terms of their most 'efficient' associated definitions or algorithms
(assuming these exist), simply because what counts as an 'efficient' defini-
tion or algorithm itself depends crucially on the chosen way of delineating
computability.

Thus consider the various familiar operations that define the class of
primitive recursive functions, and suppose we classify primitive recursive
functions according to the number of times such operations are applied in
their least derivation. But such a classification depends crucially on the
choice of basic operations, with certain operations such as primitive recur-
sion looking decidedly more 'complex' than others. In addition, there is no
way of extending this procedure to all recursive functions, and no guaran-
tee that such an operation-based classification of the (primitive) recursive
functions will correspond to the sort of classifications we get once we move
to computation-based characterizations of the recursive functions (e.g., via
Turing machines).

In turn, computation-based characterizations have their own problems of
non-invariance. Such characterizations will often yield somewhat different
classifications depending on the computational model used (one-tape, multi-
tape; one-dimensional, multi-dimensional; and that is in the case of Turing-
machines alone) as well as the type of resource being counted (the number
of tape-cells used up and the number of steps taken, for example). So on the
computat ional approach too there is a danger of a lack of invariance that

2Alan Cobham ([S]) was the first to talk of intrinsic difficulty, and he introduced many of
the impor tant questions in this area. Note also the rather different use of the word 'intrinsic
difficulty' in some other places. Thus in Stockmeyer and Chandra [27], ' intrinsic difficulty'
refers to the obstacles to computation imposed by certain unalterable properties of the
universe: its resource-limits in terms of space and time. The term is also sometimes used
for the idea that a function's difficulty should be independent of the algorithms commonly
used for computing it, and should only reflect the fastest algorithms for computing that
function - - an idea which still leaves the idea of ' intrinsic difficulty' somewhat dependent
on the machine-model used for running the algorithms (see Glymour [l l] , p. 329).

The intrinsic difficulty... 429

threatens the notion of intrinsic comparative difficulty.
Is there a way out? In the case of the structural approach, these worries

look particularly devastating. Thus consider the following version of the idea:
tie intrinsic structural difficulty to place in a chosen subrecursive hierarchy
that is more sensitive to what operations should be primitive. Thus:

(i) f is intrinsically more difficult than g (in the structural sense) if g
belongs to a lower level than f in a sufficiently fine grained subrecursive
stratification of functions.

Because classes in subrecursive hierarchies tend to be closed under cru-
cial operations, this suggests that functions higher up can only be generated
using structurally more complicated patterns of generation, or structurally
more complicated functions, rather than just more applications of some ar-
bitrarily chosen set of operations; that is the sense in which (i) counts them
as intrinsically more difficult than functions lower down. 3 Thus put, the
structural approach faces the problem that there are many subrecursive hi-
erarchies: which do we choose, and why these? To suppose that we should go
for the finest subrecursive stratification possible suggests that such a notion
makes independent sense, but that is surely far from clear. 4 In addition,
there is the problem that subrecursive classifications defined over standard
well-orderings over codes for recursive ordinals tend to miss many recursive
functions, so that we are left unable to place an informative classification
on the functions missed out. On the other hand, subrecursive classifications
that fudge even slightly, for example by allowing all elementary-recursive
well-orderings, quickly fall foul of what is sometimes known as the Collaps-
ing Phenomenon, which predicts that every recursive function will suddenly
appear at a low level (w or w2). 5

3Thus Calude ([5], p. 78) talks of the Grzegorczyk hierarchy as one that classifies the
primitive recursive functions according to 'intrinsic difficulty'.

4It might be thought that sense could be made of the idea of the 'finest' subrecursive
stratification possible by considering the so-called 'slow growing hierarchy' {Ga} discussed
by S. S. Wainer and others (see, for example, Cichon and Wainer [6]). The G~ are broadly
defined as follows:
Go ---- constant 0,
G~+I = G ~ + I ,
G~ = Diagonal(G~)~<,~.
But while the slow growing hierarchy may provide a good way of measuring computational
complexity, with the complexity of a function measured by the least a such that the
function is computable via Ga-bounded time or space, it doesn't give us a purely structural
account of the complexity of functions apart from the Ga. For the la t ter we also need
operations to generate all the other functions that we want to assess in purely structural
terms.

5One of the classic papers here is Feferman [10].

430 F. W. Kroon

The second, computat ional approach may seem to offer more hope. The
most obvious way out of the quandary mentioned is to t ry something like
the following:

(ii) f is intrinsically more difficult than g (in the computional sense) if for
all algorithm-types P and all resource-types R, 6 there is a P-a lgor i thm
A for g such that , . for any P-algori thm B for f , B uses up more re-
sources of type R than A does when applied to x as input (for almost
all x, or almost everywhere - - that is, for all except a finite number ; I
abbreviate this to 'a.e. ')

But this characterization in turn raises the question of how we are to un-
ders tand the general concept of an algori thm-type and of a resource-type,
given that (ii) appeals to all algorithm-types and resource-types. More par-
ticularly, it raises the question of how we are to unders tand these general
concepts in a way that allows different functions to have different levels of
difficulty according to (ii). Questions like these do not bother those who
work in low-level complexity theory because of their willingness to work
with selected algorithm-types and resource-types. They bother us, however,
because of our logico-philosophical interest in the notion of intrinsic com-
parat ive difficulty.

The approach I shall take in this paper is the following. Given the prob-
lems facing a general structural notion of difficulty, I shall not develop (i)
fur ther , although the connection between subrecursive classifications and in-
trinsic difficulty will continue to interest us and will in fact be one of the
main themes of this paper (see especially section 5). I shall instead describe
a way of understanding (ii) that satisfies the guiding constraint of generali ty
implicit in talk of all algorithm- and resource-types, and yet is not so general
tha t it prevents us from achieving rankings of functions according to intrinsic
computat ional difficulty. Here I rely on the co-relative idea of a reasonable
or natural measure of difficulty: intrinsicness of difficulty on this account
has to do with a certain kind of invariance across na tura l measures. The
abstract basis of this account is sketched in sections 1 to 3, while section 4
looks at the idea in more concrete terms. In section 5 the account is compli-
cated by introducing the view that intrinsic difficulty is a fuzzy notion since
the idea of a natural measure is a fuzzy notion. I show that even so familiar
hierarchies of classes of functions rank functions in a highly intrinsic way, a
way tha t holds good for a large number of ways of resolving the vagueness
in the description 'natural measure' . This result thus demonstrates a degree

SAlternatively, R could be a fixed resource-type such as number of steps used in the
course of a computation, with intrinsic difficulty being relative to resource-type used.

The intrinsic di t f iculty. . . 431

of convergence between the structural and computational approaches to in-
trinsic difficulty. While neither this result nor the other results in the paper
are particularly difficult to prove or answer outstanding technical problems
in the theory of complexity, they seem inherently interesting, and should
thereby help to confirm the methodological virtues of the paper's approach
to what remains a puzzling philosophical question.

1. I n t r i n s i c d i f f i c u l t y a n d m e a s u r e s of c o m p u t a t i o n a l c o m -
p l e x i t y

Account (ii) above talked of algorithm-types P and resource-types R in
general. The most productive approach to this schematic idea is Manuel
Blum's axiomatic approach which studies implications of a purely recursion-
theoretic way of defining measures of computational complexity, one that
makes no reference to particular algorithmic languages P or particular
resource-types R ([4]). Such an approach appears the best place to start
if something akin to (ii) is indeed to provide us with an understanding of
differences in intrinsic difficulty between functions.

As usual, we define complexity measures as follows:

DEFINITION 1.1 Let (r N (where N is the set of non-negative integers)
be an acceptable numbering of the unary partial recursive (p.r.) functions. 7
A sequence �9 = (Oi)ieN of p.r. functions is called a complexity measure
or Blum measure (with respect to the acceptable numbering (r if t h e
following two axioms are satisfied:

(a) r defined iff (~i(x)is defined

(b) (I)i(x) = y is a recursive predicate in i, x and y.

It is easily verified that the usual ways of counting resources used (such as
the number of steps taken by Turing Machine programs or Random Access
Machine programs, the number of tape-cells used during the course of (halt-
ing) Turing Machine computations, and so on, all correspond to measures of
complexity. And this suggests the following manoeuvre. Why not reformu-
late account (ii) above by quantifying over all measures of complexity rather
than, less precisely, over all algorithm-types P and resource-types R? But
this won't do, obviously. We then sacrifice the ability to grade functions ac-
cording to their intrinsic difficulty, for given any recursive function there are
infinitely many measures that assign it zero complexity everywhere. Hence

7See, for example, Rogers [24]. Note that measures are defined relative to some accept-
able numbering of the part ial recursive functions.

432 F. W. Kroon

any two recursive functions are identical in intrinsic difficulty according to
this way of interpreting (ii).

Consider instead:

(iii) f is intrinsically more difficult than g iff the following is true for all
(I) E Na, where N a is the class of 'natural ' measures: (a) given any
index i for f there is an index j for g such that Oj(x) < Oi(x) a.e.,
while (b) there is an index j for g such that for all indices i for f ,
(I)i(x) > Oj(x) for infinitely many x.

(This definition improves on (ii) in so far as part (a) also embodies an account
of g's being intrinsically no more difficult than f; when this holds in both
directions, f and g are of the same intrinsic difficulty.)

What we should aim for, it seems, is some reasonable definition of the
class N a of 'natural ' measures. But what counts as reasonable? Much
work has been done on this problem (see, e.g., [2] and [13]). Arguably
the most promising approach is to agree on 'natural ' computational models
and 'natural ' resource-types first, and then to develop constraining axioms
that capture crucial elements of these 'natural ' models and resource-types.
Unfortunately, however, no agreement on what is to count as natural is in
sight. Here are two approaches:

(a)

(b)

concentrate on measures that count resources used in the course of
Turing-machine-type computations (Turing machine 'path measures')

also acknowledge step-counting measures based on flowchart programs
(or random access machine programs), conceptualized in terms of in-
structions that allow operations on numbers stored at register-addresses
(both 'test' operations 'PJl j,~' and 'assignment' operations 'i :=
FJl,...,Jn 3, where no a priori bound is placed on the kind of recursive
predicates and functions allowed to interpret P and F, and where any
such instruction counts as a simple instruction, effectively requiring
unit time.

These two approaches are quite different. (a), with its emphasis on
symbol-manipulation, considers the difficulty of mathematical objects from
the point of view of implementation of appropriate programs on a computing
device that manipulates 'bits' rather than numbers. (b) emphasizes struc-
tural and hierarchical features of computing devices. Both approaches have
merit. (a) is committed to a certMn strong kind of computational 'nominal-
ism', while (b) captures abstract 'inductive' features of computations (see,
for example, [2] and [29], section 2.2).

The intrinsic difficulty... 433

If we accept (b), then certain proposals based on (a) need to be re-
jected. In an impor tan t paper of some years ago, Theodore Baker appealed
to flowchart measures in order to cast doubt on a number of properties var-
iously proposed as fur ther constraints on Blum measures: properties like
'finite invariance' and 'density ' ([2]). Still, (b) presents us with a problem
from the point of view of the present paper. Nothing has been said about the
na ture of the predicates and functions that are allowed to feature in flowchart
programs; in fact, from the point of view of the abstract framework these
may be arbitrarily complex. One effect of this is that the recursive func-
tions become non-gradable under the proposed account of intrinsic difficulty
(iii). Thus suppose that we are given an interpretat ion J of the predicate
and function names in flowcharts, and suppose that the resulting enumera-
tion of programs yields an acceptable numbering of the p.r. functions. We
can define a flowchart measure based on J as a measure that counts each
instruction used in a computat ion based on such a program as taking unit
t ime. s It is now clear that for any (unary) recursive function f , there is a
flowchart measure that assigns to f a constant complexity-function)~x[k] for
some small k (viz., flowchart measures for flowchart programs that tolerate
'i := F j ' as a simple assignment instruction, where 'F ' is interpreted as f) .
Hence if f is more difficult than g according to one flowchart measure, it is
at least as easy as g according to another. Counting all flowchart measures
as natural , this makes grading impossible.

A weaker view is to acknowledge degrees of naturalness where flowchart
measures are concerned: if only easy (or perhaps computationally construc-
tive) functions and predicates are allowed to interpret the function- and
predicate letters ' F ' in simple test and assignment instructions, then the
resulting flowchart measure is natural to a high degree, whereas if relatively
complex functions are allowed to interpret 'F ' , then the ensuing flowchart
measure is na tura l to at most a relatively low degree. Larry Stockmeyer, for
example, thinks tha t no reasonable model should do an unrealistic amount
of computa t ion in one step, for example adding a number of length 2 ~ ([28],
p. 10), al though he doesn' t say what is to count as realistic.

In this paper I want to bypass the question of how best to give an inten-
sional characterizat ion of naturalness of measures in terms of additions to
the familiar Blum axioms. Like many others, in fact, I am not convinced that
one can rule out all obviously pathological measures by introducing fur ther
s t ructural constraints of this kind. Following Theodore Baker, I believe it

SOne intermediate option sometimes taken in the case of ordinary random access ma-
chine programs is to assign a logarithmic cost to every executed instruction, equal to the
sum of the lengths of all data manipulated implicitly or explicitly by the instruction. See
[29] for a summary of results.

434 F. W. Kroon

may be more useful to concentrate on the notion of a computat ional model:

The naturalness of a measure seems unavoidably connected to the ex-
istence of a corresponding model of computat ion, with recognizable
steps and intermediate results related in some way to the results of
the computat ions [E]ach step counted should have a recognizable
'effect' and produce a partial result (via a recognizable t ransformations
of a previous result) in any step measure. ([2], p. 22)

Rather than develop this sort of approach directly, however, I shall de-
velop an intermediate extensional approach, based on the following ideas.
Beginning with a paradigmatically natural measure (defined on a paradig-
matical]y natural model of computat ion) such as the step-counting measure
T associated with a one-tape Turing machine model using binary code, we
opt for a judicious choice of a class S of simulation-bounds or 'overheads' b
such tha t the resources M/(x) of t ime (space, etc.) needed for computing an
arbi t rary partial recursive function f on argument x on some other natura l
computat ional model amount to no more than b(Tg(x)) for some bounding
function b in S, where Tg(x) is the t ime needed for computing g(x) according
to T, and such that T/(x) similarly amounts to no more than b'(M/(x)) for
some b I in S. We say tha t T and M are S-similar in that case. (A for-
real definition appears below.) Using measure T, we then disregard 'slight'
differences - - up to the size of bounds in S - - between the computat ion
times of two partial recursive functions, and we decide that f is more diffi-
cult than g in this fudged S-dependent sense only when f takes a lot more
in the way of resources to compute than g does (roughly: when there is a
way of computing g such that each way of computing f on x takes more
than b(Tg(x)) steps for any simulation-bound b in S infinitely often, while
the converse doesn' t hold). If we unders tand ' f is more difficult than g' in
this way, it is easily seen that the assessment ' f is more difficult than g' can
be made highly measure-independent, holding true for all measures which
are S-similar to T, and hence, in virtue of the way we choose S, for many,
perhaps all, measures of difficulty that we are prepared to regard as natural
measures. In short, once f is more S-difficult in this sense than g, then it
may also be the case that f thereby becomes intrinsically more difficult than
g in the sense of proposal (iii).

Such an approach may seem disappointingly circular. For how do we de-
cide in the first place which simulation bounds are liberal enough to allow us
to capture all 'natural ' measures? But the situation is not nearly as bleak as
it appears. There are a large number of paradigmatically na tura l measures
which we know ought to belong. In addition, it may be easy to see tha t any

The intr insic d i f f i cu l ty . . . 435

measures not able to be simulated within the given bounds cannot rest on
any recognizable variation of familiar computat ional models, so that there
may be good a posteriori reasons for excluding them. This is presumably
why Stockmeyer thinks that 'a TM can simulate any reasonable model of
computa t ion with at most a polynomial increase in time or space' ([28], p.
10), and why van Emde Boas proposes an Invariance Thesis according to
which "'[r]easonable" machines can simulate each other within a polynomi-
ally bounded overhead in time [and a constant-factor overhead in space]'
([29], p. 5). 9

But there is another reason why I have adopted the extensional approach.
If I am right in suggesting that there may be a degree of vagueness involved
in the notion of a natural measure, we need a way of describing and assessing
the parameters of vagueness. As we shall see in section 5, the extensional
approach turns out to be particularly well-suited to this task.

2. S - i n v a r i a n t t h e o r i e s o f c o m p l e x i t y

The approach in this paper is the extensional approach just described. El-
ements of it were described some time ago, but without the philosophical
overtones I have introduced, in a short paper by Michael Arbib and Manuel
Blum ([1]). Its elaboration requires not just the abstract concept of a mea-
sure of complexity but Mso the concept of what I shall call a smear monoid ,
so called because relativizing complexity theories to these monoids results in
a smearing of computa t ion times (disregarding incremental differences be-
tween them, the permit ted level of disregard being determined by the smear
monoid) and a consequent enlarging of the number of measures over which
the induced complexity ordering remains valid.

Here are some central definitions:

DEFINITION 2.1 A s m e a r m o n o i d S is a monoid of 2-variable recursive func-
tions a : N • N --+ N , increasing with respect to the second variable,
with composit ion �9 satisfying a �9 a ' (x , y) = a (x , a ' (x , y)) , and with iden-
t i ty e(x , y) = y.

9In the case of both Stockmeyer and van Erode Boas, support for the polynomial
bound is mainly in terms of known alternatives to Turing machine models, van Emde
Boas also considers very fast parallel machines, and describes the evidence in favour of the
Parallel Computation Thesis, according to which 'whatever can be solved in polynomially
bounded space on a reasonable sequential machine can be solved in polynomially bounded
time on a reasonable parallel machine, and vice versa' ([29], p.5). This makes it clear that
'reasonable' in his Invariance Thesis applies in the first instance to machine-types (e.g.,
sequential or parallel).

436 F. W. Kroon

The complexity ordering induced by a complexity measure and smear
monoids is formally described in the next definition.

DEFINITION 2.2 Let S be a smear monoid, r a complexity measure, and f
and g p.r. functions. We say that

(1) f is no more difficult than g with respect to (O,S) (f <_o,s g) if (a)
the domain of g C_ domain of f , and (b) for every index i satisfying
r = g, there is an index j satisfying Cj = f and a a in S such that
a(x, Oi(x)) >_ '~j(x) for almost all x in domain g;

(2) g is more difficult than f with respect to (~, S) (f <o,s g) if f _<o,s g
but not g ~o,s f; and

(3) f is of the same difficulty as g with respect to (~, S) (f ~r if
f _<r g and g <r f .

(I shall call <o,s, - o , s and <o,s S - d e p e n d e n t c o m p l e x i t y re la t ions , and
the orderings they induce S - d e p e n d e n t c o m p l e x i t y o rde r ings . Note that
both <o,s and <o,s are transitive relations.)

The next definition defines a notion of equivalence of measures based on
the idea that different measures may induce the same S-dependent complex-
ity ordering:

DEFINITION 2.3 Two complexity measures �9 and �9 are S-equivalent
(~ = s ~) if, for all p.r. functions f and g, f <o,s g if and only if f <o,s g.

The relation ~ s is obviously an equivalence relation. The set of all
complexity measures S-equivalent to �9 will be designated [~]s. Since the
S-dependent complexity ordering induced by r and S is invariant up to
membership in [~]s, we call (~, S) an S-invariant theory of complexity.

The following definition suggests a useful criterion for membership in
[~]s. Informally, two (step-counting, say) measures are S-similar if their
underlying machine models can simulate each other with (time) overhead
taken from S. Formally,

DEFINITION 2.4 Let ~ and �9 be be complexity measures. Then

(1) ~I' <s ~ if for every j there exists an i and a a in S such that r = Cj
and a(x, ~2j(x)) >_ ~ (x) a.e. in the domain of Cj; and

(2) r and �9 are S-similar (d~ ~s ko) if both r <s ~ and �9 <s r

The intrinsic difficulty... 437

If follows almost immediately that S-similarity is a sufficient condition
for S-equivalence. (It is easy to show that S-similarity is not a necessary
condition of S-equivalence.)

Central to complexity theory is the notion of a complexity class. Arbib
and Blum [1] did not introduce an appropriately relativized analogue of this
notion, but such a notion is important to my development of the approach.
Informally, if R is a complexity class for theory ((I), S) then, whenever a
recursive function f is in R, any recursive function that is no more difficult
than f relative to theory (+, S) should also be in R.

DEFINITION 2.5 Let ~) be a complexity measure, t a total unary function,

and S a smear monoid. Then R~ r is a complexity class with respect to
theory (<~, S) if

RI+,s) + = U~esR~. t

(here a , t is just Ax[a(x,t(x)] and Rt + is a complexity class in the usual
sense i.e. the set of all total unary recursive f such that for some index i for
f , •i(x) <_ t(x) a.e.)

3. S - i n v a r i a n t a n a l o g u e s

Many of the most important results of axiomatic complexity theory apply
also to theories of S-invariant difficulty. The fact that such theories inherit
the rich structure uncovered in these results helps to confirm the naturalness
of an approach that looks to the behaviour of classes of measures rather than
single measures; more importantly, these theories thereby cast further light
on the topic of intrinsic difficulty. In this section I provide analogues of a
small number of important results of this type, largely chosen with an eye
on what they tell us about intrinsic difficulty. For the most part the proofs
involve routine modifications of existing proofs, and so for the most part I
omit the proofs or provide only a brief sketch.

The first result simply states that there is a systematic way of generating
functions that are more S-difficult than some given function. To begin with,
let us say that a set F of k-variable total functions : N k -+ N is r e c u r s i v e l y
b o u n d e d if there is an k-variable recursive function f such that , given any
t in F , f _> t for almost all members of N k.

We can now show that:

THEOREM 3.1 Given measure <~ and a recursively bounded smear monoid
S, there is a recursive h such that r <~,s Ch(i) for all i.

438 F. W. Kroon

SKETCH OF PROOF. Let t be a recursive bound for S, and given i define
the p.r. function g as follows:

g(O) = 1;

and for n > 0,

[undefined if Oi(x) is undefined for some 0 < x < n;
| 0, if C k (n) = 1, where k = # m [m < n ~ - -

g (n) = < t(n,
/ for every x < n, if Ore(X) < t (x , r then g(x) = Cm(X)];
t 1, otherwise

It can now be shown tha t every index j for g, we have ~ j (x) > t (x , ~ i (x))
at almost all x where r is defined. (For easily adap ted details, see, for
example, Har tmanis and Hopcroft [14]; Calude [5].) Because the definition
of g depends effectively on index i of r the theorem follows. �9

Note how this theorem bears on the topic of intrinsic difficulty: if the
class of na tura l measures N a C lo i s , then the const ruct ion of Theo rem 3.1
shows tha t there is an effective way of generat ing functions intrinsically more
difficult t han given functions.

Blum's Compression Theorem, too, has an S-invariant analogue, which
is wor th describing because of its role in the hierarchy result at the end of
this section. First we define a measured set:

DEFINITION 3.2 A measured set is a recursively enumerable 1~ set of unary
p.r. functions gi for which the 3-place predicate gi(n) = m is recursive.
(Clearly, the set {~i I i E N} of complexity functions of a given measure
is a measured set of functions.)

THEOREM 3.3 Let {gi I i E N } be a measured set, S a recursively bounded
smear monoid, and g2 a measure. Then there is a 2-place recursive funct ion
r such that

~(r
R (J c .

The proof is once again a routine adap ta t ion of the proof found in the
l i terature. See, for example, [5], p. 239.

We now state an analogue of Borodin 's Enumerabi l i ty Theo rem for com-
plexity classes. This, and the Union Theorem to follow, play a central role
in the proof of the hierarchy result at the end of the section.

1~ always, we say that a set C of k-ary p.r. functions is recursively enumerable ff there
exists a total recursive function h such that C = Uir where(r k)) is an acceptable

enumeration of the k-ary p.r. functions.

The intrinsic difficulty.. . 439

THEOREM 3.4 Let h and t be any recursive functions such that not only
h but all functions that differ from h at finitely many arguments belong to
R~t . I f S is a recursively enumerable smear monoid then, for any recursive

f such that f (x) >_ t(x) for all x, the complexity class R(] o's) is recursively
enumerable.

h is commonly specified to be the zero function in s ta tements of Borodin 's
original theorem. For a proof of that theorem, see, for example, [14], or [5],
3.4.28. Theorem 3.4 can be established by a routine generalization of that
proof. Note tha t recursive enumerability of associated complexity classes is
often regarded as one of the halmarks of 'natural ' measures ([2], [13]).

The next theorem is an analogue of McCreight and Meyer 's Union The-
orem. First , let us say that a set F of k-variable total functions is self-
b o u n d e d if for every finite F0 C_ F there is a t in F such that t (xl . . .kk) >
[max{f (x l , ..., xk) l f E F0}] a.e.

THEOREM 3.5 Let S be a recursively enumerable, self-bounded smear monoid
and let T be a recursively enumerable, self-bounded set of (unary) recursive
functions. For any complexity measure ~ there is a recursive t' such that

U~ETR~,S) ~(~,S) - - lfLt ,

The proof is agMn a routine generalization of existing proofs (e.g., in
[14]). 1'

The main result of the present section is a hierarchy result based on The-
orems 3.3 to 3.5, as well as the following well-known result due to McCreight
and Meyer:

THEOREM 3.6 (H O N E S T Y T H E O R E M) 12 For each Blum measure �9 there is
a measured set {r I i E N) such that if r is total then Cs(O is total and
R ~ = R r Cs(0"

11Here is a quick sketch. Suppose T -- {to,t1 } and S -- {ao,az,...}. Without loss
of generality, we assume for i >_ j that t~ > tj and ai >_ aj everywhere. With each
index i, we associate an integer-vzdued label g(i). The function t' can be constructed in
stages (starting at stage zero) as follows: Stage x: Let g(x) = x and let A(x) = {i <_

I r > ~g(0 * tg(0(~)}. If A(~) = r then set t'(~) = ~x * tx(~). If A(~) ~ 0 then
set t ' (x) = min{ag(0 * tg(i)(x) I i E A(x)}. For all i E A (x) , set g(i) = x; now go to
Stage x -t- 1. We can now verify the following two claims, which joint ly imply Theorem 3.5
(cf. [14]). Claim 1 For all indices i, t ' > ~r~. t~ a.e. Claim 2 If there exist indices r and k
such tha t ~r~. t ' > ~bk a.e., then there exists index i such that ai * ti > Ok a.e. �9

12The te rm 'Hones ty Theorem' captures the fact that , given a measured set M, there is
a to ta l recursive funct ion g such that functions in M are g-honest, where f is g-honest if
there is art index i for f such that (hi(x) < g(x , f (x)) for almost all x in the domain of f
(i.e., f ' s complexity 'honest ly ' reflects its size, modulo g).

440 F. W. Kroon

For a proof, see [5], pp. 241ff., for example.

Using the Honesty Theorem and the Union Theorem, it can now be
shown that :

FACT: Let ~ be a measure and S a recursively enumerable and self-
bounded smear monoid. Then there is a measured set {r [i E N} such

tha t for all i, if r is total then es(0 is total , and R(r 's) = R r
r

We finally come to our hierarchy result, Theorem 3.7. Al though o the r s
have no ted tha t the Compression and Honesty Theorems harbour a m e t h o d
for const ruct ing hierarchies (e.g., [5], p. 242), Bass and Young provide the
full details of such a hierarchy extended into the construct ive transfini te ([3]),
using Kleene's familiar system 0 of notat ions for the construct ive ordinals
(see, e.g., Rogers [24]). The following result generalizes their main result to
the case of S-invariant complexity theories:

THEOREM 3.7 Let �9 be a measure of complexity and S a recursively enu-
merable and self-bounded smear monoid. Then there exist recursive functions

td (d E O) such that (ntd)deO forms an increasing ordinal progression of

complexity classes (i.e., if d <o b then ~(~,s) ~((~,s) ~ d C ~ b). Furthermore, the
r ,)(~,S) td can be defined so that ~ dEO_r~td does not exhaust all recursive functions.

SKETCH OF PROOF. Given ~, let G be a measured set associated with
in accordance with the FACT above (so tha t G gives us an 'hones t ' way

of naming all the complexity classess of theory (~, S)). Let c be a uni-
form recursive compression function in the sense tha t , for some initial to ta l
funct ion ek, R(~ '8) C R ~ 's) C R ~ 's) C .. and where we either have ~(k) ~(~(k)) "'

(i) r --- r162 or (ii) r = h(r for some fixed recursive funct ion h.
(Thus in bo th cases, c is truly a compression mechanism on functions. 13
The procedure for obtaining c and G is an easy generalization of the proce-
dure described by Bass and Young.) For a sufficiently large to ta l recursive
funct ion ekeG (in case (ii), at least as large as the compression funct ion r
of Theo rem 3.3), we define the ordinal hierarchy based on ek as follows:

(I) t l = ek

(II) Notat ions for successor ordinals:
If ta = r set t2,~ ---- q~c(i)"

lZThe m e t h o d of cons t ruc t ion is easy if we d o n ' t insis t on this . T h u s i f G =- (r
we can set r ---- H(~b~(i)), for any func t ion or t o t a l effective ope ra to r H a t leas t as big
as t he compress ion func t ion r of T h e o r e m 3.3. (Note t h a t ~bl ---- r d o e s n ' t g u a r a n t e e

The intrinsic ditticulty... 441

(III) Notat ions for limit ordinals:
If a = 3.5 ~ E O, choose t~ such tha t RIo's)= U~Rtr) , ' ~ and t~ E G. ~()

To do this, use the Union Theorem (Theorem 3.4) and the Honesty Theorem,
the la t ter in order to keep t~ within G so that (II) can be reapplied.

Note tha t in case (ii), UdeoRl~ 's) ~ set of all recursive functions. Rea-
son: According to Blum's speed-up theorem, for every recursive r there are
arbitrari ly difficult recursive functions f with r-speed-up (i.e. such tha t if i
is an index for f then there is an another index j for f such tha t (I)i(x) _>
r(x, (~j(x)). 14 It is now not difficult to show tha t if r is a monotonical ly
increasing funct ion growing at least as fast as h, then for any recursive func-
t ion f with r-speed-up, f E U~eoRI o's) iff f E R ~ 's). It follows there
are arbitrari ly difficult functions not in our hierarchy. The result again uses
ideas in [3]. �9

COMMENT: If N a C [(I)]~s, this result has the following bearing on
the topic of intrinsic difficulty. It establishes the existence of hierarchies of
recursive functions (Hd)deO tha t are not only ordered according to difficulty
with respect to measure r but are also ordered according to their intrinsic
difficulty: functions in Ha - Hd (for d < o b) are never as intrinsically easy
as funct ions in Hd.

4. N a t u r a l m e a s u r e s a n d t h e p r o b l e m o f h o w t o s e l e c t a n
a p p r o p r i a t e l y i n v a r i a n t t h e o r y o f c o m p l e x i t y

In this section, I briefly consider the question of the selection of an appropri-
ate (I) and S, for the actual grading of recursive functions depends on making
such a selection. Before doing this, however, let me briefly survey what is
involved. Our fundamenta l interest is in the following relations between p.r.
functions.

DEFINITION 4.1 Let N a be the set of natural measures, as before. Then

(1) f is intrinsically as easy as g (f -(Na g) if[(a) domain g C_ domain f
and (b) given any measure (I) in Na , for all i such tha t r = g there is
a j satisfying Cj = f such tha t r > r a.e. in domain g.

(2) g is intrinsically more difficult than f (f <Na g) iff f -<Nag and

g $ Naf.

14Presentations of the Speed-up Theorem can be found in Blum [4], Calude [5], Hart-
manis and Hopcroft [14] and Seiferas [25], among other places.

442 F. W. Kroon

(3) f has the same intrinstic difficulty as g (f =Na g) iff f GNa g and

g -<Na f"

This is just account (iii) of section 1 above.

The connection between the 5,-invariant approach and the theory of in-
trinsic difficulty is then given by:

[C]: If N a _C [O]s and f :~ r then f :~ Nag"

(Note that it is not universally true that if N a C [O]s and f <r g, then
f <Na g, since f <r g is consistent with f being substantially harder than
g (although within bounds dictated by 5'). In specific cases, however, we can
often say more: thus in the case of Theorem 3.1, the construction ensures
that if N a G [r we not only have r <r Ch(i) but also r "(Na Ch(i)')

Claim [C] provides the connecting link between the theory of intrinsic
computational difficulty and the 5,-invariant approach to complexity theory
which offers only 5,-dependent complexity orderings. As before, let T be
the natural step-counting measure associated with some familiar version of
one-tape Turing machines using binary code. By choosing an 5' that is large
enough to make all natural measures 5'-equivalent to this paradigmatically
natural measure T, we can then say specific things about the intrinsic differ-
ence in computational compexity between various recursive functions. But
note that if we make 5' so large that it contains all 2-place recursive functions
increasing in their second variable, we lose the ability to grade functions,
since all complexity measures are recursively related ([4], [14], [25]). In that
case, we never have f 5~ r and can never apply Claim [C]. If, on the
other hand, we choose the smallest 5, possible, 5'rain = {e = ,~xy[y]}, then
our theories will have only a very limited degree of invariance; variations in
the encoding technique or in the number of working tapes available can then
be sufficient to invalidate results.

We list two rather more useful choices of 5'. The first choice is:

DEFINITION 4.2 5'* = {f I f (x , y) = p(l(x),y) for all x, y, where p is a
polynomial, increasing with respect to its second variable and l(x) is the
'length' of x in binary }

Simulation proofs show that the equivalence class [T]~s. and hence also
[T]s. includes an impressive array of different step-counting measures for
Turing machines, for example step-counting measures based on a Turing
machine model that includes a fixed number of multi-dimensional tapes as
well as facilities like fast rewinds and head-to-head jumps. It also includes
a number of step-counting 'flowchart' measures associated with certain fa-
miliar random access models, for example the model that uses addition and

The intrinsic difficulty... 443

subtraction as its only arithmetic instructions. (For a survey of simulation
results of this type, see [29].)

The following simple result says that the class P of functions whose
complexity can be bounded by some polynomial in the (binary) 'length' of
their inputs (a class first introduced in Cobham [8]) comprises the easiest
possible functions in the complexity theory assodated with measure q) and
smear monoid S*, for any (I) S.-equivalent to T. (Strictly speaking, the
recursive functions of this and subsequent results are assumed to be unary
functions, and in talking of sets of recursive functions like P we are usually
talking of their restrictions to unary recursive functions.)

THEOREM 4.3 Let �9 be in [T]s.. Then for every recursive f and g, if f E P

then f <~,s. g. More particularly, we have: P = R(o T'8*).

Consider also the following smear monoid:

DEFINITION 4.4 Se = {f [f is a 2-variable function in E, increasing with
respect to y} (where the class E of elementary functions is the smallest class
of functions containing the zero function, the successor function, the projec-
tion functions, exponentiation, and closed under composition and bounded
recursion).

In the associated theory (T, Se) we have:

TItEOREM 4.5 Let ~ be in [T]se. Then for every recursive f and g, f E

implies that f <r g. In particular, g = R(0 T'sD.

Because of the much faster growth rate of many of the functions in S~, the
S-dependent complexity assessments we make in this theory are much cruder
than assessments possible in the theory (T, S*). In particular, most familiar
functions turn out to be Se-equivalent in difficulty. On the other hand, there
is one consideration that possibly favours working with a monoid like Se, or
at least one containing some fast-growing functions such as exponentiation.
There are a number of seemingly reasonable step-counting measures that do
not belong to IT]s. but do belong to [T]sE. Thus consider the step-counting
measure associated with Turing machines using unary code. Better still
(since the former are notoriously unwieldy), consider the flowchart measure
whose underlying random access machine model counts multiplication as
well as division as fundamental (see, for example, Hartmanis and Simon [15]),
which is equivalent in power to Pratt and Stockmeyer's vector machine model
([21]); or consider machines that can do parallel computing (for details, see

444 F. W. Kroon

van Emde Boas [29]). By using Se, we make sure that the corresponding
S-dependent complexity assessments hold for these measures as well, and
thereby increase the likelihood that our S-dependent complexity assessments
hold for natural measures in general; we thereby also increase the likelihood
(using claim [C]) that judgements of the form f :~ T,seg always correspond
to genuinely intrinsic complexity orderings f :~ Nag-

All this is consistent, of course, with saying that in general there may be
a difference in intrinsic complexity between f and g even though there is no
difference between them in terms of smeared complexity relations like ----'T,Se
o r ~--T,S. (that is, we may have f~T,s~g or f~T,S.g even though f ~ Nag)-
In particular, claim [C] is consistent with saying that there are fine-grained
intrinsic complexity differences among the elementary functions, as well as
among the functions computable in polynomial time. Theories like (T, S*)
or (T, Se) don't deny this; in conjunction with [C], their main contribution
is to show h o w extensional ways of delimiting the class of natural measures
can then be used to yield insights into intrinsic complexity orderings. From
that point of view, my approach is not in competition with intensional ap-
proaches to the definition of 'natural ' or 'reasonable' measures, but merely
supplements it.

5. N a t u r a l n e s s as a f u z z y c o n c e p t

We should not, in any case, expect naturalness to be a black-and-white no-
tion. I expect that some measures are natural to a degree only. Here are
some reasons for this belief. (a) A measure may measure resources used on a
computat ional model whose manner of moving information from one memory

l o c a t i o n to another, or of retrieving information, or of representing output ,
is exceedingly cumbersome - - unnatural, as we might say; being cumber-
some, however, admits of degrees. (b) We may wish to class some flowchart
measures as unnatural on the grounds that they employ arithmetical in-
structions i := Fj l , ...,jn where 'F ' is interpreted in terms of unnaturally
complex functions; being complex, however, admits of degrees.

The obvious way of allowing for fuzziness on our approach is to work with
a set of smear monoids, each member of which corresponds to one delineation
parameter; one way, that is, of resolving the vagueness in 'natural measure' .
(Here I am working with something like David Lewis's account of vagueness
in [18]). Thus:

The intrinsic difficulty... 445

DEFINITION 5.1 W is a sm-system (smear monoid system) iff

(i) W is a non-empty set of smear monoids; and

(ii) W is total ly ordered under set inclusion.

Sm-systems W will be used to resolve the vagueness in 'na tura l measure ' .
In addit ion, they can be used to define a sense in which some functions can
be said to differ much more in complexity than other functions.

DEFINITION 5.2 If (b is a complexity measure, W an sm-system, and f , g,
h, k are p.r. functions, let

(1) do,w(f ,g) - W - {S e W l f ~ r

(Thus dr is a "measure" in the sense of classical measure theory, do,w(f , g)
- - the distance between f and g relative to ~ and W - - is the collection of
points S in W at which f

(2) (f , g) _<r (h, k) i f f

(3) (f ,g) < r (h , k) i f f

and g differ in S-complexity.) We now say:

d~,w(f ,g) C_ dr

dv ,w(f ,g) C dr

Informally, (f , g) < r (h, k) when the extent to which f and g differ in
complexi ty is smaller than the extent to which h and k differ. Using W to
resolve the vagueness in 'na tura l measure ' and hence ' intrinsic' , we can also
say tha t (f , g) <~ ,w (h, k) when the judgment : 'k is intrinsically different in
complexi ty f rom h' holds t rue for more resolutions of vagueness of 'na tural ' ,
and hence ' intrinsic' , t han 'g is intrinsically different in complexity f rom f ' .
(This assumes tha t (I) is a na tura l measure to begin with.)

EXAMPLE 5.3 Let T be the step-counting measure for single-tape TMs us-
ing binary nota t ion . Let F P be the flowchart s tep-counting measure based
on programs whose assignment and test instructions (e.g. 'i := F (j) ') fea-
ture funct ions f rom a finite set P of recursive functions. On one resolution of
vagueness, let us suppose, F P1 is na tura l but F P2 is not , where P1 contains
only cons tant functions while P2 also contains some more complex func-
tions. On another , bo th F P1 and F P2 are natural . Corresponding to such
a possibili ty there can generally be found a resolution system W containing
smear monoids S1 and $2 such tha t F P1 and T are equivalent under $2
(i.e., F P1 --$2 T) but not under S1 (i.e., FP1 ~s l T). So if we use 5:1,
F P1 looks na tura l bu t not F P2' while if we use $2, bo th F P1 and F P2 look
natural .

446 F.W. Kroon

If W is an sm-system and �9 a complexity measure, we call (~, W) a vari-
able complexity theory, to contrast with the simple one-monoid complexity
theories looked at earlier. It can be shown that many natural hierarchies of
classes of recursive functions have features that connect them with particular
variable complexity theories. Consider first the idea of honesty, defined for
the case of simple complexity theories ((I), S):

DEFINITION 5.4 Call a set of recursive functions K honest relative to (~, S)
if whenever f E K and g _<o,s f we also have g E K. Let us further say
that a hierarchy H of sets of recursive functions is honest relative to (q), S)
if each member of H is.

Honesty in this new sense is simply closure under the relevant S-dependent
relation of complexity. Honest classes have the property that a function's
non-membership is a direct (or honest) indication that it is not as easy, rel-
ative to ((I), S), as functions that are members. Given a plausible theory
of intrinsic difficulty, it thus follows that hierarchy results involving honest
hierarchies have intrinsic computational significance. This is one area where
the structural and the computational notions of intrinsic difficulty show a
degree of convergence, for it turns out that numerous familiar hierarchies
are honest relative to various plausible theories ((I), S).

But such results can often be improved using a stronger kind of closure
or honesty. First we say:

DEFINITION 5.5 If S is a smear monoid, then the complexity-restriction of
S relative to ~, 0(~ , S), is the set of all recursive functions r such that
Oi(x) _< ~r(0, x) a.e. for some a in S.

DEFINITION 5.6 We say that a set K of recursive functions is hyperhonest
relative to (g2, S) i f (a) g C O(il), S), and (b) K is honest relative to (O, S). If
W is an sm-system, we further say that a hierarchy H of classes of recursive
functions is hyperhonest relative to (~, W) if for each K in H there exists S
in W such that K is hyperhonest relative to (~, S).

It follows that if f belongs to class K in a hyperhonest hierarchy, then
functions higher up in the hierarchy, or not in the hierarchy at all(are
never as S-easy as f , where S reflects the complexity of f to the extent
that f belongs to the complexity-restriction of S. Compare this to honest
hierarchies, where the only conclusion to be drawn is that functions higher
up in the hierarchy, or not in the hierarchy at all, are never as easy as f
(relative to some fixed theory (~, S)).

The intrinsic difficulty... 447

The l i terature contains many examples of hyperhonest hierarchies. Given
a class A of recursive functions, let h(A) = the smear monoid, if one exists,
of all binary functions in A increasing with respect to their second variable.
Some examples:

(a) The Grzegorczyk hierarchy (s 3 is hyperhonest with respect to
(T, (h(s where n may here be taken as ranging over ordinals up to
e0 and even beyond. (For the original Grzegorczyk hierarchy, see [12]. [9]
contains a brief but accessible account of both this and the P~ter hierarchy
discussed below. Note that beyond n = 3 the same hierarchy can be con-
s t ructed in numerous different ways; for details, see Calude [5], chapter 1.
For the extensions of the original Grzegorczyk hierarchy, see Robbin [23] and
Lbb and Wainer [19].)

(b) R. Pgter 's hierarchy of multiply recursive functions (Rk)~>k>l is
hyperhonest with respect to (T, (h(Rk))w>k>l).

There also exist well-known hierarchies of functions that are not hyper-
honest with respect to any variable complexity theories: Ritchie's hierarchy
of predictably computable functions is of this kind ([22]). 15 Another hi-
erarchy tha t is not hyperhonest as it stands is the hierarchy of Theorem
3.7, al though a hyperhonest version can also be constructed. Note tha t the
hyperhonest hierarchies (a) and (b) are ipso facto honest with respect to
the most restrictive simple complexity theory listed: e.g., the Grzegorczyk
hierarchy (s is honest with respect to (T, h(~3)).

That (a) and (b) represent hyperhonest hierarchies follows from the fact
tha t each level of the hierarchy satisfies conditions (1) and (2) of the theorem
below (I suppress mention of the underlying measure (I) when there is no risk
of confusion):

THEOREM 5.7 Let K be a set of recursive functions satisfying the following
conditions: (1) K = UgeKR~ and (2) (a) K is closed under substitution,
and (b) for all f E g there is a monotonic g E g such that g(x) >_ f (x) a.e.
Then there is a smear monoid S such that K is hypcrhonest with respect
to S.

PROOF. Suppose that K satisfies the conditions of the theorem. Let
s (K) = the set of all smear monoids S such that

(i) for an q E s and r g there exists m E K such that q(x, r(x)) __
a.e.; and

15It is certMnly true that if C is a class in the Ritchie hierarchy, then f E C and g ~ C
implies that g :~ T, Sminf, where Stain has as sole member the identity function. Hence the
Ritchie hierarchy is honest with respect to at least the minimal simple complexity theory
(T, Stain). But what we do not have is: f E C, g ~ C implies that g "~. T, s f for some S to
whose complexity-restriction f belongs.

448 F. W. Kroon

(ii) for all monotonic 1 in K the function / �9 S, where/(x , y) = l(y).

We show (I) that s(K) is non-empty and (II) that if S is any member of
s(K) then K is hyperhonest with respect to S.

(I) That s (g) is non-empty follows from the fact that Q e s(g) , where
Q = {q] q is a binary function increasing in its second variable such that, if
r �9 g then ,kx[q(x,r(x))] �9 g} . The proofthat Q �9 s (g) i s straightforward.
First, the identity function e(x, y) = y is obviously a member of Q. Secondly,
Q is closed under the operation . . Hence Q is a smear monoid, one that
satisfies (i) by construction. Thirdly, if I �9 K and is monotonic, then / �9 Q.
(Reason: given any m �9 K , / (x , m(x)) = l(m(x)) for every x, and hence,
since g is closed under substitution,)~x[l(x, m(x))] �9 K; hence / �9 Q.)

(II) Let S be an arbitrary member of s(K). Note first that: (*) K C
O(S). (Reason: Suppose f �9 g . By (1), there is i for f and r in g such
that O(x) _< r(x) a.e. Hence by condition (2)(b) there is monotonic l such
that Oi(x) _< l(x) a.e. By (ii) in the definition of s(K), it follows that for
some / in S Oi(x) <_ /(0, x) a.e. Hence f �9 O(K).) Note also that (**)
K is honest relative to S. (Reason: Suppose that f �9 K and g _<s f . By
condition (1) Of the theorem, g �9 K if there is some complexity function Oi
for g bounded a.e. by some function in K. But (again using condition (1)) if
f �9 K and g _<s f , then there must be a complexity function Oi for g such
that for some r in g and some a in S, Oi(x) _< cr(x, r(x)) a.e. By condition
(i) on s(K), it then follows that Oi is bounded a.e. by some function in K.
Hence g �9 K.) The hyperhonesty of K with respect to S, where S is any
member of s (K) , is an immediate consequence of (*) and (**). []

COROLLARY 5.8 (1) The (extended) Grzegorczyk hierarchy (En)n_>3 is hy-
perhonest with respect to (T, (h(~))~>3) (e.g., for n < ~o).

(2) R. Pdter's hierarchy of multiply recursive functions (Rk)~>k_>] is hyper-
honest with respect to (T, (h(Rk))~>k>l).

PROOF. In all these cases, an arbitrary member K of the hierarchy
under consideration can be shown to satisfy conditions (1) and (2) of The-
orem 5.7 (relative to measure T). It is, in addition, readily seen that
h(g) E s(K), and hence, by the proof of Theorem 5.7, g is hyperhonest
relative to (T,h(g)) . []

A theory like (T,(h(~n))~>3) doesn't, of course, give the most fine-
grained hyperhonest partitioning of the functions in (E~)~>_3, just as
(T, (h(Rk))o~>k>l) doesn't give the most fine-grained hyperhonest partition-
ing of the multiply recursive functions (Rk)~>k_>l. There are interesting and

The intrinsic ditt~culty. . . 449

important hierarchies that do much better. Thus Robbin showed that in his
extension of the Grzegorczyk hierarchy to level w ~ ([23]), U~<~ks n = the
class Rk of k-recursive functions. It can also be shown that Grzegorczyk's
original hierarchy of primitive recursive functions admits of a hyperhonest
refinement of a very complex order-type. In [20] (Theorem 5), Meyer and
Ritchie show that:

FACT: For any n >_ 3 (and < w) there exists a recursively enumerable
sequence to ~, t~,.., of elementary-honest functions such that:

(a) the classes s are distinct and totally ordered under set inclusion.

(b) s C E(t~) C s for all i.

(c) If E(t~) C E(t~), then s contains a universal function for E(t~)

(d) If E(t~) C E(t~), then there is a j such that E(t~) C s C s

It follows that, for each n _> 3, there are functions tno,t~, ... such that
n n > 3 (E(t~))i<~ forms a dense chain under set inclusion. Hence (E(t i))is is

a hierarchy containing infinitely many dense chains. This hierarchy, which
exhausts the primitive recursive functions, obviously refines (~n)3<n< W. Fur-
ther, it is hyperhonest: each E(t~) meets all the conditions of Theorem 5.7.
(Thus consider condition 1: the right-to-left inclusion is obvious from the ele-
mentary arithmetization of Turing machines, while the left-to-right inclusion
follows routinely from the fact that the t~ are elementary-honest functions,
i.e. for each such function t there is an elementary function g such that some
complexity function for t is bounded a.e. by g(x, t (x)) . Recall that the class

of elementary functions is identical to class E3.)
Finally, we note two interesting general properties of hyperhonest hierar-

chies. First, we might expect that (a) if two functions t and h are high up in
a hierarchy hyperhonest with respect to (~, W) with t occurring higher than
h, then the distance between t and h is greater, complexity-wise, than that
between any two functions f and g which are lower down in the hierarchy.
That is, we might then expect that (f, g) <v,w (t, h).

In addition, however, we might expect that (b) if a hierarchy is a hy-
perhonest one then not only are functions high up in the hierarchy never as
easy as functions lower down but, further, such rankings are more measure-
invariant, hold for a larger class of possibly realistic measures, than compa-
rable results about functions that are lower down in the hierarchy. In short,
if we treat the associated sm-system as containing resolutions of vagueness of
'intrinsic' and 'natural ' , we might well expect that the claim that functions
high up are never intrinsically as easy as functions lower down hold for more

450 F. W. Kroon

ways of resolving the vagueness in 'intrinsic' than results about functions
lower down.

The following result, the last one of the paper, demonstrates both these
features of hyperhonest hierarchies (part (1) confirms (a) and part (2) con-
firms (b)).

TItEOREM 5.9 Let H be a hierarchy of classes of recursive functions each of
which is non-empty and doesn't exhaust the recursive functions. Suppose that
H is hyperhonest with respect to ((I), W), where each member of W satisfies
the following condition:

(C) For each a in S, there is acr' in S such that a(O,x) < a'(x,O) a.e.

Let K , L belong to H, where K C L, and suppose that f E K, g E L - K,
h E L and t ~ L. Then:

(1) (f ,g) <r (t,h)

(2) there exists I~, V E W , where ~ C vr such that for all smear monoids U

(i) i / u c_ then/or any �9 E g f ;

(ii) if U C_ V, then for any ql E [~]v, t ~r h;

(iii) there exist measures ql E [~]g such that g <r f .

PROOF. Suppose that H is hyperhonest with respect to W and that
members of W satisfy (C). Assume that K, L belong to H, where K C L,
and suppose that f E K , g E L - K , h E L a n d t ! t L.

To prove (1), note first that there exists S E W such that f , g, h E O(S)
and t 2~s h (this is because f , g, h E L and H is hyperhonest with respect
to W). Further, any S such that f , g E O(S) has the property that f~-sg.
(Reason: Since f E O(S) there is a a E S such that Cj(x) < a(o,x) a.e.
for some index j for f . Hence, by (C), there is a a I E S such that for all
indices i of g, ~j(x) < a'(x, ~i(x)) a.e.; that is, f <8 g. Similarly g <s f .)
Since both t Ks h and f ~ s g for some S E W, it follows immediately that
(1) (f ,g) <W (t,h).

To prove (2), note first that for any M E H, there exists S E W such that
M = O(S). (Reason: Since H is hyperhonest with respect to W, it follows
that for any M E H there exists S E W such that (*) M C O(S). Now
suppose that the converse doesn't hold, i.e. that r E O(S) and r it M for
some r Let 7 be an arbitrary member of M. Then, since H is hyperhonest,
7 E O(S) and r :~s 7. But if r E O(S) and 7 E O(S), then r < s 7 (as in
the proof of (1) above), a contradiction. Hence (**) O(S) C M. Combining
(*) and (**), we obtain: M = O(S).)

The intrinsic difficulty... 451

By the preceding argument, there exist I~, V E W such that K = O(R)
and L = O(V), where f E K and g E L - K . But then it follows that
g ~r f for all measures �9 E [(I)]~. (Reason: Suppose g <~,~ f . Then
also g ~r f . But since f E O(~)(= K), it follows that g E O(~), and
hence that g E K, a contradiction.) It follows immediately that (i) if U C_ ~,
then g ~ r f for all measures �9 E [~]~. In addition, t ~o,v h (since H is
hyperhonest) . It again follows immediately that (ii) if U C_ V, then t ~ , v h
for all measures �9 E [O]v.

Finally, (iii) there exist measures r E [O]v such that for any U (hence
including any member of W) g _<r f . For note that since g E L = O(V),
(~) there exists r E V such that for some index j of g Oj(x) <_ r(x, o) a.e.
Let j* be such an index of g. We can now define a new measure �9 such that

f if i # j , ~i(x)
l o i f i =j*

Clearly g _<~,u f for all smear monoids U. In addition, ~/is V-similar to ~)
(by (#)) , and hence �9 E [~]v. This proves (iii). �9

Comment : Admittedly, �9 is a contrived measure; its assessment of g
doesn' t impact on the assessment of any other function, even those easily
definable from g, and this surely offends the ideal of a natural measure. (It
especially offends this ideal if we take seriously the view that naturalness
of measures has much to do with the existence of corresponding models of
computat ion, a view alluded to in section 1.) But the contrived nature of
is really an artifice of the fact that Theorem 5.9 concerns arbitrary measures

rather than recognisably natural measures. Once we focus on natural
measures like T, the predicted increase in measure-invariance doesn't sim-
ply bring in contrived measures such as ~. Thus we can show, for example,
that in the case of the Grzegorczyk hierarchy (s [T]h(~,~+~) - [T]h(~,~+2)
includes the step-counting measure, call it Tn+2, on which J. P. Cleave bases
the construction in [7] of his refinement of the hierarchy of primitive recursive
functions at ordinal levels k for which w.n < k < w.(n + 1). Tn+2 is essen-
tially a flowchart step-counting measure that assigns unit complexity to the
computat ion of the assignment instruction 'i := Fjl, ...,jm', whenever 'F ' is
interpreted by any m-ary function in ~n+2. In an earlier paper [17] Burkhard
and I placed this construction in a more general setting, emphasizing the ex-
tent to which such functions are in some sense strongly constructive and
hence 'natural ' because of the way their complexity can be 'predicted' by
functions already seen to be constructive. Both the flowchart nature of this
measure and the nature of the functions interpreting 'F ' suggest that such
measures can lay claim to at les a degree of naturalness.

452 F. W. Kroon

6. C o n c l u s i o n

As we have seen, the most familiar subrecursive hierarchies tend to be hy-
perhonest; in addition, they satisfy condition (C). Hence the last theorem
provides detailed confirmation of the idea that functions occurring at differ-
ent levels high up in a subrecursive hierarchy differ more in complexity than
do functions lower down. In addition, it shows that such results are in some
sense more measure-invariant or 'intrinsic' than results concerning functions
lower down.

Nonetheless, I stress that the use of 'intrinsic' in this context remains
problematic. Whether the new measures constructed count as 'natural ' or
'reasonable' (and hence relevant to the determination of 'intrinsic' differences
in complexity) remains moot. I certainly do not claim to have adequately
addressed this issue. Indeed, the approach defended in this paper can't
really settle the question of naturalness of particular measures. Its main
task has been to provide a framework that helps to clarify the problems
and prospects facing a study of intrinsic complexity, and then to establish
some general results from within this framework. The problem of finding
a generally convincing intensional characterization of the idea of a natural
measure and the co-relative idea of intrinsic difficulty remains a largely open
one. 16

R e f e r e n c e s

[1] ARBIB, M. and M. BLUM, 1965, Machine dependence of degrees of difficulty, Pro-
ceedings of the American Mathematical Society 16, 442-447.

[2] BAKER, T. P., 1978, "Natural" properties of flowchart step-counting measures, Jour-
nal of Computer and System Sciences 16, 1-22.

[3] BASS, L. and P. YOUNG, 1973, Ordinal hierarchies and naming complexity classes,
Journal of the Association for Computing Machinery 20, 668-686.

[4] BLUM, M., 1967, A machine-independent theory of the complexity of recursive func-
tions, Journal of the Association for Computing Machinery 14, 322-336.

[5] CALUDE, C., 1988, Theories o/ Computational Complexity, North-Holland, Amster-
dam, New York, Oxford, Tokyo.

[6] CICHON, E. A. and S. S. WAINEK, 1983, The slow-growing and the Grzegorczyk
hierarchies, The Journal of Symbolic Logic 48, 399-408.

[7] CLEAVE, J. P., 1963, A hierarchy of primitive recursive functions, Zeitschrift/iir
Mathematische Logik und Grundlagen der Mathematik 9, 331-345.

lSMy thanks to Walter Burkhard for his help with earlier versions of this paper.

The intrinsic difficulty... 453

[8] COBHAM, A., 1965, The intrinsic computational difficulty of functions, Proceedings
of the 196J Congress of Logic, Methodology and Philosophy of Science North-Holland
Publishing Company, 24-30.

[9] EPSTEIN, R. and W. A. CARNIELLI, 1989, Computability: Computable Functions,
Logic, and the Foundations of Mathematics Wadsworth.

[10] FEFERMAN, S., 1962, Classification of recursive functions by means of hierarchies,
Transactions of the American Mathematical Society 104~ 101-122.

[11] GLYMOUR, C., 1992, Thinking Things Through: an Introduction to Philosophical
Issues and Achievements, MIT Press.

[12] GRZEGORCZYK, A., 1953, Some classes of recursive functions, Rozprawy Matematy-
czne 4~ 1-45.

[13] HARTMANIS, J., 1973, On the problem of finding natural computational complexity
measures, Cornell Computer Science Technical Report, 73-179.

[14] HARTMANIS, J. and J. E. HOPCROFT, 1971, An overview of the theory of computa-
tional complexity, Journal of the Association for Computing Machinery 18~ 444-475.

[15] HARTMANIS, J. and J. SIMON, 1976, On the structure of feasible computations, in
M. Rubinoff and M. C. Yovits, eds., Advances in Computers 14~ Academic Press,
New York, 1-43.

[16] JOHNSON, D. S., 1990, A catalog of complexity classes, in van Leeuwen, J. (ed.),
Handbook of Theoretical Computer Science, vol. Am Algorithms and Complexity, El-
sevier, Amsterdam, New York, Oxford, Tokyo, 69-161.

[17] KROON, F. W. and W. A. BUREttAItD, 1990, On a complexity-based way of con-
structivizing the recursive functions, Studia Logica 49~ 133-149.

[18] LEWIS, D., 1972, General semantics, in D. Davidson and G. Harman (eds.), Seman-
tics of Natural Language, Reidel, Dordrecht, 169-218.

[19] LOB, M. H. and S. S. WAINEK, 1970, Hierarchies of number-theoretic functions I,
II, Archiv fiir Mathematische Logik und Grundlagenforschung 13~ 39-51 and 97-113.

[20] MEYER, A. R. and D. M. RITCItIE, 1972, A classification of recursive functions,
Zeitschrift fiir Mathematische Logik und Grundlagen der Mathematik 18~ 71-82.

[21] PRATT, V. R. and L. J. STOCKMEYER, 1976, A characterization of the power of
vector machines, Journal of Computing System Sciences 12~ 198-221.

[22] RITCHIE, R. W., 1963, Classes of predictably computable functions, Transactions
of the American Mathematical Society 106~ 139-173.

[23] ROBBIN, J. W., 1965, Subrecursive Hierarchies, Ph.D. dissertation, Princeton Uni-
versity.

[24] ROGERS, H., JR., 1967, Theory of Recursive Functions and Effective Computability,
McGraw-Hill, New York.

454 F. W. Kroon

[25] SEIFERAS, J., 1990, Machine-independent complexity theory, in van Leeuwen. Hand-
book of Theoretical Computer Science, vol. Am 165-186.

[26] SHAPIRO, S., 1981, Understanding Church's Thesis, Journal o/ Philosophical Logic
10~ 353-366.

[27] STOCKMEYER, L. and A. K. CHANDRA, 1979, Intrinsically difficult problems, Sci-
entific American, 124-134.

[28] STOCKMEYER, L., 1987, Classifying the computational complexity of problems, The
Journal of Symbolic Logic 52, 1-43.

[29] VAN EMDE BOAS, P., 1990, Machine models and simulations, in van Leeuwen, J.
(ed.), Handbook of Theoretical Computer Science, vol. /k~ 1-66.

[30] VERBEEK, R., 1978, Primitiv.Rekursiv Grzegorczyk-Hierarchien Universit~t Bonn,
Informatik Berichte, Bonn.

DEPARTMENT OF PHILOSOPHY
UNIVERSITY OF AUCKLAND
PRIVATE BAG 92019
AUCKLAND, NEW ZEALAND
f.kroon@auckland.ac.nz

Studia Logica 56, 3 (1996)

