
Parameterized Complexity: A Framework forSystematically Confronting ComputationalIntractabilityRodney G. Downey, Michael R. Fellows, and Ulrike StegeAbstract. In this paper we give a programmatic overview of parame-terized computational complexity in the broad context of the problemof coping with computational intractability. We give some examples ofhow �xed-parameter tractability techniques can deliver practical algo-rithms in two di�erent ways: (1) by providing useful exact algorithmsfor small parameter ranges, and (2) by providing guidance in the designof heuristic algorithms. In particular, we describe an improved FPT ker-nelization algorithm for Vertex Cover, a practical FPT algorithm forthe Maximum Agreement Subtree (MAST) problem parameterizedby the number of species to be deleted, and new general heuristics forthese problems based on FPT techniques. In the course of making thisoverview, we also investigate some structural and hardness issues. Weprove that an important naturally parameterized problem in arti�cialintelligence, STRIPS Planning (where the parameter is the size of theplan) is complete for W [1]. As a corollary, this implies that k-StepReachability for Petri Nets is complete for W [1]. We describehow the concept of treewidth can be applied to STRIPS Planning andother problems of logic to obtain FPT results. We describe a surprisingstructural result concerning the top end of the parameterized complex-ity hierarchy: the naturally parameterized Graph k-Coloring problemcannot be resolved with respect to XP either by showing membershipin XP, or by showing hardness for XP without settling the P = NPquestion one way or the other.1. IntroductionThere are basically two di�erent ways that one can view the theory ofparameterized complexity. The �rst way, and the one that is easiest to arriveat, is as a kind of �rst aid that can sometimes be applied to problems thatare NP-hard, PSPACE-hard or undecidable. That is, it can be viewed as apotential means of coping with classical intractability.The second way that one can view parameterized complexity is as afundamentally richer and generally more productive primary framework forproblem analysis and algorithm design, including the design of heuristic and1



2 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEapproximation algorithms. For the moment, we will concentrate on the �rstpoint of view, and spend some time considering the current situation of ourcollective e�orts to \cope with intractability" in the words of Garey andJohnson [GJ79], Chapter 6. In the concluding section we will summarizethe arguments for the second point of view.It is di�cult to discuss the current intellectual situation with respect totheoretical computer science without taking note of the unhappiness, in somesense, of the audience of our e�orts to understand complexity and deliveruseful products. For some time, the practical folks portrayed in the amusingcartoons of Garey and Johnson [GJ79], Chapter 1, have been somewhat dis-appointed with theoretical computer science, and there have been numerousincidents of \restless drums" in the jungles of computer applications. Suchgrumblings may have something to do with the recent spate of soul-searchingamong theorists [HL92, Hart94, PGWRS96, AFGPR96]. We mentiontwo recent examples.Example 1.1 (Yet Another Call for Reform). One of the plenary ad-dresses at the AAAI meeting in 1996 was concerned with the broad themeof how computer science practice and theory interact [DKL96]. The dis-cussion in [DKL96] can be summarized as:1. Pointing to a particular problem, STRIPS Planning, as central tothe entire �eld of arti�cial intelligence.2. Proposing that practitioners and theorists collaborate in an intenseanalysis of this one problem, to understand what makes it hard, andto come up with something more useful than a PSPACE-completenessclassi�cation.3. Suggesting that the usual framework for concrete complexity analysisis wrong-headed, historically contingent, unnatural (especially worst-case asymptotic analysis), and reects an unhappy state of interactionbetween computer science theory and practice.Regarding the third point, most theorists have probably heard similarcharges and complaints from colleagues in applied areas of computer sciencein their own departments.Example 1.2 (An Encounter With a Computational Biologist). In re-cent conversations with a biologist who is heavily involved in combinatorialcomputing [Fel97], the following summary was o�ered of his interactionwith theoretical computer scientists.\About ten years ago some computer scientists came by andsaid they had heard that we have some really cool problems.They showed that the problems are NP-complete and went away!"We might comment that if this interaction had been more recent, thenperhaps the computer scientists would also have proved that the problemsare unlikely to have e�cient approximation algorithms.



PARAMETERIZED COMPLEXITY 3The Pervasive Nature of Computational Intractability and Var-ious Coping Strategies. Arguably the most fundamental discovery ofthe �rst decades of theoretical computer science is that most computationalproblems are hard in a variety of mathematically interesting ways. Computerscience practitioners quite naturally would like to shoot the messenger whobrings so much bad news! In this di�cult situation, computer science theoryhas articulated a few general programs for systematically coping with theubiquitous phenomena of computational intractability. We list these basicapproaches:� The idea of focusing on average-case as opposed to worst-case analysisof problems.� The idea of settling for approximate solutions to problems, and oflooking for e�cient approximation algorithms.� The idea of using randomization in algorithms.� The idea of harnessing quantum mechanics, or biomolecular chem-istry, to create qualitatively more powerful computational mecha-nisms.To this list of basic mathematical strategies for coping with intractability,we argue should be added:� The idea of devising FPT algorithms for parameterizations of a pro-blem.A list such as this cannot be considered complete without includinganother coping strategy that mathematical theorists have frequently con-tributed to. This approach antedates modern complexity-theoretic frame-works and persists with great strength as a kind of \old religion" amongmany practitioners. It has also recently regained some respectability amongtheorists as reected in the DIMACS Challenges [JM93, JT96] and in newjournals such as the Journal of Heuristics and the ACM Journal of Experi-mental Algorithms):� The design of mathematically informed, but perhaps unanalyzableheuristics, that are empirically evaluated by their performance onsets of benchmark instances.The actual state of the practical world of computing is that (with theexception of some areas) there is not much systematic connection to workin theoretical computer science on algorithms and complexity. Overwhelm-ingly, in fact, it is heuristic algorithms that are relied on to deal with theproblems encountered in most applications.2. Fixed-Parameter TractabilityThe basic concept of the parameterized complexity framework is that of�xed-parameter tractability. It is the notion of good complexity behaviourfrom which all other aspects of the theory follow. The de�nition is bestintroduced through concrete examples.



4 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEVertex CoverInstance: A graph G = (V;E) and a positive integer k.Parameter: kQuestion: Does G have a vertex cover of size k? That is, is there a subsetV 0 � V of size at most k such that for every edge uv 2 E, either u 2 V 0 orv 2 V 0?Dominating SetInstance: A graph G = (V;E) and a positive integer k.Parameter: kQuestion: Does G have a dominating set of size k? That is, is there a subsetV 0 � V of size at most k such that every vertex u 2 V of G either belongsto V 0 or has a neighbor in V 0?The Steiner Problem for HypercubesInstance: A set S = fxi : 1 � i � kg of binary vectors, xi 2 f0; 1gn fori = 1; :::; k, and a positive integer m.Parameter: kQuestion: Is there a tree T = (V;E) and a labeling of the vertices of Twith elements of f0; 1gn such that the following conditions are satis�ed? (1)The leaves are labeled 1:1 with the elements of S. (2) The sum over theedges uv of T of the Hamming distance between the labels l(u) 2 f0; 1gnand l(v) 2 f0; 1gn is at most m.The Maximum Agreement Subtree Problem (MAST)Instance: A set of rooted trees T1; :::; Tr (r � 3) with the leaf set of each Tilabeled 1:1 with a set of species X , and a positive integer k.Parameter: kQuestion: Is there a subset S � X of size at most k such that Ti restrictedto the leaf set X 0 = X � S is the same (up to label-preserving isomorphismand ignoring vertices of degree 2) for i = 1; :::; r?All of these problems are NP-complete ([GJ79, AK94]) and are de-scribed above in the standard way for the parameterized complexity frame-work. Part of the input (which may be some aggregate of various aspectsof the input) is identi�ed as the parameter for the problem speci�cation.(In order to consider a parameterized problem classically, just ignore theparameter part of the speci�cation.) All of these problems can be solved intime O(nf(k)) by simple brute force algorithms. For example, for VertexCover and Dominating Set we can simply try all k-subsets of vertices.For Vertex Cover we can do qualitatively better. Papadimitriou andYannakakis showed that Vertex Cover can be solved in time O(3kn)[PY96]. Balasubramanian, Fellows and Raman gave an algorithm withrunning time O((53=40)kk2 + kn) [BFR98]. In x4 we describe a new andrelatively simple FPT algorithm that improves on this. Note that since the



PARAMETERIZED COMPLEXITY 5exponential dependence on the parameter k in the last expression is additive,Vertex Cover is well-solved for input of any size so long as k is no morethan around 60. The di�erence between the complexities of DominatingSet and Vertex Cover is displayed in Table 1.n = 50 n = 100 n = 150k = 2 625 2,500 5,625k = 3 15,625 125,000 421,875k = 5 390,625 6,250,000 31,640,625k = 10 1:9� 1012 9:8� 1014 3:7� 1016k = 20 1:8� 1026 9:5� 1031 2:1� 1035Table 1. The Ratio nk+12kn for Various Values of n and k.In parameterized complexity, the process of interviewing practice in or-der to formulate the fundamental object of study is enriched. Besides spe-cifying the input to the problem, we specify distributional aspects that maybelong to some limited range of values for which an exponential contributionto overall problem complexity may be acceptable. This distributional infor-mation, which may be an aggregate of factors, is codi�ed as the parameter.A single classical problem may thus shatter into many di�erent associatedparameterized problems.Example 2.1 (The Steiner Problem for Hypercubes). This pro-blem is of interest to biologists in the computation of phylogenetic trees un-der the criterion of minimum evolution / maximum parsimony [SOWH96].The set S corresponds to a set of species, and the binary vectors correspondto information about the species, each component recording the answer tosome question (as 0 or 1), such as: \Does it have wings?" or \Is there athymine at a certain position in the DNA sequence?" Each such bit of in-formation is termed a character of the species. In realistic applications thenumber k of species may usefully be around 40 or 60, while the number ofcharacters n may be very large.How Parameters Naturally Arise. Most computational problemsinvolve several pieces of input, one or more of which may be a relevantparameter for various applications.� Graph linear layout width metrics are of interest in VLSI layout androuting problems and have important applications for width valuesof k � 10. Interval graphs of pathwidth k � 10 have applications inDNA sequence reconstruction problems [BDFHW95].� Logic and database problems frequently are de�ned as having inputconsisting a formula (which may be small and relatively invariant),and some other structure (such as a database) which is typically quitelarge and changeable. Formula size, or other aspects of formula struc-ture may be a relevant parameter [Yan95].



6 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGE� Hardware constraints are a common source of natural parameters.The number of processors or machines to be scheduled may be boun-ded by a value such as k � 20. In [AMOV91] it was proposed tostreamline chip implementations of cryptosystems by bounding theHamming weight of keys. The number of degrees of freedom in arobot motion-planning problem is commonly in the range k � 10[CW95]. The number of wiring layers in VLSI chip manufacture istypically bounded by k � 30 [Len90].� Network problemsmay be naturally concerned with optimally locatinga small number of facilities.These few examples are only suggestive and by no means exhaustive.There are myriad ways in which numbers that are small or moderately large(e.g., k � 40) arise naturally in problem speci�cations. Important distribu-tional parameters may also arise in ways that are not at all obvious. Foran example of this sort, Thorup has recently shown that the ow graphs ofstructured programs for the major computer languages have treewidth k � 7[Th97]. Graphs of pathwidth bounded by a similar number have been usedin modeling dependencies in sentences of natural languages [KT92]. Atten-tion to hidden parameters can sometimes explain why a problem is easier tosolve in practice than NP or PSPACE hardness results would suggest.The Basic De�nitions. The basic de�nitions of parameterized com-plexity are as follows.Definition 2.1. A parameterized language L is a subset L � �� � ��.If L is a parameterized language and (x; y) 2 L then we will refer to x asthe main part, and refer to y as the parameter. It makes no di�erence to thetheory and is occasionally more convenient to consider that y is an integer,or equivalently to de�ne a parameterized language to be a subset of ���IN .Definition 2.2. A parameterized language L is �xed-parameter trac-table if it can be determined in time f(k)n� whether (x; k) 2 L, wherejxj = n, � is a constant independent of both n and k and f is an arbitraryfunction. The family of �xed-parameter tractable parameterized languagesis denoted FPT.It is somewhat surprising, although the argument is not hard, that FPTis unchanged if the de�nition above is modi�ed by replacing f(k)n� byf(k) + n� [CCDF97].About half of the naturally parameterized problems cataloged as NP-complete in the book by Garey and Johnson [GJ79] are in FPT, includingthree of the six basic problems singled out for attention in Chapter 3.It is always possible to parameterize a problem in various ways that are�xed-parameter tractable, yet it is not surprising that many parameterizedproblems apparently do not belong to FPT. The naturally parameterizedDominating Set problem de�ned above is one of these. Just as with the is-sue of polynomial-time complexity, we can �nd evidence for �xed-parameterintractability by studying the appropriate notion of problem transformation.



PARAMETERIZED COMPLEXITY 7Definition 2.3. A parametric transformation from a parameterized lan-guage L to a parameterized language L0 is an algorithm that computes frominput consisting of a pair (x; k), a pair (x0; k0) such that:1. (x; k) 2 L if and only if (x0; k0) 2 L0,2. k0 = g(k) is a function only of k, and3. the computation is accomplished in time f(k)n�, where n = jxj, � is aconstant independent of both n and k, and f is an arbitrary function.Example 2.2 (An Illustrative Non-Example). In �rst examining thenotion of a parametric transformation it can be helpful to see how theydi�er from ordinary polynomial-time reductions. Recall that for a graphG = (V;E) on n vertices, a set of vertices V 0 � V is a k-clique in G ifand only if V � V 0 is a vertex cover in the complementary graph G0 wherevertices are adjacent if and only if they are not adjacent in G. This givesan easy polynomial-time reduction of the naturally parameterized Cliqueproblem to the naturally parameterized Vertex Cover problem, trans-forming the instance (G; k) of Clique into the instance (G0; k0) of VertexCover. But this is not a parametric transformation, since k0 = n�k is notpurely a function of k. The evidence is that there is no parametric trans-formation in this direction between these two problems (although there isa parametric transformation in the reverse direction, either trivially, sinceVertex Cover is in FPT, or nontrivially by the construction described in[DF95b]).Example 2.3 (An Illustrative Example). There is a fairly elaborate pa-rametric transformation from the naturally parameterized Clique problemto the naturally parameterized Dominating Set problem, mapping (G; k)to (G0; k0) where k0 = 2k [DF95a, DF98]. The evidence is that there is nosuch parametric transformation in the other direction.The essential property of parametric transformations is that if L trans-forms to L0 and L0 2 FPT , then L 2 FPT . This naturally leads to a com-pleteness program based on a hierarchy of parameterized problem classes:FPT � W [1] � W [2] � � � � � W [SAT ] � W [P ] � AW [P ] � XPThe parameterized analog of NP is W [1], and W [1]-hardness is the basicevidence that a parameterized problem is likely not to be �xed-parametertractable. The k-Step Halting Problem for Nondeterministic Tur-ing Machines is W [1]-complete [CCDF97]. Since the q(n)-Step Halt-ing Problem is essentially the de�ning problem for NP, the analogy is verystrong. The reader will �nd more about parametric intractability in x6.How Compelling is Fixed-Parameter Tractability? The notionof �xed-parameter tractability is the basic concept of the theory | but howgood, really, is this notion of good complexity behaviour? It might be ob-jected that Table 1 is misleading, unless FPT parameter functions such as2k are typical. Certainly functions such as 222k are allowed by the de�nition,



8 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEand would be impractical for k = 3, which suggests that the basic de�nitionallows too much pathology.There are two main responses. First of all, we are already used tosome risk-taking in de�nitions, since the notion of polynomial time allowsfor, e.g., O(n10), which is impractical. A parameterized problem is just anordinary problem for which some aspect of the input has been designatedas the parameter. Ignoring the parameter, if the problem can be solved inpolynomial time, that is, in time polynomial in both the total input sizen and the parameter k, then trivially this is an FPT algorithm. In otherwords, considered classically, FPT is a superset of P, and it is intended to bea generalization that allows us to do something for problems that are not inP and that may even be PSPACE hard or undecidable. We have to expectto risk something in formulating such a general attack on intractability. Thede�nition simply asks whether the di�culty of the problem can be con�nedto a function of the parameter, with the other costs being polynomial. Howelse would one naturally formulate a generalization of P having these kindsof ambitions?The second response is that there are many examples, other than Ver-tex Cover, suggesting that \reasonable" (e.g., single exponential) parame-ter functions are frequently obtainable for natural problems (possibly aftersome rounds of improvement). For example, consider the problem Maxi-mum Satisfiability where the parameter k denotes the number of clausesto be satis�ed. This was shown by Cai and Chen [CC97] to be in FPTwith the parameter function 22ck, when the clause size is bounded by c. Theparameter function was improved by Mahajan and Raman [MR98] to �k(without assuming a bound on the clause size), where � is the golden ratio(1 + p5)=2. Franco and others in [Fr97] have shown that the falsi�abilityproblem for pure implicational formulas having k negations is in FPT withparameter function kk. (Can this be improved to 2k?) Although the typechecking problem for the programming language ML is PSPACE-complete[HM91], this is handled in implementations in linear time with a parameterfunction of 2k, where k is the nesting depth of let's, a very natural parameterfor this problem (one that explains why the problem did not seem hard inpractice). In x4 we give an FPT algorithm for a natural parameterization ofthe Maximum Agreement Subtree problem having the parameter func-tion 3k. Many more examples can be found in [DF98]. The improvementof parameter functions for FPT problems seems to be a productive area forresearch, where many di�erent ideas and techniques can be employed.The point of view that parameterized complexity adopts can be summa-rized in a metaphorical picture. There is an assumption that most interestingproblems are hard, so we can picture them as stones, or perhaps planets.The trick is to identify and develop thin zones of computational viability, assuggested in Figure 1.
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Increasingly viableFigure 1. The point of view of parameterized complexity is lichenism.3. A Review of the Major Coping StrategiesIn x1 we noted the fundamental problem for concrete computationalcomplexity that has emerged in the �rst decades of computer science:The need to deal in some systematic way with the pervasivephenomena of computational intractability.We also noted that it is possible to point to �ve general mathematical strate-gies that have been proposed so far: (1) average-case analysis, (2) approx-imation, (3) randomization, (4) fundamentally new kinds of computing de-vices, and (5) parameterization, as well as another, quasi-mathematical cop-ing strategy, (6) heuristics.In this section, we review the accomplishments and prospects of theseprograms.Average-Case Analysis. In many applications practitioners would behappy with algorithms having good average-case performance. This criterionis implicit in the common practice of evaluating heuristic algorithms on setsof representative benchmarks. The idea that average-case analysis is morerealistic than worst-case analysis has been around since the beginnings oftheoretical computer science, and its potential role as a method of copingwith intractability is discussed by Garey and Johnson in their chapter onthis subject in [GJ79]. Classic examples of such analysis include the resultsof Grimmet and McDiarmid [GM75] who described a simple graph coloringalgorithm with an average performance ratio of 2 for the uniform distribution(where all n vertex graphs are equally likely), and the surprising theoremof Wilf that the average number of steps required by the straightforward



10 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEbacktracking algorithm to determine whether a graph is 3-colorable is 197for the uniform distribution [Wilf85]. 1Obtaining theorems concerning average-case complexity is usually math-ematically challenging, even for the simplest of algorithms and distributions.As a theoretical program for coping with intractability, average-case analysisseems to be too di�cult to carry out for typical hard problems, realistic dis-tributions and sophisticated algorithms. It is also frequently unclear whatconstitutes a reasonable assumption about the distribution of problem in-stances, apart from the analytical di�culties of the program.A completeness notion for average-case complexity has been introducedby Levin [Lev86]. This also seems to be di�cult to apply, and has onlybeen demonstrated for a few problems. The main weaknesses of average-case analysis as a mathematical program for coping with intractability seemto be:� In general, it seems to be too di�cult to prove the mathematicalresults that the program calls for.� The positive toolkit has not developed well. Few general methods areknown for designing algorithms with good average-case performance.(One interesting example of a general method has been described byGustedt and Steger [GS94].)The real strength of average-case analysis as a means of coping is thatfor most applications of computing it is the right idea for how complexityshould (usually) be measured, and it is what practitioners generally continueto do about complexity measurement in practice, although informally.Approximation. Perhaps the greatest hopes for a general program forcoping with intractability have been pinned on approximation (and also onthe average-case analysis of approximation heuristics). Most of the discus-sion in the chapter on coping with NP-completeness in the famous bookby Garey and Johnson [GJ79] is devoted to explaining the basic ideas ofpolynomial time approximation algorithms and schemes.Early on, important polynomial time approximation schemes were foundfor NP-complete problems such as Bin Packing [JDUGG74] and Knap-sack [IK75]. However, apart from a few similar results on problems mostlyof this same general avor, it now seems to be clear, on the basis of power-ful new proof techniques [ALMSS92], that these results are not typical forNP-hard and otherwise intractable problems. After a long period where thecomplexity of approximation for most problems remained mysterious, it nowseems to be the case that the vast majority of natural NP-hard optimizationproblems probably do not admit e�cient approximation schemes.The study of the extent to which problems can be approximated hasemerged as a mathematically very rich and productive area of investigation.1For the uniform distribution, it is usually easy to discover that the answer is \no".In fact, what Wilf has shown is that it is usually not even necessary to look at the entiregraph!



PARAMETERIZED COMPLEXITY 11As pointed out by Hochbaum [Hoch97], there is now such an accumulationof interesting and deep results and methods that it is tempting to assess thetrue di�culty of a hard problem by the degree to which optimal solutionscan be approximated in polynomial time. For example, Vertex Cover(�nding a vertex cover that is as small as possible) can be approximatedto within a factor of c = 2 in polynomial time, and the constant c cannotbe improved to c � 16=15 unless P = NP [BGS95]. The contrasts withClique (�nd a clique that is as large as possible), which cannot be approx-imated to better than a factor of c = n0:5�� for n-vertex graphs, withoutunlikely complexity-theoretic consequences [Has96].While approximation allows for the clever deployment of mathematicsand can be a very e�ective cure for worst-case intractability when it can beapplied, it seems also fair to say that, as with P versus NP, most of theresults are negative. The main weakness of the program is:� Most unrestricted classically hard problems cannot be approximatedvery well.Randomized Polynomial Time. Randomization is discussed in Chap-ter 6 of Garey and Johnson [GJ79] as a means of avoiding one of the weak-nesses of average-case analysis as a coping strategy| the need to have someknowledge in advance of a realistic distribution of problem instances. Analgorithm that ips coins as it works may be able to conform to whateverdistribution it is given, and either produce an answer in polynomial-timethat is correct with high probability (Monte Carlo randomization), or givean answer that is guaranteed to be correct after what is quite likely to be apolynomial amount of time (Las Vegas randomization).These seemed at �rst to be potentially very powerful generalizations ofpolynomial time. Randomized Monte Carlo and Las Vegas algorithms are aworkhorse of cryptography [SS77, GM84], and have important applicationsin computational geometry [Cl87], pattern matching, on-line algorithms andcomputer algebra (see [Karp86] and [MR95a] for surveys), in part becausethey are often simple to program. Approximate counting is another areaof notable success. Randomization is an important new idea that is nowapplied in many di�erent kinds of algorithms, including approximations andheuristics.Despite these successes, it now seems that randomized polynomial timeis better at delivering good algorithms for di�cult problems that \probably"are in P to begin with, than at providing a general means for dealing withintractable problems. There have recently been a number of important re-sults replacing fast probabilistic algorithms with ordinary polynomial timealgorithms through the use of sophisticated derandomization techniques[Rag88, MR95b]. The main weaknesses of randomization (in the senseof algorithms with performance guarantees) as a general program for copingwith intractability are:



12 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGE� With a few exceptions, it does not seem that randomized polynomialtime algorithms are any more e�ective against problems that are trulyhard than ordinary polynomial time algorithms.� Although the positive toolkit of methods for designing and analyzingrandomized algorithms is rich, there is no speci�cally correspondingnegative toolkit that can be used in tandem to negotiate problemcomplexity and guide the design of e�ective algorithms.New Forms of Computation: DNA and Quantum Mechanics.Although these programs have been launched with great fanfare, they sofar o�er much less of substance than the other items on this list in termsof a general mathematically-powered program for coping with intractability.So far, DNA computing essentially amounts to computation by molecularbrute force. Combinatorial explosion can quickly force one to contemplatea very large test tube for brute force computations, despite the fact thatinformation can be stored in molecules with a factor of 1012 improved ef-�ciency compared to magnetic tape storage. Mathematically, the programseems to come down to the potential for signi�cant constant speed-ups bymeans of this physical miniaturization of computing.It is still unclear whether quantum computers useful for any kind ofcomputation can actually be built. The notion of quantum polynomial timeis mathematically interesting, but so far appears to be applicable only to afew special kinds of problems.The main weakness of these approaches are:� Practical implementation of the new computing devices seems to befar in the future.� Biomolecular computing is essentially a physical attack on intractabil-ity, not a mathematical one.� It is unclear whether quantum polynomial time is a signi�cant gener-alization of ordinary polynomial time, except for a few special kindsof problems.Parameterization. We can trace the idea of coping with intractabilitythrough parameterization to early discussions in Garey and Johnson [GJ79],particularly Chapter 4, where it is pointed out that parameters associatedwith di�erent parts of the input to a problem can interact in a wide varietyof ways in producing non-polynomial complexity. The internal structure ofan intractable problem | the identi�cation of those aspects (parameters) towhich the non-polynomial complexity can be con�ned | is precisely whatis at issue in parameterized complexity.The structure of non-polynomial complexity is addressed again in Chap-ter 6 of [GJ79], in the discussion of e�orts to develop exponential algorithmsthat improve signi�cantly on simple exhaustive search. A classic exampleis the algorithm of Ne�set�ril and Poljak that uses fast matrix multiplicationto solve the k-Clique problem for n-vertex graphs in time O(nck) wherec � 0:792 [NP85].



PARAMETERIZED COMPLEXITY 13A weakness of the parameterized complexity program is that some ofthe most general and spectacular positive methods, such as the celebratedresults of Robertson and Seymour [RS85], yield algorithms having para-meter functions that are supremely impractical (e.g., towers of 2's of heightdescribed by towers of 2's ...). If tractability has friends like these, who needsenemies?The main strengths of parameterization as a program are that it doesseem to be very generally applicable to hard problems throughout the clas-sical hierarchy of intractable classes, and it supports a rich toolkit of bothpositive and negative techniques. The crucial strike against the programseems to be:� The extent to which FPT is really useful is unclear.Heuristics. Since heuristic algorithms that work well in practice are now,and have always been, the workhorses of industrial computing, there is noquestion about the ultimate signi�cance of this program for dealing withintractability. There has recently been a revival of interest in obtaining sys-tematic empirical performance evaluations of heuristic algorithms for hardproblems [BGKRS95, Hoo95, JM93, JT96]. There have been vigorousdevelopments of new ideas for designing heuristic algorithms, particularlynew ideas employing randomization in various ways. These approaches fre-quently have colorful and extravagant names based on far-fetched analogiesin other sciences, such as simulated annealing, genetic algorithms, cellularautomata, neural nets, great deluge algorithms [Due93], and roaming ants[CDM92]. Many of these can be considered as variants on the basic tech-nique of local search.The main problem with considering heuristics as a systematic programfor coping with intractability is that it is not a coherent mathematical pro-gram. The positive toolkit properly includes voodoo and the kitchen sink.As a program, it doesn't call for any theorems, only empirical performance.The undeniable successes of sometimes \mindless" and generally unanalyz-able heuristic algorithms puts computer science theory in an uncomfortableposition.Heuristics based on local search perhaps come the closest to constitutinga mathematically articulated general coping strategy for intractability (seethe articles in [AL97]). There is a negative toolkit (of sorts) based on thenotion of polynomial local search (PLS) problems and PLS-completeness,introduced by Johnson, Papadimitriou and Yannakakis [JPY88]. Althougha number of local search problems have been shown to be complete, the re-ductions are quite demanding (so there aren't very many such results), andthere is furthermore a notable peculiarity of this framework. For a concreteexample, because the Traveling Salesman Problem is NP-hard, one re-sorts to a local search heuristic based on the k-Opt neighborhood structure,such as the Lin-Kernighan algorithm [LK73], and this is considered to be aparticularly successful local search heuristic. Yet, Krentel has shown that fork = 8, this neighborhood structure is PLS-complete [Kr90, JMc97]. This



14 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEseems like a weapon �ring in the wrong direction, or perhaps just a kind ofreiteration that TSP is a hard problem. It is unclear how PLS-completenessprovides any guidance in designing local search heuristics.The main di�culty is summarized:� Although heuristics are the principal coin of the realm in practicalcomputing, the design of heuristics is not well-organized as a mathe-matical program.Some general remarks. If these research programs were the Knightsof Theoretical Computer Science who would deal with the Dragon of In-tractability, we would seem to have: one that is proceeding on foot andarmed with a cudgel (actually just a hired ru�an), one in mystic battle-wear and armaments riding backwards away from the fray, one equippedwith spells and lucky charms e�ective against small lizards, one who is rid-ing in a baby carriage armed with a rattle, and one who is on horse, goingin the right direction, and armed with a lance | but a lance that is e�ectiveonly after stabbing the Dragon a number of times bounded by2222222kwhere k is ... unfortunately, it doesn't matter.Leaving fanciful impressions aside, it seems fair to say that the centralproblems of theoretical computer science, both structural and concrete, haveturned out to be much harder to crack than was hoped in the early years ofthe �eld.Mathematical computer scientists have so far had little to o�er of anygeneral value from a systematic perspective to practitioners who are fre-quently concerned with very speci�c hard problems (such as STRIPS Plan-ning [FN71]). What seems to be happening is that as mathematical sciencemakes no progress on systematically addressing intractability, we are visitedby a series of fads based on turning to some other science as a source ofsolutions, often accompanied by a fanfare of \paradigm shifts" such as:� Turning to Physics for metaphors, and getting algorithms called \sim-ulated annealing".� Turning to Brain Science for metaphors, and getting \neural nets".� Turning to Evolutionary Biology for metaphors, and getting \geneticalgorithms".� Turning to Physics for more metaphors, this time about \phase tran-sitions".Each of these essentially shallow notions has in turn been widely and en-thusiastically embraced by practitioners who must deal with their favoritehard problems somehow. From the point of view of computer science the-ory, each of these algorithmic fads is disappointing | they provide littleopportunity to deploy the power of mathematical reasoning. It is frequently



PARAMETERIZED COMPLEXITY 15unclear if their e�ectiveness is much more than superstition. (If this sum-mary of the �eld seems unpleasantly harsh, then look again at papers suchas [DKL96].)The present situation of theoretical computer science is that it has notbeen very successful in coming up with a viable systematic program fordealing in a general way with computational intractability in its own nativeterms (i.e., in terms of productive and interesting mathematical science).No wonder that practitioners turn in other directions, and complain!4. Industrial Strength FPTThere are two main points that we will argue in this section:1. The notion of FPT, in many cases, simply provides a new name anda new perspective on heuristic algorithms already in use. FPT al-gorithms frequently turn out to be what clever practitioners imple-mented after their problems were proved NP-hard. Where naturalinstance distributions exhibit limited parameter ranges, these haveoften been implicitly exploited in the design of useful heuristics.2. The parameterized complexity perspective can lead to useful algo-rithms in several di�erent ways, including:� Directly and analytically, when the parameter function is rea-sonable (i.e., not too fast-growing) and the parameter describesa restriction of the general problem that is still useful.� Directly and empirically, in cases where the analytic bound onthe running time of the FPT algorithm turns out to be toocrude or pessimistic, that is, where the algorithm turns outto be useful for larger parameter ranges than the parameterfunction would indicate.� By supplying guidance in the systematic design of heuristic al-gorithms in the form of explicit general methods based on FPTtechniques, using the theory to understand \the internal struc-ture of the complexity of the problem" by identifying thoseparameterizations of the problem that are FPT and those thatare probably not (because they are hard for W [1], the parame-terized analog of NP).� Via methodological connections between FPT and the designof e�cient polynomial-time approximation schemes (where therelevant implicit parameter is k = 1=�, for approximations towithin a factor of (1 + �) of optimal) and other approximationheuristics.4.1. Various FPTAlgorithms and Heuristics for Vertex Cover.We can continue to use the Vertex Cover problem to illustrate many ofthe main ideas. This is a useful example because it is a simple problem todescribe, and because a wide variety of FPT algorithmic techniques can be



16 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEapplied to it. We will see how these di�erent techniques can be systemati-cally adapted into a corresponding variety of heuristics.We begin by describing a new FPT algorithm forVertex Cover that iscurrently the best known. It is based on two simple, but standard methods,reduction to a problem kernel, and search trees. More examples and discus-sion of these methods can be found in [DF95c, DF98, KST94, MR98].Algorithm 4.1. (An Improved Direct FPT Algorithm for VertexCover.) The algorithm proceeds in two phases. In the �rst phase wecompute the kernel of the given instance (G; k) or answer \no". The kernelis an instance (G0; k0) where jG0j � k2 and k0 � k such that G0 has a vertexcover of size k0 if and only if G has a vertex cover of size k. The reductionfrom (G; k) to (G0; k0) is computable in time O(kn), where k is the numberof vertices in G. (That is, this is a polynomial time parametric transfor-mation of Vertex Cover to itself, such that the target instance has sizebounded by a function of the parameter k.) Given that we can do this, wehave immediately demonstrated membership in FPT for Vertex Cover,since the question for (G0; k0) can now be answered in time bounded by afunction of k simply by an exhaustive analysis of G0.Phase 1 (Reduction to a Problem Kernel): Starting with (G; k) weapply the following reduction rules until no further applications are possible(the justi�cations for the reductions are given below):(0): If G has a vertex v of degree greater than k, then replace (G; k)with (G� v; k� 1).(1): If G has two nonadjacent vertices u; v such that jN(u)[N(v)j> k,then replace (G; k) with (G+ uv; k).(2): If G has adjacent vertices u and v such that N(v) � N [u], thenreplace (G; k) with (G� u; k� 1).(3): If G has a pendant edge uv with u having degree 1, then replace(G; k) with (G� fu; vg; k� 1).(4): If G has a vertex x of degree 2, with neighbors a and b, and noneof the above cases applies (and thus a and b are not adjacent), thenreplace (G; k) with (G0; k) where G0 is obtained from G by:� Deleting the vertex x.� Adding the edge ab.� Adding all possible edges between fa; bg and N(a)[N(b).(5): If G has a vertex x of degree 3, with neighbors a; b; c, and none ofthe above cases applies, then replace (G; k) with (G0; k) according toone of the following cases depending on the number of edges betweena, b and c.(5.1): There are no edges between the vertices a; b; c. In this case G0 isobtained from G by:� vertices v2v3. Deleting vertex x from G.� Adding edges from c to all the vertices in N(a).� Adding edges from a to all the vertices in N(b).



PARAMETERIZED COMPLEXITY 17� replacement be seen Adding edges from b to all the vertices inN(c).� Adding edges ab and bc.(5.2): There is exactly one edge in G between the vertices a; b; c, whichwe assume to be the edge ab. In this case G0 is obtained from G by� Deleting vertex x from G.� Adding edges from c to all the vertices in N(b)[N(a).� Adding edges from a to all the vertices in N(c).� Adding edges from b to all the vertices in N(c).� Adding edge bc.� Adding edge ac.The reduction rules described above are justi�ed as follows:(0): Any k-element vertex cover in G must contain v, since otherwiseit would be forced to contain N(v), which is impossible.(1): It is impossible for a k-element vertex cover of G not to contain atleast one of u; v, since otherwise it would be forced to contain all ofthe vertices of N(u)[N(v).(2): If a vertex cover C did not contain u then it would be forced tocontain N [v]. But then there would be no harm in exchanging v foru.(3): If G has a k-element vertex cover C that does not contain v, thenit must contain u. But then C�u+v is also a k-element vertex cover.Thus G has a k-element vertex cover if and only if it has one thatcontains v.(4): We �rst argue that if G has a k-element vertex cover C, then itmust have one with one of the following forms:1. C contains a and b, or2. C contains x but neither of a; b, and therefore also containsN(a)[N(b).If C did not have either of these forms, then it must contain exactlyone of a; b, and therefore also x. But in this C can be modi�ed toform 1. If G has a k-element vertex cover of the form 1, then thisalso forms a k-element vertex cover in G0. If G has a k-element vertexcover of the form 2, then this same set of vertices with x replaced byeither a or b is a k-element vertex cover in G0. Conversely, supposeG0 has a k-element vertex cover C. If C contains both a and b, thenit is also a k-element vertex cover in G. Otherwise, it must containat least one of a; b, suppose a. But then the edges from b to all ofthe vertices of N(a)[N(b) in G0 force C to contain N(a)[N(b). SoC � a+ x is a k-element vertex cover in G.(5.1): Let C denote a k-element vertex cover in G. If C does notcontain x, then necessarily C contains fa; b; cg. In this case C is alsoa k-element vertex cover in G0. Assume that C contains x. We canassume (easy to check) that at most one of the vertices of fa; b; cgbelongs to C. If none of the vertices of fa; b; cg belongs to C, then
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Figure 2. Let k = 8. (i) In the given graph (1; 2) is apendant edge (case (3)). k0 = 7, G0 = G� f1; 2g. 2 is addedto the vertex cover. (ii) Vertices 8 and 10 are adjacent andN(10) � N [8] (case (2)). (iii) The degree of vertex 9 is 2(case (4)). k000 = 7, G000 is received by adding the followingedges to G00 � f9g: (10; 3), (10; 4), (10; 5), (10; 6).either b or c belongs to the vertex cover of G0. If a 2 C then C�x+cis a vertex cover for G0, if b 2 C then C � x+ a is a vertex cover forG0, and if c 2 C then C � x+ a is a vertex cover for G0.(5.2): Let C denote a k-element vertex cover in G. If C does notcontain x, then necessarily C contains fa; b; cg. In this case C isalso a k-element vertex cover in G0. Assume that C contains x. Wecan assume (easy to check) that exactly one of the vertices of fa; bgbelongs to C. W.l.o.g we assume a 2 C. Then C � x+ c is a vertexcover for G0, if b 2 C then C � x+ c is a vertex cover for G0.It is easy to see that at the end of Phase 1 we have reduced (G; k) to(G0; k0) where G0 has minimum degree 4, if we have not already answeredthe question. Furthermore, simply because of the reduction rules (1) and(2) we can conclude that the answer is \no" if the number of vertices in G0is more than k2. Phase 1 is a good example of what is meant by the FPTtechnique of reduction to a problem kernel. If we still have no answer aboutthe original input (G; k), then we are left with considering (G0; k0) wherejG0j � k2 and k0 � k. A demonstration that the problem is in FPT is nowtrivial, since we can just (in the absence of further ideas) exhaustively answerthe question for the kernel (G0; k0). However, we can do a little better byanalyzing the kernel instance by means of a search tree.Figure 2 shows an example of the kernelization procedure of Phase 1.Phase 2 (Search Tree): In this phase of the algorithm we build asearch tree of height at most k. The root of the tree is labeled with theoutput (G0; k0) of Phase 1. We will describe various rules for deriving thechildren of a node in the search tree. For example, we can note that fora vertex v in G0, and for any vertex cover C, either v 2 C or N(v) � C.Consequently we could create two children, one labeled with (G0�v; k0�1),and the other labeled with (G0 � N [v]; k0 � deg(v)). In our algorithm, we



PARAMETERIZED COMPLEXITY 19perform this branching if there is a vertex of degree at least 6. By repeatingthis branching procedure, at each step reapplying the reductions of Phase 1,we can assume that that at each leaf of the resulting search tree we are leftwith considering a graph where every vertex has degree 4 or 5. If there is avertex x of degree 4, then the following branching rules are applied. Supposethat the neighbors of a vertex x are fa; b; c; dg. We consider various casesaccording to the number of edges present between the vertices a; b; c; d.Note that if not all of fa; b; c; dg are in a vertex cover, then we canassume that at most two of them are.Case 1. The subgraph induced by the vertices a; b; c; d has an edge, sayab. Then c and d together cannot be in a vertex cover unless all four ofa; b; c; d are there. We can conclude that one of the following is necessarilya subset of the vertex cover C and branch accordingly:1. fa; b; c; dg � C2. N(c) � C3. fcg [N(d) � C.Case 2. The subgraph induced by the vertices a; b; c; d is empty. Weconsider three subcases.Subcase 2.1 Three of the vertices (say a; b; c) have a common neighbor yother than x.Then when not all of a; b; c; d are in a vertex cover, x and y must be.We can conclude that one of the following is a subset of the vertex cover Cand branch accordingly:1. fa; b; c; dg � C2. fx; yg � C.Subcase 2.2 If Subcase 2.1 does not hold, then there may be a pair ofvertices who have a total of six neighbors other than x, suppose a and b.If all of a; b; c; d are not in the vertex cover C then c =2 C, or c 2 C andd =2 C, or both c 2 C and d 2 C (in which case a =2 C and b =2 C). Wecan conclude that one of the following is a subset of the vertex cover C andbranch accordingly:1. fa; b; c; dg � C2. N(c) � C3. fcg [N(d) � C4. fc; dg [N(fa; bg)� C.Subcase 2.3 If Subcases 2.1 and 2.2 do not hold, then the graph musthave the following structure in the vicinity of x: (1) x has four neighborsa; b; c; d and each of these has degree four. (2) There is a set E of six verticessuch that each vertex in E is adjacent to exactly two vertices in fa; b; c; dg,and the subgraph induced by E [ fa; b; c; dg is a subdivided K4 with eachedge subdivided once. In this case we can branch according to:1. fa; b; c; dg � C2. (E [ fxg) � C.



20 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEIf the graph G is regular of degree 5 (that is, there are no vertices ofdegree 4 to apply one of the above branching rules to) and none of thereduction rules of Phase 1 can be applied, then we choose a vertex x ofdegree 5 and do the following. First, we branch from (G; k) to (G�x; k�1)and (G � N [x]; k � 5). Then we choose a vertex u of degree 4 in G � xand branch according to one of the above cases. The net result of these twocombined steps is that from (G; k) we have created a subtree where one ofthe following cases holds:1. There are four children with parameter values k � 5, from Case 1.2. There are three children with parameter values k1 = k�5, k2 = k�5and k3 = k � 3, from Subcase 2.1.3. There are �ve children with parameter values k1 = k� 5, k2 = k� 5,k3 = k � 5, k4 = k � 6 and k5 = k � 9, from Subcase 2.2.Note that if reduction rule (2) of Phase 1 cannot be applied to G�x, then atleast one of the neighbors of u has degree 5, and so Subcase 2.3 is impossible.The bottleneck recurrence comes from the degree 5 situation which pro-duces four children with parameter values k � 5. The total running timeof the algorithm is therefore O(rkk2 + kn), where r = 41=5, or r = 1:31951approximately. This time bound is a slight improvement on the r = 1:32472of [BFR98]. (The tiny di�erence amounts to a 21% improvement in therunning time for k = 60.)The parameter function of our analysis of the running time of Algorithm4.1 indicates that this \exact" algorithm is useful for input graphs of anysize, so long as the parameter k is no more than about 60. There are anumber of uses of Vertex Cover in analyzing biological sequence data,and for this reason, essentially the above algorithm has been implementedas part of the DARWIN project at ETH [HGS98]. It turns out that theuseful parameter range of k � 60 indicated by the parameter function aboveis overly pessimistic. In practice, the algorithm seems to be useful for k upto around 200. Note that if you run this algorithm on (G; k) where k isapparently too large, the worst that can happen is that the algorithm failsto �nish in a reasonable amount of time. If it terminates, then it does givethe correct answer.The two phases of the above algorithm are independent. If one intendedto solve the general Vertex Cover problem by simulated annealing (orany other method), it would still make sense to apply Phase 1 before do-ing the simulated annealing, since the \simpli�cations" accomplished by thekernelization require only polynomial time (that is, they in no way dependon k being small). Consequently, Phase 1 is a reasonable �rst step for anygeneral algorithmic attack on the NP-complete Vertex Cover problem.We can codify this discussion by describing the following heuristic algorithmfor the general Vertex Cover problem. That is, the following algorithm,although it is based on FPT methods, has nothing to do with small para-meter ranges, and it runs in polynomial time.



PARAMETERIZED COMPLEXITY 21Algorithm 4.2. (A General Heuristic Algorithm for Vertex CoverBased on Kernelization.) The algorithm simply reduces the input graph Gto nothing by repeating the following two steps:1. Apply Phase 1 of Algorithm 4.1.2. Choose a vertex of maximum degree.The reduction path gives an approximate minimum vertex cover for G.To see that this works correctly, it is necessary to observe that for each ofthe rules of Phase 1 reducing (G; k) to (G0; k0), and given any vertex coverC0 in G0, we can reverse the reduction to obtain a vertex cover C in G.In Algorithm 4.2, we have simply replaced Phase 2 of Algorithm 4.1,which is exponential in k, with a well-known approximation heuristic forthis problem. However, we could also adapt Phase 2 by simply not exploringall of the branches of the search tree, either by making a random selection,or by branch selection heuristics, etc. The following is a natural adaptationof Algorithm 4.1 that exploits this idea for designing heuristics based on theFPT search tree technique.Algorithm 4.3. (A General Heuristic Algorithm for Vertex CoverBased on Kernelization and a Truncated Search Tree.) This is the same asAlgorithm 4.1, except that in the second phase of building the the searchtree, we do two things. First of all, we decide in advance how large of asearch tree we can a�ord, and we build the tree until we have this numberof leaves. Then for each leaf of the search tree, we apply an approximationheuristic such as the greedy method used in Algorithm 4.2, and take thebest of all the solutions computed from the leaf instances of the search tree.The search tree is developed according to the following branching heuris-tic. Given the instance (G; k) as the label on a node of the search tree to beexpanded, we calculate the most valuable branch in the following way:1. Find a vertex a of maximum degree r in G.2. Find a pair of vertices b; c such that s = jSj, where S = N(b)\N(c)is maximized.3. Determine which of the two equations xr � xr�1 � 1 = 0 and xs �xs�2 � 1 = 0 has the smallest positive real root. If the �rst equation,then branch to (G � a; k � 1) and (G � N [a]; k� r). If the second,then branch to (G�b�c; k�2) and (G�S; k�s). (This informationcan be precomputed and determined by table lookup.)The branching heuristic above is justi�ed because it essentially choosesthe branching rule to apply according to the heuristic criterion that if itwere the only rule applied in building a tree, then this would result in thesmaller tree. (This could obviously be generalized by considering 3-elementsubsets of the vertices, or by employing a di�erent criterion for choosing abranching rule.)Algorithm 4.3 is illustrated in Figure 3.In view of the remarkably nice FPT algorithms we now have forVertexCover it is both ironic and instructive that the Vertex Cover problem
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7Figure 3. The resulting graph in Figure 1 is taken as rootof the search tree in Algorithm 3. Here a = 3, b = 4, andc = 7.was �rst proved to be �xed-parameter tractable by the application of me-thods that are much more complicated than the problem actually requires.In fact, this happened in print at least three times [FL87, Jo87, PY96].The �rst of these approaches is based on the Robertson-Seymour theo-rems, the second on �nite-state dynamic programming on graphs of boundedtreewidth, and the third on maximum matching. Probably the correct moralto draw from this history is that the design of FPT algorithms has its owndistinctive issues and opportunities, and is not necessarily well-served by thehabits we have developed for the design of polynomial time algorithms.With respect to the connection between FPT and practical heuristics,the correct point of view seems to be that all of the various FPT methodsthat can be applied to a problem may be useful in the design of heuristics. Wenext describe a new, utterly ine�cient (in terms of the parameter function)FPT algorithm for Vertex Cover, based on completely di�erent FPTtechniques, and then describe how these methods can contribute, neverthe-less, to the design of an interesting and apparently powerful heuristic.Definition 4.1. G � H if there is a subgraph G0 � G and a surjectivemap h : V (G0)! V (H) with the property that for all uv 2 E(H), there arevertices x; y 2 V (G) such that h(x) = u, h(y) = v and xy 2 E(G). (It iseasy to verify that this de�nes a partial order on graphs.)If h is a function that k-colors the vertices of G = (V;E), h : V !f1; :::; kg, then we will write h(G) to denote the graph with the vertex set



PARAMETERIZED COMPLEXITY 23h(V ) � f1; :::; kg and the edge setfij : 9x; y 2 V with h(x) = i; h(y) = j and xy 2 Eg:Lemma 4.2. For each �xed k there is a �nite set Ok of graphs, suchthat for every graph G, G has a k-element vertex cover if and only if 8H 2Ok : G 6� H.Proof. By the Graph Minor Theorem [RS96], it is enough to arguethat if H is a minor of G then G � H . But this is essentially trivial,since one way of viewing the fact that H is a minor of G is that there is afolio representation of H in G. That is, there is a set of disjoint connectedsubgraphs Gv � G, one such subgraph for each vertex v 2 V (H), such thatif uv 2 E(H) then there are vertices x 2 Gu and y 2 Gv with xy 2 E(G).From this it is easy to construct a partial function h : V (G)! V (H) showingthat G � H .The celebrated Graph Minor Theorem used in the above argument sim-ply states that every set of �nite graphs has a �nite number of minimalelements in the partial ordering of graphs by minors. For a gentle survey ofthis result with an eye to algorithmic applications, see [FL88].Lemma 4.3. For every �xed graph H, it can be determined in timeO(n logn), for an input graph G on n vertices, whether G � H.Proof. Note that we are essentially proving that the problem of de-termining whether G � H is in FPT for the natural parameter H . As aconsequence of a theorem of Mader [Mad72], there is a constant cH suchthat if a graph G on n vertices has more then cHn edges then necessarily Ghas H as a minor and therefore G � H . In linear time we can determine ifthis provides a reason to answer \yes" and otherwise we can assume a linearbound on the number of edges of G.We use the powerful and general FPTmethod of color-coding introducedby Alon, Yuster and Zwick. In [AYZ94] it is shown that for every k thereis a family Hk of functions h : f1; :::; ng! f1; :::; kg with the property thatif S is any subset of f1; :::; ng of size k, then 9h 2 Hk such that h maps S1:1 onto f1; :::; kg. The crucial thing is that the family of functions Hk isnot very large. In [AYZ94] it is shown that it is possible to produce suchfamilies of hash functions with jHkj � 2O(k) logn. (Note the reasonableparametric function, in the sense of the discussion in x2.)Suppose H has m edges. Then G � H if and only if there is a set of atmost 2m vertices of G that can be mapped onto the vertices of H in orderto witness this fact.Let F2m denote the set of all functions from the set f1; :::; 2mg onto thevertex set of H . Then G � H if this can be detected by the compositionf = g � h of some function h 2 H2m and g 2 F2m, by having H isomorphicto f(G). Our algorithm thus consists simply of computing f(G) for all suchfunctions f . This can clearly be accomplished in time O(n logn) with ahidden constant that is exponential in the size of the �xed graph H .



24 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEThe two lemmas above allow us to conclude immediately that VertexCover is in nonuniform FPT. Nonuniform, because so far we can onlyconclude that for each �xed k there is a di�erent algorithm for k-VertexCover, based in each case on the obstruction set Ok, which is di�erentfor each k, and not in any obvious way computable. In order to combinethese separate algorithms into a single (uniform) FPT algorithm, we willuse the self-reduction technique of [FL94]. The subroutine that we need isdescribed by the following lemma.Lemma 4.4. Suppose A is an oracle (black box) for the Vertex Coverdecision problem. Then by making O(k2) calls to the oracle, we can computea k-element vertex cover for a graph G on n vertices (if it has one).Proof. First note that by attaching pendant edges to vertices of G,we immediately have an easy algorithm that makes at most n calls to theoracle by repeatedly \probing" the graph by attaching a pendant edge to thevertices of G. Note that if uv is a pendant edge where u has degree 1, thenif G has any k-element vertex cover, then it has one including the vertexv. We simply keep probing the vertex set until we have attached pendantedges to k vertices.The operation of shattering a vertex x is accomplished by:� Deleting x.� Adding pendant edges to each vertex y 2 N(x).If G has a k element vertex cover, then for any partition of the vertexset of G into k + 1 classes there must be at least one class that is safe toshatter in the sense that if G0 is obtained from G by shattering every vertexin the class, then G0 has a k-element vertex cover that is also a vertex coverfor G. Thus by making k+1 calls to the oracle, one for each such G0, we candiscover at least one new vertex that can be tagged with a pendant edge. Atan intermediate step of the algorithm, there is some set S of k0 < k verticesof G that are tagged with pendant edges, and we know these k0 verticesbelong to some k-element vertex cover. We can delete a vertex z =2 S ifN(z) � S (since the vertices of S are forced to be in the vertex cover, it issafe to assume that z is not). The remaining vertices are partitioned intok� k0+1 approximately equal-sized classes. By inquiring about the graphsG0 obtained by shattering these classes, we can discover at least one newvertex to add to S. Thus O(k2) calls to the oracle are su�cient.Algorithm 4.4. (A Direct But Completely Impractical FPTAlgorithmfor Vertex Cover Based on Well-Quasiordering, Hashing, and Fast Self-Reduction.) The algorithm receives an input instance (G; k) and beginsto build a list of the elements of Ok by systematically generating all �nitegraphs, and checking each one to see if it should be added to the list (thisis easy to determine). Since by what we have argued so far we have noway of knowing when the list is complete, we interleave this process withanother, until we have decided whether to answer \yes" or \no". We callthis procedure for �nding a new obstruction Process 1.
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Figure 4. The connected obstructions for 4-Vertex CoverProcess 2 is executed whenever Process 1 has added something new tothe list of Ok. Process 2 acts under the assumption that the list is complete.If this were so, then by the means described by Lemmas 4.2 and 4.3, the listprovides an \oracle" for the decision problem, by checking, for each H onthe list, whether G � H .Each call to this decision problem \oracle" requires time O(f(k)n logn),where f is some function of the parameter. We use the oracle to obtain eithera de�nite reason to answer \no", by discovering that G � H for some H 2Ok, or a de�nite reason to answer \yes", by actually identifying and checkinga k-element vertex cover in G. In order to obtain the latter evidence, we usethe self-reduction algorithm of Lemma 4.4. Either of these e�orts to give ade�nite answer may in fact succeed, even though our assumption that thelist is complete is incorrect. (If the assumption is correct, then of course wewill succeed in giving a de�nite answer.)The only remaining possibility is that something weird happens. Theincorrect assumption may cause the self-reduction algorithm to take too longor to output an incorrect solution. These malfunctions are easy to recognize.If we discover that the assumption was incorrect in this manner, then wereturn to Process 1 until we generate a new graph to add to the list of knownelements of Ok . Since Ok is �nite, we alternate between the two processesat most jOkj times.The running time can be calculated to be O(f(k)n log2 n) for a functionf(k) that grows explosively mainly because of the size of the obstructionsets Ok.The set of obstructions for k = 4 is shown in Figure 4. In principle, theset Ok can be mechanically computed for any k. The set shown in Figure 4was computed by Cattell and Dinneen [CD94].Algorithm 4.4 is a nice example of the use of some very powerful andgeneral FPT methods, and it is a good example as well of an FPT resultthat is utterly impractical as a direct algorithm. Nevertheless, we can adaptthe methods of Algorithm 4.4 in designing new and interesting heuristicsfor Vertex Cover. General heuristic design strategies that correspond



26 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEto some of the main FPT methods are displayed in Table 2. The essentialtheme is to obtain heuristic methods from FPT algorithms by strategies fordeating the parametric costs by truncating or sampling the search trees orobstruction sets, etc.FPT Technique Heuristic Design StrategyReduction to a Problem Kernel A useful pre-processing subroutinefor any heuristic.Search Tree Explore only an a�ordable, heuristicallychosen subtree.Well-Quasiordering Use a sample of the obstruction set.Color-Coding Use a sample of the hash functions.Table 2. Some FPT Methods and Heuristic StrategiesWe have the following heuristic algorithm for Vertex Cover adaptedfrom Algorithm 4.4.Algorithm 4.5. (A New Family of Heuristics for Vertex Cover.)The heuristic algorithm that we describe is self-analyzing in the sensethat it computes both a vertex cover C � V for an input graph G = (V;E),and a guarantee r that C is within a factor of r of optimal.Step 1: An Initial Solution. The �rst step of the algorithm is to computea vertex cover that is within a factor of 2 of optimal, using one of the well-known approximation algorithms that provide this performance guarantee.Step 2: Improving the Upper Bound. Knowing that G has a vertex coverof size kupper, we attempt to show that that it has one of size k0 < kupper.To do this, we use a strategy suggested by Lemma 4.4. If S � V is a set ofvertices of G, de�ne the shattering of G with respect to S to be the graphobtained by \unplugging" any edges incident on vertices of S. If S consistsof a single vertex, then this coincides with the de�nition given in the proofof Lemma 4.4. If two vertices u; v 2 S are adjacent, then this results in aK2 from uv being unplugged from both endpoints. There are two salientfacts that we use concerning this operation:� If (G; k) is a yes-instance, then for any (k+1)-partition of the vertexset, there must be at least one class S of the partition such that(G0; k) is also a yes-instance, where G0 is obtained by shattering Gwith respect to S.� If G0 is the result of shattering G with respect to S, and C 0 is a vertexcover in G0, then we can easily compute from C 0 a vertex cover C forG with jCj � jC 0j.Typically, the result G0 of shattering G with respect to S will havemany vertices of degree 1, and hence G0 can be reduced by applying therules for the kernelization phase of Algorithm 4.1. In this way, we obtain amuch smaller instance from which we can possibly compute a vertex cover



PARAMETERIZED COMPLEXITY 27for G of the targeted size to improve the upper bound. Using the factsabove, we develop a search tree based on some randomly or heuristicallychosen partitions, and explore some of branches (where a branch is given byshattering on a class of the partition).There are various ways to work out the details of this exploration process.We might think of the tree as organized into lower branches (closer to theroot) and upper branches. The lower branches create a search space ofa�ordable size consisting of graphs that are somewhat smaller than G, but asearch space that is guaranteed to contain yes-instance under the assumptionthat G is a yes-instance (because the lower branches include all shatteringsfor some partition). The upper branches are developed by repeating theshattering process enough times, but only exploring some of the branches,until the resulting graphs are completely solved. The exploration of theupper branches could also be based on a greedy heuristic.Step 3: Improving the Lower Bound. Knowing a lower bound klower onthe minimum size of a vertex cover in G, we attempt to prove a better lowerbound k > klower. To do this, we use a strategy suggested in part by Lemma4.2. However, before doing anything fancy, we should compute a maximalmatching in G to see if there is an easy way to improve the lower bound bydetecting the easy obstruction (k + 1)K2 2 Ok.Note that if (G; k) is a no-instance, then for any (2k + 3)-coloring ofthe vertex set, there must be at least one class that can be pinched in thefollowing way, to produce a (smaller) graph G0 such that (G0; k) is also ano-instance. That this is true follows from Lemma 4.2 and the fact thatthe maximum number of vertices in in Ok is 2k + 2 (attained uniquely by(k + 1)K2). This can be used to develop the lower branches of a searchtree as in Step 2 which is similarly guaranteed to have at least one branchto a simpler graph from which a proof that (G; k) is a no-instance can beobtained (if it is a no-instance).For the upper branches of this search tree we can employ a partial explo-ration of the obstruction set for Ok and a partial exploration of the family ofhash functions used in the proof of Lemma 4.3 to see if a reason for answer-ing \no" can be obtained. It is easy to generate elements in Ok by takingdisjoint unions of obstructions for smaller parameter values. For exampleC5 2 O2 and K6 2 O4 so (C5 [K6) 2 O7.Instead of incrementally applying Steps 2 and 3 separately to closethe gap between krmupper and klower, some form of binary search could beadopted. For example, the �rst round of such a strategy might be to applySteps 2 and 3 to k = (kupper+ klower)=2.The main point in describing the above heuristic (which has not yetbeen implemeted) is to illustrate how FPT techniques can be adapted intoheuristic algorithms.



28 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGE4.2. A Useful Parameterized Algorithm for MAST. We next de-scribe a useful direct FPT algorithm for the Maximum Agreement Sub-tree (MAST) problem de�ned in x1, when it is restricted to binary trees,a reasonable restriction for biological applications. Apart from the intrinsicinterest of this result, it is a nice example of two important points concerningFPT algorithms.� Our algorithm for MAST uses an algorithm for Vertex Cover asa subroutine. Useful FPT algorithms lead to other useful FPT algo-rithms, as one might naturally expect.� There is already a polynomial time algorithm for MAST for binarytrees, so why bother with an exponential FPT algorithm? The answeris that the polynomial time algorithm for MAST due to [FPT95] runsin time O(rn3) for r trees on a set of n species. The algorithm wedescribe requires time O(ckrn logn) where c is a constant less than3. Consequently, this is an example of a situation where a classicallyexponential FPT algorithm may be preferable to a polynomial timealgorithm.Theorem 4.5. The parameterized MAST problem can be solved in timeO(ckrn logn) for r binary trees on n species.Sketch. The input to the problem is a set of rooted binary trees T1; :::; Treach having n leaves labeled in 1:1 correspondence with a set X of n species.The problem is to determine if it is possible to delete at most k species fromX to obtain a set X 0 on which all of the trees agree. In considering thisproblem, there is an elegant point of view developed by Bryant [Bry97]based on triples. If fa; b; cg is a set of three species in X , then the re-striction of each of the trees Ti to these three species must be one of thethree possible alternatives (using parenthetical notation to represent trees):(a,(b,c)), (b,(a,c)), or (c,(a,b)). If two or more of these three possibilitiesarise among the Ti, then obviously it will be necessary to eliminate at leastone of the species a; b; c from X in order to obtain an agreement subtree. Inthis situation we will refer to fa; b; cg as a conicted triple of species.An argument due to Bryant [Bry98] shows that our problem can bereduced in this way to the well-known 3-Hitting Set problem (see [GJ79]),that takes as input a collection C of 3-element subsets of a set X and apositive integer k, and must answer whether there is a subset X 0 � X withjX 0j � k such that for each A 2 C, A \ X 0 6= ;. Bryant's argument showsthat our problem is equivalent to �nding a k-element hitting set for thetriples of X that are conicted with respect to the Ti.The set of conicted triples could be computed by exhaustively com-puting the restrictions of the Ti for each 3-element subset of X , but this isnot very e�cient. In time O(n logn) it is possible to either determine thattwo trees are isomorphic, or identify a conicted triple. Once a conictedtriple is identi�ed, we can branch in a search tree based on 3 possibilities forresolving the conict. For example, if the conicted triple is fa; b; cg then we



PARAMETERIZED COMPLEXITY 29create three branches in the search tree by deleting one element (say a) fromX and from all of the trees Ti. We now recursively attempt to determine ifthe modi�ed instance can be solved with k0 = k � 1.There will be at most O(3k) nodes in the search tree, and the runningtime due to each node is O(rn logn), which yields the claimed runningtime.The algorithm sketched above uses 3-Hitting Set implicitly as a meansof solving the parameterized MAST problem. An improved but more elabo-rate FPT algorithm for this problem is described in [BFRS98], where wenot only reduce MAST to 3-Hitting Set, but in turn we reduce 3-HittingSet toVertex Cover, to obtain an algorithm with c = (1+p17)=2. Somefurther examples of the systematic adaptation of FPT algorithms into usefulheuristics for problems in computational biology (where there is an abun-dance of naturally parameterized problems) can be found in [FKS98].4.3. The Steiner Problem for Generalized Hypercubes. In thissection we give another FPT result based on the method of reduction toa problem kernel. This leads to an important heuristic algorithm that isalready in use. We consider a slightly more general problem than the onedescribed in x1.The Steiner Problem for Generalized HypercubesInstance: The input the problem consists of the following pieces of informa-tion:1. A set of complete weighted digraphs Di for i = 1; :::; n, each describedby a set of vertices Vi and a functionti : Vi � Vi ! IN(We refer to the vertices of Di as character states, to Di as the cha-racter state digraph, and to ti as the state transition cost function forthe ith character.)2. A positive integer k1 such that jVij � k1 for i = 1; :::; n.3. A set X of k2 length n vectors xj for j = 1; :::; k2, where the ithcomponent xj [i] 2 Vi. That is, for j = 1; :::; k2,xj 2 
 = nYi=1Vi4. A positive integer M .Parameter: (k1; k2)Question: Is there a rooted tree T = (V;E) and an assignment to eachvertex v 2 V of T of an element yv 2 
, such that:� X is assigned 1:1 with the set of leaves of T ,



30 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGE� The sum over all parent-child edges uv of T , of the total transitioncost for the edge, de�ned to benXi=1 ti(yu[i]; yv[i])is bounded by M?Theorem 4.6. The Steiner Problem for Generalized Hyper-cubes is �xed-parameter tractable.Proof. We de�ne an equivalence relation i � j on the index spacef1; :::; ng that allows us to combine Di and Dj and obtain an equivalentsmaller instance. In order to de�ne � we �rst de�ne some other equivalences.Fix m � k1 and let l be an integer edge labeling of the complete digraphKm on m vertices. Let v1; :::; vm denote the vertices of Km. Let T be arooted tree with k2 leaves labeled from v1; :::; vm. De�ne the cost of T withrespect to l to be the minimum, over all possible labelings s of the internalvertices of T with labels taken from fv1; :::; vmg, of the sum over the parent-child edges of T of the transition costs given by l on the labels, and writethis as cost(T; l) = minsfcost(T; s; l)gIf l and l0 are integer edge labelings of Km and T is as above, then de�nel �T l0 if and only if 9s such thatcost(T; l) = cost(T; s; l) = cost(T; s; l0) = cost(T; l0)and de�ne l � l0 if and only l �T l0 for all such trees T .For i; i0 2 f1; :::; ng de�ne i � i0 if and only if:1. jVij = jVi0 j = m so that the only di�erence between Di and Di0 is intheir arc-labelings l and l0, and2. l � l0 .The kernelization algorithm can now be described quite simply. Let Ibe an instance of the problem. If there are indices i 6= i0 for which i � i0,then modify I by combining these into one character state digraph with thestate transition cost function given by the arc-labeling given l + l0, wherethese are the cost functions for Di and Di0 , respectively. Let I 0 denote themodi�ed instance.The correctness of the reduction to the smaller instance is obvious. Weneed only to note that the equivalence i � i0 can be determined in timebounded by a function of the parameter and that number of equivalenceclasses is similarly bounded by a function of the parameter.The parameter function for this simple kernelization algorithm is notvery good and can probably be much improved. We remark that most ofthe expense is in determining when two transition digraph indices i and i0are equivalent by testing them on all possible trees with k2 leaves. This



PARAMETERIZED COMPLEXITY 31suggests a heuristic algorithm that combines indices when they fail to bedistinguished by a (much smaller) random sample of trees and leaf-labelings.In x1 we reported an encounter with an evolutionary biologist who re-ported earlier, rather fruitless interactions with theoretical computer sci-entists who proved that his problems were NP-complete and \went away".We claimed that we were di�erent! and that we had a result on one of hiscomputational problems (The Steiner Problem for Hypercubes) thatmight be of interest. After we described the FPT algorithm he said simply[Fel97]: \That's what I already do!"4.4. Kernelization and Heuristics: A Universal Connection.The example problems we have considered above exhibit a profound connec-tion between kernelization algorithms for an FPT problem, and heuristicsfor the general unparameterized problem. The connection goes in both di-rections:� An improved algorithm for the general problem, applied to the pro-blem kernel, may extend the useful range of parameter values forwhich the problem is well solved.� Because the kernelization phase simpli�es and decreases the size of theproblem instance, it is a reasonable �rst step for any general attackon the unparameterized problem.It is interesting to investigate the question of to what extent good ker-nelization algorithms are typical of problems in FPT. This can be formalizedas follows.Definition 4.7. A parameterized problem L is kernelizable if there isthere is a parametric transformation of L to itself that satis�es:1. the running time of the transformation of (x; k) into (x0; k0), wherejxj = n, is bounded a polynomial q(n; k) (so that in fact this is apolynomial-time transformation of L to itself, considered classically,although with the additional structure of a parametric reduction),2. k0 � k, and3. jx0j � h(k), where h is an arbitrary function.Lemma 4.8. A parameterized problem L is in FPT if and only if it iskernelizable.Proof. The \if" direction is trivial. We can derive the \only if" direc-tion from the result proved in [CCDF97] that a parameterized language Lis in FPT if and only if there is a constant � � 1 and a function f(k) suchthat we can determine if (x; k) 2 L in time O(n�+ f(k)). Our kernelizationalgorithm for L considers two cases:1. If k < f�1(n) then in time O(n�) we can simply answer the question.2. If k � f�1(n) then n � f(k) and the instance (x; k) already belongsto the problem kernel.



32 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGESince we are naturally interested in the e�ciency with which problemkernels can be computed, it makes sense to consider the following modi�ca-tion of the above de�nition. This essentially sets up a time hierarchy insideof FPT based on the running time of the kernelization algorithm that everyFPT problem has (by the lemma above).Definition 4.9. Let c be a �xed constant. A parameterized problemL is strong nc-kernelizable if there is a recursive function f , a polynomialq and a parametric transformation of L to itself running in time O(q(k)nc)for n = jxj, taking (x; k) to (x0; k0) such that:1. k0 � k, and2. jx0j � f(k).We say L is weak nc-kernelizable if f is not required to be recursive. LetK(nc) denote the c-kernelizable subset of FPT (either strong or weak de-pending on the context).The following somewhat technical theorem corresponds to the standardtime hierarchy theorem, but is more di�cult to prove because of the needfor a \wait and see" argument to deal with the parameter functions.Theorem 4.10. If c < c0 are constants, thenK(nc) � K(nc0) � FPTProof. It is su�cient to prove that K(nc) � FPT (nc) for all c � 1,where by strong FPT (nc) we mean the parameterized problems solvable intime f(k)nc for some recursive function f . We will only do the case c = 1,the more general case follows by the same technique. We consider the strongavor of the theorem �rst.Let 'e denote the e-th partial recursive function. Let ge denote thee-th parametric self reduction, so that ge : (x; k) 7! (he(x); qe(k)), and ispolynomial in k, say in time jkje, but linear in jxj. It su�ces to construct aFPT (n) language L to meet the requirements Re;i below.Re;i : either 'i is not total or9x; k jhe(x)j 6� 'i(k) or9x; k (ge((x; k)) 2 L i� (x; k) 62 L):We set aside row he; ii for the sake of requirement Re;i. Our languageL will be in FPT with each row in time 2kjxj. At each stage s we will lookonly at one requirement, cycling through the requirements so that we seethem in�nitely often. At stage s we will decide the fate of all strings (x; k)with jxj = s. For a single requirement Re;i, our strategy is as follows. Weneed to do nothing until we arrive at a stage s where 'i(k) # in fewer thans steps. At this stage Re;i becomes active. Note that if Re;i never becomesactive then 'i is not total. (Similarly we can now check that jhe(x)j � 'i(k),which will be implicit in the discussion below.)



PARAMETERIZED COMPLEXITY 33We next consider an active requirement at a stage t where we can knowthat 2k�1t > jkjet+'i(k). Note that at such a stage, we can, in 2k�1t steps,work out the image of (1t; k) under ge, namely (he(1t); qe(k)) = (x0; k0),say. The diagonalization is then simple. If we see that we have already put(x0; k0) into L then we declare that (x; k) will be kept out of L. If we seethat we have (x0; k0) 62 L then we put (x; k) into L.This concludes the strategy for a single requirement Re;i and there isobviously no problem in dealing with the combinations of requirements.In the arbitary case, where f is not computable, then we will replace therequirement Re;i above by the in�nitely many requirements Re;i;j below.Re;i;j : either 9x; khe(x) 6� j or9x; k (ge((x; k)) 2 L i� (x; k) 62 L):The idea is that j is the \guess" we will use for f(k). While we thinkthat f(k) = j we regard j as active. We activate j+1 when j proves wrong.If all the j prove wrong then there is no value for f(k). We devote a singlerow he; ii to the collection fRe;i;j : j 2 INg. The idea is essentially the same.When we consider j, we will be looking for stages t where 2k�1t > jkjet+ j.If we see that the size of he(1t) exceeds j then we cancel j and move on toj + 1. If not, then we can diagonalize as before.Cheeseman et al. [CKT91] have discussed (essentially) the idea thatreduction to a problem kernel is a strategy that can and should be appliedas a preprocessing step for any computational problem. They describe re-duction rules for Graph Coloring, and present some statistical evidencethat the set of reduced instances represent a complexity \phase transition"where the hard instances of the problem are concentrated.4.5. FPT Methods and Other Means of Coping. There seem tobe fairly strong methodological connections between FPT algorithm designmethods and methods for devising polynomial-time approximation schemesand other approximation heuristics. Such a connection might naturally beexpected, since in an approximation scheme for an NP-hard problem, onewould normally anticipate a running time exponential in k = 1=� for analgorithm that computes an approximation to within a factor of (1 + �) ofoptimal. (This is isn't strictly necessary, since the problem may have a fullypolynomial-time approximation scheme (see [GJ79]). However, these seemto be quite rare.) We mention three examples of connections between FPTmethods and other coping strategies, especially approximation.Example 4.1 (E�cient Approximation Schemes for Planar Graphs).A notable example of e�cient approximation is the family of schemes de-vised by Baker [Ba94] for planar graph problems. The basic idea is quitesimple and very much based on the standard FPT techniques of boundedtreewidth and pathwidth (thoroughly exposited in [DF98]). For concrete-ness, consider the problem of computing a minimum dominating set for a



34 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGE
Figure 5. Illustration of bounded width onion decomposi-tion for a planar graph. The �gure on the left shows theboundaries of the layers.planar graph. Starting from a planar embedding of the graph G, we can de-�ne a kind of \onion" decomposition of G. The layers of this decompostioncan be de�ned in such a way that each has bounded treewidth. Figure 7illustrates the idea.The basic idea is to solve the problem exactly for each layer, using boun-ded treewidth machinery, and then combine the solutions for the layers.There is a small amount of ine�cient overlap as the solutions for the layersare combined (by taking the union of the relevant vertex sets, for example).As the width of the layers is increased (at the usual FPT costs for boun-ded treewidth algorithms), the overall e�ect of the ine�cient overlap on thegoodness of the approximation progressively decreases, yielding an approx-imation to within a factor of (1 + �) of optimal for G for an appropriatelychosen width of the layers. This same idea can be applied to a number ofother graph problems.Example 4.2 (Testing Hereditary Properties E�ciently on Average).One of the few general techniques for devising algorithms that are e�cienton average has been described by Gustedt and Steger [GS94] based on ob-struction sets, one of the most powerful ideas in the FPT toolkit. The basicidea of their approach is that for some properties of combinatorial objectsthat are lower ideals in an appropriate partial order (which implies thatthe property is characterized by an obstruction set), the probability may behigh for \typical" inputs that the answer is \no" (the object does not havethe property), and that this sometimes can quickly be detected by checkingfor obstructions (not necessarily all of them). This strategy is employedas a preface, quickly answering the question for most inputs, thus raisingthe performance on average of whatever algorithm is used to deal with theremaining cases. Arguing along similar lines to our discussion of kerneliza-tion, they point out that this is a reasonable preface for any algorithmicattack on these kinds of problems. Our Algorithm 4.5 can be viewed inpart as an example of this strategy. Langston et al. have similarly used



PARAMETERIZED COMPLEXITY 35approximate obstruction sets to design heuristics for VLSI layout problems[LR91, GLR92].Example 4.3 (Iterative Approximation Heuristics). An important ex-ample of a much-used approximation heuristic is the k-Opt heuristic forthe Traveling Salesman Problem [JMc97]. This can be viewed as asimple example of the following general recipe for the design of local searchheuristics based on FPT methods.First: Identify an FPT result for a modi�cation of the problem that canbe used as a subroutine to compute a single iteration of the local search.(For the k-Opt heuristic for the TSP, the relevant subroutine computes thebest rearrangement of the k pieces into which the current best tour has beencut. This can be accomplished in time O(k!n).)Second: Iterate the application of this subroutine.This design paradigm naturally raises the following question about the k-Opt neighborhood structure for TSP: Is there an FPT algorithm to computethe best neighbor s0 of a solution s? Fisher [Fis95] has shown that it is NP-complete to determine whether there is a local optimum within k steps of sfor the 2-Opt neighborhood structure for TSP. Whether this problem is inFPT is also open.4.6. Some Further Discussion.Remark 4.11. The design of non-polynomial algorithms has been anarea somewhat neglected by theoretical computer scientists | or at least itis an area in which there are many unexplored opportunities of importanceto the applied community. The design of FPT algorithms systematicallyfocuses attention in this direction. It is notable how the original, unpa-rameterized problem is resurrected in the problem kernel (e.g., for VertexCover in the second phase of the FPT algorithm we are essentially ad-dressing the problem for a graph of size n with k = pn). It would beinteresting to know if any systematic connection can be made between the\optimum" size of a problem kernel (which requires a de�nition) and thecomplexity threshold for the problem [KS94], or with the structural notionof the complexity core of the decision problem.Remark 4.12. For FPT problems that can be kernelized e�ciently weend up in the happy situation that the problem can be solved for inputof any size, so long as the parameter function f(k) is not too large. Thismeans that our reward for work on an improved algorithm for the generalhard problem (with k unrestricted) is leveraged in a very signi�cant way forproblems that are FPT (by applying the improved general algorithm to thekernel). This also suggests measuring our success on an FPT problem L interms of c-klams, where the c-klam value of an algorithm A is de�ned to bethe largest kmax such that:1. L can be solved by A in time f(k) + nc, and2. f(kmax) � U , where U is some reasonable absolute bound on themaximum number of steps of any computation, e.g., U = 1012 as



36 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEsuggested by Yessenin-Volpin [YV70] (or perhaps a somewhat largernumber).If we can achieve for Treewidth a c = 3 klam value of even just8 or 10, this will be very signi�cant for practical applications.Remark 4.13. The program of dealing with a hard problem by parame-terizing can be compared to the program in Chapter 4 of Garey and Johnson[GJ79]of mapping the boundary between NP-hardness and polynomial-timesubproblems in the following way. Suppose that we have an FPT result re-quiring time O(2knc) about the problem � with parameter k. There aretwo di�erent natural \forgetful functors" from the parametric to the clas-sical framework. The �rst regards this FPT result as saying that for each�xed k the classical problem is solvable in polynomial time. The informa-tion loss in this is obvious, since it forgets entirely the distinction betweenFPT and XP (see Table 1). A second possible mapping of the FPT resultto the classical framework would regard this as saying that � restricted tok � logn is solvable in P-time. In general, it would be fruitful to �nd, fora collection of parameters of a problem �, some such bounds (as functionsof the input size n) such that for parameters less than these bounds, � canbe solved in polynomial time. (I.e., this is a nice canonical kind of subprob-lem.) But this is precisely the issue in parameterized complexity: for a givencollection of parameters, is there any corresponding collection of bounds (asfunctions of n) such that the canonical subproblem de�ned by these boundsis in P? W [1]-hardness shows when the answer is probably \no". Improvingthe parameter function of an FPT problem is equivalently the problem ofimproving such bounds.Remark 4.14. We conjecture that the most promising method that thereader can apply towards developing useful FPT algorithms and heuristicsfor NP-hard problems is to purchase the moderately priced and entertainingbook [DF98].5. Applications of Treewidth to Problems of LogicIn this section we explore the theme of treewidth as a hidden para-meter in many problems, particularly those of logic and programming lan-guages. It is possible that treewidth represents one of the most univer-sal hidden economies of computational tractability. (This section is un-avoidably somewhat technical; the reader needs to be familiar with the\Myhill-Nerode" bounded treewidth algorithmic machinery developed in[FL89, Co90, CL95, AF93].)Thorup recently proved the remarkable result that the ow graphs thatarise from structured programs have bounded treewidth. The bound onthe treewidth is speci�c to the particular programming language, dependingon whether certain language constructions (such as loop-exits, conditional`or's, etc.) are allowed. For example, the ow graphs of structured C++programs have a treewidth bound of 7 [Th97].



PARAMETERIZED COMPLEXITY 37We explore how treewidth can be applied as a parameter to two problemsin logic, Minimum Axiom Set and STRIPS Planning. These problemsare de�ned classically as follows.Minimum Axiom SetInstance: A �nite set S of sentences, an implication relation R consisting ofpairs (A; t) where A � S and t 2 S, and a positive integer k.Question: Is there a set S0 � S with jS0j � k and a positive integer n suchthat if we de�ne Si for 1 � i � n to consist of exactly those t 2 S for whicheither t 2 Si�1 or there exists a set U � Si�1 such that (U; t) 2 R, thenSn = S ?Minimum Axiom Set with parameter k has been shown to be completefor W [P ] in [DFKHW94].Propositional STRIPS PlanningInstance: A dimension n representing a number of atomic formulas calledconditions, an initial state vector S 2 f0; 1gn indicating which of conditionsare initially true, a goal vector G 2 f0; 1; �gn expressing the goal in termsof conditions that should be true (1), false (0) or don't care (*), and acollection O of operators, where each operator o 2 O is a pair o = (P;Q) withP 2 f0; 1; �gn expressing the preconditions of the operator in the naturalway, and Q 2 f0; 1; �gn expressing the postconditions of the action. Anoperator o = (P;Q) can be applied to the current state vector X if for alli, 1 � i � n, P [i] = a 2 f0; 1g implies X [i] = a, that is, the preconditionsnaturally expressed by P are met by the state vector X . The state vectorX 0 resulting from the operation o in this situation is de�ned by:1. X 0[i] = X [i] if Q[i] = �, and2. X 0[i] = Q[i] otherwise.Question: Is there a sequence of operations that can be applied, startingfrom the initial state vector S, and resulting in a state vector T such that8i; 1 � i � n : G[i] = a 2 f0; 1g ! T [i] = a:The Propositional STRIPS Planning problem was �rst describedby Fikes and Nilsson [FN71] and was proved to be PSPACE-complete byBylander [Byl94].We must �rst de�ne how the notion of treewidth can be applied to theseproblems. To do this we de�ne two digraph pebbling problems to whichthese logic problems can be conveniently translated.Digraph PebblingInstance: A digraph D = (V;A) for which the vertex set V is partitionedV = R [ B into two classes, the red vertices of R and the blue vertices ofB, and a positive integer k.Question: Is it possible to pebble each vertex of the digraph according tothe following set of rules?1. Start with k pebbles placed on red vertices.



38 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGE2. A blue vertex b can be pebbled if there is a pebbled vertex u suchthat ub 2 A.3. A red vertex r can be pebbled if for every vertex u such that ur 2 A,u is pebbled.If every vertex is red, then this is the same problem as DirectedFeedback Vertex Set and thereforeDigraph Pebbling is NP-complete[Karp72]. The parameterized complexity of Directed Feedback Ver-tex Set (with parameter k) is semi-famously open.Signed Digraph PebblingInstance: A red/blue bipartite digraph D = (V;A) for which the vertexset V is partitioned V = R [ B into two classes, and also the arc set A ispartitioned into two classes A = A+ [A�.Question: Starting from the start state where there are no pebbles on anyof the red vertices, is it possible to reach the �nish state where there arepebbles on all of the red vertices, by a series of moves of the following form?A legal move: If b is a blue vertex for which 8u such that ub 2 A+, u ispebbled, and 8u such that ub 2 A�, u is not pebbled (in which case we saythat b is enabled), then the set of vertices v such that bv 2 A+ are reset bymaking them all pebbled, and the set of vertices v such that bv 2 A� arereset by making them all unpebbled.We leave it to the reader to verify that an instance I ofMinimum AxiomSet can be naturally translated into an instance I 0 of Digraph Pebbling,where the set of sentences S of I becomes the set of blue vertices B of I 0.We can de�ne the treewidth of I to be the treewidth of the digraph of I 0.The representation of a Propositional STRIPS Planning instance asan instance of Signed Digraph Pebbling is equally straightforward, andwe adopt a similar notion of the treewidth of an instance.We now consider the following parameterizations of these problems. ByDigraph Pebbling I we refer to this problem with the parameter k. (Thisis complete for W [P ] by the results on Minimum Axiom Set cited above.)By Digraph Pebbling II we refer to this problem with parameter (k; w)where w is the treewidth of the instance. By Signed Digraph Pebbling Iwe refer to this problem with parameter w, where w is the treewidth of theinstance, and by Signed Digraph Pebbling II we refer to this problemwith parameter (k; w) where w is the treewidth, and where k is a boundon the number of moves in which to reach the �nish state. Note that thenumber of moves is a reasonable parameter for planning problems. The newresults that follow all make use of the Myhill-Nerode techniques for boundedtreewidth developed in [MP94, FL89, AF93, BFW92, FHW93, DF98].We remark that it appears di�cult to express eitherDigraph PebblingII or Signed Digraph Pebbling II in Monadic Second-Order logic, a verypowerful but not always applicable method for obtaining tractability resultsfor bounded treewidth (see [Co90] and [DF98] for expositions).In order to apply the Myhill-Nerode machinery for bounded treewidththe key notion that is needed is that of a t-boundaried graph, which is just a



PARAMETERIZED COMPLEXITY 39graph with t distinguished vertices. What is ultimately going on is that thestructure of a bounded treewidth graph or digraph is represented by a rootedlabeled parse tree. A graph of treewidth bounded by t can be parsed in lineartime (i.e., this problem is linear FPT) by a theorem of Bodlaender [Bod96].If F is a set of rooted labeled trees, then leaf-to-root tree automata providea notion of �nite-state recognizability for F . The Myhill-Nerode theorem forbounded treewidth relates �nite-state recognizability of F to the amount ofinformation that must ow across a t-sized boundary in order to determinemembership in F . The machinery is applicable not just to ordinary graphs,but also to �nitely edge- and vertex-colored digraphs.Theorem 5.1. Digraph Pebbling II is in FPT.Proof. It is su�cient to argue that the canonical equivalence relationon t-boundaried (vertex-colored) digraphs, for the family Fk of k-pebblabledigraphs, has a �nite number of equivalence classes for each �xed pair (t; k).We �rst review the essential notions.By a t-boundaried digraph we mean a digraph D = (V;A) equippedwith t distinguished vertices labeled 1; :::; t. We refer to these vertices asconstituting the boundary set @(D) � V . The interior vertices ofD are thosevertices that are not boundary vertices, and we write int(D) = V � @(D).If D and D0 are t-boundaried digraphs, we say that they are compatibleif their boundaries are colored in the same way, that is, for i = 1; :::; t theith boundary vertex of D is red (blue) if and only if the ith boundary vertexof D0 is red (blue).If D and D0 are compatible t-boundaried digraphs, then by D � D0we denote the digraph obtained by identifying the vertices i 2 @(D) withi 2 @(D0) for i = 1; :::; t. The canonical equivalence relation on the set of all2-vertex-colored t-boundaried digraphs, for a family of such digraphs F , isde�ned for compatible digraphs by:D �F D0 if and only if 8D00 : D �D00 2 F $ D0 �D00 2 FFix k and t. Our approach is to de�ne a di�erent (easier to work with) equiv-alence relation � on t-boundaried digraphs, and then to show two things:Claim 1. that � has �nite index, andClaim 2. that D � D0 implies D �F D0, where F = Fk.This allows us to conclude that �Fk has �nite index on t-boundaried di-graphs.Our de�nition of � is based on a set of abstract tests in the senseof the \method of test sets" developed and exposited in [FL89, AF93,CDDFL98, DF98].A test T is speci�ed by the following information:1. A partition of f1; :::; tg into two subsets, the red subset TR and theblue subset TB.2. A boundary starter set S � f1; :::; tg. (We will use k0 to denote thesize of S.)



40 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGE3. A positive integer k1 such that k0+k1 � k. (We will use k2 to denotek � k0 � k1.)4. A permutation � of f1; :::; tg� S.5. A subset Q � TB.A test T is compatible with a t-boundaried red/blue digraph D if thepartition given in (1) accords with the colors of the boundary vertices of D.Let T denote the set of tests. We have the bound on the size of the testset jT j � k22tt!For a digraph D = (V;A) and a vertex v 2 V , letpred(v) = fu 2 V : uv 2 Agbe the set of predecessors of v.By a pebbling sequence for a t-boundaried digraph D we mean a per-mutation � of the vertices of D. If � is a pebbling sequence for D and vis a vertex of D, then v is legal with respect to � if either of the followingstatements holds:1. v is a blue vertex, and at least one predecessor of v precedes v in �.2. v is a red vertex, and every predecessor of v precedes v in �.Say that a t-boundaried digraph D = (V;A) passes the test T 2 T if Tis compatible with D and there is a pebbling sequence � for D that satis�esthe requirements:1. The pre�x �0 consisting of the �rst k0 + k1 vertices of � includes thek0 vertices of S and k1 additional interior vertices of D.2. The order in which the vertices of @(D)�S occur in � is speci�ed bythe permutation � of @(D)� S.3. Every red vertex not in the pre�x �0 is legal.4. Every blue vertex b not in the pre�x �0 is either legal or belongs toQ.Intuitively, the set Q represents blue vertices that will be pebbled for\reasons on the other side of the boundary".Let T (D) denote the set of tests passed by D. Given two t-boundarieddigraphs D and D0, de�ne D � D0 if and only if T (D) = T (D0). Since therelation � is de�ned in terms of equality of sets, it is clearly an equivalencerelation.Now that we have de�ned a suitable equivalence relation, we have onlyto prove the two Claims listed above. Claim 1 is trivial, since T is �nite.Proof of Claim 2. We argue by contraposition. Suppose D 6�F D0,and let this be witnessed by a t-boundaried digraph X with D � X 2 Fand D0 � X 62 F . Let � denote a permutation of the vertices of D � Xcorresponding to a successful k-pebbling. Thus every vertex u occuring in� after the initial pre�x of length k is legal with respect to D � X . Let Sdenote the starter set of size at most k for the successful pebbling (consisting



PARAMETERIZED COMPLEXITY 41of both interior and boundary vertices), and let S0 denote the subset of Son the boundary S0 = S \ @(D�X)with k0 = jS0j. Let k1 denote the size of S \ int(D). Let � denote thepermutation of @(D)�S0 inherited as a subsequence of �. ThenD passes thetest T de�ned by the information: (1) the color partition of the boundary, (2)the boundary starter set S0, (3) the positive integer k1, (4) the permutation�, and (5) the set Q consisting of those blue vertices of the boundary whichare illegal for � restricted to the vertices of D.We argue that D0 fails T . Suppose not, and let �0 be a permutation ofthe vertices of D0 that starts with S0 followed by k1 interior vertices of D0that is a valid pebbling sequence for D0 showing that it passes the test T .Using �0 we can modify � to obtain a valid pebbling sequence for D0 � Xand reach a contradiction. The contradiction will allow us to conclude thatD0 fails T and thus D0 6� D, which will establish Claim 2.The modi�cation of � is described as follows. The permutation � can bepartitioned into three subsequences �0, �1 and �2 according to membershipin the three disjoint sets of vertices @(D � X), int(D) and int(X). Themodi�cation consists of two steps:1. The subsequence �1 is deleted.2. Substrings of �0 are inserted.The relevant substrings of �0 are those consisting only of interior verticesof D0 that are bounded by either the initial block of starter vertices for thepebbling of D0 described by �0 or by vertices of the boundary, or by theend of the sequence. Each such substring of interior vertices of D0 has a leftboundary and a right boundary. Call the substring whose right boundaryis the end of �0 the last substring. All of the other substrings have a rightboundary consisting of a boundary vertex of D0.These substrings, other than the last substring, should be inserted intothe modi�ed � just before each boundary vertex in �, and the last substringshould be concatenated to the end of the modi�ed result. The block ofinterior starter vertices of �0 should be concatenated to the beginning of themodi�ed �. Call the result of all this �00.The point of all these modi�cations is to produce a pebbling sequence �00that works for D0�X . What we have done is replace \what happened insideof D" according to �, with equivalent bits from �0 describing how D0 canpass the test T , which simply records \what D saw of X" in the pebblingdescribed by � (where D interacts with X only across the boundary). It isnot hard to check that �00 is a valid pebbling sequence for D0 �X .Figure 6 illustrates the argument. The boundary vertices of the twodigraphs D and D0 are indicated in bold in Figure 6(i) and Figure 6(ii).The boundary size is t = 2. We will take k = 1 It happens to be a factthat D � D0. The sequence � = (a; b; c; 1; v; 2; d; u) is a valid pebblingsequence for D � X . The test T that corresponds to this is speci�ed by:
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+(v)  D’       XFigure 6. Examples for Theorem 5.1.(1) the obvious partition of the boundary, (2) S0 = ;, (3) k1 = 1, (4)� = (1; 2), and (5) Q = f2g. Note that D0 passes the test T with thesequence �0 = (e; f; 1; 2; h; g). Using this to modify � as described we get�00 = (e; f; 1; v; 2; u; h; g), a valid pebbling sequence for D0 �X .Remark 5.2. The algorithm implicitly described by Theorem 5.1 con-sists of two parts: (1) the computation of a tree decomposition, and (2) theevaluation of the resulting parse tree by a �nite-state leaf-to-root tree au-tomaton. The time complexity arising from (1) is bounded by the runningtime of Bodlaender's algorithm, O(235w3n) for a graph on n vertices andtreewidth w. Given the tree decomposition, part (2) consists only of mak-ing �nite-state transitions, which is fast. The problem is that the automatonthat represents the algorithm may be very large. Based on the proof of thetheorem, the best we can say is that the automaton has O(2k22ww!) states.This means that the practical di�culty is more likely to be about space thantime, although this bound on the number of states is undoubtedly extremelypessimistic.Theorem 5.3. Signed Digraph Pebbling II is in FPT.Sketch. This is proved in much the same way, the key point being thatthere is a �nite set of abstract tests that de�ne an equivalence relation onthe edge- and vertex-colored digraphs that re�nes the canonical equivalencerelation. How to de�ne these tests is the essential matter.Since only k moves are to be made, the boundary would be in a sequenceof at most k di�erent states in the course of a solution. Note that there areat most 2t di�erent states that the boundary set can be in, in terms of whichvertices of the boundary set are pebbled. A suitable test is speci�ed by thesequence of boundary states (including information on which blue verticesof the boundary are \enabled" for a move by the states of their predecessorsin the interior of D), and a budget of some number of moves (always less
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= blueFigure 7. The trees for Theorem 5.4than k) to get from one state to the next in the sequence, together with aspeci�cation of at most k changes of the boundary state due to actions onthe other side. Call all this information a plan for a k-step pebbling of thedigraph. The number of plans is bounded by a function of t and k. Thequestion that de�nes the test for a digraph D is whether D can realize thisplan, ending up with all of its red interior vertices pebbled.The size of an appropriate set of tests T can be bounded by jT j � 32ktkk ,which leads to a crude bound on the size of the resulting automaton ofO(232ktkk) states.Theorem 5.4. Signed Digraph Pebbling is not �nite-state for any�xed treewidth bound t � 1.Proof. Given the machinery, the argument is quite simple. Recall theusual argument using the Myhill-Nerode theorem that the formal languageL = fanbn : n � 0g is not regular (i.e., �nite-state recognizable by a linearautomaton). The argument consists simply in exhibiting an in�nite set ofwords xi such that if i 6= j then there is a word yi;j with xiyi;j 2 L andxjyi;j =2 L. One can take xi = ai for i = 1; 2; ::: and yi;j = bi. We make here



44 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEa completely analogous argument. (Other examples for graph problems canbe found in [AF93, BFW92, FHW93, DF98].) We describe an in�nitefamily of trees Ti for i = 1; 2; ::: such that if i 6= j, then there is a compatibletree Ti;j such that:1. Ti � Ti;j is a \yes" instance for the problem.2. Tj � Ti;j is a \no" instance for the problem.The trees Ti are shown in Figure 7. Each tree Ti consists a single blueboundary vertex connected to a red vertex to which i pendant paths oflength 2 are attached. We can take Ti;j = Ti.The reader can easily verify that 1 and 2 hold.We suspect that Signed Digraph Pebbling I is W [1]-hard. (It mayeven be that Signed Digraph Pebbling is NP-hard for trees, which wouldimply W [P ] hardness.) It seems that the length of the plan is an importantparameter on which to focus on for the STRIPS Planning problem, inorder to obtain tractable restrictions of the problem.6. A Working Guide to Parametric IntractabilityThe main classes of parametric complexity are described in the tower:FPT � W [1] � W [2] � � � � � W [SAT ] � W [P ] � AW [P ] � XPThe focus of this survey is on the analysis of concrete computationalproblems. For this purpose, all of the beautiful structural questions associ-ated with the degrees of parameterized complexity, and even the de�nitionsof most of the classes in the above hierarchy, are not very important. Suf-�ce it to say that the W [t] classes have natural complete problems that arevariants of Satisfiability. For concrete problem analysis, only the threeclasses FPT � W [1] � XPhave compelling practical signi�cance, where XP is the family of param-eterized languages that can be recognized in time O(f(k)ng(k)) where fand g are arbitrary functions. Knowing that a problem is in XP has somepractical value and can be di�cult to show. For example, for Unit TaskLength Precedence Constrained k-Processor Scheduling it is afamous open problem (discussed in [GJ79]) whether this is in XP or whetherit is NP-complete for any �xed k, although it is proved in [BF95] be hardfor W [2].Table 3 exhibits some of the many results that are now known about thecomplexity of naturally parameterized problems. Those problems which areonly known to be hard for a parameterized class (as opposed to complete)are annotated as such. (The problem de�nitions can be found in Garey andJohnson [GJ79] and also [DF98] where there is a comprehensive inventoryof known results.) The problems in the table are all known to belong to XP,with the exception of k-Processor Scheduling.



PARAMETERIZED COMPLEXITY 45Linear Inequalities [ADF95]W [P ] Minimum Axiom Set [DFKHW94]Short Satisfiability [ADF95]Weighted Circuit Satisfiability [ADF95]W [SAT ] Weighted Satisfiability [ADF95]Longest Common Subsequence [BDFHW95](k = number of seqs.,j�j) (hard)W [t], Feasible Register Assignment (hard) [BFH94]for all t Triangulating Colored Graphs (hard) [BFH94]Bandwidth (hard) [BFH94]Proper Interval Graph Completion (hard) [BFH94]Weighted t{Normalized Satisfiability [DF95a]Weighted f0; 1g Integer Programming [DF95a]W [2] Dominating Set [DF95a]Tournament Dominating Set [DF95c]Unit Length Precedence Constrained [BF95]Scheduling (hard)Shortest Common Supersequence (k) (hard) [FHK95]Maximum Likelihood Decoding (hard) [DFVW98]Weight Distribution in Linear Codes (hard) [DFVW98]Nearest Vector in Integer Lattices (hard) [DFVW98]Short Permutation Group [CCDF96]Factorization (hard)W [1] Short Post Correspondence [CCDF96]Weighted q{CNF Satisfiability [DF95b]Vapnik{Chervonenkis Dimension [DEF93]Longest Common Subsequence [BDFW95](length m common subseq. for k seqs., parameter (k;m))Independent Set [DF95b]Square Tiling [CCDF96]Monotone Data Complexity for [DFT96]Relational Databasesk-Step Derivation for Context [CCDF96]Sensitive GrammarsClique [DF95b]Short NTM Computation [CCDF96]Feedback Vertex Set [DF95c]FPT Graph Genus [RS85]Minor Order Test [RS85]Treewidth [Bod96]Vertex Cover [BFR98]Table 3. A Sample of Parametric Complexity Classi�cations



46 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGE6.1. The Nature of the Evidence for Parametric Intractability.As in the theory of NP-completeness, there are two kinds of evidence indi-cating, when a parameterized problem is hard for W [1], that it is unlikelyto be �xed-parameter tractable. The �rst is that given a su�cient amountof unsuccessful e�ort to demonstrate tractability for various problems in aclass, the knowledge that a problem is hard for the class o�ers a caution-ary sociological message, of the sort depicted in the famous cartoon in theopening pages of [GJ79]. As shown by Table 3, the amount of evidence ofthis sort is now substantial.A second reason for the belief that W [1]-hardness implies parametricintractability, is rooted in the following fundamental theorem [DFKHW94,CCDF96].Theorem 6.1 (Downey-Fellows). The k-Step Halting Problem forNondeterministic Turing Machines is complete for W [1].On input consisting of a Turing machine M and a positive integer k(with k being the parameter), the question is whetherM can reach a haltingcon�guration in at most k steps. This problem is so generic and opaque thatit is hard to imagine that there is any algorithm for it that radically improveson simply exploring the n-branching depth k tree of allowed transitionsexhaustively. The theorem can be viewed as essentially a miniaturization ofCook's Theorem.In general, W -hardness results tend to be harder to prove than theoremsabout NP-completeness, because of the control requirement concerning theparameter. Clique is a typical starting point forW [1]-hardness arguments.It is interesting that most natural parameterized problems seem to belongto a small number of degrees (FPT, W [1], W [2], W [P ], AW [�] and AW [P ];for details see [DF98]).6.2. W [1]-Hard Means No Good PTAS. One might suspect thatparameterized complexity is related to the complexity of approximation. Avery good connection is supplied by the following theorem �rst proved byBazgan [Baz95], and later independently by Cesati and Trevisan [CT97],strengthening an earlier result of Cai and Chen [CC97].Definition 6.2. An approximation algorithm has an e�cient PTAS ifit computes a solution within a factor of (1+�) of optimal in time O(f(�)nc)for some constant c.Definition 6.3. For a maximization (resp. minimization) problem A,the induced language LA is the parameterized language consisting of allpairs (x; k) where x is an instance of A and opt(x) � k (resp. opt(x) � k).Theorem 6.4 (Bazgan). If A has an e�cient PTAS then LA 2 FPT .Thus if the parameterized problem naturally associated with an opti-mization problem A is hard for W [1], then A cannot have an e�cient PTASunless FPT = W [1]. It is worth noting that some (but by no means all)



PARAMETERIZED COMPLEXITY 47NP-completeness reductions are serendipitously parametric and thus pro-vide demonstrations of W [1]-hardness and non-approximability \for free".An important optimization problem that has a PTAS but is not known tohave an e�cient PTAS is theEuclidean Traveling Salesman Problem.The PTAS for this problem due to Arora runs in time O(n30=�) [Ar96].6.3. The Complexity of Propositional STRIPS Planning (forShort Plans) and k-Step Petri Net Reachability. We prove two neg-ative complexity results about k-step Propositional STRIPS Planningand k-step Petri Net Reachability (for parameter k) for otherwise un-restricted inputs to these problems. These results should be interpretedas indicating that some sort of structure on the Petri nets and the set ofplanning options is a vital parameter for tractability of these problems.Theorem 6.5. k-Step Propositional STRIPS Planning is hardfor W [1].Proof. We reduce from the k-Step Halting Problem for Nonde-terministic Turing Machines that is proved to be complete for W [1] in[CCDF96]. Let the instance of the Halting Problem consist of the Tur-ing machineM = (Q;�; �; F ) where Q is the set of states, � is the alphabet,� is the transition relation, and F is the set of accept states, together witha positive integer k (the number of steps of a computation).The dimension n of the instance of STRIPS Planning to which wereduce (M; k) is given by n = jQj+ 1 + k + kj�j:We can think of the components of the vectors of the STRIPS Plan-ning as belonging to k + 3 blocks. The �rst block of size jQj will be con-strained to have exactly one component that is a \1" with all the rest \0",indicating the state of M . The second block of size 1 indicates whether thestate indicated by the \1" component of the �rst block is an accept state ofM . The third block of size k indicates the position of the tape head of M .The k remaining blocks, each of size j�j, indicate the symbols on the k tapesquares that might be visited during a k-step computation.Each possible transition of M :(q; a) ` (p; b;X) where X 2 fL;Rgbecomes k di�erent STRIPS operators (one for each of the locations on thetape where the transition may occur).We leave the remaining details to the reader.Theorem 6.6. k-Step Petri Net Reachability is hard for W [1].For the de�nition of the Petri Net Reachability problem we referthe reader to [Pet81].



48 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEProof. The reduction from k-Step STRIPS Planning to k-StepPetri Net Reachability is essentially trivial, using two places of thePetri net to represent each component of the planning vectors.Showing that these problems belong to W [1] is straightforward and canbe done in much the same manner as the proof that the k-Step Halt-ing Problem for Nondeterministic Turing Machines is in W [1] (see[CCDF96]).6.4. The Upper Reaches of Parametric Complexity. There are anumber of naturally parameterized problems, such as Graph k-Coloringthat are NP-complete for �xed values of k. Does the theory of parameterizedcomplexity have anything to say about these? Since this is a well-de�nedparameterized problem, it has to be located somewhere in the parametricdegree structure. The following theorem shows that the hierarchy of param-eterized complexity classes seems to disappear into clouds of unknowing atthe top end.Theorem 6.7. The naturally parameterized Graph k-Coloring pro-blem has an imponderable relationship to XP in the following sense:1. If Graph k-Coloring is in XP then P = NP .2. If Graph k-Coloring is hard for XP then P 6= NP .Proof. Clearly, if Graph k-Coloring belongs to XP then P = NP .On the other hand, if it is hard for XP, then P 6= NP by the following argu-ment. For each k, let Lk be a problem that is complete for DTIME(nk) bya polynomial-time reduction, such as the k-Mice Cat and Mouse Gameproblem [DF98]. Consider the parameterized languageL = f(y; k) : y 2 Lkg:It is obvious that L 2 XP . Suppose that there is a parametric reductionof L to Graph k-Coloring. Thus from (y; k) we can produce a graphG of size bounded by f(k)nc and an integer k0 = g(k) such that G is k0colorable if and only if (y; k) 2 L, i.e., y 2 Lk, where f; g are some �xed butarbitrary functions, c is a constant and n = jyj. The time required for thetransformation can also be assumed to be bounded by f(k)nc.If P = NP then there is an algorithm running in time O(nc0) that candecide if G is k0-colorable, and thus we have a way of determining whethery 2 Lk in time bounded by h(k)nc00 for some function h and constant c00.When k and n are su�ciently large this contradicts the DTIME hierarchytheorem.Thus we are unable to say anything about the relationship of GraphColoring and XP without settling the question of whether P = NP .7. The Role of Parameterized Complexity AnalysisThe current approach to the analysis of concrete computational problemsis dominated by two kinds of e�ort:



PARAMETERIZED COMPLEXITY 49(1): The search for asymptotic worst-case polynomial-time algorithms.(2): Alternatively, proofs of classical hardness results, particularly NP-hardness.We expect that these will become substantially supplemented by:(10): The design of FPT algorithms for various parameterizations of agiven problem, and the development of associated heuristics.(20): Alternatively, demonstrations of W [1]-hardness.We think this will happen because we are inevitably forced towards some-thing like an ultra�nitist [YV70] outlook concerning computational com-plexity because of the nature of the universe of interesting yet feasible com-putation. The main point of this outlook is that numbers in di�erent rangesof magnitude should be treated in qualitatively di�erent ways.The pair of notions (10) and (20) are actually rather straightforwardmutations of (1) and (2), and they inherit many of the properties that havemade the framework provided by (1) and (2) so successful. We note thefollowing in support of this position.� The enrichment of the dialogue between practice and theory thatparameterized complexity is based on always makes sense. It alwaysmakes sense to ask the users of algorithms, \Are there aspects of yourproblem that may typically belong to limited distributional ranges?"� Fixed-parameter tractability is a more accurate notion of \the good".If you were concerned with inverting very large matrices and couldidentify a bounded structural parameter k for your application thatallows this to be done in time O(2kn2), then you might well prefer thisclassically exponential-time algorithm to the usual O(n3) polynomial-time algorithm.� The \bad", W [1]-hardness, is based on a miniaturization of Cook'sTheorem in a way that establishes a strong analogy between NP andW [1]. Proofs of W [1]-hardness are generally more challenging thanNP-completeness, but it is obvious by now (see Table 3) that this isa very applicable complexity measurement.� Problems that are hard do not just go away. Parameterization allowsfor several kinds of sustained dialogue with a single problem, in waysthat allow �ner distinctions about the causes of intractability (and op-portunities for practical algorithms, including systematically designedheuristics) to be made than the exploration of the \NP-completenessboundary" described in [GJ79].� Polynomial time has thrived because of the empirical circumstancethat when polynomial-time algorithms can be devised, one almostalways has small exponent polynomials. This is also true for FPTalgorithms.� Polynomial time is robust in that it seems to support a strong form ofChurch's thesis, i.e., that polynomial time on Turing machines is the



50 RODNEY G. DOWNEY, MICHAEL R. FELLOWS, AND ULRIKE STEGEsame as polynomial time on any reasonable computing device. Thisalso seems to be true for FPT.� Polynomial time has thrived because it is a mathematically rich andproductive notion allowing for a wide variety of algorithm design tech-niques. FPT seems to o�er an even richer �eld of play, in part becauseit encompasses polynomial time as usually the best kind of FPT re-sult. Beyond this, the FPT objective encompasses a rich and distinc-tive positive toolkit, including novel ways of de�ning and exploitingparameters.� There is good evidence that not only are small polynomial exponentsgenerally available when problems are FPT, but also that simple ex-ponential parameter functions such as 2k are frequently achievable,and that many of the problems in FPT admit kernelization algo-rithms that provide useful start-ups for any algorithmic attack on theproblem.� The complexity of approximation is handled more elegantly than inthe classical theory, with W [1]-hardness immediately implying thatthere is no e�cient PTAS. Moreover, FPT algorithm design tech-niques appear to be fruitful in the design of approximation algorithms.� Parameterization is a very broad idea. It is possible to formulateand explore notions such as randomized FPT [FK93], parameter-ized parallel complexity [Ces96], parameterized learning complex-ity [DEF93], parameterized approximation [BFH97], parameterizedcryptosystems based on O(nk) security, etc.We feel that the parametric complexity notions, with their implicit ul-tra�nitism, correspond better to the natural landscape of computationalcomplexity, where we �nd ourselves overwhelmingly among hard problems,dependent on identifying and exploiting thin zones of computational viabil-ity. Many natural problem distributions are generated by processes thatinhabit such zones themselves (e.g., computer code that is written in astructured manner so that it can be comprehensible to the programmer),and these distributions then inherit limited parameter ranges because of thecomputational parameters that implicitly govern the feasibility of the gen-erative processes, though the relevant parameters may not be immediatelyobvious. 2 8. Some Open ProblemsParameterized complexity has been primarily motivated by concretecomputational problems. The structure theory of parameterized complexityis very rich, and also not very well developed. One of the main questions is:how many of the important structural theorems of classical complexity haveparameterized analogs? We know that there is a good analog of Cook'sTheorem [CCDF96], and there is a good analog of Mahaney's Theorem2For a philosophically similar discussion see [Gur89].



PARAMETERIZED COMPLEXITY 51on sparse hard sets [CF96]. There is a partial analog of Ladner's DensityTheorem [DF93, DF98]. Notably lacking are parameterized analogs ofprobability ampli�cation. An analog of Toda's Theorem [To91] would bevery interesting, as together with the results of [DFR98a] it would showthat Unique k-Clique is hard for W [t] for all t via randomized parametricreductions.FPT or W -Hard? The following concrete problems seem importantto classify because of their signi�cant applications.1. The naturally parameterized Directed Feedback Vertex Setproblem. This can be shown to be equivalent to the naturally param-eterized Directed Feedback Arc Set problem. For undirectedgraphs the problem is in FPT.2. The problem of determining whether it is possible to delete at mostk edges of a graph so that the resulting graph is bipartite.3. The problem of determining whether it is possible to delete at mostk vertices from a graph so that the result is an interval graph. Thishas important applications in DNA sequence analysis [Sha97].4. The problem of determining whether a graph H is immersed in agraph G, where the parameter k is the size of H . This is in XP andthe immersion partial ordering of graphs is a well-partial-order by themajor theorems of Robertson and Seymour [RS85, RS96]. GraphTopological Containment is a similarly interesting problem, cur-rently known only to belong to XP.5. The Longest Common Subsequence and Shortest CommonSupersequence problems for k sequences over an alphabet of con-stant size (as is the case in analyzing biological sequences). If the sizeis not constant and the parameter is the pair (s; k) where s is the sizeof alphabet and k is the number of sequences, then both problemsare hard for W [t] for all t [BDFHW95, Hal96].6. The Graph Isomorphism problem where the parameter k is themaximum degree of the graphs. This is in XP by the results of Luks[Luks82]. This problem would seem to be a reasonable candidate forrepresenting a parameterized degree intermediate between FPT andW [1], for the same reasons that Graph Isomorphism classicallyseems to represent a polynomial time degree intermediate betweenP and NP. On the other hand, parameterized complexity behavesdi�erently. Tournament Dominating Set, for example, which isclassically intermediate, is precisely W [2]-complete [DF95c]. Maxi-mum degree parameterized Graph Isomorphism could even be inFPT without this entailing any known surprises. On the other hand,if it could be shown to be hard for W [1], then this would give goodevidence that Graph Isomorphism in general is not in P .It is also reasonable to wonder whether the parameterized complexityframework might provide new opportunities for addressing such central mys-teries as the P = NP question. For example, Theorem 6.7 (perhaps only
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