Computational Tractability: The View From Mars
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ABSTRACT. We describe a point of view about the parameterized com-
putational complexity framework in the broad context of one of the
central issues of theoretical computer science as a field: the problem of
systematically coping with computational intractability. Those already
familiar with the basic ideas of parameterized complexity will never-
theless find here something new: the emerging systematic connections
between fixed-parameter tractability techniques and the design of useful
heuristic algorithms, and also perhaps the philosophical maturation of
the parameterized complexity program.

1. Introduction

There are two different ways that one can view the theory of parameterized
complexity. The easiest is as a kind of “first aid” that can sometimes be
applied to problems that are NP-hard, PSPACEFE-hard or undecidable. That
is, it can be viewed as a potential means of coping with intractability as it
is classically diagnosed.

The second way that one can view parameterized complexity is as a
fundamentally richer and generally more productive primary framework for
problem analysis and algorithm design, including the design of heuristic and
approximation algorithms.

It is interesting and humbling to consider the big picture of the develop-
ment of theoretical computer science over the past 30 years. Above all, this
seems to be dominated by continent-sized discoveries and cartography of
various kinds of computational intractability. For some time, the practical
folks portrayed in the amusing cartoons of Garey and Johnson[GJ79], Chap-
ter 1, have been somewhat disappointed with theoretical computer science,
and there have been numerous incidents of “restless drums” in the jungles
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of computer applications. Such grumblings may have something to do with
the recent spate of soul-searching among theorists [HL92, PGWRS96,
AFGPR96]. Some examples:

Example 1: Yet Another Call for Reform. One of the plenary ad-
dresses at the AAAI meeting in 1996 was concerned with the broad theme
of how computer science practice and theory interact [DKL96]. The dis-
cussion in [DKL96] can be summarized as:

(1) Pointing to a particular problem, STRIPS PLANNING, as central to the
entire field of artificial intelligence.

(2) Proposing that practitioners and theorists collaborate in an intense ana-
lysis of this one problem, to understand what makes it hard, and to come
up with something more useful than a PSPACE-completeness classification.
(3) Suggesting that the usual framework for concrete complexity analysis
is wrong-headed, historically contingent, unnatural (especially worst-case
asymptotic analysis), and reflects an unhappy state of interaction between
computer science theory and practice.

Regarding the third point, most theorists have probably heard similar charges
and complaints from colleagues in applied areas of computer science in their
own departments.

Example 2: An Encounter With a Computational Biologist. In
recent conversations with a biologist who is heavily involved in combinatorial
computing [Fel97], the following summary was offered of his interaction with
theoretical computer scientists.

“About ten years ago some computer scientists came by and
said they heard we have some really cool problems. They showed
that the problems are NP-complete and went away!”

If this interaction had been more recent, then perhaps the computer scien-
tists would also have proved that the problems are unlikely to have efficient
approximation algorithms.

The Pervasive Nature of Computational Intractability and Various
Coping Strategies. Naturally, many computer science practitioners would
like to shoot the messenger who brings so much bad news! In this difficult
situation, computer science theory has articulated a few general programs
for systematically coping with the ubiquitous phenomena of computational
intractability. We list these famous basic approaches, and add to this list
our less well known candidate.

e The idea of focusing on average-case as opposed to worst-case analysis
of problems.

e The idea of settling for approximate solutions to problems, and of
looking for efficient approximation algorithms.

e The idea of using randomization in algorithms.
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e The idea of harnessing quantum mechanics, or biomolecular chem-
istry, to create qualitatively more powerful computational mecha-
nisms.

e The idea of devising fixed-parameter tractable algorithms for param-
eterizations of a problem.

A list such as this cannot be considered complete without including another
coping strategy that mathematical theorists have frequently contributed to.
This approach antedates modern complexity-theoretic frameworks and has
recently regained some respectability among theorists as reflected in the
DIMACS Challenges and in new journals such as the Journal of Heuristics
and the ACM Journal of Experimental Algorithms:

e The design of mathematically informed, but perhaps unanalyzable
heuristics, that are empirically evaluated by their performance on
sets of benchmark instances.

The actual state of the practical world of computing is that generally there
is not much systematic connection to work in theoretical computer science
on algorithms and complexity. It is heuristic algorithms that are relied on
in most applications.

2. Fixed-Parameter Tractability

The basic concept of the parameterized complexity framework is that of
fized-parameter tractability. The definition is best introduced through con-
crete examples.

VERTEX COVER

Instance: A graph G = (V, E) and a positive integer k.

Parameter: k

Question: Does G have a vertex cover of size k7 That is, is there a subset
V! C V of size at most k such that for every edge uv € E, either u € V' or
veV”?

DOMINATING SET

Instance: A graph G = (V, E) and a positive integer k.

Parameter: k

Question: Does G have a dominating set of size k7 That is, is there a subset
V' CV of size at most k such that every vertex u € V of G either belongs
to V' or has a neighbor in V'7

THE STEINER PROBLEM FOR HYPERCUBES

Instance: A set S = {x; : 1 < i < k} of binary vectors, z; € {0,1}" for
t=1,..., k, and a positive integer m.

Parameter: k

Question: Is there a tree T = (V, E') and a labeling of the vertices of T with
elements of {0, 1}" such that the following conditions are satisfied?

(1) The leaves are labeled 1:1 with the elements of S.



4 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGE

(2) The sum over the edges uv of T' of the Hamming distance between the
labels I(u) € {0,1}" and I(v) € {0,1}" is at most m.

THE MAXIMUM AGREEMENT SUBTREE ProOBLEM (MAST)

Instance: A set of rooted trees Ty, ..., T, (r > 3) with the leaf set of each T;
labeled 1:1 with a set of species X, and a positive integer k.

Parameter: k

Question: Is there a subset § C X of size at most k such that 7T; restricted
to the leaf set X' = X — S is the same (up to label-preserving isomorphism
and ignoring vertices of degree 2) for ¢ = 1,...,r7

All of these problems are NP-complete and they are described above in
the standard way for the parameterized complexity framework. Part of
the input (which may be some aggregate of various aspects) is identified
as the parameter for the problem specification. (In order to consider a
parameterized problem classically, just ignore the parameter part of the
specification. Note that a single classical problem may give rise to many
different parameterized problems.) All of the four problems above can be
solved in time O(n/(®)) by simple brute force algorithms.

Papadimitrion and Yannakakis showed that VERTEX COVER can be
solved in time O(3*n) [PY96]. Balasubramanian, Fellows and Raman gave
an algorithm with running time O((53/40)%k? +kn) [BFR98]. It is possible
to do even better. Note that since the exponential dependence on the para-
meter k in the last expression is additive, VERTEX COVER is well-solved for
input of any size so long as k is no more than around 60. The difference be-
tween the situation for DOMINATING SET and VERTEX COVER is displayed
in Table 1.

n = 50 n=100 | n=150
E=2 625 2,500 5,625
E=3 15,625 125,000 421,875
E=5 1 390,625 | 6,250,000 | 31,640,625
E=10[1.9x 102 [9.8x 10" | 3.7 x 10'°
E=20|18x10% [9.5x 103! | 2.1 x 10%
TABLE 1. The Ratio ”zkk: for Various Values of n and k.

There are myriad ways in which numbers that are small or moderately large
(e.g., k < 40) arise naturally in problem specifications. For example, graph
linear layout width metrics are of interest in VLSI layout and routing prob-
lems and have important applications for width values of £ < 10. Interval
graphs of pathwidth & < 10 have applications in DNA sequence reconstruc-
tion problems [BDFHW95|. Logic and database problems frequently are
defined as having input consisting a formula (which may be small and rel-
atively invariant), and some other structure (such as a database) which is
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typically quite large and changeable. Formula size, or other aspects of for-
mula structure may be a relevant parameter [Yan95]. Hardware constraints
are a common source of natural parameters. The number of processors or
machines to be scheduled may be bounded by a value such as k < 20. The
number of degrees of freedom in a robot motion-planning problem is com-
monly in the range k£ < 10. The number of wiring layers in VLSI chip
manufacture is typically bounded by & < 30. Important distributional pa-
rameters may also arise in ways that are not at all obvious. Thorup, for
example, has shown that the flow graphs of structured programs for the
major computer languages have treewidth k& < 7 [Th97].

The Basic Definitions. The basic definitions of parameterized complexity
are as follows.

Definition. A parameterized language L is a subset L C ¥* x &%, If L
is a parameterized language and (z,y) € L then we will refer to x as the
main part, and refer to y as the parameter. It makes no difference to the
theory and is occasionally more convenient to consider that y is an integer,
or equivalently to define a parameterized language to be a subset of X" x IV.

Definition. A parameterized language L is fized-parameter tractable if it
can be determined in time f(k)n® whether (x,k) € L, where |z| = n, «
is a constant independent of both n and &k and f is an arbitrary function.
The family of fixed-parameter tractable parameterized languages is denoted
FPT.

It is somewhat surprising, although the argument is not hard, that FPT
is unchanged if the definition above is modified by replacing f(k)n® by
f(k) 4+ n* [CCDF9IT7].

“About half” of the naturally parameterized problems cataloged as NP-
complete in the book by Garey and Johnson[GJ79] are in FPT, includ-
ing three of the six basic problems singled out for attention in Chapter 3.
It is always possible to parameterize a problem in various ways that are
fixed-parameter tractable, yet it is not surprising that many parameterized
problems apparently do not belong to FPT. The naturally parameterized
DOMINATING SET problem defined above is one of these. We can find evi-
dence for fixed-parameter intractability by studying the appropriate notion
of problem transformation.

Definition. A parametric transformation from a parameterized language L
to a parameterized language L’ is an algorithm that computes from input
consisting of a pair (2, k), a pair (2, k') such that:

(1) (z,k) € L if and only if (', k") € L',

(2) k' = g(k) is a function only of k, and

(3) the computation is accomplished in time f(k)n®, where n = |z|, a is a
constant independent of both n and k, and f is an arbitrary function.

e
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An Illustrative Non-Example. It can be helpful to observe how pa-
rametric transformations differ from ordinary polynomial-time reductions.
Recall that for a graph G = (V, E) on n vertices, a set of vertices V! C V is
a k-clique in G if and only if V' — V' is a vertex cover in the complementary
graph G’ where vertices are adjacent if and only if they are not adjacent in G.
This gives an easy polynomial-time reduction of the naturally parameterized
CLIQUE problem to the naturally parameterized VERTEX COVER problem,
transforming the instance (G, k) of CLIQUE into the instance (G', k') of VER-
TEX COVER. But this is not a parametric transformation, since k' = n — k
is not purely a function of k. The available evidence suggests that there is
no parametric transformation in this direction.

An Illustrative Example. There is a fairly elaborate parametric transfor-
mation from the naturally parameterized CLIQUE problem to the naturally
parameterized DOMINATING SET problem, mapping (G, k) to (G', k') where
k' = 2k [DF95, DF98]. The evidence is that there is no such parametric
transformation in the other direction.

The essential property of parametric transformations is that if L trans-
forms to L' and L' € FPT, then L € FPT. This naturally leads to a com-
pleteness program based on a hierarchy of parameterized problem classes:

FPT C W[1]C W[2] C --- C W[SAT] C W[P] C AW[P] C XP

The parameterized analog of NP is W([1], and W{l]-hardness is the basic
evidence that a parameterized problem is likely not to be fixed-parameter
tractable. The k-STEP HALTING PROBLEM FOR NONDETERMINISTIC TUR-
ING MACHINES is W(1]-complete (where the amount of nondeterminism at
each step of the Turing machine computation is unbounded). Since the
¢(n)-STEP HALTING PROBLEM is essentially the defining problem for NP,
the analogy between NP and W[1] is quite strong. The parameterized com-
plexity class W[P] is an analog of PSPACE [ADF95]. The class XP is the
set of all parameterized languages L for which there are functions f and g¢
and an algorithm to determine whether (z,%) € L in time f(k)|z|9(%).

How Compelling is Fixed-Parameter Tractability? The notion of
fized-parameter tractability is the basic concept of the theory — but how
good, really, is this notion of good complexity behaviour? It might be ob-
jected that Table 1 is misleading, unless FPT parameter functions such as

2F are typical. Certainly functions such as 222k are allowed by the definition,
and would be impractical for & = 3, which suggests that the basic definition
allows too much pathology.

There are two main responses. First of all, we are already used to some
risk-taking in definitions, since the notion of polynomial time allows for, e.g.,
O(n'?) and O(n'?°) and O(n'?%), all of which are completely impractical.
We forget how controversial the notion of asymptotic polynomial time was
when first introduced, but the notion has thrived because the universe of
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natural computational problems has been kind, in some sense. A parame-
terized problem is just an ordinary problem for which some aspect of the
input has been designated as the parameter. Ignoring the parameter, if the
problem can be solved in polynomial time, that is, in time polynomial in
both the total input size n and the parameter k, then trivially this is an
FPT algorithm. In other words, considered classically, FPT is a superset
of P, and it is intended to be a generalization that allows us to do some-
thing for problems that are not in P and that may even be PSPACE hard
or undecidable. We have to expect to risk something in formulating such a
general attack on intractability. The definition simply asks whether the dif-
ficulty of the problem can be confined to a function of the parameter, while
the other costs are polynomial. How else would one naturally formulate a
generalization of P having such ambitions?

The second response is that there are many good FPT examples other
than VERTEX COVER suggesting that “reasonable” (e.g., single exponential)
parameter functions are usually obtainable for natural problems (possibly
after some rounds of improvement). For example, consider the problem
MAXIMUM SATISFIABILITY where the parameter k& denotes the number of
clauses to be satisfied. This was shown by Cai and Chen[CC97] to be in
FPT with the parameter function 22°%, when the clause size is bounded by .
The parameter function was improved by Mahajan and Raman[MR98] to
#* (without assuming a bound on the clause size), where ¢ is the golden ratio
(1+v/5)/2. Franco and others in [Fr97] have shown that the falsifiability
problem for pure implicational formulas having & negations is in FPT with
parameter function k*. (Can this be improved to 2k?) Although the type
checking problem for the programming language ML is PSPACE complete,
this is handled in implementations in linear time with a parameter function
of 28 where k is the nesting depth of let’s, a very natural parameter for this
problem (one that explains why the problem did not seem hard in practice).
We will describe an FPT algorithm for a natural parameterization of the
MAXIMUM AGREEMENT SUBTREE problem having the parameter function
3*. Many more examples can be found in [DF98]. The improvement of
parameter functions for FPT problems seems to be a productive area for
research, where many different ideas and techniques can be employed.

The point of view that parameterized complexity adopts can be summa-
rized in a metaphorical picture. There is an assumption that most interesting
problems are hard, so we can picture them as stones, or perhaps planets in
the generally hostile environment of outer space. The trick is to identify and
develop thin zones of computational viability, as suggested in Figure 1.

3. A Review of the Major Coping Strategies

In §1 we noted the fundamental problem that has emerged in the first
decades of theoretical computer science:
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the
Rock
of
Intractability

-
Increasingly viable
range of k

Ficure 1. The view from Mars: interesting computations
occur in thin zones of viability.

The need to deal tn some systematic way with the pervasive
phenomena of computational intractability.

We also noted that it is possible to point to five general mathematical strate-
gies that have been proposed so far: (1) average-case analysis, (2) approx-
imation, (3) randomization, (4) fundamentally new kinds of computing de-
vices, and (5) parameterization, as well as another, quasi-mathematical cop-
ing strategy, (6) heuristics.

In this section, we review the accomplishments and prospects of these
programs.

Average-Case Analysis. In many applications practitioners would be
happy with algorithms having good average-case performance. This criterion
is implicit in the common practice of evaluating heuristic algorithms on sets
of representative benchmarks. The idea that average-case analysis is more
realistic than worst-case analysis has been around since the beginnings of
theoretical computer science. Although we have a few gems of average-case
analysis, in general the program seems to be too difficult to carry out for
typical hard problems, realistic distributions and sophisticated algorithms.
It is also frequently unclear what constitutes a reasonable assumption about
the distribution of problem instances, apart from the analytical difficulties
of the program.



COMPUTATIONAL TRACTABILITY: THE VIEW FROM MARS 9

A completeness notion for average-case complexity has been introduced by
Levin[Lev86]. This also seems to be difficult to apply, and has only been
demonstrated for a few problems. The main weaknesses of average-case
analysis as a mathematical program for coping with intractability seem to

be:

e In general, it seems to be too difficult to prove the mathematical
results that the program calls for. !

e The positive toolkit has not developed well. Few general methods
are known for designing algorithms with provably good average-case
performance. (One interesting example of a general method has been
described by Gustedt and Steger|GS94].)

Approximation. Most of the discussion in the chapter on coping with NP-
completeness in [GJ79] is devoted to explaining the basic ideas of polynomial
time approzimation algorithms and schemes.

Early on, important polynomial time approximation schemes were found
for NP-complete problems such as BIN PACKING and KNAPSACK. The pro-
gram has attracted an enormous amount of effort. However, apart from a few
similar results on problems mostly of this same general flavor, it now seems
to be clear, on the basis of powerful new proof techniques [ALMSS92], that
these results are mot typical for NP-hard and otherwise intractable prob-
lems. The vast majority of natural NP-hard optimization problems do not
admit efficient approximation schemes under the usual assumptions (such
as P # NP).

While approximation allows for the clever deployment of mathematics
and can be a very effective cure for worst-case intractability when it can be
applied, from a practical standpoint, most of the results are negative. The
main weakness of the program is:

e Most unrestricted classically hard problems cannot be approximated
very well.

Randomized Polynomial Time. Randomization is discussed in Chap-
ter 6 of Garey and Johnson[GJ79] as a means of avoiding one of the weak-
nesses of average-case analysis as a coping strategy — the need to have
knowledge in advance of a realistic distribution of problem instances. An
algorithm that flips coins as it works may be able to conform to whatever
distribution it is given, and either produce an answer in polynomial-time
that is correct with high probability (Monte Carlo randomization), or one
that is guaranteed to be correct after what is likely to be a polynomial
amount of time (Las Vegas randomization).

These seemed at first to be potentially powerful generalizations of poly-
nomial time. Randomized Monte Carlo and Las Vegas algorithms are a

'C’mon guys, you're laying it on a bit thick, aren’t you? For a more optimistic view
on average-case complexity, please consult [Wang97a, Wang97b]. EWA
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workhorse of cryptography, and have important applications in computa-
tional geometry, pattern matching, on-line algorithms and computer algebra
(see [Karp86] and [MR95a] for surveys), in part because they are often
simple to program. Approximate counting is another area of notable suc-
cess. Randomization is an important new idea that is now applied in many
different kinds of algorithms, including approximations and heuristics.

Despite these successes, it now seems that randomized polynomial time
is better at delivering good algorithms for difficult problems that “proba-
bly” are in P to begin with, than at providing a general means for deal-
ing with intractable problems. There have recently been a number of im-
portant results replacing fast probabilistic algorithms with ordinary poly-
nomial time algorithms through the use of sophisticated derandomization
techniques [Rag88, MR95b]. Even more to the point, Impagliazzo and
Wigderson have recently shown that if there merely exists a language in
the exponential time class EXP that requires circuits of size 2(") then
BPP = P [IW97]. The main weaknesses of randomization (in the sense of
algorithms with performance guarantees) as a general program for coping
with intractability are:

e With a few exceptions, it does not seem that randomized polynomial
time algorithms are any more effective against problems that are truly
hard than ordinary polynomial time algorithms.

e Although the positive toolkit of methods for designing and analyzing
randomized algorithms is rich, there is no specifically corresponding
negative toolkit that can be used in tandem to negotiate problem
complexity and guide the design of effective algorithms.

New Forms of Computation: DNA and Quantum Mechanics. Al-
though these programs have been launched with great fanfare, they so far
offer much less of substance than the other items on this list in terms of
a general mathematically-powered program for coping with intractability.
So far, DNA computing essentially amounts to computation by molecular
brute force. Combinatorial explosion can quickly force one to contemplate
a very large test tube for brute force computations, despite the fact that
information can be stored in molecules with a factor of 10'? improved ef-
ficiency compared to magnetic tape storage. Mathematically, the program
seems to come down to the potential for significant constant speed-ups by
means of this physical miniaturization of computing.

It is still unclear whether quantum computers useful for any kind of
computation can actually be built. The notion of quantum polynomial time
is mathematically interesting, but so far appears to be applicable only to a
few special kinds of problems.

The main weakness of these approaches are:

e Practical implementation of the new computing devices seems to be
far in the future.
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e Biomolecular computing is essentially a physical attack on intractabil-
ity, not a mathematical one.

e It is unclear whether quantum polynomial time is a significant gener-
alization of ordinary polynomial time, except for a few special kinds
of problems.

Parameterization. We can trace the idea of coping with intractability
through parameterization to early discussions in Garey and Johnson[GJ79],
particularly Chapter 4, where it is pointed out that parameters associated
with different parts of the input to a problem can interact in a wide variety
of ways in producing non-polynomial complexity. The internal structure of
an intractable problem — the identification of those aspects (parameters) to
which the non-polynomial complexity can be confined — is precisely what
is at issue in parameterized complexity.

A weakness of the parameterized complexity program is that some of the
most general and spectacular positive methods, such as the celebrated re-
sults of Robertson and Seymour[RS85], yield algorithms having parameter
functions that are supremely impractical (e.g., towers of 2’s of height de-
scribed by towers of 2’s ...). If tractability has friends like these, who needs
enemies?

The main strengths of parameterization as a program are that it does
seem to be very generally applicable to hard problems throughout the clas-
sical hierarchy of intractable classes, and it supports a rich toolkit of both
positive and negative techniques. The crucial strike against the program
seems to have been:

e The extent to which FPT is really useful is unclear.

Heuristics. Since heuristic algorithms that work well in practice are now,
and have always been, the workhorses of industrial computing, there is no
question about the ultimate significance of this program for dealing with
intractability. There has recently been a revival of interest in obtaining sys-
tematic empirical performance evaluations of heuristic algorithms for hard
problems. There have been vigorous developments of new ideas for designing
heuristic algorithms, particularly new ideas employing randomization in var-
ious ways. These approaches frequently have colorful and extravagant names
based on far-fetched analogies in other sciences, such as simulated annealing,
genetic algorithms, neural nets, great deluge algorithms, and roaming ants.
Many of these can be considered as variants on the basic technique of local
search.

The main problem with considering heuristics as a systematic program
for coping with intractability is that it is not a coherent mathematical pro-
gram. The positive toolkit properly includes voodoo and the kitchen sink.
As a program, it doesn’t call for any theorems, only empirical performance.
The undeniable successes of sometimes “mindless” and generally unanalyz-
able heuristic algorithms puts computer science theory in an uncomfortable
position.
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Heuristics based on local search perhaps come the closest to constituting
a mathematically articulated general coping strategy for intractability (see
the articles in [AL97]). There is a negative toolkit (of sorts) based on
the notion of polynomial local search problems and PLS-completeness, in-
troduced by Johnson, Papadimitriou and Yannakakis[JPY88]. Although a
number of local search problems have been shown to be complete, the re-
ductions are quite demanding (so there aren’t very many such results), and
there is furthermore a notable peculiarity of this framework. For a concrete
example, because the TRAVELING SALESMAN PROBLEM is NP-hard, one re-
sorts to a local search heuristic based on the k-Opt neighborhood structure,
such as the Lin-Kernighan algorithm, and this is considered to be a par-
ticularly successful local search heuristic. Yet, Krentel has shown that for
k = 8, this neighborhood structure is PLS-complete [Kr90, JMc97]. This
seems like a weapon firing in the wrong direction, or perhaps just a kind
of reiteration that TSP is fundamentally a hard problem. It is unclear how
PLScompleteness provides any guidance in designing local search heuristics.
The main difficulty is summarized:

e Although heuristics are the principal coin of the realm in practical
computing, the design of heuristics is not well-organized as a mathe-
matical program.

Some general remarks. If these research programs were the Knights
of Theoretical Computer Science who would deal with the Dragon of In-
tractability, we would seem to have: one well-equipped for battle but immo-
bilized by the weight of the armaments, one in impressive battlegear with
mystic insignia riding backwards away from the fray, one armed with lucky
charms effective against lizards, one in a baby carriage shaking a rattle, and
one on horse, going in the right direction, and armed with a lance — but
a lance that is effective only after stabbing the Dragon a number of times

bounded by
ok
22222
2

where k is ... unfortunately, it doesn’t matter ... while the townspeople are
cheering on another, who is marching towards the Dragon on foot waving a
wooden cudgel (not a knight, actually just a hired ruffian).

Leaving fanciful impressions aside, it seems fair to say that the central
problems of theoretical computer science, both structural and concrete, have
turned out to be much harder to crack than was hoped in the early years of

the field.

4. Industrial Strength FPT

In this section we sketch the reasons why we think that parameterized com-
plexity offers an inevitable, general, mathematical program for dealing with
computational intractability. There are two main points to the argument.
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1. The parameterized complexity perspective can lead to useful algo-
rithms in several different ways, including:

e Directly and analytically, when the parameter function is rea-
sonable (i.e., not too fast-growing) and the parameter describes
a restriction of the general problem that is still useful.

e Directly and empirically, in cases where the analytic bound on
the running time of the FPT algorithm turns out to be too
crude or pessimistic, that is, where the algorithm turns out
to be useful for larger parameter ranges than the parameter
function would indicate.

e By supplying systematic guidance in the design of heuristic al-
gorithms in the form of explicit general methods based on FPT
techniques, using the theory to understand “the internal struc-
ture of the complexity of the problem” by identifying those
parameterizations of the problem that are FPT and those that
probably are not. (E.g., local search algorithms that iterate
FPT k-step explorations of the neighborhood structure of the
solution space.)

e Via methodological connections between FPT and the design
of efficient polynomial-time approximation schemes (where the
relevant implicit parameter is & = 1/e, for approximations to
within a factor of (1 + €) of optimal) and other approximation
heuristics.

2. The notion of FPT, in many cases, simply provides a new name and a
new perspective on heuristic algorithms already in use. Where natural
instance distributions exhibit limited parameter ranges, these have
frequently been exploited in the design of useful heuristics in a way
that the notion of FPT names and systematizes.

We have already reported on a steadily growing list of examples of FPT
problems with “reasonable” parametric costs, such as 2F. Currently the best
known algorithm for VERTEX COVER runs in time O (kn + max{(1.25542) k2,
(1.2906)%2.5k}) which directly indicates that it is useful for graphs of any
size, so long as k < 157 (the running time of O(kn + max{(1.25542)%k2,
(1.2906)%2.5k}) is a result mainly of a combination of the algorithm by
Niedermeier and Rossmanith[NR99], the algorithm presented in [DFS99],
and a more careful analysis [Ste99, SF99]). In fact, experiments with the
algorithm indicate that it is useful for &k at least up to 200 [HGS98].
FPT-algorithm design has a distinctive toolkit of positive techniques,

including bounded treewidth and pathwidth methods [Bod96], well quasi-
ordering [RS85], color-coding [AYZ94] and important elementary methods
such as search trees and reduction to a problem kernel. This is unfortu-
nately not the place to exposit this interesting collection of methods. What
is important to realize, however, is that all of these methods can be system-
atically adapted in the design of heuristic algorithms. The essential theme is
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to obtain heuristics from FPT algorithms by strategies for deflating the pa-
rametric costs by truncating or sampling the search trees, obstruction sets,
test sets, etc. This is summarized in the following table.

FPT Technique Heuristic Design Strategy
Reduction to a Problem Kernel A useful pre-processing subroutine
for any heuristic.
Search Tree Explore only an affordable, heuristically
chosen subtree.
Well-Quasiordering Use a sample of the obstruction set.
Color-Coding Use a sample of the hash functions.
Bounded Treewidth Use Angluin’s Theorem
and a sample of the test set.

TABLE 2. Some FPT Methods and Heuristic Strategies

For a specific example, the GATE MATRIX LAYOUT problem is amenable
to well-quasiordering methods. For width 3, there are 110 minor order
obstructions. Langston et al. found that testing for just one of these gave a
new heuristic algorithm superior to those then currently in use in VLSI
applications [LR91]. Similar ideas have been explored by Gustedt and
Steger[GS94].

4.1. A Useful Parameterized Algorithm for MAST. We next de-
scribe a useful direct FPT algorithm for the MAXIMUM AGREEMENT SUB-
TREE (MAST) problem defined in §1. Apart from the intrinsic interest of
this result, it is a nice example of two important points concerning FPT
algorithms.

e Our algorithm for MAST ultimately uses an algorithm for VERTEX
COVER as a subroutine. Useful FPT algorithms lead to other useful
FPT algorithms, as one might naturally expect.

e There is already a polynomial time algorithm for MAST for boun-
ded degree trees, so why bother with an exponential FPT algorithm?
The answer is that the polynomial time algorithm for MAST due
to [FPT95] runs in time O(rn® + n?) for r phylogenetic trees of
maximum degree d on a set of n species. The algorithm we describe
requires time O(cfrnlogn) where ¢ is a constant less than 3. Conse-
quently, this is an example of a situation where a classically exponen-
tial FPT algorithm may be preferable to a polynomial time algorithm.

Theorem. The parameterized MAST problem can be solved in time boun-
ded by O(c*rnlogn) for r trees on n species.

Sketch. The input to the problem is a set of rooted binary trees 71, ..., T,
each having n leaves labeled in 1:1 correspondence with a set X of n species.
The problem is to determine if it is possible to delete at most k species from
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X to obtain a set X’ on which all of the trees agree. In considering this pro-
blem, there is an elegant point of view developed by Bryant[Bry97] based
on triples. If {a,b,c} is a set of three species in X, then the restriction of
each of the trees T; to these three species must be one of the three possi-
ble alternatives (using parenthetical notation to represent trees): (a, (b, c)),
(b, (a,c)), (¢, (a,b)), or (a,b,c). If two or more of these three possibilities
arise among the T}, then obviously it will be necessary to eliminate at least
one of the species in {a, b, ¢} from X in order to obtain an agreement subtree.
In this situation we will refer to {a, b, ¢} as a conflicted triple of species.

An argument due to Bryant[Bry98] shows that our problem can be
reduced in this way to the well-known 3-HITTING SET problem which takes
as input a collection C of 3-element subsets of a set X and a positive integer
k, and must answer whether there is a subset X’ C X with |X’| < k such
that for each A € C, ANX’' # (). Bryant’s argument shows that our problem
is equivalent to finding a k-element hitting set for the triples of X that are
conflicted with respect to the 7.

The set of conflicted triples could be computed by exhaustively com-
puting the restrictions of the T; for each 3-element subset of X, but this is
not very efficient. In time O(nlogn) it is possible to either determine that
two trees are isomorphic, or identify a conflicted triple. Once a conflicted
triple is identified, we can branch in a search tree based on 3 possibilities for
resolving the conflict. For example, if the conflicted triple is {a, b, ¢} then we
create three branches in the search tree by deleting one element (say a) from
X and from all of the trees T;. We now recursively attempt to determine if
the modified instance can be solved with &' = k — 1.

There will be at most O(3*) nodes in the search tree, and the run-
ning time due to each node is O(rnlogn), which yields the claimed running
time. |

The algorithm sketched above uses 3-HITTING SET implicitly as a means
of solving the parameterized MAST problem. An improved but more ela-
borate FPT algorithm for this problem is described in [BFRS98], where
we reduce MAST to 3-HITTING SET, and in turn devise a good algorithm
for 3-HITTING SET using a subroutine for VERTEX COVER, to obtain an
algorithm with ¢ = (14+/17)/2. A heuristic algorithm that might be useful
for a greater range of the parameter k can be adapted from the above FPT
algorithm simply by not exploring all the branches of the search tree.

4.2. The Steiner Problem for Generalized Hypercubes. In this
section we briefly describe another FPT result based on the elementary
method of reduction to a problem kernel. The basic idea of this method,
which is very widely applicable (see [DF98]) is that by various reduction
rules that require time polynomial in both n and k it may be possible to
reduce the input (x,k) for a parameterized problem to an instance (2’ k)
where &' < k and || is bounded by a function of k. This immediately
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implies that the problem is in FPT, since the question can be answered by
brute force for (', k’). Surprisingly, it can be shown that every problem in
FPT can be kernelized. Such reductions seem to be closely related to ideas
explored in [CKT91, KS94]. Since such reductions simplify the input, it
seems that they cannot hurt, and thus constitute a reasonable “preprocess-
ing” heuristic regardless of what comes after that.

THE STEINER PROBLEM FOR HYPERCUBES is of interest to biologists
in the computation of phylogenetic trees under the criterion of minimum
evolution / maximum parsimony. The set S corresponds to a set of species,
and the binary vectors correspond to information about the species, each
component recording the answer to some question (as 0 or 1), such as: “Does
it have wings?” or “Is there a thymine at a certain position in the DNA se-
quence?” Each such bit of information is termed a character of the species.
In realistic applications the number k of species may usefully be around 40
or 60, while the number of characters n may be very large. We consider a
slightly more general problem than the one described in §1.

THE STEINER PROBLEM FOR GENERALIZED HYPERCUBES

Instance: The input to the problem consists of the following pieces of infor-
mation:

(1) A set of complete weighted digraphs D, for ¢ = 1, ..., n, each described
by a set of vertices V; and a function

t;:VixV,— IN

(We refer to the vertices of D; as character states, to D; as the character
state digraph, and to t; as the state transition cost function for the ith cha-
racter.)

(2) A positive integer &y such that |V;| < ky fori=1,...,n.

(3) A set X of ky length n vectors z; for j = 1, ..., kg, where the ith compo-
nent z;[7] € V;. That is, for j =1, ..., ky,

r;el= Vi
=1
(4) A positive integer M.
Parameter: (k1 kz)
Question: Is there a rooted tree ' = (V, E) and an assignment to each
vertex v € V of T of an element y, € €2, such that:

e X is assigned 1:1 with the set of leaves of T',
e The sum over all parent-child edges uv of T, of the total transition
cost for the edge, defined to be

is bounded by M?
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Theorem 1. THE STEINER PROBLEM FOR GENERALIZED HYPERCUBES is
fixed-parameter tractable.

Proof. We define a relation ¢ ~ j on the index space {1,...,n} that allows
us to combine D; and D; and obtain an equivalent smaller instance. To
define ~ we first define some other relations.

Fix m < k; and let [ be an integer edge labeling of the complete digraph
K,, on m vertices. Let vy,...,v,, denote the vertices of K,,. Let T be a
rooted tree with k, leaves labeled from vy, ..., v,,. Define the cost of T' with
respect to [ to be the minimum, over all possible labelings s of the internal
vertices of T' with labels taken from {vy, ..., v}, of the sum over the parent-
child edges of T of the transition costs given by [ on the labels, and write
this as

cost(T, 1) = min{cost(T, s,1)}

If [ and !’ are integer edge labelings of K,, and T is as above, then define
[ ~7 ' if and only if ds such that

cost(T,1) = cost(T, s,1) and cost(T, s,1') = cost(T, 1)

Define [ ~ I’ if and only [ ~7 I’ for all such trees T'.

For a fixed value of ky (the number of leaves) | ~ I’ depends only on
finitely many trees T and labelings s, for the reason that if a tree T has
a “very long” path of vertices of degree 2, a labeling s that minimizes
cost(T, s, 1) will necessarily be constant on “most of” the internal vertices of
the path. In more detail, say that a vertex of T is important if it is either
a leaf of T or has degree more than 2. Note that if ks is fixed, then for all
of the trees T that we must consider in order to determine whether [ ~ [,
the number of important vertices of T is bounded by a function of ks. A
little thought will show that we need only consider T’ such that if v and v
are important vertices that are joined by a path of unimportant verrtices in
T, then the length of the path is at most m.

For i,7' € {1,...,n} define i ~ 7" if and only if:

1. |V;| = |Vi/| = m so that the only difference between D; and D;s is in

their arc-labelings [ and !, and

2.0~1.

The kernelization algorithm can now be described quite simply. Let I be
an instance of the problem. If there are indices 7 # i’ for which ¢ ~ ¢,
then modify I by combining these into one character state digraph with
the state transition cost function given by the arc-labeling defined as [ + ',
where these are the cost functions for D; and D;/, respectively. Because
i ~ ¢ there is no possible harm in combining the bookkeeping for these two
indices. Note that 7 ~ i’ can be determined in time bounded by a function
of the parameter. Moreover, by repeating this reduction step (and because
¢ ~ i depends only on a number of trees T' that is bounded by a function
of the parameter), we eventually arrive at an equivalent instance I’ whose
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total size is bounded by a function of the parameter. |

The parameter function for this simple kernelization algorithm is not very
good and can probably be much improved. We remark that most of the
expense is in determining when two transition digraph indices 7 and i’ are
equivalent by testing them on ‘the relevant set of trees with k5 leaves. This
suggests a heuristic algorithm that combines indices when they fail to be
distinguished by a (much smaller) random sample of trees and leaf-labelings.

In §1 we reported an encounter with an evolutionary biologist who re-
ported earlier, rather fruitless interactions with theoretical computer sci-
entists who proved that his problems were NP-complete and “went away”.
We claimed that we were different! and that we had a result on one of
his computational problems (THE STEINER PROBLEM FOR HYPERCUBES)
that might be of interest. After we described the FPT algorithm he said
simply [Fel97]:

“That’s what I already do!”

5. Parametric Intractability

The main classes of parametric complexity are described in the tower:
FPT CWI[l]CW[2]C---CW[SAT]C W[P]C AW[P]C XP

As in the theory of NP-completeness, there are two kinds of evidence indi-
cating that if a parameterized problem is hard for W/[1], then it is unlikely
to be fixed-parameter tractable. The first is that given a sufficient amount
of unsuccessful effort to demonstrate tractability for various problems in a
class, the knowledge that a problem is hard for the class offers a cautionary
sociological message.

A second reason for the belief that W[1]-hardness implies parametric in-
tractability, is rooted in the following fundamental theorem [DFKHW94,
CCDF96].

Theorem (Downey-Fellows). The k-STEP HALTING PROBLEM FOR
NONDETERMINISTIC TURING MACHINES is complete for WT1].

On input consisting of a Turing machine M and a positive integer &k (with
k being the parameter), the question is whether M can reach a halting con-
figuration in at most k steps. This problem is so generic and opaque that it
is hard to imagine that there is any algorithm for it that radically improves
on simply exploring the n-branching depth k tree of allowed nondetermin-
istic transitions exhaustively. The theorem can be viewed as essentially a
miniaturization of Cook’s Theorem.

CLIQUE is a typical starting point for W[1l]-hardness arguments. It is
interesting that most natural parameterized problems seem to belong to a

small number of degrees (FPT, W[1], W[2], W[P], AW[«] and AW[P]; for
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LINEAR INEQUALITIES
WI[P] MINIMUM AXIOM SET
SHORT SATISFIABILITY
WEIGHTED CIRCUIT SATISFIABILITY

WI[SAT] WEIGHTED SATISFIABILITY

LoNGEST COMMON SUBSEQUENCE
(k= ( NUMBER OF SEQs.,|X|)) (hard)
W(t], FeasiBLE REGISTER ASSIGNMENT (hard)
for all ¢ TRIANGULATING COLORED GRAPHS (hard)
BanpwiDTH (hard)
PRrROPER INTERVAL GRAPH COMPLETION (hard)
WEIGHTED {~NORMALIZED SATISFIABILITY

WEIGHTED {0,1} INTEGER PROGRAMMING
WI[2]  DOMINATING SET
TOURNAMENT DOMINATING SET
UNIT LENGTH PRECEDENCE CONSTRAINED
SCHEDULING (hard)

SHORTEST COMMON SUPERSEQUENCE (k sEQs.) (hard)
MaxiMuM LIKELIHOOD DECODING (hard)
WEIGHT DISTRIBUTION IN LINEAR CoDES (hard)
NEAREST VECTOR IN INTEGER LATTICES (hard)
SHORT PERMUTATION GROUP FACTORIZATION (hard)
WI1]  SHORT PosT CORRESPONDENCE
WEIGHTED ¢—CNF SATISFIABILITY
VAPNIK—CHERVONENKIS DIMENSION
LoNGEST COMMON SUBSEQUENCE
(LENGTH m COMMON SUBSEQ. FOR k SEQS.,
PARAMETER (k,m))
INDEPENDENT SET
SQUARE TILING
MoNOTONE DATA COMPLEXITY FOR
RELATIONAL DATABASES
k-STEP DERIVATION FOR CONTEXT SENSITIVE GRAMMARS
CLIQUE
SHORT NTM COMPUTATION

FEEDBACK VERTEX SET
FPT GRAPH GENUS

MINorR ORDER TEST

TREEWIDTH

VERTEX COVER

TABLE 3. A Sample of Parametric Complexity Classifica-
tions (References in [DF98])
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details see [DF98]).

WI1l]-Hard Means No Good PTAS. One might suspect that parameter-
ized complexity is related to the complexity of approximation. A very good
connection is supplied by the following theorem first proved by BazganBaz95],

and later independently by Cesati and Trevisan[CT97], strengthening an
earlier result of Cai and Chen[CC97].

Definition. An approximation algorithm has an efficient PTAS if it com-
putes a solution within a factor of (1 4 €) of optimal in time O(f(€)n°) for
some constant c.

Definition. For a maximization (resp. minimization) problem A, the in-
duced language L 4 is the parameterized language consisting of all pairs (2, k)
where 2z is an instance of A and opt(z) > k (resp. opt(z) < k).

Theorem (Bazgan). If A has an efficient PTAS then Ly € FPT.

Thus if the parameterized problem naturally associated with an optimiza-
tion problem A is hard for WJ[1l], then A cannot have an efficient PTAS
unless FPT = WJ1]. For an example of the power of this result, we can
conclude that VC DIMENSION is unlikely to have an efficient PTAS. It is
worth noting that some (but by no means all) NP-completeness reductions
are serendipitously parametric and thus provide demonstrations of W{1]-
hardness and non-approximability “for free”. An important optimization
problem that has a PTAS but is not known to have an efficient PTAS is the
EucLIDEAN TRAVELING SALESMAN PROBLEM. The PTAS for this problem
due to Arora runs in time O(n30/¢).

6. The Role of Parameterized Complexity Analysis

The current approach to the analysis of concrete computational problems is
dominated by two kinds of effort:

(1) The search for asymptotic worst-case polynomial-time algorithms.

(2) Alternatively, proofs of classical hardness results, particularly NP-hard-
ness.

We expect that eventually these will be routinely supplemented by:

(1") The design of FPT algorithms for various parameterizations of a given
problem, and the development of associated heuristics.

(2) Alternatively, demonstrations of W[1]-hardness.

We are inevitably forced towards something like an ultrafinitist [Y V70] out-
look concerning computational complexity because of the very nature of the
universe of interesting yet feasible computation. The main point of this
outlook is that numbers in different ranges of magnitude must be treated in
qualitatively different ways.
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The pair of notions (1’) and (2') are actually rather straightforward muta-
tions of (1) and (2), and they inherit many of the properties that have made
the framework provided by (1) and (2) so successtul. We note the following
in support of this position.

e The enrichment of the dialogue between practice and theory that
parameterized complexity is based on always makes sense. It always
makes sense to ask the users of algorithms, “Are there aspects of your
problem that may typically belong to limited distributional ranges?”

e Fixed-parameter tractability is a more accurate notion of “the good”.
If you were concerned with inverting very large matrices and could
identify a bounded structural parameter & for your application that
allows this to be done in time 0(2’%2)7 then you might well prefer this
classically erponential-time algorithm to the usual O(n3) polynomial-
time algorithm.

e The “bad”, W/[l]-hardness, is based on a miniaturization of Cook’s
Theorem in a way that establishes a strong analogy between NP and
WI1]. Proofs of W{l]-hardness are generally more challenging than
NP-completeness, but it is obvious by now (see Table 3) that this is
a very applicable complexity measurement.

e Problems that are hard do not just go away. Parameterization allows
for several kinds of sustained dialogue with a single problem, in ways
that allow finer distinctions about the causes of intractability (and op-
portunities for practical algorithms, including systematically designed
heuristics) to be made than the exploration of the “NP-completeness
boundary” described in [GJ79].

e Polynomial time has thrived because of the empirical circumstance
that when polynomial-time algorithms can be devised, one almost
always has small exponent polynomials. This is also true for FPT
algorithms.

e Polynomial time is robust in that it seems to support a strong form of
Church’s thesis, i.e., that polynomial time on Turing machines is the
same as polynomial time on any reasonable computing device. This
also seems to be true for FPT.

e Polynomial time has thrived because it is a mathematically rich and
productive notion allowing for a wide variety of algorithm design tech-
niques. FPT seems to offer an even richer field of play, in part because
it encompasses polynomial time as (usually) the best kind of FPT re-
sult. Beyond this, the FPT objective encompasses a rich and distinc-
tive positive toolkit, including novel ways of defining and exploiting
parameters.

e There is good evidence that not only are small polynomial exponents
generally available when problems are FPT, but also that simple ex-
ponential parameter functions such as 2* are frequently achievable,
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and that many of the problems in FPT admit kernelization algo-
rithms that provide useful start-ups for any algorithmic attack on the
problem.

e The complexity of approximation is handled more elegantly than in
the classical theory, with WW[1]-hardness immediately implying that
there is no efficient PTAS. Moreover, FPT algorithm design tech-
niques appear to be fruitful in the design of approximation algorithms
(e.g., bounded treewidth techniques in the planar graph PTAS results
of Baker[Ba94]).

e Parameterization is a very broad idea. It is possible to formulate
and explore notions such as randomized FPT [FK93], parameter-
ized parallel complexity [Ces96], parameterized learning complex-
ity [DEF93], parameterized approximation, parameterized cryptosys-
tems based on O(n*) security, etc.

We feel that the parametric complexity notions, with their implicit ultra-
finitism, correspond better to the natural universe of computational com-
plexity, where we find ourselves overwhelmingly among hard problems, de-
pendent on identifying and exploiting thin zones of computational viability.
Many natural problem distributions are generated by processes that inhabit
such zones themselves (e.g., computer code that is written in a structured
manner so that it can be comprehensible to the programmer), and these
distributions then inherit limited parameter ranges because of the compu-
tational parameters that implicitly govern the feasibility of the generative
processes, though the relevant parameters may not be immediately obvious.

It seems that we have a whole new world of complexity issues to explore!
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