
Computational Tractability: The View From MarsRodney G. Downey, Michael R. Fellows, and Ulrike StegeAbstract. We describe a point of view about the parameterized com-putational complexity framework in the broad context of one of thecentral issues of theoretical computer science as a �eld: the problem ofsystematically coping with computational intractability. Those alreadyfamiliar with the basic ideas of parameterized complexity will never-theless �nd here something new: the emerging systematic connectionsbetween �xed-parameter tractability techniques and the design of usefulheuristic algorithms, and also perhaps the philosophical maturation ofthe parameterized complexity program.1. IntroductionThere are two di�erent ways that one can view the theory of parameterizedcomplexity. The easiest is as a kind of \�rst aid" that can sometimes beapplied to problems that are NP-hard, PSPACE-hard or undecidable. Thatis, it can be viewed as a potential means of coping with intractability as itis classically diagnosed.The second way that one can view parameterized complexity is as afundamentally richer and generally more productive primary framework forproblem analysis and algorithm design, including the design of heuristic andapproximation algorithms.It is interesting and humbling to consider the big picture of the develop-ment of theoretical computer science over the past 30 years. Above all, thisseems to be dominated by continent-sized discoveries and cartography ofvarious kinds of computational intractability. For some time, the practicalfolks portrayed in the amusing cartoons of Garey and Johnson[GJ79], Chap-ter 1, have been somewhat disappointed with theoretical computer science,and there have been numerous incidents of \restless drums" in the junglesRodney G. Downey. Research supported by a grant from the United States/NewZealand Cooperative Science Foundation and by the New Zealand Marsden Fund forBasic Science.Michael R. Fellows. Research supported by the National Science and EngineeringResearch Council of Canada.This a shortened version of a survey that appeared in the AMS-DIMACS ProceedingsVolume, The Future of Discrete Mathematics, edited by F. Roberts and J. Ne�set�ril .1



2 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEof computer applications. Such grumblings may have something to do withthe recent spate of soul-searching among theorists [HL92, PGWRS96,AFGPR96]. Some examples:Example 1: Yet Another Call for Reform. One of the plenary ad-dresses at the AAAI meeting in 1996 was concerned with the broad themeof how computer science practice and theory interact [DKL96]. The dis-cussion in [DKL96] can be summarized as:(1) Pointing to a particular problem, STRIPS Planning, as central to theentire �eld of arti�cial intelligence.(2) Proposing that practitioners and theorists collaborate in an intense ana-lysis of this one problem, to understand what makes it hard, and to comeup with something more useful than a PSPACE-completeness classi�cation.(3) Suggesting that the usual framework for concrete complexity analysisis wrong-headed, historically contingent, unnatural (especially worst-caseasymptotic analysis), and re
ects an unhappy state of interaction betweencomputer science theory and practice.Regarding the third point, most theorists have probably heard similar chargesand complaints from colleagues in applied areas of computer science in theirown departments.Example 2: An Encounter With a Computational Biologist. Inrecent conversations with a biologist who is heavily involved in combinatorialcomputing [Fel97], the following summary was o�ered of his interaction withtheoretical computer scientists.\About ten years ago some computer scientists came by andsaid they heard we have some really cool problems. They showedthat the problems are NP-complete and went away!"If this interaction had been more recent, then perhaps the computer scien-tists would also have proved that the problems are unlikely to have e�cientapproximation algorithms.The Pervasive Nature of Computational Intractability and VariousCoping Strategies. Naturally, many computer science practitioners wouldlike to shoot the messenger who brings so much bad news! In this di�cultsituation, computer science theory has articulated a few general programsfor systematically coping with the ubiquitous phenomena of computationalintractability. We list these famous basic approaches, and add to this listour less well known candidate.� The idea of focusing on average-case as opposed to worst-case analysisof problems.� The idea of settling for approximate solutions to problems, and oflooking for e�cient approximation algorithms.� The idea of using randomization in algorithms.



COMPUTATIONAL TRACTABILITY: THE VIEW FROM MARS 3� The idea of harnessing quantum mechanics, or biomolecular chem-istry, to create qualitatively more powerful computational mecha-nisms.� The idea of devising �xed-parameter tractable algorithms for param-eterizations of a problem.A list such as this cannot be considered complete without including anothercoping strategy that mathematical theorists have frequently contributed to.This approach antedates modern complexity-theoretic frameworks and hasrecently regained some respectability among theorists as re
ected in theDIMACS Challenges and in new journals such as the Journal of Heuristicsand the ACM Journal of Experimental Algorithms:� The design of mathematically informed, but perhaps unanalyzableheuristics, that are empirically evaluated by their performance onsets of benchmark instances.The actual state of the practical world of computing is that generally thereis not much systematic connection to work in theoretical computer scienceon algorithms and complexity. It is heuristic algorithms that are relied onin most applications.2. Fixed-Parameter TractabilityThe basic concept of the parameterized complexity framework is that of�xed-parameter tractability. The de�nition is best introduced through con-crete examples.Vertex CoverInstance: A graph G = (V;E) and a positive integer k.Parameter: kQuestion: Does G have a vertex cover of size k? That is, is there a subsetV 0 � V of size at most k such that for every edge uv 2 E, either u 2 V 0 orv 2 V 0?Dominating SetInstance: A graph G = (V;E) and a positive integer k.Parameter: kQuestion: Does G have a dominating set of size k? That is, is there a subsetV 0 � V of size at most k such that every vertex u 2 V of G either belongsto V 0 or has a neighbor in V 0?The Steiner Problem for HypercubesInstance: A set S = fxi : 1 � i � kg of binary vectors, xi 2 f0; 1gn fori = 1; :::; k, and a positive integer m.Parameter: kQuestion: Is there a tree T = (V;E) and a labeling of the vertices of T withelements of f0; 1gn such that the following conditions are satis�ed?(1) The leaves are labeled 1:1 with the elements of S.



4 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGE(2) The sum over the edges uv of T of the Hamming distance between thelabels l(u) 2 f0; 1gn and l(v) 2 f0; 1gn is at most m.The Maximum Agreement Subtree Problem (MAST)Instance: A set of rooted trees T1; :::; Tr (r � 3) with the leaf set of each Tilabeled 1:1 with a set of species X , and a positive integer k.Parameter: kQuestion: Is there a subset S � X of size at most k such that Ti restrictedto the leaf set X 0 = X � S is the same (up to label-preserving isomorphismand ignoring vertices of degree 2) for i = 1; :::; r?All of these problems are NP-complete and they are described above inthe standard way for the parameterized complexity framework. Part ofthe input (which may be some aggregate of various aspects) is identi�edas the parameter for the problem speci�cation. (In order to consider aparameterized problem classically, just ignore the parameter part of thespeci�cation. Note that a single classical problem may give rise to manydi�erent parameterized problems.) All of the four problems above can besolved in time O(nf(k)) by simple brute force algorithms.Papadimitriou and Yannakakis showed that Vertex Cover can besolved in time O(3kn) [PY96]. Balasubramanian, Fellows and Raman gavean algorithm with running time O((53=40)kk2+kn) [BFR98]. It is possibleto do even better. Note that since the exponential dependence on the para-meter k in the last expression is additive, Vertex Cover is well-solved forinput of any size so long as k is no more than around 60. The di�erence be-tween the situation for Dominating Set and Vertex Cover is displayedin Table 1. n = 50 n = 100 n = 150k = 2 625 2,500 5,625k = 3 15,625 125,000 421,875k = 5 390,625 6,250,000 31,640,625k = 10 1:9� 1012 9:8� 1014 3:7� 1016k = 20 1:8� 1026 9:5� 1031 2:1� 1035Table 1. The Ratio nk+12kn for Various Values of n and k.There are myriad ways in which numbers that are small or moderately large(e.g., k � 40) arise naturally in problem speci�cations. For example, graphlinear layout width metrics are of interest in VLSI layout and routing prob-lems and have important applications for width values of k � 10. Intervalgraphs of pathwidth k � 10 have applications in DNA sequence reconstruc-tion problems [BDFHW95]. Logic and database problems frequently arede�ned as having input consisting a formula (which may be small and rel-atively invariant), and some other structure (such as a database) which is



COMPUTATIONAL TRACTABILITY: THE VIEW FROM MARS 5typically quite large and changeable. Formula size, or other aspects of for-mula structure may be a relevant parameter [Yan95]. Hardware constraintsare a common source of natural parameters. The number of processors ormachines to be scheduled may be bounded by a value such as k � 20. Thenumber of degrees of freedom in a robot motion-planning problem is com-monly in the range k � 10. The number of wiring layers in VLSI chipmanufacture is typically bounded by k � 30. Important distributional pa-rameters may also arise in ways that are not at all obvious. Thorup, forexample, has shown that the 
ow graphs of structured programs for themajor computer languages have treewidth k � 7 [Th97].The Basic De�nitions. The basic de�nitions of parameterized complexityare as follows.De�nition. A parameterized language L is a subset L � �� � ��. If Lis a parameterized language and (x; y) 2 L then we will refer to x as themain part, and refer to y as the parameter. It makes no di�erence to thetheory and is occasionally more convenient to consider that y is an integer,or equivalently to de�ne a parameterized language to be a subset of ���IN .De�nition. A parameterized language L is �xed-parameter tractable if itcan be determined in time f(k)n� whether (x; k) 2 L, where jxj = n, �is a constant independent of both n and k and f is an arbitrary function.The family of �xed-parameter tractable parameterized languages is denotedFPT.It is somewhat surprising, although the argument is not hard, that FPTis unchanged if the de�nition above is modi�ed by replacing f(k)n� byf(k) + n� [CCDF97].\About half" of the naturally parameterized problems cataloged as NP-complete in the book by Garey and Johnson[GJ79] are in FPT, includ-ing three of the six basic problems singled out for attention in Chapter 3.It is always possible to parameterize a problem in various ways that are�xed-parameter tractable, yet it is not surprising that many parameterizedproblems apparently do not belong to FPT. The naturally parameterizedDominating Set problem de�ned above is one of these. We can �nd evi-dence for �xed-parameter intractability by studying the appropriate notionof problem transformation.De�nition. A parametric transformation from a parameterized language Lto a parameterized language L0 is an algorithm that computes from inputconsisting of a pair (x; k), a pair (x0; k0) such that:(1) (x; k) 2 L if and only if (x0; k0) 2 L0,(2) k0 = g(k) is a function only of k, and(3) the computation is accomplished in time f(k)n�, where n = jxj, � is aconstant independent of both n and k, and f is an arbitrary function.



6 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEAn Illustrative Non-Example. It can be helpful to observe how pa-rametric transformations di�er from ordinary polynomial-time reductions.Recall that for a graph G = (V;E) on n vertices, a set of vertices V 0 � V isa k-clique in G if and only if V �V 0 is a vertex cover in the complementarygraphG0 where vertices are adjacent if and only if they are not adjacent in G.This gives an easy polynomial-time reduction of the naturally parameterizedClique problem to the naturally parameterized Vertex Cover problem,transforming the instance (G; k) of Clique into the instance (G0; k0) ofVer-tex Cover. But this is not a parametric transformation, since k0 = n� kis not purely a function of k. The available evidence suggests that there isno parametric transformation in this direction.An Illustrative Example. There is a fairly elaborate parametric transfor-mation from the naturally parameterized Clique problem to the naturallyparameterized Dominating Set problem, mapping (G; k) to (G0; k0) wherek0 = 2k [DF95, DF98]. The evidence is that there is no such parametrictransformation in the other direction.The essential property of parametric transformations is that if L trans-forms to L0 and L0 2 FPT , then L 2 FPT . This naturally leads to a com-pleteness program based on a hierarchy of parameterized problem classes:FPT � W [1] � W [2] � � � � � W [SAT ] � W [P ] � AW [P ] � XPThe parameterized analog of NP is W [1], and W [1]-hardness is the basicevidence that a parameterized problem is likely not to be �xed-parametertractable. The k-Step Halting Problem for Nondeterministic Tur-ing Machines is W [1]-complete (where the amount of nondeterminism ateach step of the Turing machine computation is unbounded). Since theq(n)-Step Halting Problem is essentially the de�ning problem for NP,the analogy between NP and W [1] is quite strong. The parameterized com-plexity class W [P ] is an analog of PSPACE [ADF95]. The class XP is theset of all parameterized languages L for which there are functions f and gand an algorithm to determine whether (x; k) 2 L in time f(k)jxjg(k).How Compelling is Fixed-Parameter Tractability? The notion of�xed-parameter tractability is the basic concept of the theory | but howgood, really, is this notion of good complexity behaviour? It might be ob-jected that Table 1 is misleading, unless FPT parameter functions such as2k are typical. Certainly functions such as 222k are allowed by the de�nition,and would be impractical for k = 3, which suggests that the basic de�nitionallows too much pathology.There are two main responses. First of all, we are already used to somerisk-taking in de�nitions, since the notion of polynomial time allows for, e.g.,O(n12) and O(n120) and O(n1200), all of which are completely impractical.We forget how controversial the notion of asymptotic polynomial time waswhen �rst introduced, but the notion has thrived because the universe of



COMPUTATIONAL TRACTABILITY: THE VIEW FROM MARS 7natural computational problems has been kind, in some sense. A parame-terized problem is just an ordinary problem for which some aspect of theinput has been designated as the parameter. Ignoring the parameter, if theproblem can be solved in polynomial time, that is, in time polynomial inboth the total input size n and the parameter k, then trivially this is anFPT algorithm. In other words, considered classically, FPT is a supersetof P, and it is intended to be a generalization that allows us to do some-thing for problems that are not in P and that may even be PSPACE hardor undecidable. We have to expect to risk something in formulating such ageneral attack on intractability. The de�nition simply asks whether the dif-�culty of the problem can be con�ned to a function of the parameter, whilethe other costs are polynomial. How else would one naturally formulate ageneralization of P having such ambitions?The second response is that there are many good FPT examples otherthanVertex Cover suggesting that \reasonable" (e.g., single exponential)parameter functions are usually obtainable for natural problems (possiblyafter some rounds of improvement). For example, consider the problemMaximum Satisfiability where the parameter k denotes the number ofclauses to be satis�ed. This was shown by Cai and Chen[CC97] to be inFPT with the parameter function 22ck, when the clause size is bounded by c.The parameter function was improved by Mahajan and Raman[MR98] to�k (without assuming a bound on the clause size), where � is the golden ratio(1 + p5)=2. Franco and others in [Fr97] have shown that the falsi�abilityproblem for pure implicational formulas having k negations is in FPT withparameter function kk. (Can this be improved to 2k?) Although the typechecking problem for the programming language ML is PSPACE-complete,this is handled in implementations in linear time with a parameter functionof 2k, where k is the nesting depth of let's, a very natural parameter for thisproblem (one that explains why the problem did not seem hard in practice).We will describe an FPT algorithm for a natural parameterization of theMaximum Agreement Subtree problem having the parameter function3k. Many more examples can be found in [DF98]. The improvement ofparameter functions for FPT problems seems to be a productive area forresearch, where many di�erent ideas and techniques can be employed.The point of view that parameterized complexity adopts can be summa-rized in a metaphorical picture. There is an assumption that most interestingproblems are hard, so we can picture them as stones, or perhaps planets inthe generally hostile environment of outer space. The trick is to identify anddevelop thin zones of computational viability, as suggested in Figure 1.3. A Review of the Major Coping StrategiesIn x1 we noted the fundamental problem that has emerged in the �rstdecades of theoretical computer science:
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of

Intractability

Rock

the

range of k
Increasingly viableFigure 1. The view from Mars: interesting computationsoccur in thin zones of viability.The need to deal in some systematic way with the pervasivephenomena of computational intractability.We also noted that it is possible to point to �ve general mathematical strate-gies that have been proposed so far: (1) average-case analysis, (2) approx-imation, (3) randomization, (4) fundamentally new kinds of computing de-vices, and (5) parameterization, as well as another, quasi-mathematical cop-ing strategy, (6) heuristics.In this section, we review the accomplishments and prospects of theseprograms.Average-Case Analysis. In many applications practitioners would behappy with algorithms having good average-case performance. This criterionis implicit in the common practice of evaluating heuristic algorithms on setsof representative benchmarks. The idea that average-case analysis is morerealistic than worst-case analysis has been around since the beginnings oftheoretical computer science. Although we have a few gems of average-caseanalysis, in general the program seems to be too di�cult to carry out fortypical hard problems, realistic distributions and sophisticated algorithms.It is also frequently unclear what constitutes a reasonable assumption aboutthe distribution of problem instances, apart from the analytical di�cultiesof the program.



COMPUTATIONAL TRACTABILITY: THE VIEW FROM MARS 9A completeness notion for average-case complexity has been introduced byLevin[Lev86]. This also seems to be di�cult to apply, and has only beendemonstrated for a few problems. The main weaknesses of average-caseanalysis as a mathematical program for coping with intractability seem tobe: � In general, it seems to be too di�cult to prove the mathematicalresults that the program calls for. 1� The positive toolkit has not developed well. Few general methodsare known for designing algorithms with provably good average-caseperformance. (One interesting example of a general method has beendescribed by Gustedt and Steger[GS94].)Approximation. Most of the discussion in the chapter on coping with NP-completeness in [GJ79] is devoted to explaining the basic ideas of polynomialtime approximation algorithms and schemes.Early on, important polynomial time approximation schemes were foundfor NP-complete problems such as Bin Packing and Knapsack. The pro-gram has attracted an enormous amount of e�ort. However, apart from a fewsimilar results on problems mostly of this same general 
avor, it now seemsto be clear, on the basis of powerful new proof techniques [ALMSS92], thatthese results are not typical for NP-hard and otherwise intractable prob-lems. The vast majority of natural NP-hard optimization problems do notadmit e�cient approximation schemes under the usual assumptions (suchas P 6= NP ).While approximation allows for the clever deployment of mathematicsand can be a very e�ective cure for worst-case intractability when it can beapplied, from a practical standpoint, most of the results are negative. Themain weakness of the program is:� Most unrestricted classically hard problems cannot be approximatedvery well.Randomized Polynomial Time. Randomization is discussed in Chap-ter 6 of Garey and Johnson[GJ79] as a means of avoiding one of the weak-nesses of average-case analysis as a coping strategy | the need to haveknowledge in advance of a realistic distribution of problem instances. Analgorithm that 
ips coins as it works may be able to conform to whateverdistribution it is given, and either produce an answer in polynomial-timethat is correct with high probability (Monte Carlo randomization), or onethat is guaranteed to be correct after what is likely to be a polynomialamount of time (Las Vegas randomization).These seemed at �rst to be potentially powerful generalizations of poly-nomial time. Randomized Monte Carlo and Las Vegas algorithms are a1C'mon guys, you're laying it on a bit thick, aren't you? For a more optimistic viewon average-case complexity, please consult [Wang97a, Wang97b]. EWA



10 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEworkhorse of cryptography, and have important applications in computa-tional geometry, pattern matching, on-line algorithms and computer algebra(see [Karp86] and [MR95a] for surveys), in part because they are oftensimple to program. Approximate counting is another area of notable suc-cess. Randomization is an important new idea that is now applied in manydi�erent kinds of algorithms, including approximations and heuristics.Despite these successes, it now seems that randomized polynomial timeis better at delivering good algorithms for di�cult problems that \proba-bly" are in P to begin with, than at providing a general means for deal-ing with intractable problems. There have recently been a number of im-portant results replacing fast probabilistic algorithms with ordinary poly-nomial time algorithms through the use of sophisticated derandomizationtechniques [Rag88, MR95b]. Even more to the point, Impagliazzo andWigderson have recently shown that if there merely exists a language inthe exponential time class EXP that requires circuits of size 2
(n) thenBPP = P [IW97]. The main weaknesses of randomization (in the sense ofalgorithms with performance guarantees) as a general program for copingwith intractability are:� With a few exceptions, it does not seem that randomized polynomialtime algorithms are any more e�ective against problems that are trulyhard than ordinary polynomial time algorithms.� Although the positive toolkit of methods for designing and analyzingrandomized algorithms is rich, there is no speci�cally correspondingnegative toolkit that can be used in tandem to negotiate problemcomplexity and guide the design of e�ective algorithms.New Forms of Computation: DNA and Quantum Mechanics. Al-though these programs have been launched with great fanfare, they so faro�er much less of substance than the other items on this list in terms ofa general mathematically-powered program for coping with intractability.So far, DNA computing essentially amounts to computation by molecularbrute force. Combinatorial explosion can quickly force one to contemplatea very large test tube for brute force computations, despite the fact thatinformation can be stored in molecules with a factor of 1012 improved ef-�ciency compared to magnetic tape storage. Mathematically, the programseems to come down to the potential for signi�cant constant speed-ups bymeans of this physical miniaturization of computing.It is still unclear whether quantum computers useful for any kind ofcomputation can actually be built. The notion of quantum polynomial timeis mathematically interesting, but so far appears to be applicable only to afew special kinds of problems.The main weakness of these approaches are:� Practical implementation of the new computing devices seems to befar in the future.



COMPUTATIONAL TRACTABILITY: THE VIEW FROM MARS 11� Biomolecular computing is essentially a physical attack on intractabil-ity, not a mathematical one.� It is unclear whether quantum polynomial time is a signi�cant gener-alization of ordinary polynomial time, except for a few special kindsof problems.Parameterization. We can trace the idea of coping with intractabilitythrough parameterization to early discussions in Garey and Johnson[GJ79],particularly Chapter 4, where it is pointed out that parameters associatedwith di�erent parts of the input to a problem can interact in a wide varietyof ways in producing non-polynomial complexity. The internal structure ofan intractable problem | the identi�cation of those aspects (parameters) towhich the non-polynomial complexity can be con�ned | is precisely whatis at issue in parameterized complexity.A weakness of the parameterized complexity program is that some of themost general and spectacular positive methods, such as the celebrated re-sults of Robertson and Seymour[RS85], yield algorithms having parameterfunctions that are supremely impractical (e.g., towers of 2's of height de-scribed by towers of 2's ...). If tractability has friends like these, who needsenemies?The main strengths of parameterization as a program are that it doesseem to be very generally applicable to hard problems throughout the clas-sical hierarchy of intractable classes, and it supports a rich toolkit of bothpositive and negative techniques. The crucial strike against the programseems to have been:� The extent to which FPT is really useful is unclear.Heuristics. Since heuristic algorithms that work well in practice are now,and have always been, the workhorses of industrial computing, there is noquestion about the ultimate signi�cance of this program for dealing withintractability. There has recently been a revival of interest in obtaining sys-tematic empirical performance evaluations of heuristic algorithms for hardproblems. There have been vigorous developments of new ideas for designingheuristic algorithms, particularly new ideas employing randomization in var-ious ways. These approaches frequently have colorful and extravagant namesbased on far-fetched analogies in other sciences, such as simulated annealing,genetic algorithms, neural nets, great deluge algorithms, and roaming ants.Many of these can be considered as variants on the basic technique of localsearch.The main problem with considering heuristics as a systematic programfor coping with intractability is that it is not a coherent mathematical pro-gram. The positive toolkit properly includes voodoo and the kitchen sink.As a program, it doesn't call for any theorems, only empirical performance.The undeniable successes of sometimes \mindless" and generally unanalyz-able heuristic algorithms puts computer science theory in an uncomfortableposition.



12 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEHeuristics based on local search perhaps come the closest to constitutinga mathematically articulated general coping strategy for intractability (seethe articles in [AL97]). There is a negative toolkit (of sorts) based onthe notion of polynomial local search problems and PLS-completeness, in-troduced by Johnson, Papadimitriou and Yannakakis[JPY88]. Although anumber of local search problems have been shown to be complete, the re-ductions are quite demanding (so there aren't very many such results), andthere is furthermore a notable peculiarity of this framework. For a concreteexample, because the Traveling Salesman Problem is NP-hard, one re-sorts to a local search heuristic based on the k-Opt neighborhood structure,such as the Lin-Kernighan algorithm, and this is considered to be a par-ticularly successful local search heuristic. Yet, Krentel has shown that fork = 8, this neighborhood structure is PLS-complete [Kr90, JMc97]. Thisseems like a weapon �ring in the wrong direction, or perhaps just a kindof reiteration that TSP is fundamentally a hard problem. It is unclear howPLS-completeness provides any guidance in designing local search heuristics.The main di�culty is summarized:� Although heuristics are the principal coin of the realm in practicalcomputing, the design of heuristics is not well-organized as a mathe-matical program.Some general remarks. If these research programs were the Knightsof Theoretical Computer Science who would deal with the Dragon of In-tractability, we would seem to have: one well-equipped for battle but immo-bilized by the weight of the armaments, one in impressive battlegear withmystic insignia riding backwards away from the fray, one armed with luckycharms e�ective against lizards, one in a baby carriage shaking a rattle, andone on horse, going in the right direction, and armed with a lance | buta lance that is e�ective only after stabbing the Dragon a number of timesbounded by 2222222kwhere k is ... unfortunately, it doesn't matter ... while the townspeople arecheering on another, who is marching towards the Dragon on foot waving awooden cudgel (not a knight, actually just a hired ru�an).Leaving fanciful impressions aside, it seems fair to say that the centralproblems of theoretical computer science, both structural and concrete, haveturned out to be much harder to crack than was hoped in the early years ofthe �eld. 4. Industrial Strength FPTIn this section we sketch the reasons why we think that parameterized com-plexity o�ers an inevitable, general, mathematical program for dealing withcomputational intractability. There are two main points to the argument.



COMPUTATIONAL TRACTABILITY: THE VIEW FROM MARS 131. The parameterized complexity perspective can lead to useful algo-rithms in several di�erent ways, including:� Directly and analytically, when the parameter function is rea-sonable (i.e., not too fast-growing) and the parameter describesa restriction of the general problem that is still useful.� Directly and empirically, in cases where the analytic bound onthe running time of the FPT algorithm turns out to be toocrude or pessimistic, that is, where the algorithm turns outto be useful for larger parameter ranges than the parameterfunction would indicate.� By supplying systematic guidance in the design of heuristic al-gorithms in the form of explicit general methods based on FPTtechniques, using the theory to understand \the internal struc-ture of the complexity of the problem" by identifying thoseparameterizations of the problem that are FPT and those thatprobably are not. (E.g., local search algorithms that iterateFPT k-step explorations of the neighborhood structure of thesolution space.)� Via methodological connections between FPT and the designof e�cient polynomial-time approximation schemes (where therelevant implicit parameter is k = 1=�, for approximations towithin a factor of (1 + �) of optimal) and other approximationheuristics.2. The notion of FPT, in many cases, simply provides a new name and anew perspective on heuristic algorithms already in use. Where naturalinstance distributions exhibit limited parameter ranges, these havefrequently been exploited in the design of useful heuristics in a waythat the notion of FPT names and systematizes.We have already reported on a steadily growing list of examples of FPTproblems with \reasonable" parametric costs, such as 2k. Currently the bestknown algorithm forVertex Cover runs in timeO(kn+ maxf(1:25542)kk2,(1:2906)k2:5kg) which directly indicates that it is useful for graphs of anysize, so long as k � 157 (the running time of O(kn + maxf(1:25542)kk2,(1:2906)k2:5kg) is a result mainly of a combination of the algorithm byNiedermeier and Rossmanith[NR99], the algorithm presented in [DFS99],and a more careful analysis [Ste99, SF99]). In fact, experiments with thealgorithm indicate that it is useful for k at least up to 200 [HGS98].FPT-algorithm design has a distinctive toolkit of positive techniques,including bounded treewidth and pathwidth methods [Bod96], well quasi-ordering [RS85], color-coding [AYZ94] and important elementary methodssuch as search trees and reduction to a problem kernel. This is unfortu-nately not the place to exposit this interesting collection of methods. Whatis important to realize, however, is that all of these methods can be system-atically adapted in the design of heuristic algorithms. The essential theme is



14 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEto obtain heuristics from FPT algorithms by strategies for de
ating the pa-rametric costs by truncating or sampling the search trees, obstruction sets,test sets, etc. This is summarized in the following table.FPT Technique Heuristic Design StrategyReduction to a Problem Kernel A useful pre-processing subroutinefor any heuristic.Search Tree Explore only an a�ordable, heuristicallychosen subtree.Well-Quasiordering Use a sample of the obstruction set.Color-Coding Use a sample of the hash functions.Bounded Treewidth Use Angluin's Theoremand a sample of the test set.Table 2. Some FPT Methods and Heuristic StrategiesFor a speci�c example, the Gate Matrix Layout problem is amenableto well-quasiordering methods. For width 3, there are 110 minor orderobstructions. Langston et al. found that testing for just one of these gave anew heuristic algorithm superior to those then currently in use in VLSIapplications [LR91]. Similar ideas have been explored by Gustedt andSteger[GS94].4.1. A Useful Parameterized Algorithm for MAST. We next de-scribe a useful direct FPT algorithm for the Maximum Agreement Sub-tree (MAST) problem de�ned in x1. Apart from the intrinsic interest ofthis result, it is a nice example of two important points concerning FPTalgorithms.� Our algorithm for MAST ultimately uses an algorithm for VertexCover as a subroutine. Useful FPT algorithms lead to other usefulFPT algorithms, as one might naturally expect.� There is already a polynomial time algorithm for MAST for boun-ded degree trees, so why bother with an exponential FPT algorithm?The answer is that the polynomial time algorithm for MAST dueto [FPT95] runs in time O(rn3 + nd) for r phylogenetic trees ofmaximum degree d on a set of n species. The algorithm we describerequires time O(ckrn logn) where c is a constant less than 3. Conse-quently, this is an example of a situation where a classically exponen-tial FPT algorithm may be preferable to a polynomial time algorithm.Theorem. The parameterized MAST problem can be solved in time boun-ded by O(ckrn logn) for r trees on n species.Sketch. The input to the problem is a set of rooted binary trees T1; :::; Treach having n leaves labeled in 1:1 correspondence with a set X of n species.The problem is to determine if it is possible to delete at most k species from



COMPUTATIONAL TRACTABILITY: THE VIEW FROM MARS 15X to obtain a set X 0 on which all of the trees agree. In considering this pro-blem, there is an elegant point of view developed by Bryant[Bry97] basedon triples. If fa; b; cg is a set of three species in X , then the restriction ofeach of the trees Ti to these three species must be one of the three possi-ble alternatives (using parenthetical notation to represent trees): (a; (b; c)),(b; (a; c)), (c; (a; b)), or (a; b; c). If two or more of these three possibilitiesarise among the Ti, then obviously it will be necessary to eliminate at leastone of the species in fa; b; cg fromX in order to obtain an agreement subtree.In this situation we will refer to fa; b; cg as a con
icted triple of species.An argument due to Bryant[Bry98] shows that our problem can bereduced in this way to the well-known 3-Hitting Set problem which takesas input a collection C of 3-element subsets of a set X and a positive integerk, and must answer whether there is a subset X 0 � X with jX 0j � k suchthat for each A 2 C, A\X 0 6= ;. Bryant's argument shows that our problemis equivalent to �nding a k-element hitting set for the triples of X that arecon
icted with respect to the Ti.The set of con
icted triples could be computed by exhaustively com-puting the restrictions of the Ti for each 3-element subset of X , but this isnot very e�cient. In time O(n logn) it is possible to either determine thattwo trees are isomorphic, or identify a con
icted triple. Once a con
ictedtriple is identi�ed, we can branch in a search tree based on 3 possibilities forresolving the con
ict. For example, if the con
icted triple is fa; b; cg then wecreate three branches in the search tree by deleting one element (say a) fromX and from all of the trees Ti. We now recursively attempt to determine ifthe modi�ed instance can be solved with k0 = k � 1.There will be at most O(3k) nodes in the search tree, and the run-ning time due to each node is O(rn logn), which yields the claimed runningtime. 2The algorithm sketched above uses 3-Hitting Set implicitly as a meansof solving the parameterized MAST problem. An improved but more ela-borate FPT algorithm for this problem is described in [BFRS98], wherewe reduce MAST to 3-Hitting Set, and in turn devise a good algorithmfor 3-Hitting Set using a subroutine for Vertex Cover, to obtain analgorithm with c = (1+p17)=2. A heuristic algorithm that might be usefulfor a greater range of the parameter k can be adapted from the above FPTalgorithm simply by not exploring all the branches of the search tree.4.2. The Steiner Problem for Generalized Hypercubes. In thissection we brie
y describe another FPT result based on the elementarymethod of reduction to a problem kernel. The basic idea of this method,which is very widely applicable (see [DF98]) is that by various reductionrules that require time polynomial in both n and k it may be possible toreduce the input (x; k) for a parameterized problem to an instance (x0; k0)where k0 � k and jx0j is bounded by a function of k. This immediately



16 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEimplies that the problem is in FPT, since the question can be answered bybrute force for (x0; k0). Surprisingly, it can be shown that every problem inFPT can be kernelized. Such reductions seem to be closely related to ideasexplored in [CKT91, KS94]. Since such reductions simplify the input, itseems that they cannot hurt, and thus constitute a reasonable \preprocess-ing" heuristic regardless of what comes after that.The Steiner Problem for Hypercubes is of interest to biologistsin the computation of phylogenetic trees under the criterion of minimumevolution / maximum parsimony. The set S corresponds to a set of species,and the binary vectors correspond to information about the species, eachcomponent recording the answer to some question (as 0 or 1), such as: \Doesit have wings?" or \Is there a thymine at a certain position in the DNA se-quence?" Each such bit of information is termed a character of the species.In realistic applications the number k of species may usefully be around 40or 60, while the number of characters n may be very large. We consider aslightly more general problem than the one described in x1.The Steiner Problem for Generalized HypercubesInstance: The input to the problem consists of the following pieces of infor-mation:(1) A set of complete weighted digraphs Di for i = 1; :::; n, each describedby a set of vertices Vi and a functionti : Vi � Vi ! IN(We refer to the vertices of Di as character states, to Di as the characterstate digraph, and to ti as the state transition cost function for the ith cha-racter.)(2) A positive integer k1 such that jVij � k1 for i = 1; :::; n.(3) A set X of k2 length n vectors xj for j = 1; :::; k2, where the ith compo-nent xj [i] 2 Vi. That is, for j = 1; :::; k2,xj 2 
 = n=ni=1Vi(4) A positive integer M .Parameter: (k1; k2)Question: Is there a rooted tree T = (V;E) and an assignment to eachvertex v 2 V of T of an element yv 2 
, such that:� X is assigned 1:1 with the set of leaves of T ,� The sum over all parent-child edges uv of T , of the total transitioncost for the edge, de�ned to benXi=1 ti(yu[i]; yv[i])is bounded by M?



COMPUTATIONAL TRACTABILITY: THE VIEW FROM MARS 17Theorem 1. The Steiner Problem for Generalized Hypercubes is�xed-parameter tractable.Proof. We de�ne a relation i � j on the index space f1; :::; ng that allowsus to combine Di and Dj and obtain an equivalent smaller instance. Tode�ne � we �rst de�ne some other relations.Fix m � k1 and let l be an integer edge labeling of the complete digraphKm on m vertices. Let v1; :::; vm denote the vertices of Km. Let T be arooted tree with k2 leaves labeled from v1; :::; vm. De�ne the cost of T withrespect to l to be the minimum, over all possible labelings s of the internalvertices of T with labels taken from fv1; :::; vmg, of the sum over the parent-child edges of T of the transition costs given by l on the labels, and writethis as cost(T; l) = minsfcost(T; s; l)gIf l and l0 are integer edge labelings of Km and T is as above, then de�nel �T l0 if and only if 9s such thatcost(T; l) = cost(T; s; l) and cost(T; s; l0) = cost(T; l0)De�ne l � l0 if and only l �T l0 for all such trees T .For a �xed value of k2 (the number of leaves) l � l0 depends only on�nitely many trees T and labelings s, for the reason that if a tree T hasa \very long" path of vertices of degree 2, a labeling s that minimizescost(T; s; l) will necessarily be constant on \most of" the internal vertices ofthe path. In more detail, say that a vertex of T is important if it is eithera leaf of T or has degree more than 2. Note that if k2 is �xed, then for allof the trees T that we must consider in order to determine whether l � l0,the number of important vertices of T is bounded by a function of k2. Alittle thought will show that we need only consider T such that if u and vare important vertices that are joined by a path of unimportant verrtices inT , then the length of the path is at most m.For i; i0 2 f1; :::; ng de�ne i � i0 if and only if:1. jVij = jVi0 j = m so that the only di�erence between Di and Di0 is intheir arc-labelings l and l0, and2. l � l0 .The kernelization algorithm can now be described quite simply. Let I bean instance of the problem. If there are indices i 6= i0 for which i � i0,then modify I by combining these into one character state digraph withthe state transition cost function given by the arc-labeling de�ned as l+ l0,where these are the cost functions for Di and Di0 , respectively. Becausei � i0 there is no possible harm in combining the bookkeeping for these twoindices. Note that i � i0 can be determined in time bounded by a functionof the parameter. Moreover, by repeating this reduction step (and becausei � i0 depends only on a number of trees T that is bounded by a functionof the parameter), we eventually arrive at an equivalent instance I 0 whose



18 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEtotal size is bounded by a function of the parameter. 2The parameter function for this simple kernelization algorithm is not verygood and can probably be much improved. We remark that most of theexpense is in determining when two transition digraph indices i and i0 areequivalent by testing them on `the relevant set of trees with k2 leaves. Thissuggests a heuristic algorithm that combines indices when they fail to bedistinguished by a (much smaller) random sample of trees and leaf-labelings.In x1 we reported an encounter with an evolutionary biologist who re-ported earlier, rather fruitless interactions with theoretical computer sci-entists who proved that his problems were NP-complete and \went away".We claimed that we were di�erent! and that we had a result on one ofhis computational problems (The Steiner Problem for Hypercubes)that might be of interest. After we described the FPT algorithm he saidsimply [Fel97]: \That's what I already do!"5. Parametric IntractabilityThe main classes of parametric complexity are described in the tower:FPT � W [1] � W [2] � � � � � W [SAT ] � W [P ] � AW [P ] � XPAs in the theory of NP-completeness, there are two kinds of evidence indi-cating that if a parameterized problem is hard for W [1], then it is unlikelyto be �xed-parameter tractable. The �rst is that given a su�cient amountof unsuccessful e�ort to demonstrate tractability for various problems in aclass, the knowledge that a problem is hard for the class o�ers a cautionarysociological message.A second reason for the belief thatW [1]-hardness implies parametric in-tractability, is rooted in the following fundamental theorem [DFKHW94,CCDF96].Theorem (Downey-Fellows). The k-Step Halting Problem forNondeterministic Turing Machines is complete for W [1].On input consisting of a Turing machine M and a positive integer k (withk being the parameter), the question is whether M can reach a halting con-�guration in at most k steps. This problem is so generic and opaque that itis hard to imagine that there is any algorithm for it that radically improveson simply exploring the n-branching depth k tree of allowed nondetermin-istic transitions exhaustively. The theorem can be viewed as essentially aminiaturization of Cook's Theorem.Clique is a typical starting point for W [1]-hardness arguments. It isinteresting that most natural parameterized problems seem to belong to asmall number of degrees (FPT, W [1], W [2], W [P ], AW [�] and AW [P ]; for



COMPUTATIONAL TRACTABILITY: THE VIEW FROM MARS 19Linear InequalitiesW [P ] Minimum Axiom SetShort SatisfiabilityWeighted Circuit SatisfiabilityW [SAT ] Weighted SatisfiabilityLongest Common Subsequence(k = h number of seqs.,j�ji) (hard)W [t], Feasible Register Assignment (hard)for all t Triangulating Colored Graphs (hard)Bandwidth (hard)Proper Interval Graph Completion (hard)Weighted t{Normalized SatisfiabilityWeighted f0; 1g Integer ProgrammingW [2] Dominating SetTournament Dominating SetUnit Length Precedence ConstrainedScheduling (hard)Shortest Common Supersequence (k seqs.) (hard)Maximum Likelihood Decoding (hard)Weight Distribution in Linear Codes (hard)Nearest Vector in Integer Lattices (hard)Short Permutation Group Factorization (hard)W [1] Short Post CorrespondenceWeighted q{CNF SatisfiabilityVapnik{Chervonenkis DimensionLongest Common Subsequence(length m common subseq. for k seqs.,parameter (k;m))Independent SetSquare TilingMonotone Data Complexity forRelational Databasesk-Step Derivation for Context Sensitive GrammarsCliqueShort NTM ComputationFeedback Vertex SetFPT Graph GenusMinor Order TestTreewidthVertex CoverTable 3. A Sample of Parametric Complexity Classi�ca-tions (References in [DF98])



20 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEdetails see [DF98]).W [1]-Hard Means No Good PTAS. One might suspect that parameter-ized complexity is related to the complexity of approximation. A very goodconnection is supplied by the following theorem �rst proved by Bazgan[Baz95],and later independently by Cesati and Trevisan[CT97], strengthening anearlier result of Cai and Chen[CC97].De�nition. An approximation algorithm has an e�cient PTAS if it com-putes a solution within a factor of (1 + �) of optimal in time O(f(�)nc) forsome constant c.De�nition. For a maximization (resp. minimization) problem A, the in-duced language LA is the parameterized language consisting of all pairs (x; k)where x is an instance of A and opt(x) � k (resp. opt(x) � k).Theorem (Bazgan). If A has an e�cient PTAS then LA 2 FPT .Thus if the parameterized problem naturally associated with an optimiza-tion problem A is hard for W [1], then A cannot have an e�cient PTASunless FPT = W [1]. For an example of the power of this result, we canconclude that VC Dimension is unlikely to have an e�cient PTAS. It isworth noting that some (but by no means all) NP-completeness reductionsare serendipitously parametric and thus provide demonstrations of W [1]-hardness and non-approximability \for free". An important optimizationproblem that has a PTAS but is not known to have an e�cient PTAS is theEuclidean Traveling Salesman Problem. The PTAS for this problemdue to Arora runs in time O(n30=�).6. The Role of Parameterized Complexity AnalysisThe current approach to the analysis of concrete computational problems isdominated by two kinds of e�ort:(1) The search for asymptotic worst-case polynomial-time algorithms.(2) Alternatively, proofs of classical hardness results, particularly NP-hard-ness.We expect that eventually these will be routinely supplemented by:(10) The design of FPT algorithms for various parameterizations of a givenproblem, and the development of associated heuristics.(20) Alternatively, demonstrations of W [1]-hardness.We are inevitably forced towards something like an ultra�nitist [YV70] out-look concerning computational complexity because of the very nature of theuniverse of interesting yet feasible computation. The main point of thisoutlook is that numbers in di�erent ranges of magnitude must be treated inqualitatively di�erent ways.



COMPUTATIONAL TRACTABILITY: THE VIEW FROM MARS 21The pair of notions (10) and (20) are actually rather straightforward muta-tions of (1) and (2), and they inherit many of the properties that have madethe framework provided by (1) and (2) so successful. We note the followingin support of this position.� The enrichment of the dialogue between practice and theory thatparameterized complexity is based on always makes sense. It alwaysmakes sense to ask the users of algorithms, \Are there aspects of yourproblem that may typically belong to limited distributional ranges?"� Fixed-parameter tractability is a more accurate notion of \the good".If you were concerned with inverting very large matrices and couldidentify a bounded structural parameter k for your application thatallows this to be done in time O(2kn2), then you might well prefer thisclassically exponential-time algorithm to the usual O(n3) polynomial-time algorithm.� The \bad", W [1]-hardness, is based on a miniaturization of Cook'sTheorem in a way that establishes a strong analogy between NP andW [1]. Proofs of W [1]-hardness are generally more challenging thanNP-completeness, but it is obvious by now (see Table 3) that this isa very applicable complexity measurement.� Problems that are hard do not just go away. Parameterization allowsfor several kinds of sustained dialogue with a single problem, in waysthat allow �ner distinctions about the causes of intractability (and op-portunities for practical algorithms, including systematically designedheuristics) to be made than the exploration of the \NP-completenessboundary" described in [GJ79].� Polynomial time has thrived because of the empirical circumstancethat when polynomial-time algorithms can be devised, one almostalways has small exponent polynomials. This is also true for FPTalgorithms.� Polynomial time is robust in that it seems to support a strong form ofChurch's thesis, i.e., that polynomial time on Turing machines is thesame as polynomial time on any reasonable computing device. Thisalso seems to be true for FPT.� Polynomial time has thrived because it is a mathematically rich andproductive notion allowing for a wide variety of algorithm design tech-niques. FPT seems to o�er an even richer �eld of play, in part becauseit encompasses polynomial time as (usually) the best kind of FPT re-sult. Beyond this, the FPT objective encompasses a rich and distinc-tive positive toolkit, including novel ways of de�ning and exploitingparameters.� There is good evidence that not only are small polynomial exponentsgenerally available when problems are FPT, but also that simple ex-ponential parameter functions such as 2k are frequently achievable,



22 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEand that many of the problems in FPT admit kernelization algo-rithms that provide useful start-ups for any algorithmic attack on theproblem.� The complexity of approximation is handled more elegantly than inthe classical theory, with W [1]-hardness immediately implying thatthere is no e�cient PTAS. Moreover, FPT algorithm design tech-niques appear to be fruitful in the design of approximation algorithms(e.g., bounded treewidth techniques in the planar graph PTAS resultsof Baker[Ba94]).� Parameterization is a very broad idea. It is possible to formulateand explore notions such as randomized FPT [FK93], parameter-ized parallel complexity [Ces96], parameterized learning complex-ity [DEF93], parameterized approximation, parameterized cryptosys-tems based on O(nk) security, etc.We feel that the parametric complexity notions, with their implicit ultra-�nitism, correspond better to the natural universe of computational com-plexity, where we �nd ourselves overwhelmingly among hard problems, de-pendent on identifying and exploiting thin zones of computational viability.Many natural problem distributions are generated by processes that inhabitsuch zones themselves (e.g., computer code that is written in a structuredmanner so that it can be comprehensible to the programmer), and thesedistributions then inherit limited parameter ranges because of the compu-tational parameters that implicitly govern the feasibility of the generativeprocesses, though the relevant parameters may not be immediately obvious.It seems that we have a whole new world of complexity issues to explore!References[ADF95] K. Abrahamson, R. Downey and M. Fellows, \Fixed Parameter Tractability andCompleteness IV: On Completeness forW [P ] and PSPACE Analogs," Annals of Pureand Applied Logic 73 (1995), 235{276.[AFGPR96] E. Allender, J. Feigenbaum, J. Goldsmith, T. Pitassi and S. Rudich, \TheFuture of Computational Complexity Theory: Part II," SIGACT News 27 (1996),3{7.[AL97] E. Aarts and J. K. Lenstra (eds.), Local Search in Combinatorial Optimization,John Wiley and Sons, 1997.[ALMSS92] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, \Proof Veri�-cation and Intractability of Approximation Algorithms," Proceedings of the IEEESymposium on the Foundations of Computer Science, 13{22, 1992.[AYZ94] N. Alon, R. Yuster and U. Zwick, \Color-Coding: A New Method for Find-ing Simple Paths, Cycles and Other Small Subgraphs Within Large Graphs,"Proc. Symp. Theory of Computing (STOC), ACM (1994), 326{335.[Ba94] B. Baker, \Approximation Algorithms for NP-Complete Problems on PlanarGraphs," J.A.C.M. 41 (1994), 153{180.[Baz95] C. Bazgan, \Sch�emas d'approximation et complexit�e param�etr�ee," Rapport destage de DEA d'Informatique �a Orsay, 1995.
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