
F. W. KROON The Intrinsic Difficulty 

of Recurs ive  Funct ions  

A b s t r a c t .  This paper deals with a philosophical question that  arises within the theory 
of computat ional  complexity: how to understand the notion of INTRINSIC complexity or 
difficulty, as opposed to notions of difficulty that  depend on the particular computational  
model used. The paper  uses ideas from Blum's abstract approach to complexity theory to 
develop an extensional approach to this question. Among other things, it  shows how such 
an approach gives detailed confirmation of the view that  subrecursive hierarchies tend to 
rank functions in terms of their intrinsic, and not just  their model-dependent,  difficulty, 
and it shows how the approach allows us to model the idea that  intrinsic difficulty is a 

fuzzy concept. 
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I n t r o d u c t i o n  

Thanks to the massive evidence in favour of the Church-Turing thesis, we are 
accustomed to thinking of effectiveness as an absolute or intrinsic notion: a 
proper ty  of functions and sets ra ther  than of algorithmic ways of representing 
functions and sets. 1 What  about the notion of difficulty? Here mat ters  look 
less promising. We may  think that  effective functions and problems tha t  
cannot be computed or solved when applied to small arguments,  even if all 
the space and t ime of the physical universe is at the disposal of the fastest 
computer  tha t  physics can allow for, must  surely count as difficult for any 
agent and in any situation. But it is not hard to convince oneself that  while 
effectiveness is a logico-mathematical absolute, the same is not true of such 
a notion of difficulty. From the point of view of possible universes where 
space and t ime are infinite and mat te r  continuously replenished, difficulty of 
this kind will not  seem such an important  notion. 

1For a good summary, see [9]. [26] contains a sensitive discussion of the extent to which 
the Church-Turing Thesis admits of proof. 
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This paper is about absolute or intrinsic notions of (comparat ive)dif-  
ficulty that  are not seriously subject to such complaints. 2 The problems 
facing such notions are formidable. Consider again the main body of evi- 
dence favouring Church's Thesis: the fact that  a host of different ways of 
delineating a class of effective or computable functions all happen to pick out 
the same class of functions. In the case of the notion of difficulty, however, 
we usually have in mind-some designated way of delineating this class. The 
problem that  then inevitably arises is that  any fine-grained classification of 
functions in terms of the complexity of associated definitions or algorithms 
may really be quite parochial even though there is nothing parochial about 
the class of all the functions thus classified. This is so even if we rank func- 
tions in terms of their most 'efficient' associated definitions or algorithms 
(assuming these exist), simply because what counts as an 'efficient' defini- 
tion or algorithm itself depends crucially on the chosen way of delineating 
computability. 

Thus consider the various familiar operations that  define the class of 
primitive recursive functions, and suppose we classify primitive recursive 
functions according to the number of times such operations are applied in 
their least derivation. But such a classification depends crucially on the 
choice of basic operations, with certain operations such as primitive recur- 
sion looking decidedly more 'complex' than others. In addition, there is no 
way of extending this procedure to all recursive functions, and no guaran- 
tee that  such an operation-based classification of the (primitive) recursive 
functions will correspond to the sort of classifications we get once we move 
to computation-based characterizations of the recursive functions (e.g., via 
Turing machines). 

In turn,  computation-based characterizations have their own problems of 
non-invariance. Such characterizations will often yield somewhat different 
classifications depending on the computational model used (one-tape, multi- 
tape; one-dimensional, multi-dimensional; and that  is in the case of Turing- 
machines alone) as well as the type of resource being counted (the number  
of tape-cells used up and the number of steps taken, for example). So on the 
computat ional  approach too there is a danger of a lack of invariance that  

2Alan Cobham ([S]) was the first to talk of intrinsic difficulty, and he introduced many of 
the impor tant  questions in this area. Note also the rather different use of the word 'intrinsic 
difficulty' in some other places. Thus in Stockmeyer and Chandra [27], ' intrinsic difficulty' 
refers to the obstacles to computation imposed by certain unalterable properties of the 
universe: its resource-limits in terms of space and time. The term is also sometimes used 
for the idea that  a function's difficulty should be independent of the algorithms commonly 
used for computing it, and should only reflect the fastest algorithms for computing that  
function - -  an idea which still leaves the idea of ' intrinsic difficulty' somewhat dependent  
on the machine-model used for running the algorithms (see Glymour [ l l ] ,  p. 329). 
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threatens the notion of intrinsic comparative difficulty. 
Is there a way out? In the case of the structural approach, these worries 

look particularly devastating. Thus consider the following version of the idea: 
tie intrinsic structural difficulty to place in a chosen subrecursive hierarchy 
that  is more sensitive to what operations should be primitive. Thus: 

(i) f is intrinsically more difficult than g (in the structural sense) if g 
belongs to a lower level than f in a sufficiently fine grained subrecursive 
stratification of functions. 

Because classes in subrecursive hierarchies tend to be closed under cru- 
cial operations, this suggests that  functions higher up can only be generated 
using structurally more complicated patterns of generation, or structurally 
more complicated functions, rather than just more applications of some ar- 
bitrarily chosen set of operations; that  is the sense in which (i) counts them 
as intrinsically more difficult than functions lower down. 3 Thus put,  the 
structural  approach faces the problem that  there are many subrecursive hi- 
erarchies: which do we choose, and why these? To suppose that  we should go 
for the finest subrecursive stratification possible suggests that  such a notion 
makes independent  sense, but that  is surely far from clear. 4 In addition, 
there is the problem that  subrecursive classifications defined over standard 
well-orderings over codes for recursive ordinals tend to miss many recursive 
functions, so that  we are left unable to place an informative classification 
on the functions missed out. On the other hand, subrecursive classifications 
that  fudge even slightly, for example by allowing all elementary-recursive 
well-orderings, quickly fall foul of what is sometimes known as the Collaps- 
ing Phenomenon,  which predicts that  every recursive function will suddenly 
appear at a low level (w or w2). 5 

3Thus Calude ([5], p. 78) talks of the Grzegorczyk hierarchy as one that  classifies the 
primitive recursive functions according to 'intrinsic difficulty'. 

4It might be thought that  sense could be made of the idea of the 'finest'  subrecursive 
stratification possible by considering the so-called 'slow growing hierarchy' {Ga} discussed 
by S. S. Wainer and others (see, for example, Cichon and Wainer [6]). The G~ are broadly 
defined as follows: 
Go ---- constant 0, 
G~+I = G ~ + I ,  
G~ = Diagonal(G~)~<,~.  
But while the slow growing hierarchy may provide a good way of measuring computational  
complexity, with the complexity of a function measured by the least a such that  the 
function is computable via Ga-bounded time or space, it doesn't  give us a purely structural  
account of the complexity of functions apart  from the Ga. For the la t ter  we also need 
operations to generate all the other functions that  we want to assess in purely structural  
terms. 

5One of the classic papers here is Feferman [10]. 
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The second, computat ional  approach may  seem to offer more hope. The 
most  obvious way out of the quandary mentioned is to t ry  something like 
the following: 

(ii) f is intrinsically more difficult than g ( in  the computional  sense) if for 
all algorithm-types P and all resource-types R, 6 there is a P-a lgor i thm 
A for g such that , . for  any P-algori thm B for f ,  B uses up more re- 
sources of type R than A does when applied to x as input (for almost 
all x, or almost everywhere - -  that  is, for all except a finite number ;  I 
abbreviate this to 'a.e. ') 

But this characterization in turn raises the question of how we are to un- 
ders tand the general concept of an algori thm-type and of a resource-type,  
given that  (ii) appeals to all algorithm-types and resource-types. More par- 
ticularly, it raises the question of how we are to unders tand these general 
concepts in a way that  allows different functions to have different levels of 
difficulty according to (ii). Questions like these do not bother  those who 
work in low-level complexity theory because of their willingness to work 
with selected algorithm-types and resource-types. They  bother  us, however, 
because of our logico-philosophical interest in the notion of intrinsic com- 
parat ive difficulty. 

The approach I shall take in this paper is the following. Given the prob- 
lems facing a general structural  notion of difficulty, I shall not develop (i) 
fur ther ,  although the connection between subrecursive classifications and in- 
trinsic difficulty will continue to interest us and will in fact be one of the 
main themes of this paper (see especially section 5). I shall instead describe 
a way of understanding (ii) that  satisfies the guiding constraint  of generali ty 
implicit in talk of all algorithm- and resource-types, and yet is not  so general 
tha t  it prevents us from achieving rankings of functions according to intrinsic 
computat ional  difficulty. Here I rely on the co-relative idea of a reasonable 
or natural measure of difficulty: intrinsicness of difficulty on this account 
has to do with a certain kind of invariance across na tura l  measures.  The 
abstract  basis of this account is sketched in sections 1 to 3, while section 4 
looks at the idea in more concrete terms. In section 5 the account is compli- 
cated by introducing the view that  intrinsic difficulty is a fuzzy notion since 
the idea of a natural  measure is a fuzzy notion. I show that  even so familiar 
hierarchies of classes of functions rank functions in a highly intrinsic way, a 
way tha t  holds good for a large number  of ways of resolving the vagueness 
in the description 'natural  measure' .  This result thus demonstrates  a degree 

SAlternatively, R could be a fixed resource-type such as number of steps used in the 
course of a computation, with intrinsic difficulty being relative to resource-type used. 
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of convergence between the structural and computational approaches to in- 
trinsic difficulty. While neither this result nor the other results in the paper 
are particularly difficult to prove or answer outstanding technical problems 
in the theory of complexity, they seem inherently interesting, and should 
thereby help to confirm the methodological virtues of the paper's approach 
to what remains a puzzling philosophical question. 

1. I n t r i n s i c  d i f f i c u l t y  a n d  m e a s u r e s  of  c o m p u t a t i o n a l  c o m -  
p l e x i t y  

Account (ii) above talked of algorithm-types P and resource-types R in 
general. The most productive approach to this schematic idea is Manuel 
Blum's axiomatic approach which studies implications of a purely recursion- 
theoretic way of defining measures of computational complexity, one that 
makes no reference to particular algorithmic languages P or particular 
resource-types R ([4]). Such an approach appears the best place to start 
if something akin to (ii) is indeed to provide us with an understanding of 
differences in intrinsic difficulty between functions. 

As usual, we define complexity measures as follows: 

DEFINITION 1.1 Let (r N (where N is the set of non-negative integers) 
be an acceptable numbering of the unary partial recursive (p.r.) functions. 7 
A sequence �9 = (Oi)ieN of p.r. functions is called a complexity measure 
or Blum measure (with respect to the acceptable numbering (r if t h e  
following two axioms are satisfied: 

(a) r  defined iff (~i(x)is defined 

(b) (I)i(x) = y is a recursive predicate in i, x and y. 

It is easily verified that the usual ways of counting resources used (such as 
the number of steps taken by Turing Machine programs or Random Access 
Machine programs, the number of tape-cells used during the course of (halt- 
ing) Turing Machine computations, and so on, all correspond to measures of 
complexity. And this suggests the following manoeuvre. Why not reformu- 
late account (ii) above by quantifying over all measures of complexity rather 
than, less precisely, over all algorithm-types P and resource-types R? But 
this won't do, obviously. We then sacrifice the ability to grade functions ac- 
cording to their intrinsic difficulty, for given any recursive function there are 
infinitely many measures that assign it zero complexity everywhere. Hence 

7See, for example, Rogers [24]. Note that  measures are defined relative to some accept- 
able numbering of the part ial  recursive functions. 
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any two recursive functions are identical in intrinsic difficulty according to 
this way of interpreting (ii). 

Consider instead: 

(iii) f is intrinsically more difficult than g iff the following is true for all 
(I) E Na,  where N a  is the class of 'natural '  measures: (a) given any 
index i for f there is an index j for g such that Oj(x) < Oi(x) a.e., 
while (b) there is an index j for g such that for all indices i for f ,  
(I)i(x) > Oj(x) for infinitely many x. 

(This definition improves on (ii) in so far as part (a) also embodies an account 
of g's being intrinsically no more difficult than f; when this holds in both 
directions, f and g are of the same intrinsic difficulty.) 

What we should aim for, it seems, is some reasonable definition of the 
class N a  of 'natural '  measures. But what counts as reasonable? Much 
work has been done on this problem (see, e.g., [2] and [13]). Arguably 
the most promising approach is to agree on 'natural '  computational models 
and 'natural '  resource-types first, and then to develop constraining axioms 
that capture crucial elements of these 'natural '  models and resource-types. 
Unfortunately, however, no agreement on what is to count as natural is in 
sight. Here are two approaches: 

(a) 

(b) 

concentrate on measures that count resources used in the course of 
Turing-machine-type computations (Turing machine 'path measures') 

also acknowledge step-counting measures based on flowchart programs 
(or random access machine programs), conceptualized in terms of in- 
structions that allow operations on numbers stored at register-addresses 
(both 'test' operations 'PJl ..... j,~' and 'assignment' operations 'i := 
FJl,...,Jn 3, where no a priori bound is placed on the kind of recursive 
predicates and functions allowed to interpret P and F, and where any 
such instruction counts as a simple instruction, effectively requiring 
unit time. 

These two approaches are quite different. (a), with its emphasis on 
symbol-manipulation, considers the difficulty of mathematical objects from 
the point of view of implementation of appropriate programs on a computing 
device that manipulates 'bits' rather than numbers. (b) emphasizes struc- 
tural and hierarchical features of computing devices. Both approaches have 
merit. (a) is committed to a certMn strong kind of computational 'nominal- 
ism', while (b) captures abstract 'inductive' features of computations (see, 
for example, [2] and [29], section 2.2). 
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If we accept (b), then certain proposals based on (a) need to be re- 
jected. In an impor tan t  paper of some years ago, Theodore Baker appealed 
to flowchart measures in order to cast doubt on a number  of properties var- 
iously proposed as fur ther  constraints on Blum measures: properties like 
'finite invariance'  and 'density '  ([2]). Still, (b) presents us with a problem 
from the point of view of the present paper. Nothing has been said about the 
na ture  of the predicates and functions that  are allowed to feature in flowchart 
programs; in fact, from the point of view of the abstract  framework these 
may  be arbitrarily complex. One effect of this is that  the recursive func- 
tions become non-gradable under the proposed account of intrinsic difficulty 
(iii). Thus suppose that  we are given an interpretat ion J of the predicate 
and function names in flowcharts, and suppose that  the resulting enumera- 
tion of programs yields an acceptable numbering of the p.r. functions. We 
can define a flowchart measure based on J as a measure that  counts each 
instruction used in a computat ion based on such a program as taking unit 
t ime. s It is now clear that  for any (unary) recursive function f ,  there is a 
flowchart measure that  assigns to f a constant complexity-function )~x[k] for 
some small k (viz., flowchart measures for flowchart programs that  tolerate 
'i := F j '  as a simple assignment instruction, where 'F '  is interpreted as f ) .  
Hence if f is more difficult than g according to one flowchart measure,  it is 
at least as easy as g according to another. Counting all flowchart measures 
as natural ,  this makes grading impossible. 

A weaker view is to acknowledge degrees of naturalness where flowchart 
measures are concerned: if only easy (or perhaps computationally construc- 
tive) functions and predicates are allowed to interpret the function- and 
predicate letters ' F '  in simple test and assignment instructions, then the 
resulting flowchart measure is natural  to a high degree, whereas if relatively 
complex functions are allowed to interpret 'F ' ,  then the ensuing flowchart 
measure  is na tura l  to at most a relatively low degree. Larry Stockmeyer,  for 
example, thinks tha t  no reasonable model should do an unrealistic amount  
of computa t ion  in one step, for example adding a number  of length 2 ~ ([28], 
p. 10), al though he doesn' t  say what is to count as realistic. 

In this paper  I want to bypass the question of how best to give an inten- 
sional characterizat ion of naturalness of measures in terms of additions to 
the familiar Blum axioms. Like many others, in fact, I am not convinced that  
one can rule out all obviously pathological measures by introducing fur ther  
s t ructural  constraints of this kind. Following Theodore Baker, I believe it 

SOne intermediate option sometimes taken in the case of ordinary random access ma- 
chine programs is to assign a logarithmic cost to every executed instruction, equal to the 
sum of the lengths of all data manipulated implicitly or explicitly by the instruction. See 
[29] for a summary of results. 
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may  be more useful to concentrate on the notion of a computat ional  model: 

The naturalness of a measure seems unavoidably connected to the ex- 
istence of a corresponding model of computat ion,  with recognizable 
steps and intermediate  results related in some way to the results of 
the computat ions . . . .  [E]ach step counted should have a recognizable 
'effect' and produce a partial result (via a recognizable t ransformations 
of a previous result) in any step measure. ([2], p. 22) 

Rather  than develop this sort of approach directly, however, I shall de- 
velop an intermediate  extensional approach, based on the following ideas. 
Beginning with a paradigmatically natural  measure (defined on a paradig- 
matical]y natural  model of computat ion) such as the step-counting measure 
T associated with a one-tape Turing machine model using binary code, we 
opt for a judicious choice of a class S of simulation-bounds or 'overheads'  b 
such tha t  the resources M/(x) of t ime (space, etc.) needed for computing an 
arbi t rary  partial  recursive function f on argument  x on some other  natura l  
computat ional  model amount  to no more than b(Tg(x)) for some bounding 
function b in S, where Tg(x) is the t ime needed for computing g(x) according 
to T,  and such that  T/(x) similarly amounts  to no more than b'(M/(x)) for 
some b I in S. We say tha t  T and M are S-similar in that  case. (A for- 
real definition appears below.) Using measure T, we then disregard 'slight' 
differences - -  up to the size of bounds in S - -  between the computat ion 
times of two partial recursive functions, and we decide that  f is more diffi- 
cult than  g in this fudged S-dependent  sense only when f takes a lot more 
in the way of resources to compute than g does (roughly: when there is a 
way of computing g such that  each way of computing f on x takes more 
than b(Tg(x)) steps for any simulation-bound b in S infinitely often, while 
the converse doesn' t  hold). If we unders tand ' f  is more difficult than  g' in 
this way, it is easily seen that  the assessment ' f  is more difficult than  g' can 
be made  highly measure-independent,  holding true for all measures which 
are S-similar to T, and hence, in virtue of the way we choose S, for many,  
perhaps all, measures of difficulty that  we are prepared to regard as natural 
measures.  In short, once f is more S-difficult in this sense than  g, then it 
may  also be the case that  f thereby becomes intrinsically more difficult than  
g in the sense of proposal (iii). 

Such an approach may seem disappointingly circular. For how do we de- 
cide in the first place which simulation bounds are liberal enough to allow us 
to capture all 'natural '  measures? But the situation is not nearly as bleak as 
it appears. There are a large number  of paradigmatically na tura l  measures 
which we know ought to belong. In addition, it may  be easy to see tha t  any 
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measures not  able to be simulated within the given bounds cannot rest on 
any recognizable variation of familiar computat ional  models, so that  there 
may  be good a posteriori reasons for excluding them. This is presumably 
why Stockmeyer  thinks that  'a TM can simulate any reasonable model  of 
computa t ion  with at most  a polynomial increase in time or space' ([28], p. 
10), and why van Emde Boas proposes an Invariance Thesis according to 
which "'[r]easonable" machines can simulate each other within a polynomi- 
ally bounded  overhead in time [and a constant-factor overhead in space]' 
([29], p. 5). 9 

But  there is another  reason why I have adopted the extensional approach. 
If I am right in suggesting that  there may  be a degree of vagueness involved 
in the notion of a natural  measure,  we need a way of describing and assessing 
the parameters  of vagueness. As we shall see in section 5, the extensional 
approach turns out  to be particularly well-suited to this task. 

2. S - i n v a r i a n t  t h e o r i e s  o f  c o m p l e x i t y  

The approach in this paper  is the extensional approach just  described. El- 
ements  of it were described some time ago, but  without the philosophical 
overtones I have introduced,  in a short paper by Michael Arbib and Manuel 
Blum ([1]). Its elaboration requires not just  the abstract  concept of a mea- 
sure of complexity but  Mso the concept of what I shall call a smear  monoid ,  
so called because relativizing complexity theories to these monoids results in 
a smearing of  computa t ion  times (disregarding incremental differences be- 
tween them, the permit ted  level of disregard being determined by the smear 
monoid) and a consequent enlarging of the number  of measures over which 
the induced complexity ordering remains valid. 

Here are some central definitions: 

DEFINITION 2.1 A s m e a r  m o n o i d  S is a monoid of 2-variable recursive func- 
tions a : N • N --+ N ,  increasing with respect to the second variable, 
with composit ion �9 satisfying a �9 a ' ( x , y )  = a ( x , a ' ( x , y ) ) ,  and with iden- 
t i ty  e(x ,  y)  = y. 

9In the case of both Stockmeyer and van Erode Boas, support for the polynomial 
bound is mainly in terms of known alternatives to Turing machine models, van Emde 
Boas also considers very fast parallel machines, and describes the evidence in favour of the 
Parallel Computation Thesis, according to which 'whatever can be solved in polynomially 
bounded space on a reasonable sequential machine can be solved in polynomially bounded 
time on a reasonable parallel machine, and vice versa' ([29], p.5). This makes it clear that 
'reasonable' in his Invariance Thesis applies in the first instance to machine-types (e.g., 
sequential or parallel). 
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The complexity ordering induced by a complexity measure and smear 
monoids is formally described in the next definition. 

DEFINITION 2.2 Let S be a smear monoid, r a complexity measure, and f 
and g p.r. functions. We say that 

(1) f is no more difficult than g with respect to (O,S) ( f  <_o,s g) if (a) 
the domain of g C_ domain of f ,  and (b) for every index i satisfying 
r = g, there is an index j satisfying Cj = f and a a in S such that 
a(x, Oi(x)) >_ '~j(x) for almost all x in domain g; 

(2) g is more difficult than f with respect to (~, S) ( f  <o,s g) if f _<o,s g 
but not g ~o,s f; and 

(3) f is of the same difficulty as g with respect to (~, S) ( f  ~r if 
f _<r g and g <r f .  

(I shall call <o,s,  - o , s  and <o,s S - d e p e n d e n t  c o m p l e x i t y  re la t ions ,  and 
the orderings they induce S - d e p e n d e n t  c o m p l e x i t y  o rde r ings .  Note that 
both <o,s and <o,s are transitive relations.) 

The next definition defines a notion of equivalence of measures based on 
the idea that different measures may induce the same S-dependent complex- 
ity ordering: 

DEFINITION 2.3 Two complexity measures �9 and �9 are S-equivalent 
(~ = s  ~)  if, for all p.r. functions f and g, f <o,s g if and only if f <o,s  g. 

The relation ~ s  is obviously an equivalence relation. The set of all 
complexity measures S-equivalent to �9 will be designated [~]s. Since the 
S-dependent complexity ordering induced by r and S is invariant up to 
membership in [~]s, we call (~, S) an S-invariant theory of complexity. 

The following definition suggests a useful criterion for membership in 
[~]s. Informally, two (step-counting, say) measures are S-similar if their 
underlying machine models can simulate each other with (time) overhead 
taken from S. Formally, 

DEFINITION 2.4 Let ~ and �9 be be complexity measures. Then 

(1) ~I' <s  ~ if for every j there exists an i and a a in S such that r = Cj 
and a(x, ~2j(x)) >_ ~ ( x )  a.e. in the domain of Cj; and 

(2) r and �9 are S-similar (d~ ~s  ko) if both r <s  ~ and �9 <s  r  
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If follows almost immediately that  S-similarity is a sufficient condition 
for S-equivalence. (It is easy to show that S-similarity is not a necessary 
condition of S-equivalence.) 

Central to complexity theory is the notion of a complexity class. Arbib 
and Blum [1] did not introduce an appropriately relativized analogue of this 
notion, but  such a notion is important  to my development of the approach. 
Informally, if R is a complexity class for theory ((I), S) then, whenever a 
recursive function f is in R, any recursive function that  is no more difficult 
than f relative to theory (+, S) should also be in R. 

DEFINITION 2.5 Let ~) be a complexity measure, t a total unary function, 

and S a smear monoid. Then R~ r is a complexity class with respect to 
theory ( <~, S)  if 

RI+,s) + = U~esR~. t 

(here a ,  t is just  Ax[a(x,t(x)] and Rt + is a complexity class in the usual 
sense i.e. the set of all total unary recursive f such that  for some index i for 
f ,  •i(x) <_ t(x)  a.e.) 

3. S - i n v a r i a n t  a n a l o g u e s  

Many of the most important  results of axiomatic complexity theory apply 
also to theories of S-invariant difficulty. The fact that  such theories inherit 
the rich structure uncovered in these results helps to confirm the naturalness 
of an approach that  looks to the behaviour of classes of measures rather than 
single measures; more importantly,  these theories thereby cast further light 
on the topic of intrinsic difficulty. In this section I provide analogues of a 
small number  of important  results of this type, largely chosen with an eye 
on what  they tell us about intrinsic difficulty. For the most part  the proofs 
involve routine modifications of existing proofs, and so for the most part  I 
omit the proofs or provide only a brief sketch. 

The first result simply states that  there is a systematic way of generating 
functions that  are more S-difficult than some given function. To begin with, 
let us say that  a set F of k-variable total functions : N k -+ N is r e c u r s i v e l y  
b o u n d e d  if there is an k-variable recursive function f such that ,  given any 
t in F ,  f _> t for almost all members of N k. 

We can now show that:  

THEOREM 3.1 Given measure <~ and a recursively bounded smear monoid 
S, there is a recursive h such that r <~,s Ch(i) for all i. 
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SKETCH OF PROOF. Let t be a recursive bound  for S, and  given i define 
the p.r. function g as follows: 

g(O) = 1; 

and for n > 0, 

[ undefined if Oi(x) is undefined for some 0 < x < n; 
| 0, if C k ( n ) =  1, where k = # m [ m  < n ~ - - 

g ( n )  = < t(n,  
/ for every x < n, if Ore(X) < t (x ,  r then  g(x)  = Cm(X)]; 
t 1, otherwise 

It can now be shown tha t  every index j for g, we have ~ j ( x )  > t (x ,  ~ i (x) )  
at almost  all x where r is defined. (For easily adap ted  details, see, for 
example,  Har tmanis  and Hopcroft  [14]; Calude [5].) Because the  definition 
of g depends effectively on index i of r the theorem follows. �9 

Note how this theorem bears on the topic of intrinsic difficulty: if the  
class of na tura l  measures N a  C lo i s ,  then the const ruct ion of Theo rem 3.1 
shows tha t  there is an effective way of generat ing functions intrinsically more  
difficult t han  given functions. 

Blum's  Compression Theorem,  too,  has an S-invariant  analogue, which 
is wor th  describing because of its role in the hierarchy result at the end of 
this section. First  we define a measured set: 

DEFINITION 3.2 A measured set is a recursively enumerable  1~ set of unary  
p.r.  functions gi for which the 3-place predicate gi(n) = m is recursive. 
(Clearly, the  set {~i I i E N}  of complexity functions of a given measure  
is a measured  set of functions.) 

THEOREM 3.3 Let {gi I i E N }  be a measured set, S a recursively bounded 
smear monoid, and g2 a measure. Then there is a 2-place recursive funct ion  
r such that 

~(r 
R ( J  c . 

The  proof  is once again a routine adap ta t ion  of the proof  found in the  
l i terature.  See, for example,  [5], p. 239. 

We now state  an analogue of Borodin 's  Enumerabi l i ty  Theo rem for com- 
plexity classes. This, and the Union Theorem to follow, play a central  role 
in the proof  of the hierarchy result at the end of the  section. 

1~ always, we say that  a set C of k-ary p.r. functions is recursively enumerable ff there 
exists a total  recursive function h such that  C = Uir where(r k)) is an acceptable 

enumeration of the k-ary p.r. functions. 
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THEOREM 3.4 Let h and t be any recursive functions such that not only 
h but all functions that differ from h at finitely many arguments belong to 
R~t . I f  S is a recursively enumerable smear monoid then, for any recursive 

f such that f ( x )  >_ t(x)  for all x, the complexity class R(] o's) is recursively 
enumerable. 

h is commonly specified to be the zero function in s ta tements  of Borodin 's  
original theorem. For a proof  of that  theorem, see, for example, [14], or [5], 
3.4.28. Theorem 3.4 can be  established by a routine generalization of that  
proof. Note  tha t  recursive enumerability of associated complexity classes is 
often regarded as one of the halmarks of 'natural '  measures ([2], [13]). 

The next theorem is an analogue of McCreight and Meyer 's  Union The- 
orem. First ,  let us say that  a set F of k-variable total  functions is self- 
b o u n d e d  if for every finite F0 C_ F there is a t in F such that  t (xl . . .kk)  > 
[max{f (x l ,  ..., xk) l f E F0}] a.e. 

THEOREM 3.5 Let S be a recursively enumerable, self-bounded smear monoid 
and let T be a recursively enumerable, self-bounded set of (unary) recursive 
functions. For any complexity measure ~ there is a recursive t' such that 

U~ETR~,S) ~(~,S) - -  lfLt , 

The proof  is agMn a routine generalization of existing proofs (e.g., in 
[14]). 1' 

The main result of the present section is a hierarchy result based on The- 
orems 3.3 to 3.5, as well as the following well-known result due to McCreight 
and Meyer: 

THEOREM 3.6 ( H O N E S T Y  T H E O R E M )  12 For each Blum measure �9 there is 
a measured set {r I i E N )  such that if r is total then Cs(O is total and 
R ~  = R r Cs(0" 

11Here is a quick sketch. Suppose T -- {to,t1 .... } and S -- {ao,az,...}. Without loss 
of generality, we assume for i >_ j that t~ > tj and ai >_ aj everywhere. With each 
index i, we associate an integer-vzdued label g(i). The function t' can be constructed in 
stages (starting at stage zero) as follows: Stage x: Let g(x) = x and let A(x) = {i <_ 

I r > ~g(0 * tg(0(~)}. If A(~) = r then set t'(~) = ~x * tx(~). If A(~) ~ 0 then 
set t ' ( x )  = min{ag(0 * tg(i)(x) I i E A(x)}.  For all i E A ( x ) ,  set g(i)  = x; now go to 
Stage x -t- 1. We can now verify the following two claims, which joint ly imply Theorem 3.5 
(cf. [14]). Claim 1 For all indices i, t '  > ~r~. t~ a.e. Claim 2 If there exist indices r and k 
such tha t  ~r~. t '  > ~bk a.e., then there exists index i such that  ai * ti > Ok a.e. �9 

12The te rm 'Hones ty  Theorem'  captures the fact that ,  given a measured set M,  there is 
a to ta l  recursive funct ion g such that  functions in M are g-honest, where f is g-honest if 
there is art index i for f such that  (hi(x) < g(x ,  f ( x ) )  for almost all x in the domain of f 
(i.e., f ' s  complexity 'honest ly '  reflects its size, modulo g). 
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For a proof,  see [5], pp. 241ff., for example. 

Using the Honesty Theorem and the Union Theorem,  it can now be 
shown that :  

FACT: Let ~ be a measure and S a recursively enumerable  and self- 
bounded  smear  monoid.  Then there is a measured  set {r [ i E N}  such 

tha t  for all i, if r is total  then es(0 is total ,  and R(r 's) = R r 
r 

We finally come to our hierarchy result, Theorem 3.7. Al though  o the r s  
have no ted  tha t  the Compression and Honesty Theorems harbour  a m e t h o d  
for const ruct ing hierarchies (e.g., [5], p. 242), Bass and Young provide the 
full details of such a hierarchy extended into the construct ive transfini te  ([3]), 
using Kleene's familiar system 0 of notat ions  for the construct ive ordinals 
(see, e.g., Rogers [24]). The  following result generalizes their  main  result  to 
the  case of S-invariant  complexity theories: 

THEOREM 3.7 Let �9 be a measure of complexity and S a recursively enu- 
merable and self-bounded smear monoid. Then there exist recursive functions 

td (d E O) such that (ntd )deO forms an increasing ordinal progression of 

complexity classes (i.e., if d <o b then ~(~,s) ~((~,s) ~ d  C ~ b  ). Furthermore, the 
r ,)(~,S) td can be defined so that ~ dEO_r~td does not exhaust all recursive functions. 

SKETCH OF PROOF. Given ~,  let G be a measured  set associated with 
in accordance with the FACT above (so tha t  G gives us an 'hones t '  way 

of naming  all the complexity classess of theory (~,  S)).  Let c be a uni- 
form recursive compression function in the sense tha t ,  for some initial to ta l  
funct ion ek,  R(~ '8) C R ~  's) C R ~  's) C .. and where we either have ~(k )  ~(~(k)) "' 

(i) r --- r162  or (ii) r = h(r  for some fixed recursive funct ion h. 
(Thus  in bo th  cases, c is truly a compression mechanism on functions.  13 
The  procedure  for obtaining c and G is an easy generalization of the  proce- 
dure described by Bass and Young.) For a sufficiently large to ta l  recursive 
funct ion ekeG (in case (ii), at least as large as the  compression funct ion r 
of Theo rem 3.3), we define the ordinal hierarchy based on ek as follows: 

(I) t l  = ek 

(II) Notat ions  for successor ordinals: 
If ta = r set t2,~ ---- q~c(i)" 

lZThe  m e t h o d  of cons t ruc t ion  is easy if  we d o n ' t  insis t  on this .  T h u s  i f  G =- (r  
we can  set  r ---- H(~b~(i)), for any func t ion  or t o t a l  effective ope ra to r  H a t  leas t  as big 
as t he  compress ion  func t ion  r of T h e o r e m  3.3. (Note  t h a t  ~bl ---- r  d o e s n ' t  g u a r a n t e e  
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(III) Notat ions  for limit ordinals: 
If a = 3.5 ~ E O, choose t~ such tha t  RIo's)= U~Rtr ) , ' ~  and t~ E G. ~() 

To do this, use the  Union Theorem (Theorem 3.4) and the Honesty Theorem,  
the  la t ter  in order to keep t~ within G so that  (II) can be reapplied. 

Note tha t  in case (ii), UdeoRl~ 's) ~ set of all recursive functions. Rea- 
son: According to Blum's  speed-up theorem, for every recursive r there are 
arbitrari ly difficult recursive functions f with r-speed-up (i.e. such tha t  if i 
is an index for f then  there is an another  index j for f such tha t  (I)i(x) _> 
r(x, (~j(x)). 14 It is now not difficult to show tha t  if r is a monotonical ly  
increasing funct ion growing at least as fast as h, then for any recursive func- 
t ion f with  r-speed-up,  f E U~eoRI o's) iff f E R ~  's). It follows there 
are arbitrari ly difficult functions not  in our hierarchy. The  result again uses 
ideas in [3]. �9 

COMMENT: If N a  C [(I)]~s, this result has the following bearing on 
the  topic of intrinsic difficulty. It establishes the existence of hierarchies of 
recursive functions (Hd)deO tha t  are not only ordered according to difficulty 
with respect  to measure  r but  are also ordered according to their intrinsic 
difficulty: functions in Ha - Hd (for d < o  b) are never as intrinsically easy 
as funct ions in Hd. 

4. N a t u r a l  m e a s u r e s  a n d  t h e  p r o b l e m  o f  h o w  t o  s e l e c t  a n  
a p p r o p r i a t e l y  i n v a r i a n t  t h e o r y  o f  c o m p l e x i t y  

In this section, I briefly consider the question of the selection of an appropri-  
ate (I) and S, for the actual  grading of recursive functions depends on making 
such a selection. Before doing this, however, let me briefly survey what  is 
involved. Our fundamenta l  interest is in the following relations between p.r. 
functions.  

DEFINITION 4.1 Let N a  be the set of natural  measures,  as before. Then  

(1) f is intrinsically as easy as g ( f  -(Na g) if[ (a) domain g C_ domain f 
and  (b) given any measure (I) in Na ,  for all i such tha t  r = g there is 
a j satisfying Cj = f such tha t  r  > r a.e. in domain g. 

(2) g is intrinsically more difficult than f ( f  <Na g) iff f -<Nag  and 

g $ Naf. 

14Presentations of the Speed-up Theorem can be found in Blum [4], Calude [5], Hart- 
manis and Hopcroft [14] and Seiferas [25], among other places. 
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(3) f has the same intrinstic difficulty as g ( f  =Na g) iff f GNa g and 

g -<Na f" 

This is just account (iii) of section 1 above. 

The connection between the 5,-invariant approach and the theory of in- 
trinsic difficulty is then given by: 

[C]: If N a  _C [O]s and f :~ r then f :~ Nag" 

(Note that it is not universally true that if N a  C [O]s and f <r g, then 
f <Na g, since f <r g is consistent with f being substantially harder than 
g (although within bounds dictated by 5'). In specific cases, however, we can 
often say more: thus in the case of Theorem 3.1, the construction ensures 
that if N a  G [r we not only have r <r Ch(i) but also r "(Na Ch(i)') 

Claim [C] provides the connecting link between the theory of intrinsic 
computational difficulty and the 5,-invariant approach to complexity theory 
which offers only 5,-dependent complexity orderings. As before, let T be 
the natural step-counting measure associated with some familiar version of 
one-tape Turing machines using binary code. By choosing an 5' that is large 
enough to make all natural measures 5'-equivalent to this paradigmatically 
natural measure T, we can then say specific things about the intrinsic differ- 
ence in computational compexity between various recursive functions. But 
note that if we make 5' so large that it contains all 2-place recursive functions 
increasing in their second variable, we lose the ability to grade functions, 
since all complexity measures are recursively related ([4], [14], [25]). In that 
case, we never have f 5~ r and can never apply Claim [C]. If, on the 
other hand, we choose the smallest 5, possible, 5'rain = {e = ,~xy[y]}, then 
our theories will have only a very limited degree of invariance; variations in 
the encoding technique or in the number of working tapes available can then 
be sufficient to invalidate results. 

We list two rather more useful choices of 5'. The first choice is: 

DEFINITION 4.2 5'* = {f  I f ( x , y )  = p(l(x),y) for all x, y, where p is a 
polynomial, increasing with respect to its second variable and l(x) is the 
'length' of x in binary } 

Simulation proofs show that the equivalence class [T]~s. and hence also 
[T]s. includes an impressive array of different step-counting measures for 
Turing machines, for example step-counting measures based on a Turing 
machine model that includes a fixed number of multi-dimensional tapes as 
well as facilities like fast rewinds and head-to-head jumps. It also includes 
a number of step-counting 'flowchart' measures associated with certain fa- 
miliar random access models, for example the model that uses addition and 
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subtraction as its only arithmetic instructions. (For a survey of simulation 
results of this type, see [29].) 

The following simple result says that the class P of functions whose 
complexity can be bounded by some polynomial in the (binary) 'length' of 
their inputs (a class first introduced in Cobham [8]) comprises the easiest 
possible functions in the complexity theory assodated with measure q) and 
smear monoid S*, for any (I) S.-equivalent to T. (Strictly speaking, the 
recursive functions of this and subsequent results are assumed to be unary 
functions, and in talking of sets of recursive functions like P we are usually 
talking of their restrictions to unary recursive functions.) 

THEOREM 4.3 Let �9 be in [T]s.. Then for every recursive f and g, if f E P 

then f <~,s. g. More particularly, we have: P = R(o T'8*). 

Consider also the following smear monoid: 

DEFINITION 4.4 Se = {f  [ f is a 2-variable function in E, increasing with 
respect to y} (where the class E of elementary functions is the smallest class 
of functions containing the zero function, the successor function, the projec- 
tion functions, exponentiation, and closed under composition and bounded 
recursion). 

In the associated theory (T, Se) we have: 

TItEOREM 4.5 Let ~ be in [T]se. Then for every recursive f and g, f E 

implies that f <r g. In particular, g = R(0 T'sD. 

Because of the much faster growth rate of many of the functions in S~, the 
S-dependent complexity assessments we make in this theory are much cruder 
than assessments possible in the theory (T, S*). In particular, most familiar 
functions turn out to be Se-equivalent in difficulty. On the other hand, there 
is one consideration that possibly favours working with a monoid like Se, or 
at least one containing some fast-growing functions such as exponentiation. 
There are a number of seemingly reasonable step-counting measures that do 
not belong to IT]s. but do belong to [T]sE. Thus consider the step-counting 
measure associated with Turing machines using unary code. Better still 
(since the former are notoriously unwieldy), consider the flowchart measure 
whose underlying random access machine model counts multiplication as 
well as division as fundamental (see, for example, Hartmanis and Simon [15]), 
which is equivalent in power to Pratt  and Stockmeyer's vector machine model 
([21]); or consider machines that can do parallel computing (for details, see 
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van Emde Boas [29]). By using Se, we make sure that  the corresponding 
S-dependent  complexity assessments hold for these measures as well, and 
thereby increase the likelihood that  our S-dependent complexity assessments 
hold for natural  measures in general; we thereby also increase the likelihood 
(using claim [C]) that  judgements of the form f :~ T,seg always correspond 
to genuinely intrinsic complexity orderings f :~ Nag- 

All this is consistent, of course, with saying that  in general there may be 
a difference in intrinsic complexity between f and g even though there is no 
difference between them in terms of smeared complexity relations like ----'T,Se 
o r  ~--T,S. (that  is, we may have f~T,s~g or f~T,S.g  even though f ~ Nag)- 
In particular, claim [C] is consistent with saying that  there are fine-grained 
intrinsic complexity differences among the elementary functions, as well as 
among the functions computable in polynomial time. Theories like (T, S*) 
or (T, Se) don't  deny this; in conjunction with [C], their main contribution 
is to show h o w  extensional ways of delimiting the class of natural  measures 
can then be used to yield insights into intrinsic complexity orderings. From 
that  point of view, my approach is not in competition with intensional ap- 
proaches to the definition of 'natural '  or 'reasonable' measures, but merely 
supplements it. 

5. N a t u r a l n e s s  as  a f u z z y  c o n c e p t  

We should not,  in any case, expect naturalness to be a black-and-white no- 
tion. I expect that  some measures are natural  to a degree only. Here are 
some reasons for this belief. (a) A measure may measure resources used on a 
computat ional  model whose manner of moving information from one memory 

l o c a t i o n  to another, or of retrieving information, or of representing output ,  
is exceedingly cumbersome - -  unnatural,  as we might say; being cumber- 
some, however, admits of degrees. (b) We may wish to class some flowchart 
measures as unnatural  on the grounds that  they employ arithmetical in- 
structions i := Fj l ,  ...,jn where 'F '  is interpreted in terms of unnaturally 
complex functions; being complex, however, admits of degrees. 

The obvious way of allowing for fuzziness on our approach is to work with 
a set of smear monoids, each member of which corresponds to one delineation 
parameter;  one way, that  is, of resolving the vagueness in 'natural  measure' .  
(Here I am working with something like David Lewis's account of vagueness 
in [18]). Thus: 
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DEFINITION 5.1 W is a sm-system (smear monoid system) iff 

(i) W is a non-empty  set of smear monoids; and 

(ii) W is total ly ordered under  set inclusion. 

Sm-systems W will be used to resolve the vagueness in 'na tura l  measure ' .  
In addit ion,  they can be used to define a sense in which some functions can 
be said to differ much  more  in complexity than  other functions. 

DEFINITION 5.2 If  (b is a complexity measure,  W an sm-system, and f ,  g, 
h, k are p.r.  functions,  let 

(1) do,w( f ,g )  - W -  {S e W l f ~ r  

(Thus  dr is a "measure" in the sense of classical measure theory, do,w(f ,  g) 
- -  the  distance between f and g relative to ~ and W - -  is the collection of 
points  S in W at which f 

(2) ( f ,  g) _<r (h, k ) i f f  

(3) ( f ,g )  < r  ( h , k ) i f f  

and g differ in S-complexity.) We now say: 

d~,w(f ,g)  C_ dr 

dv ,w( f ,g )  C dr 

Informally, ( f ,  g) < r  (h, k) when the extent  to which f and g differ in 
complexi ty  is smaller than  the  extent  to which h and k differ. Using W to 
resolve the  vagueness in 'na tura l  measure '  and hence ' intrinsic' ,  we can also 
say tha t  ( f ,  g) <~ ,w (h, k) when the judgment :  'k is intrinsically different in 
complexi ty  f rom h'  holds t rue for more resolutions of vagueness of 'na tural ' ,  
and  hence ' intrinsic' ,  t han  'g is intrinsically different in complexity f rom f ' .  
(This assumes tha t  (I) is a na tura l  measure to begin with.)  

EXAMPLE 5.3 Let T be the step-counting measure for single-tape TMs us- 
ing binary nota t ion .  Let F P be the flowchart s tep-counting measure  based 
on programs whose assignment  and test instructions (e.g. 'i := F ( j ) ' )  fea- 
ture  funct ions f rom a finite set P of recursive functions. On one resolution of 
vagueness,  let us suppose,  F P1 is na tura l  but  F P2 is not ,  where P1 contains 
only cons tant  functions while P2  also contains some more complex func- 
tions. On another ,  bo th  F P1 and F P2 are natural .  Corresponding to such 
a possibili ty there can generally be found a resolution system W containing 
smear  monoids  S1 and $2 such tha t  F P1 and T are equivalent under  $2 
(i.e., F P1 --$2 T) but  not  under  S1 (i.e., FP1 ~s l  T). So if we use 5:1, 
F P1 looks na tura l  bu t  not  F P2' while if we use $2, bo th  F P1 and F P2 look 
natural .  
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If W is an sm-system and �9 a complexity measure, we call (~,  W) a vari- 
able complexity theory, to contrast with the simple one-monoid complexity 
theories looked at earlier. It can be shown that  many natural  hierarchies of 
classes of recursive functions have features that  connect them with particular 
variable complexity theories. Consider first the idea of honesty, defined for 
the case of simple complexity theories ((I), S): 

DEFINITION 5.4 Call a set of recursive functions K honest relative to (~,  S) 
if whenever f E K and g _<o,s f we also have g E K. Let us further say 
that  a hierarchy H of sets of recursive functions is honest relative to (q), S) 
if each member  of H is. 

Honesty in this new sense is simply closure under the relevant S-dependent  
relation of complexity. Honest classes have the property that  a function's 
non-membership is a direct (or honest) indication that  it is not as easy, rel- 
ative to ((I), S), as functions that  are members. Given a plausible theory 
of intrinsic difficulty, it thus follows that  hierarchy results involving honest 
hierarchies have intrinsic computational significance. This is one area where 
the structural and the computational notions of intrinsic difficulty show a 
degree of convergence, for it turns out that  numerous familiar hierarchies 
are honest relative to various plausible theories ((I), S). 

But such results can often be improved using a stronger kind of closure 
or honesty. First we say: 

DEFINITION 5.5 If  S is a smear  monoid, then  the  complexity-restriction of 
S relative to ~, 0(~ ,  S), is the set of all recursive functions r such that  
Oi(x) _< ~r(0, x) a.e. for some a in S. 

DEFINITION 5.6 We say that  a set K of recursive functions is hyperhonest 
relative to (g2, S) i f  (a) g C O(il), S), and (b) K is honest relative to (O, S). If 
W is an sm-system, we further say that  a hierarchy H of classes of recursive 
functions is hyperhonest relative to (~, W) if for each K in H there exists S 
in W such that  K is hyperhonest relative to (~, S). 

It follows that  if f belongs to class K in a hyperhonest  hierarchy, then 
functions higher up in the hierarchy, or not in the hierarchy at all( are 
never as S-easy as f ,  where S reflects the complexity of f to the extent 
that  f belongs to the complexity-restriction of S. Compare this to honest 
hierarchies, where the only conclusion to be drawn is that  functions higher 
up in the hierarchy, or not in the hierarchy at all, are never as easy as f 
(relative to some fixed theory (~, S)). 
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The l i terature  contains many  examples of hyperhonest  hierarchies. Given 
a class A of recursive functions, let h(A) = the smear monoid, if one exists, 
of all binary functions in A increasing with respect to their second variable. 
Some examples: 

(a) The Grzegorczyk hierarchy (s 3 is hyperhonest  with respect to 
(T, (h(s where n may  here be taken as ranging over ordinals up to 
e0 and even beyond. (For the original Grzegorczyk hierarchy, see [12]. [9] 
contains a brief but  accessible account of both this and the P~ter hierarchy 
discussed below. Note that  beyond n = 3 the same hierarchy can be con- 
s t ructed in numerous different ways; for details, see Calude [5], chapter  1. 
For the extensions of the original Grzegorczyk hierarchy, see Robbin [23] and 
Lbb and Wainer [19].) 

(b) R. Pgter 's  hierarchy of multiply recursive functions (Rk)~>k>l is 
hyperhonest  with respect to (T, (h(Rk))w>k>l). 

There also exist well-known hierarchies of functions that  are not hyper- 
honest with respect to any variable complexity theories: Ritchie's hierarchy 
of predictably computable functions is of this kind ([22]). 15 Another  hi- 
erarchy tha t  is not hyperhonest  as it stands is the hierarchy of Theorem 
3.7, al though a hyperhonest  version can also be constructed. Note tha t  the 
hyperhonest  hierarchies (a) and (b) are ipso facto honest with respect to 
the most  restrictive simple complexity theory listed: e.g., the Grzegorczyk 
hierarchy (s is honest with respect to (T, h(~3)). 

That  (a) and (b) represent hyperhonest  hierarchies follows from the fact 
tha t  each level of the hierarchy satisfies conditions (1) and (2) of the theorem 
below (I suppress mention of the underlying measure (I) when there is no risk 
of confusion): 

THEOREM 5.7 Let K be a set of recursive functions satisfying the following 
conditions: (1) K = UgeKR~ and (2) (a) K is closed under substitution, 
and (b) for  all f E g there is a monotonic g E g such that g(x) >_ f ( x )  a.e. 
Then there is a smear monoid S such that K is hypcrhonest with respect 
to S. 

PROOF. Suppose that  K satisfies the conditions of the theorem. Let 
s ( K )  = the set of all smear monoids S such that  

(i) for an q E s and r g there exists m E K such that q(x, r(x))  __ 
a.e.; and 

15It is certMnly true that if C is a class in the Ritchie hierarchy, then f E C and g ~ C 
implies that g :~ T, Sminf, where Stain has as sole member the identity function. Hence the 
Ritchie hierarchy is honest with respect to at least the minimal simple complexity theory 
(T, Stain). But what we do not have is: f E C, g ~ C implies that g "~. T, s f  for some S to 
whose complexity-restriction f belongs. 
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(ii) for all monotonic 1 in K the function / �9 S, where/(x ,  y) = l(y). 

We show (I) that s(K) is non-empty and (II) that if S is any member of 
s(K) then K is hyperhonest with respect to S. 

(I) That s (g)  is non-empty follows from the fact that Q e s(g) ,  where 
Q = {q ] q is a binary function increasing in its second variable such that,  if 
r �9 g then ,kx[q(x,r(x))] �9 g} .  The proofthat  Q �9 s (g) i s  straightforward. 
First, the identity function e(x, y) = y is obviously a member of Q. Secondly, 
Q is closed under the operation . .  Hence Q is a smear monoid, one that 
satisfies (i) by construction. Thirdly, if I �9 K and is monotonic, then / �9 Q. 
(Reason: given any m �9 K , / ( x ,  m(x)) = l(m(x)) for every x, and hence, 
since g is closed under substitution, )~x[l(x, m(x))] �9 K; hence / �9 Q.) 

(II) Let S be an arbitrary member of s(K). Note first that: (*) K C 
O(S). (Reason: Suppose f �9 g .  By (1), there is i for f and r in g such 
that O(x) _< r(x) a.e. Hence by condition (2)(b) there is monotonic l such 
that Oi(x) _< l(x) a.e. By (ii) in the definition of s(K), it follows that for 
some / in S Oi(x) <_ /(0, x) a.e. Hence f �9 O(K).) Note also that (**) 
K is honest relative to S. (Reason: Suppose that f �9 K and g _<s f .  By 
condition (1) Of the theorem, g �9 K if there is some complexity function Oi 
for g bounded a.e. by some function in K. But (again using condition (1)) if 
f �9 K and g _<s f ,  then there must be a complexity function Oi for g such 
that for some r in g and some a in S, Oi(x) _< cr(x, r(x)) a.e. By condition 
(i) on s(K),  it then follows that Oi is bounded a.e. by some function in K.  
Hence g �9 K.)  The hyperhonesty of K with respect to S, where S is any 
member of s (K) ,  is an immediate consequence of (*) and (**). [] 

COROLLARY 5.8 (1) The (extended) Grzegorczyk hierarchy (En)n_>3 is hy- 
perhonest with respect to (T, (h(~))~>3) (e.g., for n < ~o). 

(2) R. Pdter's hierarchy of multiply recursive functions (Rk)~>k_>] is hyper- 
honest with respect to (T, (h(Rk))~>k>l). 

PROOF. In all these cases, an arbitrary member K of the hierarchy 
under consideration can be shown to satisfy conditions (1) and (2) of The- 
orem 5.7 (relative to measure T). It is, in addition, readily seen that 
h(g)  E s(K), and hence, by the proof of Theorem 5.7, g is hyperhonest 
relative to (T,h( g)) .  [] 

A theory like (T,(h(~n))~>3) doesn't, of course, give the most fine- 
grained hyperhonest partitioning of the functions in (E~)~>_3, just as 
(T, (h(Rk))o~>k>l) doesn't give the most fine-grained hyperhonest partition- 
ing of the multiply recursive functions (Rk)~>k_>l. There are interesting and 
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important  hierarchies that do much better. Thus Robbin showed that in his 
extension of the Grzegorczyk hierarchy to level w ~ ([23]), U~<~ks n = the 
class Rk of k-recursive functions. It can also be shown that Grzegorczyk's 
original hierarchy of primitive recursive functions admits of a hyperhonest 
refinement of a very complex order-type. In [20] (Theorem 5), Meyer and 
Ritchie show that: 

FACT: For any n >_ 3 (and < w) there exists a recursively enumerable 
sequence to ~, t~,.., of elementary-honest functions such that: 

(a) the classes s are distinct and totally ordered under set inclusion. 

(b) s C E(t~) C s for all i. 

(c) If E(t~) C E(t~), then s contains a universal function for E(t~) 

(d) If E(t~) C E(t~), then there is a j such that E(t~) C s C s 

It follows that, for each n _> 3, there are functions tno,t~, ... such that 
n n > 3  (E(t~))i<~ forms a dense chain under set inclusion. Hence (E(t i ))is is 

a hierarchy containing infinitely many dense chains. This hierarchy, which 
exhausts the primitive recursive functions, obviously refines (~n)3<n< W. Fur- 
ther, it is hyperhonest: each E(t~) meets all the conditions of Theorem 5.7. 
(Thus consider condition 1: the right-to-left inclusion is obvious from the ele- 
mentary arithmetization of Turing machines, while the left-to-right inclusion 
follows routinely from the fact that the t~ are elementary-honest functions, 
i.e. for each such function t there is an elementary function g such that some 
complexity function for t is bounded a.e. by g(x,  t (x)) .  Recall that the class 

of elementary functions is identical to class E3.) 
Finally, we note two interesting general properties of hyperhonest hierar- 

chies. First, we might expect that (a) if two functions t and h are high up in 
a hierarchy hyperhonest with respect to (~, W) with t occurring higher than 
h, then the distance between t and h is greater, complexity-wise, than that 
between any two functions f and g which are lower down in the hierarchy. 
That is, we might then expect that (f, g) <v,w (t, h). 

In addition, however, we might expect that (b) if a hierarchy is a hy- 
perhonest one then not only are functions high up in the hierarchy never as 
easy as functions lower down but, further, such rankings are more measure- 
invariant, hold for a larger class of possibly realistic measures, than compa- 
rable results about functions that are lower down in the hierarchy. In short, 
if we treat the associated sm-system as containing resolutions of vagueness of 
'intrinsic' and 'natural ' ,  we might well expect that the claim that functions 
high up are never intrinsically as easy as functions lower down hold for more 
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ways of resolving the vagueness in 'intrinsic' than results about functions 
lower down. 

The following result, the last one of the paper, demonstrates both these 
features of hyperhonest hierarchies (part (1) confirms (a) and part (2) con- 
firms (b)). 

TItEOREM 5.9 Let H be a hierarchy of classes of recursive functions each of 
which is non-empty and doesn't exhaust the recursive functions. Suppose that 
H is hyperhonest with respect to ((I), W), where each member of W satisfies 
the following condition: 

(C) For each a in S, there is acr' in S such that a(O,x) < a'(x,O) a.e. 

Let K , L  belong to H, where K C L, and suppose that f E K, g E L - K, 
h E L and t ~ L. Then: 

(1) ( f ,g)  <r (t,h) 

(2) there exists I~, V E W , where ~ C vr such that for all smear monoids U 

(i) i / u  c_ then/or  any �9 E g f ;  

(ii) if U C_ V, then for any ql E [~]v, t ~r h; 

(iii) there exist measures ql E [~]g such that g <r f .  

PROOF. Suppose that H is hyperhonest with respect to W and that 
members of W satisfy (C). Assume that K,  L belong to H,  where K C L, 
and suppose that f E K ,  g E L - K ,  h E L a n d t ! t  L. 

To prove (1), note first that there exists S E W such that f ,  g, h E O(S) 
and t 2~s h (this is because f ,  g, h E L and H is hyperhonest with respect 
to W). Further, any S such that f ,  g E O(S) has the property that f~-sg. 
(Reason: Since f E O(S) there is a a E S such that Cj(x) < a(o,x)  a.e. 
for some index j for f .  Hence, by (C), there is a a I E S such that for all 
indices i of g, ~j(x)  < a'(x, ~i(x)) a.e.; that is, f <8 g. Similarly g <s  f . )  
Since both t Ks h and f ~ s g  for some S E W, it follows immediately that 
(1) ( f ,g)  <W (t,h). 

To prove (2), note first that for any M E H, there exists S E W such that 
M = O(S). (Reason: Since H is hyperhonest with respect to W, it follows 
that for any M E H there exists S E W such that (*) M C O(S). Now 
suppose that the converse doesn't hold, i.e. that r E O(S) and r it M for 
some r Let 7 be an arbitrary member of M. Then, since H is hyperhonest, 
7 E O(S) and r :~s 7. But if r E O(S) and 7 E O(S), then r < s  7 (as in 
the proof of (1) above), a contradiction. Hence (**) O(S) C M. Combining 
(*) and (**), we obtain: M = O(S).) 
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By the preceding argument,  there exist I~, V E W such that  K = O(R) 
and L = O(V), where f E K and g E L - K .  But then it follows that  
g ~r f for all measures �9 E [(I)]~. (Reason: Suppose g <~,~ f .  Then 
also g ~r f .  But since f E O(~)(= K),  it follows that  g E O(~), and 
hence that  g E K,  a contradiction.) It follows immediately that  (i) if U C_ ~, 
then g ~ r  f for all measures �9 E [~]~. In addition, t ~o,v h (since H is 
hyperhonest) .  It again follows immediately that (ii) if U C_ V, then t ~ , v  h 
for all measures �9 E [O]v. 

Finally, (iii) there exist measures r E [O]v such that  for any U (hence 
including any member  of W) g _<r f .  For note that  since g E L = O(V), 
(~ )  there exists r E V such that  for some index j of g Oj(x) <_ r(x, o) a.e. 
Let j*  be such an index of g. We can now define a new measure �9 such that  

f if i # j ,  ~i(x) 
l o i f i  =j*  

Clearly g _<~,u f for all smear monoids U. In addition, ~/is V-similar to ~) 
(by (# ) ) ,  and hence �9 E [~]v. This proves (iii). �9 

Comment :  Admittedly, �9 is a contrived measure; its assessment of g 
doesn' t  impact on the assessment of any other function, even those easily 
definable from g, and this surely offends the ideal of a natural  measure. (It 
especially offends this ideal if we take seriously the view that  naturalness 
of measures has much to do with the existence of corresponding models of 
computat ion,  a view alluded to in section 1.) But the contrived nature of 
is really an artifice of the fact that  Theorem 5.9 concerns arbitrary measures 

rather than recognisably natural measures. Once we focus on natural  
measures like T, the predicted increase in measure-invariance doesn't  sim- 
ply bring in contrived measures such as ~. Thus we can show, for example, 
that  in the case of the Grzegorczyk hierarchy (s [T]h(~,~+~) - [T]h(~,~+2) 
includes the step-counting measure, call it Tn+2, on which J. P. Cleave bases 
the construction in [7] of his refinement of the hierarchy of primitive recursive 
functions at ordinal levels k for which w.n < k < w.(n + 1). Tn+2 is essen- 
tially a flowchart step-counting measure that  assigns unit complexity to the 
computat ion of the assignment instruction 'i := Fjl,  ...,jm', whenever 'F '  is 
interpreted by any m-ary function in ~n+2. In an earlier paper [17] Burkhard 
and I placed this construction in a more general setting, emphasizing the ex- 
tent to which such functions are in some sense strongly constructive and 
hence 'natural '  because of the way their complexity can be 'predicted' by 
functions already seen to be constructive. Both the flowchart nature of this 
measure and the nature of the functions interpreting 'F '  suggest that  such 
measures can lay claim to at les a degree of naturalness. 
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6. C o n c l u s i o n  

As we have seen, the most familiar subrecursive hierarchies tend to be hy- 
perhonest; in addition, they satisfy condition (C). Hence the last theorem 
provides detailed confirmation of the idea that  functions occurring at differ- 
ent levels high up in a subrecursive hierarchy differ more in complexity than 
do functions lower down. In addition, it shows that  such results are in some 
sense more measure-invariant or 'intrinsic' than results concerning functions 
lower down. 

Nonetheless, I stress that  the use of 'intrinsic' in this context remains 
problematic. Whether the new measures constructed count as 'natural '  or 
'reasonable' (and hence relevant to the determination of 'intrinsic' differences 
in complexity) remains moot.  I certainly do not claim to have adequately 
addressed this issue. Indeed, the approach defended in this paper can't  
really settle the question of naturalness of particular measures. Its main 
task has been to provide a framework that  helps to clarify the problems 
and prospects facing a study of intrinsic complexity, and then to establish 
some general results from within this framework. The problem of finding 
a generally convincing intensional characterization of the idea of a natural  
measure and the co-relative idea of intrinsic difficulty remains a largely open 
one. 16 
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