Parameterized Complexity: A Framework for
Systematically Confronting Computational
Intractability

Rodney G. Downey, Michael R. Fellows, and Ulrike Stege

ABSTRACT. In this paper we give a programmatic overview of parame-
terized computational complexity in the broad context of the problem
of coping with computational intractability. We give some examples of
how fixed-parameter tractability techniques can deliver practical algo-
rithms in two different ways: (1) by providing useful exact algorithms
for small parameter ranges, and (2) by providing guidance in the design
of heuristic algorithms. Tn particular, we describe an improved FPT ker-
nelization algorithm for VERTEX COVER, a practical FPT algorithm for
the MAXIMUM AGREEMENT SUBTRERE (MAST) problem parameterized
by the number of species to be deleted, and new general heuristics for
these problems based on FPT techniques. In the course of making this
overview, we also investigate some structural and hardness issues. We
prove that an important naturally parameterized problem in artificial
intelligence, STRIPS PLANNING (where the parameter is the size of the
plan) is complete for W[1]. As a corollary, this implies that k-STEP
REACHABILITY FOR PETRI NETS is complete for W[1]. We describe
how the concept of treewidth can be applied to STRIPS PLANNING and
other problems of logic to obtain FPT results. We describe a surprising
structural result concerning the top end of the parameterized complex-
ity hierarchy: the naturally parameterized GRAPH k-COLORING problem
cannot be resolved with respect to XP either by showing membership
in XP, or by showing hardness for XP without settling the P = NP
question one way or the other.

1. Introduction

There are basically two different ways that one can view the theory of
parameterized complexity. The first way, and the one that is easiest to arrive
at, is as a kind of first aid that can sometimes be applied to problems that
are NP-hard, PSPACF-hard or undecidable. That is, it can be viewed as a
potential means of coping with classical intractability.

The second way that one can view parameterized complexity is as a
fundamentally richer and generally more productive primary framework for
problem analysis and algorithm design, including the design of heuristic and

1

2 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

approximation algorithms. For the moment, we will concentrate on the first
point of view, and spend some time considering the current situation of our
collective efforts to “cope with intractability” in the words of Garey and
Johnson [GJ79], Chapter 6. In the concluding section we will summarize
the arguments for the second point of view.

It is difficult to discuss the current intellectual situation with respect to
theoretical computer science without taking note of the unhappiness, in some
sense, of the audience of our efforts to understand complexity and deliver
useful products. For some time, the practical folks portrayed in the amusing
cartoons of Garey and Johnson [GJ79], Chapter 1, have been somewhat dis-
appointed with theoretical computer science, and there have been numerous
incidents of “restless drums” in the jungles of computer applications. Such
grumblings may have something to do with the recent spate of soul-searching
among theorists [HL92, Hart94, PGWRS96, AFGPR96]. We mention
two recent examples.

ExamMprr 1.1 (Yet Another Call for Reform). One of the plenary ad-
dresses at the AAAT meeting in 1996 was concerned with the broad theme
of how computer science practice and theory interact [DKL96]. The dis-
cussion in [DKL96] can be summarized as:

1. Pointing to a particular problem, STRIPS PLANNING, as central to
the entire field of artificial intelligence.

2. Proposing that practitioners and theorists collaborate in an intense
analysis of this one problem, to understand what makes it hard, and
to come up with something more useful than a PSPACF-completeness
classification.

3. Suggesting that the usual framework for concrete complexity analysis
is wrong-headed, historically contingent, unnatural (especially worst-
case asymptotic analysis), and reflects an unhappy state of interaction
between computer science theory and practice.

Regarding the third point, most theorists have probably heard similar
charges and complaints from colleagues in applied areas of computer science
in their own departments.

ExaMPLE 1.2 (An Encounter With a Computational Biologist). In re-
cent conversations with a biologist who is heavily involved in combinatorial
computing [Fel97], the following summary was offered of his interaction
with theoretical computer scientists.

“About ten years ago some computer scientists came by and
said they had heard that we have some really cool problems.
They showed that the problems are NP-complete and went away!”

We might comment that if this interaction had been more recent, then
perhaps the computer scientists would also have proved that the problems
are unlikely to have efficient approximation algorithms.

PARAMETERIZED COMPLEXITY 3

The Pervasive Nature of Computational Intractability and Var-
ious Coping Strategies. Arguably the most fundamental discovery of
the first decades of theoretical computer science is that most computational
problems are hard in a variety of mathematically interesting ways. Computer
science practitioners quite naturally would like to shoot the messenger who
brings so much bad news! In this difficult situation, computer science theory
has articulated a few general programs for systematically coping with the
ubiquitous phenomena of computational intractability. We list these basic
approaches:

e Theidea of focusing on average-case as opposed to worst-case analysis
of problems.

e The idea of settling for approximate solutions to problems, and of
looking for efficient approximation algorithms.

e The idea of using randomization in algorithms.

e The idea of harnessing quantum mechanics, or biomolecular chem-
istry, to create qualitatively more powerful computational mecha-
nisms.

To this list of basic mathematical strategies for coping with intractability,
we argue should be added:

e The idea of devising FPT algorithms for parameterizations of a pro-
blem.

A list such as this cannot be considered complete without including
another coping strategy that mathematical theorists have frequently con-
tributed to. This approach antedates modern complexity-theoretic frame-
works and persists with great strength as a kind of “old religion” among
many practitioners. It has also recently regained some respectability among
theorists as reflected in the DIMACS Challenges [TM93, JT96] and in new
journals such as the Journal of Heuristics and the ACM Journal of Frperi-
mental Algorithms):

e The design of mathematically informed, but perhaps unanalyzable
heuristics, that are empirically evaluated by their performance on
sets of benchmark instances.

The actual state of the practical world of computing is that (with the
exception of some areas) there is not much systematic connection to work
in theoretical computer science on algorithms and complexity. Overwhelm-
ingly, in fact, it is heuristic algorithms that are relied on to deal with the
problems encountered in most applications.

2. Fixed-Parameter Tractability

The basic concept of the parameterized complexity framework is that of
fized-parameter tractability. Tt is the notion of good complexity behaviour
from which all other aspects of the theory follow. The definition is best
introduced through concrete examples.

4 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

VERTEX COVER

Instance: A graph G = (V, F) and a positive integer k.

Parameter: k

Question: Does (G have a vertex cover of size k7 That is, is there a subset
V' C V of size at most k such that for every edge wv € F, either u € V' or
ve V7

DOMINATING SET

Instance: A graph G = (V, F) and a positive integer k.

Parameter: k

Question: Does (7 have a dominating set of size k7 That is, is there a subset
V! C V of size at most k such that every vertex v € V of (7 either belongs
to V' or has a neighbor in V'?

THE STEINER PROBLEM FOR HYPRRCUBES

Instance: A set S = {z; : 1 < i < k} of binary vectors, x; € {0,1}" for
1= 1,...,k, and a positive integer m.

Parameter: k

Question: Is there a tree T = (V, F) and a labeling of the vertices of T
with elements of {0, 1}" such that the following conditions are satisfied? (1)
The leaves are labeled 1:1 with the elements of S. (2) The sum over the
edges uv of T' of the Hamming distance between the labels [(u) € {0,1}"
and I(v) € {0,1}™ is at most m.

THE MAXTMUM AGREEMENT SUBTREE PROBLEM (MAST)

Instance: A set of rooted trees Ty, ..., T, (r > 3) with the leaf set of each T;
labeled 1:1 with a set of species X, and a positive integer k.

Parameter: k

Question: Is there a subset S C X of size at most k such that T; restricted
to the leaf set X’ = X — S is the same (up to label-preserving isomorphism
and ignoring vertices of degree 2) for i =1,...,r?

All of these problems are NP-complete ([GJ79, AK94]) and are de-
scribed above in the standard way for the parameterized complexity frame-
work. Part of the input (which may be some aggregate of various aspects
of the input) is identified as the parameter for the problem specification.
(Tn order to consider a parameterized problem classically, just ignore the
parameter part of the specification.) All of these problems can be solved in
time O(nf(k)) by simple brute force algorithms. For example, for VERTEX
CovER and DOMINATING SET we can simply try all k-subsets of vertices.

For VERTEX COVER we can do qualitatively better. Papadimitriou and
Yannakakis showed that VERTEX COVER can be solved in time O(3%n)
[PY96]. Balasubramanian, Fellows and Raman gave an algorithm with
running time O((53/40)*k% + kn) [BFRO8]. Tn §4 we describe a new and
relatively simple FPT algorithm that improves on this. Note that since the

PARAMETERIZED COMPLEXITY 5

exponential dependence on the parameter k in the last expression is additive,
VERTEX COVER is well-solved for input of any size so long as k is no more
than around 60. The difference between the complexities of DOMINATING
SET and VERTEX COVER is displayed in Table 1.

n = 50 n =100 n = 150
k=2 625 2,500 5,625
E=3 15,625 125,000 421,875
E=5 1 390,625 | 6,250,000 | 31,640,625
E=10119%x10"[98x 10| 3.7x10'°
E=2011.8x10%195x 103" | 2.1 x 107
nk+

1 .
t5— for Various Values of n and k.

TaBLE 1. The Ratio

In parameterized complexity, the process of interviewing practice in or-
der to formulate the fundamental object of study is enriched. Besides spe-
cifying the input to the problem, we specify distributional aspects that may
belong to some limited range of values for which an exponential contribution
to overall problem complexity may be acceptable. This distributional infor-
mation, which may be an aggregate of factors, is codified as the parameter.
A single classical problem may thus shatter into many different associated
parameterized problems.

ExampLe 2.1 (THE STEINER PROBLEM FOR HYPERCUBES). This pro-
blem is of interest to biologists in the computation of phylogenetic trees un-
der the criterion of minimum evolution / maximum parsimony [SOWH96].
The set S corresponds to a set of species, and the binary vectors correspond
to information about the species, each component recording the answer to
some question (as 0 or 1), such as: “Does it have wings?” or “Is there a
thymine at a certain position in the DNA sequence?” FEach such bit of in-
formation is termed a character of the species. In realistic applications the
number k of species may usefully be around 40 or 60, while the number of
characters n may be very large.

How Parameters Naturally Arise. Most computational problems
involve several pieces of input, one or more of which may be a relevant
parameter for various applications.

o Graph linear layout width metrics are of interest in VL.SI layout and
routing problems and have important applications for width values
of k < 10. Interval graphs of pathwidth & < 10 have applications in
DNA sequence reconstruction problems [BDFHW95].

e logic and database problems frequently are defined as having input
consisting a formula (which may be small and relatively invariant),
and some other structure (such as a database) which is typically quite
large and changeable. Formula size, or other aspects of formula struc-
ture may be a relevant parameter [Yan95].

6 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

e Hardware constraints are a common source of natural parameters.
The number of processors or machines to be scheduled may be boun-
ded by a value such as & < 20. Tn [AMOV91] it was proposed to
streamline chip implementations of cryptosystems by bounding the
Hamming weight of keys. The number of degrees of freedom in a
robot, motion-planning problem is commonly in the range & < 10
[CW95]. The number of wiring layers in VL.SI chip manufacture is
typically bounded by & < 30 [Len90].

e Network problems may be naturally concerned with optimally locating
a small number of facilities.

These few examples are only suggestive and by no means exhaustive.
There are myriad ways in which numbers that are small or moderately large
(e.g., k < 40) arise naturally in problem specifications. ITmportant distribu-
tional parameters may also arise in ways that are not at all obvious. For
an example of this sort, Thorup has recently shown that the flow graphs of
structured programs for the major computer languages have treewidth & <7
[Th97]. Graphs of pathwidth bounded by a similar number have been used
in modeling dependencies in sentences of natural languages [KT92]. Atten-
tion to hidden parameters can sometimes explain why a problem is easier to
solve in practice than NP or PSPACF hardness results would suggest.

The Basic Definitions. The basic definitions of parameterized com-
plexity are as follows.

DEFINITION 2.1. A parameterized language I is a subset . C ¥* x 3%,
If I is a parameterized language and (x,y) € L then we will refer to z as
the main part, and refer to y as the parameter. Tt makes no difference to the
theory and is occasionally more convenient to consider that y is an integer,
or equivalently to define a parameterized language to be a subset of ¥ x IV.

DEFINITION 2.2. A parameterized language I is fized-parameter trac-
table if it can be determined in time f(k)n” whether (2,k) € L, where
|2| = n, o is a constant independent of both n and k and f is an arbitrary
function. The family of fixed-parameter tractable parameterized languages
is denoted FPT.

It is somewhat surprising, although the argument is not hard, that FPT
is unchanged if the definition above is modified by replacing f(k)n® by
f(k)+ n> [CCDF97].

About half of the naturally parameterized problems cataloged as NP-
complete in the book by Garey and Johnson [GJ79] are in FPT, including
three of the six basic problems singled out for attention in Chapter 3.

It is always possible to parameterize a problem in various ways that are
fixed-parameter tractable, yet it is not surprising that many parameterized
problems apparently do not belong to FPT. The naturally parameterized
DoOMINATING SET problem defined above is one of these. Just as with the is-
sue of polynomial-time complexity, we can find evidence for fixed-parameter
intractability by studying the appropriate notion of problem transformation.

PARAMETERIZED COMPLEXITY 7

DEFINITION 2.3. A parametric transformation from a parameterized lan-
guage I, to a parameterized language I/ is an algorithm that computes from
input consisting of a pair (x, k), a pair (2’, k') such that:

1. (x,k) € Lif and only if (2/, k') € T/,

2. k' = g(k) is a function only of &, and

3. the computation is accomplished in time f(k)n®, where n = |z|, ais a

constant independent of both » and k, and f is an arbitrary function.

ExamMprLe 2.2 (An Tllustrative Non-Example). In first examining the
notion of a parametric transformation it can be helpful to see how they
differ from ordinary polynomial-time reductions. Recall that for a graph
G = (V, F) on n vertices, a set of vertices V! C V is a k-clique in G if
and only if V. — V' is a vertex cover in the complementary graph G’ where
vertices are adjacent if and only if they are not adjacent in (. This gives
an easy polynomial-time reduction of the naturally parameterized CrLIQUE
problem to the naturally parameterized VERTEX COVER problem, trans-
forming the instance (G, k) of CLIQUE into the instance (G', k') of VERTEX
CovER. But this is not a parametric transformation, since &' = n — k is not.
purely a function of k. The evidence is that there is no parametric trans-
formation in this direction between these two problems (although there is
a parametric transformation in the reverse direction, either trivially, since
VERTEX COVER is in FPT, or nontrivially by the construction described in
[DF95b]).

ExamMPrLe 2.3 (An Tlustrative Example). There is a fairly elaborate pa-
rametric transformation from the naturally parameterized CrLIQUE problem
to the naturally parameterized DOMINATING SET problem, mapping (G, k)
to (G, k') where k' = 2k [DF95a, DF98]. The evidence is that there is no
such parametric transformation in the other direction.

The essential property of parametric transformations is that if I trans-
forms to I/ and I € FPT, then . € FPT. This naturally leads to a com-
pleteness program based on a hierarchy of parameterized problem classes:

FPT C W[1]C W[2] C --- C W[SAT]C W[P] C AW[P]C XP

The parameterized analog of NPis W/[1], and W[1]-hardness is the basic
evidence that a parameterized problem is likely not to be fixed-parameter
tractable. The k-STEP HALTING PROBLEM FOR NONDETERMINISTIC TUR-
ING MAcHINES is W[l]-complete [CCDF97]. Since the ¢(n)-STEP HALT-
ING PROBLEM is essentially the defining problem for NP, the analogy is very
strong. The reader will find more about parametric intractability in §6.

How Compelling is Fixed-Parameter Tractability? The notion
of fizred-parameter tractability is the basic concept of the theory but how
good, really, is this notion of good complexity behaviour? Tt might be ob-
jected that Table 1 is misleading, unless FPT parameter functions such as

13
2% are typical. Certainly functions such as 22”" are allowed by the definition,

8 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

and would be impractical for k = 3, which suggests that the basic definition
allows too much pathology.

There are two main responses. First of all, we are already used to
some risk-taking in definitions, since the notion of polynomial time allows
for, e.g., O(n'?), which is impractical. A parameterized problem is just an
ordinary problem for which some aspect of the input has been designated
as the parameter. Ignoring the parameter, if the problem can be solved in
polynomial time, that is, in time polynomial in both the total input size
n and the parameter k, then trivially this is an FPT algorithm. In other
words, considered classically, FPTis a superset of P, and it is intended to be
a generalization that allows us to do something for problems that are not in
P and that may even be PSPACF hard or undecidable. We have to expect
to risk something in formulating such a general attack on intractability. The
definition simply asks whether the difficulty of the problem can be confined
to a function of the parameter, with the other costs being polynomial. How
else would one naturally formulate a generalization of P having these kinds
of ambitions?

The second response is that there are many examples, other than VER-
TEX COVER, suggesting that “reasonable” (e.g., single exponential) parame-
ter functions are frequently obtainable for natural problems (possibly after
some rounds of improvement). For example, consider the problem Maxi-
MUM SATISFIABILITY where the parameter £ denotes the number of clauses
to be satisfied. This was shown by Cai and Chen [CC97] to be in FPT
with the parameter function 22°% when the clause size is bounded by ¢. The
parameter function was improved by Mahajan and Raman [MR98] to ¢*
(without assuming a bound on the clause size), where ¢ is the golden ratio
(14 +/5)/2. Franco and others in [Fr97] have shown that the falsifiability
problem for pure implicational formulas having &k negations is in FPT with
parameter function k*. (Can this be improved to 2%?) Although the type
checking problem for the programming language M. is PSPACF-complete
[HM91], this is handled in implementations in linear time with a parameter
function of 2%, where k is the nesting depth of let’s, a very natural parameter
for this problem (one that explains why the problem did not seem hard in
practice). In §4 we give an FPT algorithm for a natural parameterization of
the MAXIMUM AGREEMENT SUBTREE problem having the parameter func-
tion 3. Many more examples can be found in [DF98]. The improvement
of parameter functions for FPT problems seems to be a productive area for
research, where many different ideas and techniques can be employed.

The point of view that parameterized complexity adopts can be summa-
rized in a metaphorical picture. There is an assumption that most interesting
problems are hard, so we can picture them as stones, or perhaps planets.
The trick is to identify and develop thin zones of computational viability, as
suggested in Figure 1.

PARAMETERIZED COMPLEXITY 9

the
Rock
of

Intractability

[
Increasingly viable
range of k

Figurr 1. The point of view of parameterized complexity is lichenism.

3. A Review of the Major Coping Strategies

In §1 we noted the fundamental problem for concrete computational
complexity that has emerged in the first decades of computer science:

The need to deal in some systematic way with the pervasive
phenomena of computational intractability.

We also noted that it is possible to point to five general mathematical strate-
gies that have been proposed so far: (1) average-case analysis, (2) approx-
imation, (3) randomization, (4) fundamentally new kinds of computing de-
vices, and (5) parameterization, as well as another, quasi-mathematical cop-
ing strategy, (6) heuristics.

In this section, we review the accomplishments and prospects of these
programs.

Average-Case Analysis. In many applications practitioners would be
happy with algorithms having good average-case performance. This criterion
is implicit in the common practice of evaluating heuristic algorithms on sets
of representative benchmarks. The idea that average-case analysis is more
realistic than worst-case analysis has been around since the beginnings of
theoretical computer science, and its potential role as a method of coping
with intractability is discussed by (Garey and Johnson in their chapter on
this subject in [GJ79]. Classic examples of such analysis include the results
of Grimmet and McDiarmid [GMT75] who described a simple graph coloring
algorithm with an average performance ratio of 2 for the uniform distribution
(where all n vertex graphs are equally likely), and the surprising theorem
of Wilf that the average number of steps required by the straightforward

10 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

backtracking algorithm to determine whether a graph is 3-colorable is 197
for the uniform distribution [Wilf85]. !

Obtaining theorems concerning average-case complexity is usually math-
ematically challenging, even for the simplest of algorithms and distributions.
As a theoretical program for coping with intractability, average-case analysis
seems to be too difficult to carry out for typical hard problems, realistic dis-
tributions and sophisticated algorithms. Tt is also frequently unclear what
constitutes a reasonable assumption about the distribution of problem in-
stances, apart from the analytical difficulties of the program.

A completeness notion for average-case complexity has been introduced
by Tevin [Lev86]. This also seems to be difficult to apply, and has only
been demonstrated for a few problems. The main weaknesses of average-
case analysis as a mathematical program for coping with intractability seem
to be:

e In general, it seems to be too difficult to prove the mathematical
results that the program calls for.

e The positive toolkit has not developed well. Few general methods are
known for designing algorithms with good average-case performance.
(One interesting example of a general method has been described by
Gustedt and Steger [GS94].)

The real strength of average-case analysis as a means of coping is that
for most applications of computing it is the right idea for how complexity
should (usually) be measured, and it is what practitioners generally continue
to do about complexity measurement in practice, although informally.

Approximation. Perhaps the greatest hopes for a general program for
coping with intractability have been pinned on approximation (and also on
the average-case analysis of approximation heuristics). Most of the discus-
sion in the chapter on coping with NP-completeness in the famous book
by Garey and Johnson [GJ79] is devoted to explaining the basic ideas of
polynomial time approximation algorithms and schemes.

Early on, important polynomial time approximation schemes were found
for NP-complete problems such as BIN PackinG [JDUGG74] and KNapP-
sack [TK75]. However, apart from a few similar results on problems mostly
of this same general flavor, it now seems to be clear, on the basis of power-
ful new proof techniques [ALMSS92], that these results are not typical for
NP-hard and otherwise intractable problems. After a long period where the
complexity of approximation for most problems remained mysterious, it now
seems to be the case that the vast majority of natural NP-hard optimization
problems probably do not admit efficient approximation schemes.

The study of the extent to which problems can be approrimated has
emerged as a mathematically very rich and productive area of investigation.

"For the uniform distribution, it is usually easy to discover that the answer is “no”.
In fact, what Wilf has shown is that it is usually not even necessary to look at the entire
graph!

PARAMETERIZED COMPLEXITY 11

As pointed out by Hochbaum [Hoch97], there is now such an accumulation
of interesting and deep results and methods that it is tempting to assess the
true difficulty of a hard problem by the degree to which optimal solutions
can be approximated in polynomial time. For example, VERTEX COVER
(finding a vertex cover that is as small as possible) can be approximated
to within a factor of ¢ = 2 in polynomial time, and the constant ¢ cannot
be improved to ¢ < 16/15 unless P = NP [BGS95]. The contrasts with
Cr1QuE (find a clique that is as large as possible), which cannot be approx-
imated to better than a factor of ¢ = n%% ¢ for n-vertex graphs, without
unlikely complexity-theoretic consequences [Has96].

While approximation allows for the clever deployment of mathematics
and can be a very effective cure for worst-case intractability when it can be
applied, it seems also fair to say that, as with P versus NP, most of the
results are negative. The main weakness of the program is:

e Most unrestricted classically hard problems cannot be approximated
very well.

Randomized Polynomial Time. Randomization is discussed in Chap-
ter 6 of Garey and Johnson [GJ79] as a means of avoiding one of the weak-
nesses of average-case analysis as a coping strategy the need to have some
knowledge in advance of a realistic distribution of problem instances. An
algorithm that flips coins as it works may be able to conform to whatever
distribution it is given, and either produce an answer in polynomial-time
that is correct with high probability (Monte Carlo randomization), or give
an answer that is guaranteed to be correct after what is quite likely to be a
polynomial amount of time (Las Vegas randomization).

These seemed at first to be potentially very powerful generalizations of
polynomial time. Randomized Monte Carlo and l.as Vegas algorithms are a
workhorse of cryptography [SS77, GM84], and have important applications
in computational geometry [CI87], pattern matching, on-line algorithms and
computer algebra (see [Karp86] and [MR95a] for surveys), in part because
they are often simple to program. Approximate counting is another area
of notable success. Randomization is an important new idea that is now
applied in many different kinds of algorithms, including approximations and
heuristics.

Despite these successes, it now seems that randomized polynomial time
is better at delivering good algorithms for difficult problems that “probably”
are in P to begin with, than at providing a general means for dealing with
intractable problems. There have recently been a number of important re-
sults replacing fast probabilistic algorithms with ordinary polynomial time
algorithms through the use of sophisticated derandomization techniques
[Rag88, MR95b]. The main weaknesses of randomization (in the sense
of algorithms with performance guarantees) as a general program for coping
with intractability are:

12 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

e With a few exceptions, it does not seem that randomized polynomial
time algorithms are any more effective against problems that are truly
hard than ordinary polynomial time algorithms.

e Although the positive toolkit of methods for designing and analyzing
randomized algorithms is rich, there is no specifically corresponding
negative toolkit that can be used in tandem to negotiate problem
complexity and guide the design of effective algorithms.

New Forms of Computation: DNA and Quantum Mechanics.
Although these programs have been launched with great fanfare, they so
far offer much less of substance than the other items on this list in terms
of a general mathematically-powered program for coping with intractability.
So far, DNA computing essentially amounts to computation by molecular
brute force. Combinatorial explosion can quickly force one to contemplate
a very large test tube for brute force computations, despite the fact that
information can be stored in molecules with a factor of 10'2 improved ef-
ficiency compared to magnetic tape storage. Mathematically, the program
seems to come down to the potential for significant constant speed-ups by
means of this physical miniaturization of computing.

It is still unclear whether quantum computers useful for any kind of
computation can actually be built. The notion of quantum polynomial time
is mathematically interesting, but so far appears to be applicable only to a
few special kinds of problems.

The main weakness of these approaches are:

e Practical implementation of the new computing devices seems to be
far in the future.

e Biomolecular computing is essentially a physical attack on intractabil-
ity, not a mathematical one.

e [t is unclear whether quantum polynomial time is a significant gener-
alization of ordinary polynomial time, except for a few special kinds
of problems.

Parameterization. We can trace the idea of coping with intractability
through parameterization to early discussions in Garey and Johnson [GJ79],
particularly Chapter 4, where it is pointed out that parameters associated
with different parts of the input to a problem can interact in a wide variety
of ways in producing non-polynomial complexity. The internal structure of
an intractable problem the identification of those aspects (parameters) to
which the non-polynomial complexity can be confined is precisely what
is at issue in parameterized complexity.

The structure of non-polynomial complexity is addressed again in Chap-
ter 6 of [GJ79], in the discussion of efforts to develop exponential algorithms
that improve significantly on simple exhaustive search. A classic example
is the algorithm of Nesetril and Poljak that uses fast matrix multiplication
to solve the k-CrLIQUE problem for n-vertex graphs in time O(n“k) where
c =~ 0.792 [NP85].

PARAMETERIZED COMPLEXITY 13

A weakness of the parameterized complexity program is that some of
the most general and spectacular positive methods, such as the celebrated
results of Robertson and Seymour [RS85], yield algorithms having para-
meter functions that are supremely impractical (e.g., towers of 2’s of height
described by towers of 2s ...). If tractability has friends like these, who needs
enemies?

The main strengths of parameterization as a program are that it does
seem to be very generally applicable to hard problems throughout the clas-
sical hierarchy of intractable classes, and it supports a rich toolkit of both
positive and negative techniques. The crucial strike against the program
seems to be:

e The extent to which FPT is really useful is unclear.

Heuristics. Since heuristic algorithms that work well in practice are now,
and have always been, the workhorses of industrial computing, there is no
question about the ultimate significance of this program for dealing with
intractability. There has recently been a revival of interest in obtaining sys-
tematic empirical performance evaluations of heuristic algorithms for hard
problems [BGKRS95, Hoo95, JM93, JT96]. There have been vigorous
developments of new ideas for designing heuristic algorithms, particularly
new ideas employing randomization in various ways. These approaches fre-
quently have colorful and extravagant names based on far-fetched analogies
in other sciences, such as simulated annealing, genetic algorithms, cellular
automata, neural nets, great deluge algorithms [Due93], and roaming ants
[CDM92]. Many of these can be considered as variants on the basic tech-
nique of local search.

The main problem with considering heuristics as a systematic program
for coping with intractability is that it is not a coherent mathematical pro-
gram. The positive toolkit properly includes voodoo and the kitchen sink.
As a program, it doesn’t call for any theorems, only empirical performance.
The undeniable successes of sometimes “mindless” and generally unanalyz-
able heuristic algorithms puts computer science theory in an uncomfortable
position.

Heuristics based on local search perhaps come the closest to constituting
a mathematically articulated general coping strategy for intractability (see
the articles in [AL97]). There is a negative toolkit (of sorts) based on the
notion of polynomial local search (PLS) problems and PLS-completeness,
introduced by Johnson, Papadimitriou and Yannakakis [JPY88]. Although
a number of local search problems have been shown to be complete, the re-
ductions are quite demanding (so there aren’t very many such results), and
there is furthermore a notable peculiarity of this framework. For a concrete
example, because the TRAVELING SALESMAN PROBLEM is NP-hard, one re-
sorts to a local search heuristic based on the k-Opt neighborhood structure,
such as the Lin-Kernighan algorithm [LK73], and this is considered to be a
particularly successful local search heuristic. Yet, Krentel has shown that for
k = &, this neighborhood structure is PLS-complete [Kr90, JTMe97]. This

14 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

seems like a weapon firing in the wrong direction, or perhaps just a kind of
reiteration that TSP is a hard problem. It is unclear how PLS-completeness
provides any guidance in designing local search heuristics.

The main difficulty is summarized:

e Although heuristics are the principal coin of the realm in practical
computing, the design of heuristics is not well-organized as a mathe-
matical program.

Some general remarks. If these research programs were the Knights
of Theoretical Computer Science who would deal with the Dragon of In-
tractability, we would seem to have: one that is proceeding on foot and
armed with a cudgel (actually just a hired ruffian), one in mystic battle-
wear and armaments riding backwards away from the fray, one equipped
with spells and lucky charms effective against small lizards, one who is rid-
ing in a baby carriage armed with a rattle, and one who is on horse, going
in the right direction, and armed with a lance but a lance that is effective
only after stabbing the Dragon a number of times bounded by

where k is ... unfortunately, it doesn’t matter.

lL.eaving fanciful impressions aside, it seems fair to say that the central
problems of theoretical computer science, both structural and concrete, have
turned out to be much harder to crack than was hoped in the early years of
the field.

Mathematical computer scientists have so far had little to offer of any
general value from a systematic perspective to practitioners who are fre-
quently concerned with very specific hard problems (such as STRIPS PraN-
NING [FN71]). What seems to be happening is that as mathematical science
makes no progress on systematically addressing intractability, we are visited
by a series of fads based on turning to some other science as a source of
solutions, often accompanied by a fanfare of “paradigm shifts” such as:

e Turning to Physics for metaphors, and getting algorithms called “sim-
ulated annealing”.

e Turning to Brain Science for metaphors, and getting “neural nets”.

e Turning to Evolutionary Biology for metaphors, and getting “genetic
algorithms”.

e Turning to Physics for more metaphors, this time about “phase tran-
sitions”.

Fach of these essentially shallow notions has in turn been widely and en-
thusiastically embraced by practitioners who must deal with their favorite
hard problems somehow. From the point of view of computer science the-
ory, each of these algorithmic fads is disappointing they provide little
opportunity to deploy the power of mathematical reasoning. It is frequently

PARAMETERIZED COMPLEXITY 15

unclear if their effectiveness is much more than superstition. (If this sum-
mary of the field seems unpleasantly harsh, then look again at papers such
as [DKL96].)

The present situation of theoretical computer science is that it has not
been very successful in coming up with a viable systematic program for
dealing in a general way with computational intractability in its own native
terms (i.e., in terms of productive and interesting mathematical science).
No wonder that practitioners turn in other directions, and complain!

4. Industrial Strength FPT

There are two main points that we will argue in this section:

1. The notion of FPT, in many cases, simply provides a new name and
a new perspective on heuristic algorithms already in use. FPT al-
gorithms frequently turn out to be what clever practitioners imple-
mented after their problems were proved NP-hard. Where natural
instance distributions exhibit limited parameter ranges, these have
often been implicitly exploited in the design of useful heuristics.

2. The parameterized complexity perspective can lead to useful algo-
rithms in several different ways, including:

e Directly and analytically, when the parameter function is rea-
sonable (i.e., not too fast-growing) and the parameter describes
a restriction of the general problem that is still useful.

e Directly and empirically, in cases where the analytic bound on
the running time of the FPT algorithm turns out to be too
crude or pessimistic, that is, where the algorithm turns out
to be useful for larger parameter ranges than the parameter
function would indicate.

e By supplying guidance in the systematic design of heuristic al-
gorithms in the form of explicit general methods based on FPT
techniques, using the theory to understand “the internal struc-
ture of the complexity of the problem” by identifying those
parameterizations of the problem that are FPT and those that
are probably not (because they are hard for W[1], the parame-
terized analog of NP).

e Via methodological connections between FPT and the design
of efficient polynomial-time approximation schemes (where the
relevant implicit parameter is k = 1/¢, for approximations to
within a factor of (1 + €) of optimal) and other approximation
heuristics.

4.1. Various FPT Algorithms and Heuristics for VERTEX COVER.
We can continue to use the VERTEX COVER problem to illustrate many of
the main ideas. This is a useful example because it is a simple problem to
describe, and because a wide variety of FPT algorithmic techniques can be

16 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

applied to it. We will see how these different techniques can be systemati-
cally adapted into a corresponding variety of heuristics.

We begin by describing a new FPTalgorithm for VERTEX COVER that is
currently the best known. It is based on two simple, but standard methods,
reduction to a problem kernel, and search trees. More examples and discus-
sion of these methods can be found in [DF95¢, DF98, KST94, MR98].

ALGORITHM 4.1. (An Improved Direct FPT Algorithm for VERTEX
CovER.) The algorithm proceeds in two phases. In the first phase we
compute the kernel of the given instance (G, k) or answer “no”. The kernel
is an instance (G', k') where || < k? and k¥’ < k such that G/ has a vertex
cover of size k' if and only if (G has a vertex cover of size k. The reduction
from (G, k) to (G', k') is computable in time O(kn), where k is the number
of vertices in G. (That is, this is a polynomial time parametric transfor-
mation of VERTEX COVER to itself, such that the target instance has size
bounded by a function of the parameter k.) Given that we can do this, we
have immediately demonstrated membership in FPT for VERTEX COVER,
since the question for (G, k') can now be answered in time bounded by a
function of k simply by an exhaustive analysis of .

Phase 1 (Reduction to a Problem Kernel): Starting with (G, k) we
apply the following reduction rules until no further applications are possible
(the justifications for the reductions are given below):

(0): If G has a vertex v of degree greater than k, then replace (G, k)
with (G — v,k —1).

(1): If G has two nonadjacent vertices u, v such that [N (u)UN (v)| > k,
then replace (G, k) with (G + uv, k).

(2): If G has adjacent vertices u and v such that N(v) C N[u], then
replace (G, k) with (G — u, k —1).

(3): If (G has a pendant edge uv with u having degree 1, then replace
(G, k) with (G — {u,v}, k—1).

(4): If GG has a vertex z of degree 2, with neighbors @ and b, and none
of the above cases applies (and thus @ and b are not adjacent), then
replace (G, k) with (G', k) where G’ is obtained from G by:

e Deleting the vertex .
e Adding the edge ab.
e Adding all possible edges between {a,b} and N(a)U N (b).

(5): 1f G has a vertex x of degree 3, with neighbors a, b, ¢, and none of
the above cases applies, then replace (G, k) with (G’, k) according to
one of the following cases depending on the number of edges between
a, b and c.

(5.1): There are no edges between the vertices a, b, c. In this case G is
obtained from G by:

e vertices vav3. Deleting vertex x from G.
e Adding edges from ¢ to all the vertices in N (a).
e Adding edges from a to all the vertices in N (b).

PARAMETERIZED COMPLEXITY 17

e replacement be seen Adding edges from b to all the vertices in
N (e).
e Adding edges ab and be.
(5.2): There is exactly one edge in (& between the vertices a, b, ¢, which
we assume to be the edge ab. Tn this case (7 is obtained from G by
e Deleting vertex z from G.
Adding edges from ¢ to all the vertices in N (b) U N (a).
Adding edges from a to all the vertices in N(¢).
Adding edges from b to all the vertices in N(¢).
Adding edge be.
e Adding edge ac.

The reduction rules described above are justified as follows:

(0): Any k-element vertex cover in (G must contain v, since otherwise
it would be forced to contain N (v), which is impossible.

(1): Tt is impossible for a k-element vertex cover of (G not to contain at
least one of u, v, since otherwise it would be forced to contain all of
the vertices of N(u)U N (v).

(2): If a vertex cover (' did not contain u then it would be forced to
contain N[v]. But then there would be no harm in exchanging v for
.

(3): If G has a k-element vertex cover (' that does not contain v, then
it must contain %. But then ' —u4v is also a k-element vertex cover.
Thus (¢ has a k-element vertex cover if and only if it has one that
contains v.

(4): We first argue that if G has a k-element vertex cover (', then it
must have one with one of the following forms:

1. ' contains a and b, or

2. (' contains z but neither of a,b, and therefore also contains

N (a) U N (b).

If ' did not have either of these forms, then it must contain exactly
one of a,b, and therefore also . But in this (' can be modified to
form 1. If (G has a k-element vertex cover of the form 1, then this
also forms a k-element vertex cover in G'. Tf (7 has a k-element vertex
cover of the form 2, then this same set of vertices with = replaced by
either a or b is a k-element vertex cover in G'. Conversely, suppose
(' has a k-element vertex cover (. Tf (¥ contains both @ and b, then
it is also a k-element vertex cover in (7. Otherwise, it must contain
at least one of a,b, suppose a. But then the edges from b to all of
the vertices of N(a)U N (b) in G’ force C' to contain N (a) U N (b). So
C' — a4+ zis a k-element vertex cover in (7.

(5.1): Let ' denote a k-element vertex cover in . If C' does not
contain , then necessarily C' contains {a, b, c}. Tn this case (' is also
a k-element vertex cover in (G'. Assume that C' contains z. We can
assume (easy to check) that at most one of the vertices of {a,b, ¢}
belongs to (. Tf none of the vertices of {a,b, ¢} belongs to ', then

18 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

(ii) (iii)

, ¢ ®

® @ @
Ficure 2. Let & = & (i) In the given graph (1,2) is a
pendant edge (case (3)). ¥ =7, G’ =G — {1,2}. 2 is added
to the vertex cover. (ii) Vertices 8 and 10 are adjacent and
N(10) C N[8] (case (2)). (iii) The degree of vertex 9 is 2
(case (4)). K" =17, G" is received by adding the following
edges to G” — {9}: (10,3), (10,4), (10,5), (10,6).

either b or ¢ belongs to the vertex cover of . If a € (' then C' —z+¢
is a vertex cover for G/, if b € (' then ' — 2 + a is a vertex cover for
', and if ¢ € (' then — x 4 a is a vertex cover for (.

(5.2): Let ' denote a k-element vertex cover in . If ' does not
contain z, then necessarily C' contains {a,b,c}. In this case (' is
also a k-element vertex cover in (¢'. Assume that C contains z. We
can assume (easy to check) that exactly one of the vertices of {a,b}
belongs to C'. W.l.o.g we assume a € C'. Then ' — x + ¢ is a vertex
cover for 7, if b € C then C' — 2 + ¢ is a vertex cover for (7.

It is easy to see that at the end of Phase 1 we have reduced (G, k) to
(G, k') where (G’ has minimum degree 4, if we have not already answered
the question. Furthermore, simply because of the reduction rules (1) and
(2) we can conclude that the answer is “no” if the number of vertices in G’
is more than k2. Phase 1 is a good example of what is meant by the FPT
technique of reduction to a problem kernel. Tf we still have no answer about
the original input (G, k), then we are left with considering (G', k') where
|G'| < k? and k' < k. A demonstration that the problem is in FPT is now
trivial, since we can just (in the absence of further ideas) exhaustively answer
the question for the kernel (G’, k). However, we can do a little better by
analyzing the kernel instance by means of a search tree.

Figure 2 shows an example of the kernelization procedure of Phase 1.

Phase 2 (Search Tree): In this phase of the algorithm we build a
search tree of height at most k. The root of the tree is labeled with the
output (G’ k") of Phase 1. We will describe various rules for deriving the
children of a node in the search tree. For example, we can note that for
a vertex v in G’, and for any vertex cover (', either v € (' or N(v) C C.
Consequently we could create two children, one labeled with (G'—v, k' —1),
and the other labeled with (G' — N[v], k' — deg(v)). Tn our algorithm, we

PARAMETERIZED COMPLEXITY 19

perform this branching if there is a vertex of degree at least 6. By repeating
this branching procedure, at each step reapplying the reductions of Phase 1,
we can assume that that at each leaf of the resulting search tree we are left
with considering a graph where every vertex has degree 4 or 5. If there is a
vertex x of degree 4, then the following branching rules are applied. Suppose
that the neighbors of a vertex x are {a,b,c,d}. We consider various cases
according to the number of edges present between the vertices a, b, ¢, d.

Note that if not all of {a,b,e,d} are in a vertex cover, then we can
assume that at most two of them are.

Case 1. The subgraph induced by the vertices a, b, ¢, d has an edge, say
ab.

Then ¢ and d together cannot be in a vertex cover unless all four of
a,b,c,d are there. We can conclude that one of the following is necessarily
a subset of the vertex cover " and branch accordingly:

1. {a,b,e,d} CC

2. N(e)C C

3. {c}UN() CC.

Case 2. The subgraph induced by the vertices a,b, c,d is empty. We
consider three subcases.

Subcase 2.1 Three of the vertices (say a, b, ¢) have a common neighbor y
other than =z.

Then when not all of a,b,c,d are in a vertex cover, # and y must be.
We can conclude that one of the following is a subset of the vertex cover U
and branch accordingly:

1. {a,b,e,d} CC

2. {x,y} CC.

Subcase 2.2 1f Subcase 2.1 does not hold, then there may be a pair of
vertices who have a total of six neighbors other than z, suppose a and b.
If all of a,b,c,d are not in the vertex cover (' then ¢ ¢ (', or ¢ € (' and
d ¢ C,or both ¢ € Cand d € C' (in which case a ¢ C' and b ¢ (). We
can conclude that one of the following is a subset of the vertex cover ' and
branch accordingly:

1. {a,b,e,d} CC

2. N(e)C C

3. {cJUN() CC

4. {e,d}UN({a,b}) C C.

Subcase 2.3 If Subcases 2.1 and 2.2 do not hold, then the graph must
have the following structure in the vicinity of z: (1) 2 has four neighbors
a,b, c,d and each of these has degree four. (2) There is a set F of six vertices
such that each vertex in F is adjacent to exactly two vertices in {a,b, ¢, d},
and the subgraph induced by F U {a,b,c,d} is a subdivided K, with each
edge subdivided once. In this case we can branch according to:

1. {a,b,e,d} CC

2. (Fu{az}) CC.

20 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

If the graph (G is regular of degree 5 (that is, there are no vertices of
degree 4 to apply one of the above branching rules to) and none of the
reduction rules of Phase 1 can be applied, then we choose a vertex x of
degree 5 and do the following. First, we branch from (G, k) to (G —x,k—1)
and (G — N[z],k —5). Then we choose a vertex u of degree 4 in G — x
and branch according to one of the above cases. The net result of these two
combined steps is that from (G, k) we have created a subtree where one of
the following cases holds:

1. There are four children with parameter values k£ — 5, from Case 1.

2. There are three children with parameter values ky =k —5, ks = k-5
and ks = k — 3, from Subcase 2.1.

3. There are five children with parameter values ky =k —5, ko = k — 5,

ks=k—5,ks—=k—6and ks = k — 9, from Subcase 2.2.

Note that if reduction rule (2) of Phase 1 cannot be applied to G — 2, then at
least one of the neighbors of u has degree 5, and so Subcase 2.3 is impossible.

The bottleneck recurrence comes from the degree 5 situation which pro-
duces four children with parameter values £ — 5. The total running time
of the algorithm is therefore O(r*k? 4+ kn), where r = A5 or r = 1.31951
approximately. This time bound is a slight improvement on the r = 1.32472
of [BFR98]. (The tiny difference amounts to a 21% improvement in the
running time for & = 60.)

The parameter function of our analysis of the running time of Algorithm
4.1 indicates that this “exact” algorithm is useful for input graphs of any
size, so long as the parameter k is no more than about 60. There are a
number of uses of VERTEX COVER in analyzing biological sequence data,
and for this reason, essentially the above algorithm has been implemented
as part of the DARWIN project at ETH [HGS98]. Tt turns out that the
useful parameter range of k£ < 60 indicated by the parameter function above
is overly pessimistic. In practice, the algorithm seems to be useful for k& up
to around 200. Note that if you run this algorithm on (G, k) where £ is
apparently too large, the worst that can happen is that the algorithm fails
to finish in a reasonable amount of time. If it terminates, then it does give
the correct answer.

The two phases of the above algorithm are independent. If one intended
to solve the general VERTEX COVER problem by simulated annealing (or
any other method), it would still make sense to apply Phase 1 before do-
ing the simulated annealing, since the “simplifications” accomplished by the
kernelization require only polynomial time (that is, they in no way depend
on k being small). Consequently, Phase 1 is a reasonable first step for any
general algorithmic attack on the NP-complete VERTEX COVER problem.
We can codify this discussion by describing the following heuristic algorithm
for the general VERTEX COVER problem. That is, the following algorithm,
although it is based on FPT methods, has nothing to do with small para-
meter ranges, and it runs in polynomial time.

PARAMETERIZED COMPLEXITY 21

ALGORITHM 4.2. (A General Heuristic Algorithm for VErRTEX COVER
Based on Kernelization.) The algorithm simply reduces the input graph G
to nothing by repeating the following two steps:

1. Apply Phase 1 of Algorithm 4.1.
2. Choose a vertex of maximum degree.

The reduction path gives an approximate minimum vertex cover for (5.
To see that this works correctly, it is necessary to observe that for each of
the rules of Phase 1 reducing (G, k) to (G, k'), and given any vertex cover
C"in (¢, we can reverse the reduction to obtain a vertex cover (V' in (5.

In Algorithm 4.2, we have simply replaced Phase 2 of Algorithm 4.1,
which is exponential in k, with a well-known approximation heuristic for
this problem. However, we could also adapt Phase 2 by simply not exploring
all of the branches of the search tree, either by making a random selection,
or by branch selection heuristics, etc. The following is a natural adaptation
of Algorithm 4.1 that exploits this idea for designing heuristics based on the
FPT search tree technique.

ALGORITHM 4.3. (A General Heuristic Algorithm for VErRTEX COVER
Based on Kernelization and a Truncated Search Tree.) This is the same as
Algorithm 4.1, except that in the second phase of building the the search
tree, we do two things. First of all, we decide in advance how large of a
search tree we can afford, and we build the tree until we have this number
of leaves. Then for each leaf of the search tree, we apply an approximation
heuristic such as the greedy method used in Algorithm 4.2, and take the
best of all the solutions computed from the leaf instances of the search tree.

The search tree is developed according to the following branching heuris-
tic. Given the instance (G, k) as the label on a node of the search tree to be
expanded, we calculate the most valuable branch in the following way:

1. Find a vertex a of maximum degree r in G.

2. Find a pair of vertices b, ¢ such that s = |S|, where S = N(b)N N (¢)
is maximized.

3. Determine which of the two equations 2" — 2" ' — 1 = 0 and 2° —
2°7% — 1 =0 has the smallest positive real root. If the first equation,

then branch to (G — a,k — 1) and (G — Nla],k — r). If the second,
then branch to (G —b— ¢, k—2)and (G — S,k —s). (This information
can be precomputed and determined by table lookup.)

The branching heuristic above is justified because it essentially chooses
the branching rule to apply according to the heuristic criterion that if it
were the only rule applied in building a tree, then this would result in the
smaller tree. (This could obviously be generalized by considering 3-element,
subsets of the vertices, or by employing a different criterion for choosing a
branching rule.)

Algorithm 4.3 is illustrated in Figure 3.

In view of the remarkably nice FPT algorithms we now have for VERTEX
CoVER it is both ironic and instructive that the VERTEX COVER problem

22 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

b~ &
®

Ficure 3. The resulting graph in Figure 1 is taken as root
of the search tree in Algorithm 3. Here « = 3, b = 4, and
c=1.

was first proved to be fixed-parameter tractable by the application of me-
thods that are much more complicated than the problem actually requires.
In fact, this happened in print at least three times [FL87, Jo87, PY96].
The first of these approaches is based on the Robertson-Seymour theo-
rems, the second on finite-state dynamic programming on graphs of bounded
treewidth, and the third on maximum matching. Probably the correct moral
to draw from this history is that the design of FPT algorithms has its own
distinctive issues and opportunities, and is not necessarily well-served by the
habits we have developed for the design of polynomial time algorithms.

With respect to the connection between FPT and practical heuristics,
the correct point of view seems to be that all of the various FPT methods
that can be applied to a problem may be useful in the design of heuristics. We
next describe a new, utterly inefficient (in terms of the parameter function)
FPT algorithm for VERTEX CoOVER, based on completely different FPT
techniques, and then describe how these methods can contribute, neverthe-
less, to the design of an interesting and apparently powerful heuristic.

DEFINTTION 4.1. (G > H if there is a subgraph G’ C (¢ and a surjective
map h: V(G') — V(H) with the property that for all uv € F(H), there are
vertices x,y € V(G) such that h(x) = u, h(y) = v and 2y € F(G). (It is
easy to verify that this defines a partial order on graphs.)

If h is a function that k-colors the vertices of G = (V,F), h : V —
{1, ..., k}, then we will write h((F) to denote the graph with the vertex set

PARAMETERIZED COMPLEXITY 23

h(V) C{1,...,k} and the edge set
{ij : Jz,y € V with h(z) =14, h(y) = j and 2y € F}.

LLEMMA 4.2, For each fized k there is a finite set Oy of graphs, such
that for every graph G, G has a k-element vertex cover if and only if VH €

Or: GF*H.

Proor. By the Graph Minor Theorem [RS96], it is enough to argue
that if H is a minor of (¢ then G > H. But this is essentially trivial,
since one way of viewing the fact that H is a minor of (¢ is that there is a
folio representation of H in (7. That is, there is a set of disjoint connected
subgraphs G, C (G, one such subgraph for each vertex v € V/(H), such that
if wv € F(H) then there are vertices # € (G, and y € G, with 2y € F(G).
From this it is easy to construct a partial function h : V(G) — V(H) showing
that G > H. O

The celebrated Graph Minor Theorem used in the above argument, sim-
ply states that every set of finite graphs has a finite number of minimal
elements in the partial ordering of graphs by minors. For a gentle survey of
this result with an eye to algorithmic applications, see [FL88].

LLEmMaA 4.3. For every fived graph H, it can be determined in time
O(nlogn), for an input graph G on n vertices, whether G > H.

Proor. Note that we are essentially proving that the problem of de-
termining whether G > H is in FPT for the natural parameter H. As a
consequence of a theorem of Mader [Mad72], there is a constant ¢z such
that if a graph G on n vertices has more then c¢yn edges then necessarily ¢
has H as a minor and therefore G > H. In linear time we can determine if
this provides a reason to answer “yes” and otherwise we can assume a linear
bound on the number of edges of 7.

We use the powerful and general FPT method of color-codingintroduced
by Alon, Yuster and Zwick. In [AYZ94] it is shown that for every k there
is a family H;. of functions h: {1,...,n} — {1,...,k} with the property that
if S is any subset of {1,...,n} of size k, then 3h € H}. such that h maps S
1:1 onto {1,...,k}. The crucial thing is that the family of functions Hj is
not very large. In [AYZ94] it is shown that it is possible to produce such
families of hash functions with |#,| < 20 logn. (Note the reasonable
parametric function, in the sense of the discussion in §2.)

Suppose H has m edges. Then (¢ > H if and only if there is a set of at
most 2m vertices of (7 that can be mapped onto the vertices of H in order
to witness this fact.

Let Fy,, denote the set of all functions from the set {1,...,2m} onto the
vertex set of H. Then (G > H if this can be detected by the composition
f = goh of some function h € Hq,, and g € Fa,,, by having H isomorphic
to f(G). Our algorithm thus consists simply of computing f(G) for all such
functions f. This can clearly be accomplished in time O(nlogn) with a
hidden constant that is exponential in the size of the fixed graph H.]

24 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

The two lemmas above allow us to conclude immediately that VERTEX
CoVER is in nonuniform FPT. Nonuniform, because so far we can only
conclude that for each fixed k there is a different algorithm for k-VERTEX
CoVER, based in each case on the obstruction set O, which is different
for each k, and not in any obvious way computable. In order to combine
these separate algorithms into a single (uniform) FPT algorithm, we will
use the self-reduction technique of [FL94]. The subroutine that we need is
described by the following lemma.

LEMMA 4.4. Suppose A is an oracle (black box) for the VERTEX COVER
decision problem. Then by making O(k?) calls to the oracle, we can compute
a k-element vertex cover for a graph G on n vertices (if it has one).

Proor. First note that by attaching pendant edges to vertices of 3,
we immediately have an easy algorithm that makes at most n calls to the
oracle by repeatedly “probing” the graph by attaching a pendant edge to the
vertices of (. Note that if uv is a pendant edge where u has degree 1, then
if (G has any k-element vertex cover, then it has one including the vertex
v. We simply keep probing the vertex set until we have attached pendant
edges to k vertices.

The operation of shattering a vertex x is accomplished by:

e Deleting x.
e Adding pendant edges to each vertex y € N (x).

If G has a k element vertex cover, then for any partition of the vertex
set of (7 into k + 1 classes there must be at least one class that is safe to
shatter in the sense that if ' is obtained from (G by shattering every vertex
in the class, then (&’ has a k-element vertex cover that is also a vertex cover
for G. Thus by making k+1 calls to the oracle, one for each such ', we can
discover at least one new vertex that can be tagged with a pendant edge. At
an intermediate step of the algorithm, there is some set S of ¥’ < k vertices
of (G that are tagged with pendant edges, and we know these &’ vertices
belong to some k-element vertex cover. We can delete a vertex z ¢ S if
N(z) C S (since the vertices of S are forced to be in the vertex cover, it is
safe to assume that z is not). The remaining vertices are partitioned into
k — K + 1 approximately equal-sized classes. By inquiring about the graphs
(G’ obtained by shattering these classes, we can discover at least one new
vertex to add to S. Thus O(k?) calls to the oracle are sufficient.]

ATLGORITHM 4.4. (A Direct But Completely Impractical FPT Algorithm
for VERTEX COVER Based on Well-Quasiordering, Hashing, and Fast Self-
Reduction.) The algorithm receives an input instance (G, k) and begins
to build a list of the elements of Oy by systematically generating all finite
graphs, and checking each one to see if it should be added to the list (this
is easy to determine). Since by what we have argued so far we have no
way of knowing when the list is complete, we interleave this process with
another, until we have decided whether to answer “yes” or “no”. We call
this procedure for finding a new obstruction Process 1.

PARAMETERIZED COMPLEXITY 25

ey
O 5w

FIGURE 4. The connected obstructions for 4-VERTEX COVER

Process 2 is executed whenever Process 1 has added something new to
the list of Q. Process 2 acts under the assumption that the list is complete.
If this were so, then by the means described by Lemmas 4.2 and 4.3, the list
provides an “oracle” for the decision problem, by checking, for each H on
the list, whether G > H.

Each call to this decision problem “oracle” requires time O(f(k)nlogn),
where f is some function of the parameter. We use the oracle to obtain either
a definite reason to answer “no”, by discovering that G > H for some H €
O, or a definite reason to answer “yes”, by actually identifying and checking
a k-element vertex cover in (. In order to obtain the latter evidence, we use
the self-reduction algorithm of l.emma 4.4. Either of these efforts to give a
definite answer may in fact succeed, even though our assumption that the
list is complete is incorrect. (If the assumption is correct, then of course we
will succeed in giving a definite answer.)

The only remaining possibility is that something weird happens. The
incorrect assumption may cause the self-reduction algorithm to take too long
or to output an incorrect solution. These malfunctions are easy to recognize.
If we discover that the assumption was incorrect in this manner, then we
return to Process 1 until we generate a new graph to add to the list of known
elements of 0. Since Oy is finite, we alternate between the two processes
at most |Og| times.

The running time can be calculated to be O(f(k)nlog? n) for a function
f(k) that grows explosively mainly because of the size of the obstruction
sets Op.

The set of obstructions for k = 4 is shown in Figure 4. In principle, the
set O can be mechanically computed for any k. The set shown in Figure 4
was computed by Cattell and Dinneen [CD94].

Algorithm 4.4 is a nice example of the use of some very powerful and
general FPT methods, and it is a good example as well of an FPT result
that is utterly impractical as a direct algorithm. Nevertheless, we can adapt
the methods of Algorithm 4.4 in designing new and interesting heuristics
for VERTEX CoOVER. General heuristic design strategies that correspond

26 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

to some of the main FPT methods are displayed in Table 2. The essential
theme is to obtain heuristic methods from FPT algorithms by strategies for
deflating the parametric costs by truncating or sampling the search trees or
obstruction sets, etc.

FPT Technique Heuristic Design Strategy
Reduction to a Problem Kernel A useful pre-processing subroutine
for any heuristic.
Search Tree Explore only an affordable, heuristically
chosen subtree.
Well-Quasiordering Use a sample of the obstruction set.
Color-Coding Use a sample of the hash functions.

TABLE 2. Some FPT Methods and Heuristic Strategies

We have the following heuristic algorithm for VERTEX CoOVER adapted
from Algorithm 4.4.

ALGORITHM 4.5. (A New Family of Heuristics for VERTEX COVER.)

The heuristic algorithm that we describe is self-analyzing in the sense
that it computes both a vertex cover C' C V for an input graph G = (V| F),
and a guarantee r that C' is within a factor of r of optimal.

Step 1: An Initial Solution. The first step of the algorithm is to compute
a vertex cover that is within a factor of 2 of optimal, using one of the well-
known approximation algorithms that provide this performance guarantee.

Step 2: Improving the Upper Bound. Knowing that (7 has a vertex cover
of size kypper, We attempt to show that that it has one of size k' < kypper-
To do this, we use a strategy suggested by Lemma 4.4. If § C V is a set of
vertices of (7, define the shattering of G with respect to S to be the graph
obtained by “unplugging” any edges incident on vertices of S. If S consists
of a single vertex, then this coincides with the definition given in the proof
of Lemma 4.4. If two vertices u,v € S are adjacent, then this results in a
K5 from ww being unplugged from both endpoints. There are two salient
facts that we use concerning this operation:

e If (G, k) is a yes-instance, then for any (k4 1)-partition of the vertex
set, there must be at least one class S of the partition such that
(G', k) is also a yes-instance, where (G’ is obtained by shattering &
with respect to §.

e If (G is the result of shattering (¢ with respect to S, and (' is a vertex
cover in (G, then we can easily compute from (¢’ a vertex cover (' for

G with |C] < |C”

Typically, the result G’ of shattering (G with respect to S will have
many vertices of degree 1, and hence (&' can be reduced by applying the
rules for the kernelization phase of Algorithm 4.1. In this way, we obtain a
much smaller instance from which we can possibly compute a vertex cover

PARAMETERIZED COMPLEXITY 27

for (G of the targeted size to improve the upper bound. Using the facts
above, we develop a search tree based on some randomly or heuristically
chosen partitions, and explore some of branches (where a branch is given by
shattering on a class of the partition).

There are various ways to work out the details of this exploration process.
We might think of the tree as organized into lower branches (closer to the
root) and wupper branches. The lower branches create a search space of
affordable size consisting of graphs that are somewhat smaller than G, but a
search space that is guaranteed to contain yes-instance under the assumption
that (7 is a yes-instance (because the lower branches include all shatterings
for some partition). The upper branches are developed by repeating the
shattering process enough times, but only exploring some of the branches,
until the resulting graphs are completely solved. The exploration of the
upper branches could also be based on a greedy heuristic.

Step 3: Improving the Lower Bound. Knowing a lower bound kjgyer On
the minimum size of a vertex cover in (7, we attempt to prove a better lower
bound k > kjgwer- To do this, we use a strategy suggested in part by Lemma
4.2. However, before doing anything fancy, we should compute a maximal
matching in (7 to see if there is an easy way to improve the lower bound by
detecting the easy obstruction (k4 1)Ky € Oy.

Note that if (G, k) is a no-instance, then for any (2k 4 3)-coloring of
the vertex set, there must be at least one class that can be pinched in the
following way, to produce a (smaller) graph G’ such that (G, k) is also a
no-instance. That this is true follows from Lemma 4.2 and the fact that
the maximum number of vertices in in O is 2k 4+ 2 (attained uniquely by
(k+ 1)K3). This can be used to develop the lower branches of a search
tree as in Step 2 which is similarly guaranteed to have at least one branch
to a simpler graph from which a proof that (G, k) is a no-instance can be
obtained (if it is a no-instance).

For the upper branches of this search tree we can employ a partial explo-
ration of the obstruction set for O and a partial exploration of the family of
hash functions used in the proof of Lemma 4.3 to see if a reason for answer-
ing “no” can be obtained. It is easy to generate elements in Oy by taking
disjoint unions of obstructions for smaller parameter values. For example
Cs € Oy and Kg € O4 so (C; U [(76) e Or.

Instead of incrementally applying Steps 2 and 3 separately to close
the gap between kyrupper and kigwer, some form of binary search could be
adopted. For example, the first round of such a strategy might be to apply
Steps 2 and 3 to k = (kupper + Flower) /2.

The main point in describing the above heuristic (which has not yet
been implemeted) is to illustrate how FPT techniques can be adapted into
heuristic algorithms.

28 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

4.2. A Useful Parameterized Algorithm for MAST. We next de-
scribe a useful direct FPT algorithm for the MAXIMUM AGREEMENT SUB-
TREE (MAST) problem defined in §1, when it is restricted to binary trees,
a reasonable restriction for biological applications. Apart from the intrinsic

interest of this result, it is a nice example of two important points concerning
FPT algorithms.

e Qur algorithm for MAST uses an algorithm for VERTEX COVER as
a subroutine. Useful FPT algorithms lead to other useful FPT algo-
rithms, as one might naturally expect.

e There is already a polynomial time algorithm for MAST for binary
trees, so why bother with an exponential FPT algorithm? The answer
is that the polynomial time algorithm for MAST due to [FPT95] runs
in time O(rn®) for r trees on a set of n species. The algorithm we
describe requires time O(cFrnlogn) where ¢ is a constant less than
3. Consequently, this is an example of a situation where a classically
exponential FPT algorithm may be preferable to a polynomial time
algorithm.

THROREM 4.5. The parameterized MAST problem can be solved in time
O(c*rnlogn) for r binary trees on n species.

SKETCH. The input to the problem is a set of rooted binary trees Ty, ..., T,
each having n leaves labeled in 1:1 correspondence with a set X of n species.
The problem is to determine if it is possible to delete at most k species from
X to obtain a set X’ on which all of the trees agree. In considering this
problem, there is an elegant point of view developed by Bryant [Bry97]
based on ftriples. 1f {a,b,c} is a set of three species in X, then the re-
striction of each of the trees T; to these three species must be one of the
three possible alternatives (using parenthetical notation to represent trees):
(a,(b,c)), (b,(a,c)), or (c,(a,b)). If two or more of these three possibilities
arise among the T;, then obviously it will be necessary to eliminate at least
one of the species a, b, ¢ from X in order to obtain an agreement subtree. In
this situation we will refer to {a, b, ¢} as a conflicted triple of species.

An argument due to Bryant [Bry98] shows that our problem can be
reduced in this way to the well-known 3-HirTIiNG SET problem (see [GI79]),
that takes as input a collection C of 3-element subsets of a set X and a
positive integer k, and must answer whether there is a subset X’ C X with
| X’| < k such that for each A € C, AN X’ # (. Bryant’s argument shows
that our problem is equivalent to finding a k-element hitting set for the
triples of X that are conflicted with respect to the T;.

The set of conflicted triples could be computed by exhaustively com-
puting the restrictions of the T; for each 3-element subset of X, but this is
not very efficient. In time O(nlogn) it is possible to either determine that
two trees are isomorphic, or identify a conflicted triple. Once a conflicted
triple is identified, we can branch in a search tree based on 3 possibilities for
resolving the conflict. For example, if the conflicted triple is {a, b, ¢} then we

PARAMETERIZED COMPLEXITY 29

create three branches in the search tree by deleting one element (say a) from
X and from all of the trees T;. We now recursively attempt to determine if
the modified instance can be solved with &' =k — 1.

There will be at most O(3%) nodes in the search tree, and the running
time due to each node is O(rnlogn), which yields the claimed running
time. U

The algorithm sketched above uses 3-HirTiNG SET implicitly as a means
of solving the parameterized MAST problem. An improved but more elabo-
rate FPT algorithm for this problem is described in [BFRS98], where we
not only reduce MAST to 3-HiTtTiNnGg SET, but in turn we reduce 3-HITTING
SET to VERTEX COVER, to obtain an algorithm with ¢ = (1 —I—\/ﬁ)/?. Some
further examples of the systematic adaptation of FPT algorithms into useful
heuristics for problems in computational biology (where there is an abun-
dance of naturally parameterized problems) can be found in [FKS98].

4.3. The Steiner Problem for Generalized Hypercubes. In this
section we give another FPT result based on the method of reduction to
a problem kernel. This leads to an important heuristic algorithm that is
already in use. We consider a slightly more general problem than the one
described in §1.

THE STEINER PROBLEM FOR (GENERALIZED HYPERCUBES
Instance: The input the problem consists of the following pieces of informa-
tion:

1. A set of complete weighted digraphs D; for: =1, ..., n, each described
by a set of vertices V; and a function

t, :VixV,— IN

(We refer to the vertices of D; as character states, to D; as the cha-
racter state digraph, and to t; as the state transition cost function for
the ith character.)

2. A positive integer ky such that |V;| < ky fori=1,...,n.

3. A set X of kg length n vectors z; for j = 1,..., ko, where the ith
component, z,[i] € V;. That is, for j =1, ..., kg,

x; EQ:ﬁVi
=1

4. A positive integer M.

Parameter: (kq, k3)
Question: Is there a rooted tree T = (V, F) and an assignment to each
vertex v € V of T of an element y, € €2, such that:

e X is assigned 1:1 with the set of leaves of T,

30 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

e The sum over all parent-child edges uv of T, of the total transition
cost for the edge, defined to be

3 il el

is bounded by M?

THEOREM 4.6. THE STEINER PROBLEM FOR GENERALIZED HYPER-
CUBES 1is fized-parameter tractable.

Proor. We define an equivalence relation 2 ~ j on the index space
{1,...,n} that allows us to combine D; and D, and obtain an equivalent
smaller instance. In order to define ~ we first define some other equivalences.

Fix m < ky and let [be an integer edge labeling of the complete digraph
K,, on m vertices. let vy,...,v,, denote the vertices of K,,. T.et T be a
rooted tree with ky leaves labeled from wuq, ..., v,,. Define the cost of T with
respect to [to be the minimum, over all possible labelings s of the internal
vertices of T with labels taken from {vy, ..., v, }, of the sum over the parent-
child edges of T of the transition costs given by [on the labels, and write
this as

cost(T, 1) = ming{cost(T,s,[)}

If I and I’ are integer edge labelings of K,,, and T is as above, then define
I~ I”if and only if Js such that

cost(T,1) = cost(T, s,1) = cost(T, s,1") = cost(T, 1)

and define [~ I’ if and only [~7 I’ for all such trees T.
For i,7" € {1,...,n} define i ~ i’ if and only if:

1. |Vi] = |Vi/| = m so that the only difference between D; and D, is in
their arc-labelings [and I’, and
2.0~ 1.

The kernelization algorithm can now be described quite simply. et 7
be an instance of the problem. If there are indices i #* i’ for which ¢ ~ ¢/,
then modify 7 by combining these into one character state digraph with the
state transition cost function given by the arc-labeling given [+ ', where
these are the cost functions for 1; and D, respectively. Tet Z’ denote the
modified instance.

The correctness of the reduction to the smaller instance is obvious. We
need only to note that the equivalence ¢ ~ ¢/ can be determined in time
bounded by a function of the parameter and that number of equivalence
classes is similarly bounded by a function of the parameter.]

The parameter function for this simple kernelization algorithm is not
very good and can probably be much improved. We remark that most of
the expense is in determining when two transition digraph indices 7 and 7/
are equivalent by testing them on all possible trees with ko leaves. This

PARAMETERIZED COMPLEXITY 31

suggests a heuristic algorithm that combines indices when they fail to be
distinguished by a (much smaller) random sample of trees and leaf-labelings.

In §1 we reported an encounter with an evolutionary biologist who re-
ported earlier, rather fruitless interactions with theoretical computer sci-
entists who proved that his problems were NP-complete and “went away”.
We claimed that we were different! and that we had a result on one of his
computational problems (THE STEINER PROBLEM FOR HYPERCUBES) that
might be of interest. After we described the FPT algorithm he said simply
[Fel97]:

“That’s what I already do!”

4.4. Kernelization and Heuristics: A Universal Connection.
The example problems we have considered above exhibit a profound connec-
tion between kernelization algorithms for an FPT problem, and heuristics
for the general unparameterized problem. The connection goes in both di-
rections:

e An improved algorithm for the general problem, applied to the pro-
blem kernel, may extend the useful range of parameter values for
which the problem is well solved.

e Because the kernelization phase simplifies and decreases the size of the
problem instance, it is a reasonable first step for any general attack
on the unparameterized problem.

It is interesting to investigate the question of to what extent good ker-
nelization algorithms are typical of problems in FPT. This can be formalized
as follows.

DEFINITION 4.7. A parameterized problem [is kernelizable if there is
there is a parametric transformation of I, to itself that satisfies:

1. the running time of the transformation of (2, k) into (2, k'), where
|2| = n, is bounded a polynomial ¢(n, k) (so that in fact this is a
polynomial-time transformation of I to itself, considered classically,
although with the additional structure of a parametric reduction),

2. k' <k, and

3. |#'| < h(k), where h is an arbitrary function.

LEMMA 4.8. A parameterized problem I is in FPT if and only if it is
kernelizable.

Proor. The “if” direction is trivial. We can derive the “only if” direc-
tion from the result proved in [CCDF97] that a parameterized language I,
is in FPTif and only if there is a constant o > 1 and a function f(k) such
that we can determine if (2, k) € L in time O(n” + f(k)). Our kernelization
algorithm for I considers two cases:

1. If k < f~'(n) then in time O(n”) we can simply answer the question.
2. I k> f~'(n) then n < f(k) and the instance (z, k) already belongs
to the problem kernel.

32 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

O

Since we are naturally interested in the efficiency with which problem
kernels can be computed, it makes sense to consider the following modifica-
tion of the above definition. This essentially sets up a time hierarchy inside
of FPT based on the running time of the kernelization algorithm that every
FPT problem has (by the lemma above).

DEFINITION 4.9. Let ¢ be a fixed constant. A parameterized problem
I, is strong n°-kernelizable if there is a recursive function f, a polynomial
g and a parametric transformation of I to itself running in time O(q(k)n")
for n = |2, taking (2, k) to (2’, k") such that:

1. ¥ <k, and

2.] < f(k).
We say L is weak n®-kernelizable if f is not required to be recursive. l.et
K (n°) denote the c-kernelizable subset of FPT (either strong or weak de-
pending on the context).

The following somewhat technical theorem corresponds to the standard
time hierarchy theorem, but is more difficult to prove because of the need
for a “wait and see” argument to deal with the parameter functions.

THROREM 4.10. If ¢ < ¢ are constants, then
K(n%) Cc K(n”)C FPT

Proor. It is sufficient to prove that K(n®) ¢ FPT(n®) for all ¢ > 1,
where by strong F/PT(n®) we mean the parameterized problems solvable in
time f(k)n® for some recursive function f. We will only do the case ¢ =1,
the more general case follows by the same technique. We consider the strong
flavor of the theorem first.

let ¢. denote the e-th partial recursive function. Let ¢g. denote the
e-th parametric self reduction, so that ¢g. : (2,k) — (he(2),q-(k)), and is
polynomial in k&, say in time |k|%, but linear in |z|. Tt suffices to construct a
F'PT(n) language . to meet the requirements R.; below.

R.;: either ¢; is not total or

30,k [ho ()] £ i(k) or
Ak (g ((x, k) € L iff (a,k) & L).
We set, aside row (e, 1) for the sake of requirement R.;. Our language
I, will be in FPT with each row in time 2%|z|. At each stage s we will look
only at one requirement, cycling through the requirements so that we see
them infinitely often. At stage s we will decide the fate of all strings (z, k)
with |z| = s. For a single requirement R.;, our strategy is as follows. We
need to do nothing until we arrive at a stage s where @;(k) | in fewer than
s steps. At this stage R.; becomes active. Note that if R.; never becomes
active then ¢; is not total. (Similarly we can now check that |h.(x)| < ¢;(k),
which will be implicit in the discussion below.)

PARAMETERIZED COMPLEXITY 33

We next consider an active requirement, at a stage t where we can know
that 271t > |k|°t 4 ¢, (k). Note that at such a stage, we can, in 2571 steps,
work out the image of (17, k) under g., namely (h.(17),q.(k)) = (', &),
say. The diagonalization is then simple. If we see that we have already put
(2', k') into I then we declare that (2, k) will be kept out of L. If we see
that we have (', k') & I then we put (2, k) into L.

This concludes the strategy for a single requirement R.; and there is
obviously no problem in dealing with the combinations of requirements.

In the arbitary case, where f is not computable, then we will replace the
requirement, R.; above by the infinitely many requirements R.; ; below.

Rei;: either Jz, kh.(z) £ jor
Ak (ge((2, k) € Liff (a2, k) &).

The idea is that j is the “guess” we will use for f(k). While we think
that f(k) = j we regard j as active. We activate j+ 1 when j proves wrong.
If all the j prove wrong then there is no value for f(k). We devote a single
row (e, 1) to the collection {R.;; : j € IN}. Theidea is essentially the same.
When we consider j, we will be looking for stages ¢ where 25714 > |k|°t + 5.
If we see that the size of h.(1') exceeds j then we cancel j and move on to
7+ 1. If not, then we can diagonalize as before.]

Cheeseman et al. [CKT91] have discussed (essentially) the idea that
reduction to a problem kernel is a strategy that can and should be applied
as a preprocessing step for any computational problem. They describe re-
duction rules for GRAPH COLORING, and present some statistical evidence
that the set of reduced instances represent a complexity “phase transition”
where the hard instances of the problem are concentrated.

4.5. FPT Methods and Other Means of Coping. There seem to
be fairly strong methodological connections between FPT algorithm design
methods and methods for devising polynomial-time approximation schemes
and other approximation heuristics. Such a connection might naturally be
expected, since in an approximation scheme for an NP-hard problem, one
would normally anticipate a running time exponential in k& = 1/¢ for an
algorithm that computes an approximation to within a factor of (14 ¢€) of
optimal. (This is isn’t strictly necessary, since the problem may have a fully
polynomial-time approzimation scheme (see [GJ79]). However, these seem
to be quite rare.) We mention three examples of connections between FPT
methods and other coping strategies, especially approximation.

Examprr 4.1 (Efficient Approximation Schemes for Planar Graphs).
A notable example of efficient approximation is the family of schemes de-
vised by Baker [Ba94] for planar graph problems. The basic idea is quite
simple and very much based on the standard FPT techniques of bounded
treewidth and pathwidth (thoroughly exposited in [DF98]). For concrete-
ness, consider the problem of computing a minimum dominating set for a

34 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

Fraurrk 5. Nlustration of bounded width onion decomposi-
tion for a planar graph. The figure on the left shows the
boundaries of the layers.

planar graph. Starting from a planar embedding of the graph (7, we can de-
fine a kind of “onion” decomposition of (7. The layers of this decompostion
can be defined in such a way that each has bounded treewidth. Figure 7
illustrates the idea.

The basic idea is to solve the problem exactly for each layer, using boun-
ded treewidth machinery, and then combine the solutions for the layers.
There is a small amount of inefficient overlap as the solutions for the layers
are combined (by taking the union of the relevant vertex sets, for example).
As the width of the layers is increased (at the usual FPT costs for boun-
ded treewidth algorithms), the overall effect of the inefficient overlap on the
goodness of the approximation progressively decreases, yielding an approx-
imation to within a factor of (1 4 ¢€) of optimal for G for an appropriately
chosen width of the layers. This same idea can be applied to a number of
other graph problems.

ExaMPLE 4.2 (Testing Hereditary Properties Efficiently on Average).
One of the few general techniques for devising algorithms that are efficient
on average has been described by Gustedt and Steger [GS94] based on ob-
struction sets, one of the most powerful ideas in the FPT toolkit. The basic
idea of their approach is that for some properties of combinatorial objects
that are lower ideals in an appropriate partial order (which implies that
the property is characterized by an obstruction set), the probability may be
high for “typical” inputs that the answer is “no” (the object does not have
the property), and that this sometimes can quickly be detected by checking
for obstructions (not necessarily all of them). This strategy is employed
as a preface, quickly answering the question for most inputs, thus raising
the performance on average of whatever algorithm is used to deal with the
remaining cases. Arguing along similar lines to our discussion of kerneliza-
tion, they point out that this is a reasonable preface for any algorithmic
attack on these kinds of problems. Our Algorithm 4.5 can be viewed in
part as an example of this strategy. Langston et al. have similarly used

PARAMETERIZED COMPLEXITY 35

approximate obstruction sets to design heuristics for VLSI layout problems
[LR91, GLR92].

ExamMpLE 4.3 (Tterative Approximation Heuristics). An important ex-
ample of a much-used approximation heuristic is the k-Opt heuristic for
the TRAVELING SATLESMAN PROBLEM [JMe97]. This can be viewed as a
simple example of the following general recipe for the design of local search
heuristics based on FPT methods.

First: Identify an FPT result for a modification of the problem that can
be used as a subroutine to compute a single iteration of the local search.
(For the &-Opt heuristic for the TSP, the relevant subroutine computes the
best rearrangement of the & pieces into which the current best tour has been
cut. This can be accomplished in time O(k!n).)

Second: Tterate the application of this subroutine.

This design paradigm naturally raises the following question about the k-
Opt neighborhood structure for TSP: Is there an FPT algorithm to compute
the best neighbor s’ of a solution s? Fisher [Fis95] has shown that it is NP-
complete to determine whether there is a local optimum within k steps of s
for the 2-Opt neighborhood structure for TSP. Whether this problem is in
FPTis also open.

4.6. Some Further Discussion.

REMARK 4.11. The design of non-polynomial algorithms has been an
area somewhat neglected by theoretical computer scientists or at least it
is an area in which there are many unexplored opportunities of importance
to the applied community. The design of FPT algorithms systematically
focuses attention in this direction. It is notable how the original, unpa-
rameterized problem is resurrected in the problem kernel (e.g., for VERTEX
CovER in the second phase of the FPT algorithm we are essentially ad-
dressing the problem for a graph of size n with k = /n). Tt would be
interesting to know if any systematic connection can be made between the
“optimum” size of a problem kernel (which requires a definition) and the
complezity threshold for the problem [KS94], or with the structural notion
of the complexity core of the decision problem.

REMARK 4.12. For FPT problems that can be kernelized efficiently we
end up in the happy situation that the problem can be solved for input
of any size, so long as the parameter function f(k) is not too large. This
means that our reward for work on an improved algorithm for the general
hard problem (with k unrestricted) is leveraged in a very significant way for
problems that are FPT (by applying the improved general algorithm to the
kernel). This also suggests measuring our success on an FPT problem I in
terms of c-klams, where the c-klam value of an algorithm A is defined to be
the largest knax such that:

1. L can be solved by A in time f(k) + n°, and
2. flkmax) < U, where U is some reasonable absolute bound on the
maximum number of steps of any computation, e.g., U = 10'? as

36 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

suggested by Yessenin-Volpin [YV70] (or perhaps a somewhat larger
number).

If we can achieve for TREEWIDTH a ¢ = 3 klam value of even just
8 or 10, this will be very significant for practical applications.

REMARK 4.13. The program of dealing with a hard problem by parame-
terizing can be compared to the program in Chapter 4 of Garey and Johnson
[GJ79]of mapping the boundary between NP-hardness and polynomial-time
subproblems in the following way. Suppose that we have an FPT result re-
quiring time O(anc) about the problem Il with parameter k. There are
two different natural “forgetful functors” from the parametric to the clas-
sical framework. The first regards this FPT result as saying that for each
fixed k the classical problem is solvable in polynomial time. The informa-
tion loss in this is obvious, since it forgets entirely the distinction between
FPT and XP (see Table 1). A second possible mapping of the FPT result
to the classical framework would regard this as saying that IT restricted to
k <'logmn is solvable in P-time. In general, it would be fruitful to find, for
a collection of parameters of a problem T, some such bounds (as functions
of the input size n) such that for parameters less than these bounds, IT can
be solved in polynomial time. (I.e., this is a nice canonical kind of subprob-
lem.) But this is precisely the issue in parameterized complexity: for a given
collection of parameters, is there any corresponding collection of bounds (as
functions of n) such that the canonical subproblem defined by these bounds
isin P? W[1]-hardness shows when the answer is probably “no”. Tmproving
the parameter function of an FPT problem is equivalently the problem of
improving such bounds.

REMARK 4.14. We conjecture that the most promising method that the
reader can apply towards developing useful FPT algorithms and heuristics
for NP-hard problems is to purchase the moderately priced and entertaining
book [DF98].

5. Applications of Treewidth to Problems of Logic

In this section we explore the theme of treewidth as a hidden para-
meter in many problems, particularly those of logic and programming lan-
guages. It is possible that treewidth represents one of the most univer-
sal hidden economies of computational tractability. (This section is un-
avoidably somewhat technical; the reader needs to be familiar with the
“Myhill-Nerode” bounded treewidth algorithmic machinery developed in
[FL89, Co90, CL95, AF93].)

Thorup recently proved the remarkable result that the flow graphs that
arise from structured programs have bounded treewidth. The bound on
the treewidth is specific to the particular programming language, depending
on whether certain language constructions (such as loop-exits, conditional
‘or’s, etc.) are allowed. For example, the flow graphs of structured C++
programs have a treewidth bound of 7 [Th97].

PARAMETERIZED COMPLEXITY 37

We explore how treewidth can be applied as a parameter to two problems
in logic, MiNniMUM Axiom SET and STRIPS PrLannNING. These problems
are defined classically as follows.

MINTMUM AXTOM SET

Instance: A finite set S of sentences, an implication relation R consisting of
pairs (A,t) where A C S and t € S, and a positive integer k.
Question: Ts there a set Sg C .S with |So| < k and a positive integer n such
that if we define S; for 1 <1 < n to consist of exactly those t € S for which
either £ € S,y or there exists a set U C S;_¢ such that (U,#) € R, then
S,=57

MiINIMUM AXTOM SET with parameter k has been shown to be complete
for W[P] in [DFKHW94].

ProprosiTioNal, STRIPS PLANNING
Instance: A dimension n representing a number of atomic formulas called
conditions, an initial state vector S € {0,1}” indicating which of conditions
are initially true, a goal vector G € {0,1,x}" expressing the goal in terms
of conditions that should be true (1), false (0) or don’t care (*), and a
collection O of operators, where each operator o € O is a pair o = (P, Q) with
P € {0,1,%}" expressing the preconditions of the operator in the natural
way, and @ € {0,1,%}" expressing the postconditions of the action. An
operator 0 = (P, Q) can be applied to the current state vector X if for all
i, 1 <i<m, P[i]=a € {0,1} implies X[i] = a, that is, the preconditions
naturally expressed by P are met by the state vector X. The state vector
X’ resulting from the operation o in this situation is defined by:

1. X'[i] = X[i] if Q[i] = *, and

2. X'[1] = QJi] otherwise.

Question: Is there a sequence of operations that can be applied, starting
from the initial state vector S, and resulting in a state vector T such that

Vi, 1<i<n: Gi]=a€{0,1} = T[i] = a.

The ProprosiTioNal, STRIPS PLANNING problem was first described
by Fikes and Nilsson [FN71] and was proved to be PSPACE-complete by
Bylander [Byl94].

We must first define how the notion of treewidth can be applied to these
problems. To do this we define two digraph pebbling problems to which
these logic problems can be conveniently translated.

DiGrAPH PEBBLING
Instance: A digraph D = (V, A) for which the vertex set V is partitioned
V = R U B into two classes, the red vertices of I and the blue vertices of
B, and a positive integer k.

Question: Is it possible to pebble each vertex of the digraph according to
the following set of rules?

1. Start with k& pebbles placed on red vertices.

38 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

2. A blue vertex b can be pebbled if there is a pebbled vertex u such
that ub € A.

3. A red vertex r can be pebbled if for every vertex u such that ur € A,
u is pebbled.

If every vertex is red, then this is the same problem as DIRECTED
FEEDBACK VERTEX SET and therefore DIGRAPH PRBBLING is NP-complete
[Karp72]. The parameterized complexity of DIRECTED FEEDBACK VER-
TEX SET (with parameter k) is semi-famously open.

STGNED DIGRAPH PEBBILING

Instance: A red/blue bipartite digraph 1 = (V| A) for which the vertex
set V is partitioned V = R U B into two classes, and also the arc set A is
partitioned into two classes A = AT U A™.
Question: Starting from the start state where there are no pebbles on any
of the red vertices, is it possible to reach the finish state where there are
pebbles on all of the red vertices, by a series of moves of the following form?
A legal move: 1f b is a blue vertex for which VYu such that ub € AT, u is
pebbled, and Yu such that ub € A7, u is not pebbled (in which case we say
that b is enabled), then the set of vertices v such that bv € A4 are reset by
making them all pebbled, and the set of vertices v such that bv € A~ are
reset by making them all unpebbled.

We leave it to the reader to verify that an instance 7 of MiNIMUM AXTOM
SET can be naturally translated into an instance 7’ of DIGRAPH PRBBLING,
where the set of sentences S of 7 becomes the set of blue vertices B of 7.
We can define the treewidth of T to be the treewidth of the digraph of 7.
The representation of a ProposiTioNal, STRIPS PLANNING instance as
an instance of SIGNED DIGRAPH PREBBLING is equally straightforward, and
we adopt a similar notion of the treewidth of an instance.

We now consider the following parameterizations of these problems. By
DiaraPH PEBBLING | we refer to this problem with the parameter k. (This
is complete for W[P] by the results on MINIMUM AXT10M SET cited above.)
By DiGrRAPH PEBRBLING 1T we refer to this problem with parameter (k, w)
where w is the treewidth of the instance. By SIGNED DiGrAPH PEBBLING |
we refer to this problem with parameter w, where w is the treewidth of the
instance, and by StaNED DigrarH PEBBLING IT we refer to this problem
with parameter (k,w) where w is the treewidth, and where £ is a bound
on the number of moves in which to reach the finish state. Note that the
number of moves is a reasonable parameter for planning problems. The new
results that follow all make use of the Myhill-Nerode techniques for bounded
treewidth developed in [M P94, FL89, AF93, BFW92, FHW93, DF98].

We remark that it appears difficult to express either DIGRAPH PEBRBLING
IT or StGNED DiGRAPH PEBBLING II in Monadic Second-Order logic, a very
powerful but not always applicable method for obtaining tractability results
for bounded treewidth (see [Co90] and [DF98] for expositions).

In order to apply the Myhill-Nerode machinery for bounded treewidth
the key notion that is needed is that of a t-boundaried graph, which is just a

PARAMETERIZED COMPLEXITY 39

graph with ¢ distinguished vertices. What is ultimately going on is that the
structure of a bounded treewidth graph or digraph is represented by a rooted
labeled parse tree. A graph of treewidth bounded by ¢ can be parsed in linear
time (i.e., this problem is linear FPT) by a theorem of Bodlaender [Bod96].
If F is a set of rooted labeled trees, then leaf-to-root tree automata provide
a notion of finite-state recognizability for 7. The Myhill-Nerode theorem for
bounded treewidth relates finite-state recognizability of F to the amount of
information that must flow across a t-sized boundary in order to determine
membership in F. The machinery is applicable not just to ordinary graphs,
but also to finitely edge- and vertex-colored digraphs.

TurorREM 5.1. DigraPH PEBBLING I1 45w FPT.

Proovr. It is sufficient to argue that the canonical equivalence relation
on t-boundaried (vertex-colored) digraphs, for the family Fj of k-pebblable
digraphs, has a finite number of equivalence classes for each fixed pair (¢, k).
We first review the essential notions.

By a t-boundaried digraph we mean a digraph D = (V, A) equipped
with ¢ distinguished vertices labeled 1,...,t. We refer to these vertices as
constituting the boundary set d(D) C V. The interior vertices of D are those
vertices that are not boundary vertices, and we write int(D) =V — (D).

If D and D’ are t-boundaried digraphs, we say that they are compatible
if their boundaries are colored in the same way, that is, for 2 = 1, ...t the
ith boundary vertex of D is red (blue) if and only if the ith boundary vertex
of D" is red (blue).

If D and 7Y are compatible t-boundaried digraphs, then by D @& I
we denote the digraph obtained by identifying the vertices i € d(D) with
i € (D) for i =1,...,t. The canonical equivalence relation on the set of all
2-vertex-colored t-boundaried digraphs, for a family of such digraphs F, is
defined for compatible digraphs by:

D~z D ifandonlyif YD": D D" e FesDaoD"eF

Fix k and £. Our approach is to define a different (easier to work with) equiv-
alence relation ~ on t-boundaried digraphs, and then to show two things:
Claim 1. that ~ has finite index, and

Claim 2. that D ~ D' implies D ~x D', where F = F}.

This allows us to conclude that ~z_ has finite index on f-boundaried di-
graphs.

Our definition of ~ is based on a set of abstract fests in the sense
of the “method of test sets” developed and exposited in [FL89, AF93,
CDDFL98, DF98].

A test T is specified by the following information:

1. A partition of {1,...,1} into two subsets, the red subset Tr and the
blue subset Tg.

2. A boundary starter set S C {1,...;t}. (We will use kg to denote the
size of S.)

40 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

3. A positive integer ky such that kg4 &y < k. (We will use ks to denote
k— ko — ki)

4. A permutation = of {1,...,¢} — S.

5. A subset Q C Tp.

A test T is compatible with a t-boundaried red/blue digraph D if the
partition given in (1) accords with the colors of the boundary vertices of D.

let T denote the set of tests. We have the bound on the size of the test
set,

|T| < k2%'1!
For a digraph D = (V| A) and a vertex v € V| let

pred(v) ={u €V :uv € A}

By a pebbling sequence for a t-boundaried digraph D we mean a per-
mutation ¢ of the vertices of). If ¢ is a pebbling sequence for D and v
is a vertex of I, then v is legal with respect to o if either of the following
statements holds:

1. v is a blue vertex, and at least one predecessor of v precedes v in o.
2. vis a red vertex, and every predecessor of v precedes v in o.

Say that a t-boundaried digraph D = (V| A) passes the test T € T if T
is compatible with D and there is a pebbling sequence ¢ for D that satisfies
the requirements:

1. The prefix ¢’ consisting of the first kg + k; vertices of o includes the
ko vertices of S and ky additional interior vertices of D.

2. The order in which the vertices of (D) — S occur in o is specified by
the permutation 7 of (D) — S.

3. Every red vertex not in the prefix ¢’ is legal.

4. FEvery blue vertex b not in the prefix ¢’ is either legal or belongs to
Q.

Intuitively, the set () represents blue vertices that will be pebbled for
“reasons on the other side of the boundary”.

Let T(D) denote the set of tests passed by 1. Given two t-boundaried
digraphs D and D’ define DD ~ I if and only if T(D) = T(D’). Since the
relation ~ is defined in terms of equality of sets, it is clearly an equivalence
relation.

Now that we have defined a suitable equivalence relation, we have only
to prove the two Claims listed above. Claim 1 is trivial, since T is finite.

Proof of Claim 2. We argue by contraposition. Suppose D oLzx D',
and let this be witnessed by a t-boundaried digraph X with D@ X € F
and D' ® X ¢ F. let o denote a permutation of the vertices of D @& X
corresponding to a successful k-pebbling. Thus every vertex u occuring in
o after the initial prefix of length k is legal with respect to D @ X. Let S
denote the starter set of size at most k for the successful pebbling (consisting

PARAMETERIZED COMPLEXITY 41

of both interior and boundary vertices), and let Sy denote the subset of S
on the boundary

So=8SnNadDas X)

with kg = |Sp|. Let ky denote the size of S Nint(D). Let © denote the
permutation of (D) —Sg inherited as a subsequence of 0. Then D passes the
test T defined by the information: (1) the color partition of the boundary, (2)
the boundary starter set Sy, (3) the positive integer ky, (4) the permutation
7, and (5) the set @ consisting of those blue vertices of the boundary which
are illegal for o restricted to the vertices of D.

We argue that 1)’ fails 7. Suppose not, and let ¢’ be a permutation of
the vertices of D’ that starts with Sy followed by k; interior vertices of)’
that is a valid pebbling sequence for 1)’ showing that it passes the test 7.
Using ¢’ we can modify o to obtain a valid pebbling sequence for I/ & X
and reach a contradiction. The contradiction will allow us to conclude that
D’ fails T and thus D’ o4 D, which will establish Claim 2.

The modification of ¢ is described as follows. The permutation o can be
partitioned into three subsequences oq, o1 and a5 according to membership
in the three disjoint sets of vertices d(D @ X)), int(D) and int(X). The
modification consists of two steps:

1. The subsequence o7 is deleted.
2. Substrings of ¢’ are inserted.

The relevant substrings of ¢’ are those consisting only of interior vertices
of I that are bounded by either the initial block of starter vertices for the
pebbling of I described by ¢’ or by vertices of the boundary, or by the
end of the sequence. Fach such substring of interior vertices of 1)’ has a left,
boundary and a right boundary. Call the substring whose right boundary
is the end of ¢’ the last substring. All of the other substrings have a right
boundary consisting of a boundary vertex of).

These substrings, other than the last substring, should be inserted into
the modified o just before each boundary vertex in o, and the last substring
should be concatenated to the end of the modified result. The block of
interior starter vertices of ¢’ should be concatenated to the beginning of the
modified o. Call the result of all this ¢”.

The point of all these modifications is to produce a pebbling sequence ¢”
that works for '@ X . What we have done is replace “what happened inside
of D” according to o, with equivalent bits from ¢’ describing how D’ can
pass the test T, which simply records “what D saw of X” in the pebbling
described by o (where D interacts with X only across the boundary). It is
not hard to check that ¢” is a valid pebbling sequence for I’ § X . O

Figure 6 illustrates the argument. The boundary vertices of the two
digraphs D and D’ are indicated in bold in Figure 6(i) and Figure 6(ii).
The boundary size is t = 2. We will take £ = 1 It happens to be a fact
that D ~ D’. The sequence o = (a,b,c,1,0,2,d,u) is a valid pebbling
sequence for D @ X. The test T that corresponds to this is specified by:

42 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

® [[e] ® 0] [

N

(i) digraph D (ii) digraph D’ (iii) digraph X

2] ® [L])

L X X

©) [¢] ® 0J0) ®

(iv) D@ X V) D ®X

:

Fiaurrk 6. Examples for Theorem 5.1.

(1) the obvious partition of the boundary, (2) So = 0, (3) kv = 1, (4)
© = (1,2), and (5) @ = {2}. Note that I’ passes the test T with the
sequence o’ = (e, f,1,2,h,g). Using this to modify o as described we get
o” = (e, f,1,0,2,u,h,g), a valid pebbling sequence for D’ & X.

REMARK 5.2. The algorithm implicitly described by Theorem 5.1 con-
sists of two parts: (1) the computation of a tree decomposition, and (2) the
evaluation of the resulting parse tree by a finite-state leaf-to-root tree au-
tomaton. The time complexity arising from (1) is bounded by the running
time of Bodlaender’s algorithm, 0(235“’377/) for a graph on n vertices and
treewidth w. Given the tree decomposition, part (2) consists only of mak-
ing finite-state transitions, which is fast. The problem is that the automaton
that represents the algorithm may be very large. Based on the proof of the
theorem, the best we can say is that the automaton has 0(2]“227”“’!) states.
This means that the practical difficulty is more likely to be about space than
time, although this bound on the number of states is undoubtedly extremely
pessimistic.

THEOREM 5.3. SIGNED DIGRAPH PEBBLING 1T 75 in FPT.

SKETCH. This is proved in much the same way, the key point being that
there is a finite set of abstract tests that define an equivalence relation on
the edge- and vertex-colored digraphs that refines the canonical equivalence
relation. How to define these tests is the essential matter.

Since only k moves are to be made, the boundary would be in a sequence
of at most k different states in the course of a solution. Note that there are
at most 2! different states that the boundary set can be in, in terms of which
vertices of the boundary set are pebbled. A suitable test is specified by the
sequence of boundary states (including information on which blue vertices
of the boundary are “enabled” for a move by the states of their predecessors
in the interior of 1), and a budget of some number of moves (always less

PARAMETERIZED COMPLEXITY 43

N

O

i branches

o
=
o
=
o
[

[1 =Dblue

L]
boundary(t = 1)

F1GURE 7. The trees for Theorem 5.4

than k) to get from one state to the next in the sequence, together with a
specification of at most k changes of the boundary state due to actions on
the other side. Call all this information a plan for a k-step pebbling of the
digraph. The number of plans is bounded by a function of ¢+ and k. The
question that defines the test for a digraph) is whether D can realize this
plan, ending up with all of its red interior vertices pebbled.

The size of an appropriate set of tests 7 can be bounded by | 7] < 32Fk*,
which leads to a crude bound on the size of the resulting automaton of
O(Qg%tkk) states. O

THROREM 5.4. SIGNED DIGRAPH PEBBLING is not finite-state for any
fized treewidth bound t > 1.

Proor. Given the machinery, the argument is quite simple. Recall the
usual argument using the Myhill-Nerode theorem that the formal language
L ={a"b" : n > 0} is not regular (i.e., finite-state recognizable by a linear
automaton). The argument consists simply in exhibiting an infinite set of
words x; such that if ¢ # j then there is a word y; ; with 2;y;; € L and
x;y;; ¢ L. One can take z; = a' fori=1,2,...and Yi 5 = b'. We make here

44 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

a completely analogous argument. (Other examples for graph problems can
be found in [AF93, BFW92, FHW93, DF98].) We describe an infinite
family of trees T; for i = 1,2, ... such that if + #£ j, then there is a compatible
tree T; ; such that:

1. T; @ T;; is a “yes” instance for the problem.
2. T; ®T;;is a “no” instance for the problem.

The trees T; are shown in Figure 7. Each tree T; consists a single blue
boundary vertex connected to a red vertex to which 7 pendant paths of
length 2 are attached. We can take T; ; = T.

The reader can easily verify that 1 and 2 hold.]

We suspect that STGNED DIGRAPH PEBBLING 1 is W[1]-hard. (It may
even be that SIGNED DIGrRAPH PEBBLING is NP-hard for trees, which would
imply W[P] hardness.) It seems that the length of the plan is an important
parameter on which to focus on for the STRIPS PLANNING problem, in
order to obtain tractable restrictions of the problem.

6. A Working Guide to Parametric Intractability
The main classes of parametric complexity are described in the tower:
FPT CW[]CW[2]C---CW[SAT|C W[P] C AW[P]C XP

The focus of this survey is on the analysis of concrete computational
problems. For this purpose, all of the beautiful structural questions associ-
ated with the degrees of parameterized complexity, and even the definitions
of most of the classes in the above hierarchy, are not very important. Suf-
fice it to say that the W[t] classes have natural complete problems that are
variants of SATISFIABILITY. For concrete problem analysis, only the three
classes

FPT CW[1]C XP

have compelling practical significance, where XP is the family of param-
eterized languages that can be recognized in time O(f(k)n?*)) where f
and g are arbitrary functions. Knowing that a problem is in XP has some
practical value and can be difficult to show. For example, for UN1T TASK
LENGTH PRECEDENCE CONSTRAINED k-PROCESSOR SCHEDULING it is a
famous open problem (discussed in [GJ79]) whether thisisin XPor whether
it is NP-complete for any fixed k, although it is proved in [BF95] be hard
for W{2].

Table 3 exhibits some of the many results that are now known about the
complexity of naturally parameterized problems. Those problems which are
only known to be hard for a parameterized class (as opposed to complete)
are annotated as such. (The problem definitions can be found in Garey and
Johnson [GJ79] and also [DF98] where there is a comprehensive inventory
of known results.) The problems in the table are all known to belong to XP,
with the exception of k-PROCESSOR SCHEDULING.

PARAMETERIZED COMPLEXITY

45

[INEAR INEQUALITIES [ADF95]

WI[P] MINIMUM AXTIOM SET [DFKHW94]
SHORT SATISFIABILITY [ADF95]
WERIGHTED CIRCUIT SATISFTABILITY [ADF95]

WI[SAT] WEIGHTED SATISFIARILITY [ADF95]

[LONGEST COMMON SUBSEQUENCE [BDFHWO95]
(k = NUMBER OF SEQS.,|Y|) (hard)

WIt], FrASIBLE REGISTER ASSIGNMENT (hard) [BFH94|

for all £ TRIANGULATING COLORED GRAPHS (hard) [BFH94]

BanpwinTw (hard) [BFH94]
PROPER INTERVAL GRAPH COMPLETION (hard) [BFH94]
WERIGHTED ¢ NORMATIZED SATISFTABILITY [DF95a]
WEIGHTED {0,1} INTEGER PROGRAMMING [DF95a]

WI[2] DOMINATING SET [DF95a]
TOURNAMENT DOMINATING SET [DF95¢|
UNTT LENGTH PRECEDENCE CONSTRAINED [BF95]
SCHEDULING (hard)
SHORTEST COMMON SUPERSEQUENCE (k) (hard) [FHK95]
Maximum LIKELTHOOD DECODING (hard) [DFVW93]
WEIGHT DISTRIBUTION N [INEAR CoDEs (hard) [DFVW93]
NEAREST VECTOR IN INTEGER [LATTICES (hard) [DFVW93]
SHORT PERMUTATION GROUP [CCDF96]
FacTor1zZATION (hard)

WI[1] SHoORT PosT CORRESPONDENCE [CCDF96]
WEIGHTED ¢ CNF SATISFIABILITY [DF95b]
VAPNIK CHERVONENKIS DIMENSION [DEF93]
[LONGEST COMMON SUBSEQUENCE [BDFW95]
(LENGTH m COMMON SUBSEQ. FOR k SEQS., PARAMETER (k, m))
INDEPENDENT SET [DF95b]
SQUARE TILING [CCDF96]
MoNoTONE DATA COMPLEXITY FOR [DFT96]
RELATIONAT, IDATABASES
kE-STEP DERIVATION FOR CONTEXT [CCDF96]
SENSITIVE (GRAMMARS
CLIQUE [DF95b]
SHORT NTM COMPUTATION [CCDF96]
FEEDBACK VERTEX SET [DF95¢|

FPT GraAPH GENUS [RS85]
MINOR ORDER TrST [RS85]
TREEWIDTH [Bod96]
VERTEX COVER [BFR98]

TaBLE 3. A Sample of Parametric Complexity Classifications

46 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

6.1. The Nature of the Evidence for Parametric Intractability.
As in the theory of NP-completeness, there are two kinds of evidence indi-
cating, when a parameterized problem is hard for WJ1], that it is unlikely
to be fixed-parameter tractable. The first is that given a sufficient amount
of unsuccessful effort to demonstrate tractability for various problems in a
class, the knowledge that a problem is hard for the class offers a caution-
ary sociological message, of the sort depicted in the famous cartoon in the
opening pages of [GJ79]. As shown by Table 3, the amount of evidence of
this sort is now substantial.

A second reason for the belief that W{[l1]-hardness implies parametric
intractability, is rooted in the following fundamental theorem [DFKHW94,
CCDF96].

THrEOREM 6.1 (Downey-Fellows). The k-STEP HALTING PROBLEM FOR
NONDETERMINISTIC TURING MACHINES is complete for W{1].

On input consisting of a Turing machine M and a positive integer k
(with k being the parameter), the question is whether M can reach a halting
configuration in at most k steps. This problem is so generic and opaque that
it is hard to imagine that there is any algorithm for it that radically improves
on simply exploring the n-branching depth & tree of allowed transitions
exhaustively. The theorem can be viewed as essentially a miniaturization of
Cook’s Theorem.

In general, W-hardness results tend to be harder to prove than theorems
about NP-completeness, because of the control requirement concerning the
parameter. CLIQUE is a typical starting point for W[1]-hardness arguments.
It is interesting that most natural parameterized problems seem to belong
to a small number of degrees (FPT, W[1], W[2], W[P], AW[x] and AW[P];
for details see [DF98]).

6.2. W[l]-Hard Means No Good PTAS. One might suspect that
parameterized complexity is related to the complexity of approximation. A
very good connection is supplied by the following theorem first proved by
Bazgan [Baz95], and later independently by Cesati and Trevisan [CT97],
strengthening an earlier result of Cai and Chen [CC97].

DEFINITION 6.2. An approximation algorithm has an efficient PTAS if
it computes a solution within a factor of (14 ¢€) of optimal in time O(f(€)n®)
for some constant c.

DEFINITION 6.3. For a maximization (resp. minimization) problem A,
the induced language I 4 is the parameterized language consisting of all
pairs (2, k) where 2 is an instance of A4 and opt(x) > k (resp. opt(z) < k).

THREOREM 6.4 (Bazgan). If A has an efficient PTAS then L4 € FPT.

Thus if the parameterized problem naturally associated with an opti-
mization problem A is hard for W[1], then A cannot have an efficient PTAS
unless F'PT = W][1]. Tt is worth noting that some (but by no means all)

PARAMETERIZED COMPLEXITY 47

NP-completeness reductions are serendipitously parametric and thus pro-
vide demonstrations of W[1]-hardness and non-approximability “for free”.
An important optimization problem that has a PTAS but is not known to
have an efficient, PTAS is the FUCLIDEAN TRAVELING SALESMAN PROBLEM.
The PTAS for this problem due to Arora runs in time O(n%/¢) [Ar96].

6.3. The Complexity of Propositional STRIPS Planning (for
Short Plans) and k-Step Petri Net Reachability. We prove two neg-
ative complexity results about k-step ProposiTioNnar, STRIPS PLANNING
and k-step PETRI NET REACHABILITY (for parameter k) for otherwise un-
restricted inputs to these problems. These results should be interpreted
as indicating that some sort of structure on the Petri nets and the set of
planning options is a vital parameter for tractability of these problems.

THREOREM 6.5. k-STEP PROPOSITIONATL STRIPS PLANNING is hard
for W(1].

Proor. We reduce from the k-STEP HATTING PROBLEM FOR NONDE-
TERMINISTIC TURING MACHINES that is proved to be complete for W[1] in
[CCDF96]. Tet the instance of the HATLTING PROBLEM consist of the Tur-
ing machine M = (Q, 3,4, F) where () is the set of states, 3 is the alphabet,
4 is the transition relation, and F is the set of accept states, together with
a positive integer k& (the number of steps of a computation).

The dimension n of the instance of STRIPS PLANNING to which we
reduce (M, k) is given by

n=|Q|+1+k+ k>

We can think of the components of the vectors of the STRIPS Pran-
NING as belonging to & + 3 blocks. The first block of size |@| will be con-
strained to have exactly one component that is a “1” with all the rest “07,
indicating the state of M. The second block of size 1 indicates whether the
state indicated by the “1” component of the first block is an accept state of
M. The third block of size k indicates the position of the tape head of M.
The k remaining blocks, each of size |Y|, indicate the symbols on the k tape
squares that might be visited during a k-step computation.

Each possible transition of M:

(g,0) & (p,b, X) where X € {L, R}

becomes k different STRIPS operators (one for each of the locations on the
tape where the transition may occur).
We leave the remaining details to the reader. U

THEOREM 6.6. k-STEP PETRI NET REACHABILITY is hard for W([1].

For the definition of the PETRI NET REACHABILITY problem we refer
the reader to [Pet81].

48 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

Proor. The reduction from k-STEP STRIPS PLANNING to k-STEP
PETRI NET REACHABILITY is essentially trivial, using two places of the
Petri net to represent each component of the planning vectors.]

Showing that these problems belong to W[1] is straightforward and can
be done in much the same manner as the proof that the k-STrp HALT-
ING PROBLEM FOR NONDETERMINISTIC TURING MACHINES is in W[1] (see
[CCDF96]).

6.4. The Upper Reaches of Parametric Complexity. There are a
number of naturally parameterized problems, such as GraPH k-COLORING
that are NP-complete for fixed values of k. Does the theory of parameterized
complexity have anything to say about these? Since this is a well-defined
parameterized problem, it has to be located somewhere in the parametric
degree structure. The following theorem shows that the hierarchy of param-
eterized complexity classes seems to disappear into clouds of unknowing at
the top end.

THROREM 6.7. The naturally parameterized GRAPH k-COLORING pro-
blem has an imponderable relationship to XP in the following sense:

1. If GraPH k-COLORING is in XP then P = NP.
2. If GRAPH k-COLORING is hard for XP then P #£ NP.

Proor. Clearly, if GRaAPH k-CoOLORING belongs to XP then P = NP.
On the other hand, if it is hard for XP, then P == N P by the following argu-
ment. For each k, let I, be a problem that is complete for DTIME(n*) by
a polynomial-time reduction, such as the k-Mice CAT AND MoUsE GAME
problem [DF98]. Consider the parameterized language

L={(y,k):y€ Ly}

It is obvious that I, € X P. Suppose that there is a parametric reduction
of I to GrapH k-CororiNG. Thus from (y, k) we can produce a graph
G of size bounded by f(k)n® and an integer &' = ¢(k) such that G is ¥’
colorable if and only if (y, k) € L, i.e., y € Li, where f, g are some fixed but
arbitrary functions, ¢ is a constant and n = |y|. The time required for the
transformation can also be assumed to be bounded by f(k)n°.

If P = NP then there is an algorithm running in time O(n“l) that can
decide if (¢ is k’-colorable, and thus we have a way of determining whether
y € L in time bounded by h(k)n““ for some function A and constant .
When k and n are sufficiently large this contradicts the DTIME hierarchy
theorem. U

Thus we are unable to say anything about the relationship of GrRAPH
CoroRrING and XP without settling the question of whether P = N P.

7. The Role of Parameterized Complexity Analysis

The current approach to the analysis of concrete computational problems
is dominated by two kinds of effort:

PARAMETERIZED COMPLEXITY 49

(1): The search for asymptotic worst-case polynomial-time algorithms.
(2): Alternatively, proofs of classical hardness results, particularly NP-
hardness.

We expect that these will become substantially supplemented by:

1"Y: The design of FPT algorithms for various parameterizations of a
g g p
given problem, and the development of associated heuristics.
2'): Alternatively, demonstrations of W[1]-hardness.
Ys

We think this will happen because we are inevitably forced towards some-
thing like an ultrafinitist [YV70] outlook concerning computational com-
plexity because of the nature of the universe of interesting yet feasible com-
putation. The main point of this outlook is that numbers in different ranges
of magnitude should be treated in qualitatively different ways.

The pair of notions (1) and (2') are actually rather straightforward
mutations of (1) and (2), and they inherit many of the properties that have
made the framework provided by (1) and (2) so successful. We note the
following in support of this position.

e The enrichment of the dialogue between practice and theory that
parameterized complexity is based on always makes sense. It always
makes sense to ask the users of algorithms, “Are there aspects of your
problem that may typically belong to limited distributional ranges?”

e Fixed-parameter tractability is a more accurate notion of “the good”.
If you were concerned with inverting very large matrices and could
identify a bounded structural parameter k& for your application that
allows this to be done in time O(2%n?), then you might well prefer this
classically exponential-time algorithm to the usual O(n?) polynomial-
time algorithm.

e The “bad”, W[l]-hardness, is based on a miniaturization of Cook’s
Theorem in a way that establishes a strong analogy between NP and
WI1]. Proofs of W[1]-hardness are generally more challenging than
NP-completeness, but it is obvious by now (see Table 3) that this is
a very applicable complexity measurement.

e Problems that are hard do not just go away. Parameterization allows
for several kinds of sustained dialogue with a single problem, in ways
that allow finer distinctions about the causes of intractability (and op-
portunities for practical algorithms, including systematically designed
heuristics) to be made than the exploration of the “NP-completeness
boundary” described in [GJ79].

e Polynomial time has thrived because of the empirical circumstance
that when polynomial-time algorithms can be devised, one almost
always has small exponent polynomials. This is also true for FPT
algorithms.

e Polynomial time is robust in that it seems to support a strong form of
Church’s thesis, i.e., that polynomial time on Turing machines is the

50 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

same as polynomial time on any reasonable computing device. This
also seems to be true for FPT.

e Polynomial time has thrived because it is a mathematically rich and
productive notion allowing for a wide variety of algorithm design tech-
niques. FPTseems to offer an even richer field of play, in part because
it encompasses polynomial time as usually the best kind of FPT re-
sult. Beyond this, the FPT objective encompasses a rich and distinc-
tive positive toolkit, including novel ways of defining and exploiting
parameters.

e There is good evidence that not only are small polynomial exponents
generally available when problems are FPT, but also that simple ex-
ponential parameter functions such as 2% are frequently achievable,
and that many of the problems in FPT admit kernelization algo-
rithms that provide useful start-ups for any algorithmic attack on the
problem.

e The complexity of approximation is handled more elegantly than in
the classical theory, with W[l]-hardness immediately implying that
there is no efficient PTAS. Moreover, FPT algorithm design tech-
niques appear to be fruitful in the design of approximation algorithms.

e Parameterization is a very broad idea. Tt is possible to formulate
and explore notions such as randomized FPT [FK93], parameter-
ized parallel complexity [Ces96], parameterized learning complex-
ity [DEF93], parameterized approximation [BFH97], parameterized
cryptosystems based on O(nk) security, etc.

We feel that the parametric complexity notions, with their implicit ul-
trafinitism, correspond better to the natural landscape of computational
complexity, where we find ourselves overwhelmingly among hard problems,
dependent on identifying and exploiting thin zones of computational viabil-
ity. Many natural problem distributions are generated by processes that
inhabit such zones themselves (e.g., computer code that is written in a
structured manner so that it can be comprehensible to the programmer),
and these distributions then inherit limited parameter ranges because of the
computational parameters that implicitly govern the feasibility of the gen-
erative processes, though the relevant parameters may not be immediately

obvious. 2

8. Some Open Problems

Parameterized complexity has been primarily motivated by concrete
computational problems. The structure theory of parameterized complexity
is very rich, and also not very well developed. One of the main questions is:
how many of the important structural theorems of classical complexity have
parameterized analogs? We know that there is a good analog of Cook’s
Theorem [CCDF96], and there is a good analog of Mahaney’s Theorem

?For a philosophically similar discussion see [Gur8&9].

PARAMETERIZED COMPLEXITY 51

on sparse hard sets [CF96]. There is a partial analog of TLadner’s Density
Theorem [DF93, DF98]. Notably lacking are parameterized analogs of
probability amplification. An analog of Toda’s Theorem [To91] would be
very interesting, as together with the results of [DFR98a] it would show
that UNIQUE k-C1r1QUE is hard for W[t] for all ¢ via randomized parametric
reductions.

FPT or W-Hard? The following concrete problems seem important
to classify because of their significant applications.

1.

The naturally parameterized DIRECTED FEEDBACK VERTEX SET
problem. This can be shown to be equivalent to the naturally param-
eterized DIRECTED FEEDBACK ARC SET problem. For undirected
graphs the problem isin FPT.

. The problem of determining whether it is possible to delete at most

k edges of a graph so that the resulting graph is bipartite.

The problem of determining whether it is possible to delete at most
k vertices from a graph so that the result is an interval graph. This
has important applications in DNA sequence analysis [Sha97].

The problem of determining whether a graph H is immersed in a
graph (7, where the parameter k is the size of H. This is in XP and
the immersion partial ordering of graphs is a well-partial-order by the
major theorems of Robertson and Seymour [RS85, RS96]. GRAPH
TororoGicat, CONTAINMENT is a similarly interesting problem, cur-
rently known only to belong to XP.

The T.oNGEST COMMON SUBSEQUENCE and SHORTEST COMMON
SUPERSEQUENCE problems for k sequences over an alphabet of con-
stant size (asis the case in analyzing biological sequences). If the size
is not constant and the parameter is the pair (s, k) where s is the size
of alphabet and k is the number of sequences, then both problems
are hard for W[t] for all t BDFHW95, Hal96].

The GrapPH ISOMORPHISM problem where the parameter k is the
maximum degree of the graphs. This is in XP by the results of Luks
[Luks82]. This problem would seem to be a reasonable candidate for
representing a parameterized degree intermediate between FPT and
WI(1], for the same reasons that GRAPH ISOMORPHISM classically
seems to represent a polynomial time degree intermediate between
P and NP. On the other hand, parameterized complexity behaves
differently. TOURNAMENT DOMINATING SET, for example, which is
classically intermediate, is precisely W[2]-complete [DF95¢c]. Maxi-
mum degree parameterized GRAPH ISOMORPHISM could even be in
FPT without this entailing any known surprises. On the other hand,
if it could be shown to be hard for W(1], then this would give good
evidence that GRAPH ISOMORPHISM in general is not in P.

It is also reasonable to wonder whether the parameterized complexity

framework might provide new opportunities for addressing such central mys-
teries as the P = NP question. For example, Theorem 6.7 (perhaps only

52 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

weakly) suggests looking for a parametric reduction using an oracle for NP
from the CAT AND MoUSE GaME to GRAPH COLORING. In general, it
seems fruitful to explore the possibilities for stronger connections between
the parameterized and classical frameworks.

Acknowledgments. We would like to thank Mike Hallett and Todd
Wareham for stimulating discussions and assistance in improving the pre-
sentation. On a number of key points, the paper greatly benefited from the
detailed comments and criticisms of an earlier draft by Bernard Moret and

an anonymous referee, and from conversations with Chantal Korostensky of
ETH.

References

[ADF95] K. Abrahamson, R. Downey and M. Fellows, “Fixed Parameter Tractability and
Completeness TV: On Completeness for W[P] and PSPACFE Analogs,” Annals of Pure
and Applied Logic 73 (1995), 235 276.

[AF93] K. Abrahamson and M. Fellows, “Finite Automata, Bounded Treewidth and
Wellquasiordering,” Tn: Graph Structure Theory, American Mathematical Society,
Contemporary Mathematics Series, vol. 147 (1993), 539 564.

[AFGPR96] E. Allender, J. Feigenbaum, J. Goldsmith, T. Pitassi and S. Rudich, “The
Future of Computational Complexity Theory: Part 11,” STGACT News 27 (1996),
3 7.

[AK94] A. Amir and D. Keselman, “Maximum Agreement Subtree in a Set of Fvolu-
tionary Trees Metrics and FEfficient Algorithms,” Tn: 35th Annual Symposium on
Foundations of Computer Science, 758 769, 1994.

[AT.97] E. Aarts and J.K. Lenstra (eds.), Local Search in Combinatorial Optimization,
John Wiley and Sons, 1997.

[AT.MSS92] S. Arora, C. Tund, R. Motwani, M. Sudan and M. Szegedy, “Proof Verifi-
cation and Intractability of Approximation Algorithms,” Proceedings of the TEFE
Symposium on the Foundations of Computer Science, 13 22, 1992.

[AMOV91] G. B. Agnew, R. C. Mullin, T. M. Onyszchuk and S. A. Vanstone, “An Tmple-
mentation for a Fast Public-Key Cryptosystem,” J. Cryptology 3 (1991), 63 79.
[AT96] S. Arora, “Polynomial Time Approximation Schemes for Fuclidean TSP and Other
Geometric Problems,” In: Proceedings of the 37th TFEFE Symposium on Foundations

of Computer Science, 1996.

[AY794] N. Alon, R. Yuster and U. Zwick, “Color-Coding: A New Method for Find-
ing Simple Paths, Cycles and Other Small Subgraphs Within T.arge Graphs,”
Proc. Symp. Theory of Computing (STOC), ACM (1994), 326 335.

[Ba94] B. Baker, “Approximation Algorithms for NP-Complete Problems on Planar
Graphs,” J.A.C.M. 41 (1994), 153 180.

[Baz95] C. Bazgan, “Schémas d’approximation et complexité paramétrée,” Rapport de
stage de DEA d’Informatique a Orsay, 1995.

[BNDFHW95] H. Bodlaender, R. Downey, M. Fellows, M. Hallett and H. T. Wareham, “Pa-
rameterized Complexity Analysis in Computational Biology,” Computer Applications
in the Biosciences 11 (1995), 49 57.

[BNDFW95] H. Bodlaender, R. Downey, M. Fellows and H. T. Wareham, “The Parameter-
ized Complexity of the T.ongest Common Subsequence Problem,” Theoretical Com-
puter Science A 147 (1995), 31 54.

[BF95] H. Bodlaender and M. Fellows, “On the Complexity of k-Processor Scheduling,”
Operations Research Letters 18 (1995), 93 98.

PARAMETERIZED COMPLEXITY 53

[BFH94] H. Bodlaender, M. R. Fellows and M. T. Hallett, “Beyond NP-completeness for
Problems of Bounded Width: Hardness for the W Hierarchy,” Proc. ACM Symp. on
Theory of Computing (STOC) (1994), 449 458.

[BFH97] H. Bodlaender, M. Fellows, M. Hallett, “Parameterized Complexity and Param-
eterized Approximation for Some Problems About Trees,” manuscript, 1997.

[BFR98] R. Balasubramanian, M. Fellows and V. Raman, “An Tmproved Fixed-Parameter
Algorithm for Vertex Cover,” Information Processing Letters 65 (1998), 163 168.

[BFRS98] N. Bryant, M. Fellows, V. Raman and U. Stege, “On the Parameterized Com-
plexity of MAST and 3-Hitting Sets,” manuscript, 1998.

[BFW92] H. Bodlaender, M. Fellows and T. Warnow, “Two Strikes Against Perfect
Phylogeny,” in: Proceedings of the 19th International Colloguium on Automata,
Languages and Programmang, Springer-Verlag, Tecture Notes in Computer Science
vol. 623 (1992), 273 283.

[BGKRS95] R. S. Barr, B. T.. Golden, J. P. Kelly, M. G. C. Resende and W. R. Stewart,
“Designing and Reporting on Computational Experiments with Heuristic Methods,”
J. Heuristics 1 (1995), 9 32.

[BGS95] M. Bellare, O. Goldreich and M. Sudan, “Free Bit and Nonapproximability,”
Proceedings of the 36th Annual IEEF Symposium on the Theory of Computing (1995),
422-431.

[Bod96] H. Bodlaender, “A Tinear Time Algorithm for Finding Tree Decompositions of
Small Treewidth,” STAM J. Comp. 25 (1996), 1305 1317.

[Bry97] D. Bryant, “Building Trees, Hunting for Trees, and Comparing Trees,” Ph.D. dis-
sertation, Department of Mathematics, Univ. Canterbury, Christchurch, New
Zealand, 1997.

[Bry98] N. Bryant, private communication, 1998.

[By194] T. Bylander, “The Computational Complexity of Propositional STRIPS Plan-
ning,” Artificial Intelligence 69 (1994), 165 204.

[CCI7] T.. Cai and J. Chen. “On Fixed-Parameter Tractability and Approximability of
NP-Hard Optimization Problems,” J. Computer and Systems Sciences 54 (1997),
465 474.

[CCDF6] T.. Cai, J. Chen, R. G. Downey and M. R. Fellows, “On the Parameterized Com-
plexity of Short Computation and Factorization,” Arch. for Math. Logic 36 (1997),
321 337.

[CCNDFI7] T.. Cai, J. Chen, R. Downey and M. Fellows, “Advice Classes of Parameterized
Tractability,” Annals of Pure and Applied Logic 84 (1997), 119 138.

[CN94] K. Cattell and M. J. Dinneen, “A Characterization of Graphs with Vertex Cover
up to Five,” Proceedings ORDATL’94, Springer Verlag, l.ecture Notes in Computer
Science, vol. 831 (1994), 86 99.

[CDNFT.98] K. Cattell, M. Dinneen, R. Downey and M. Fellows, “On Computing Graph
Minor Obstruction Sets,” Theoretical Computer Science A, to appear.

[CDM92] A. Colorni, M. Dorigo and V. Manniezzo, “An Tnvestigation of Some Properties
of an ‘Ant Algorithm’” in R. Manner and B. Manderick (eds.) Parallel Problem
Solving From Nature 2, North-Holland, Amsterdam (1992), 509 520.

[Ces96] M. Cesati, “Structural Aspects of Parameterized Complexity,” Ph.D. dissertation,
University of Rome, 1995.

[CF96] M. Cesati and M. Fellows, “Sparse Parameterized Problems,” Annals of Pure and
Applied Logic 62 (1996).

[CKT9I1] P. Cheeseman, B. Kanefsky and W. Taylor, “Where the Really Hard Problems
Are,” Proc. 12th International Joint Conference on Artificial Intelligence (1991), 331
337.

[C187] K. T.. Clarkson, “New Applications of Random Sampling in Computational Geom-
etry,” Discrete and Computational Geometry 2 (1987), 195 222.

54 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

[CT.95] B. Courcelle and J. T.agergren, “Fquivalent Definitions of Recognizability for Sets
of Graphs of Bounded Treewidth,” Mathematical Structures in Computer Science
(1996), 141 165.

[Co90] B. Courcelle, “Graph Rewriting: An Algebraic and T.ogical Approach,” in: Hand-
book of Theoretical Computer Science, vol. B, J. van l.eeuwen, ed., North Holland
(1990), Chapter 5.

[CT97] M. Cesati and T.. Trevisan, “On the Efficiency of Polynomial Time Approximation
Schemes,” Information Processing Letters 64 (1997), 165 171.

[CWO5] M. Cesati and H. T. Wareham, “Parameterized Complexity Analysis in Robot
Motion Planning,” Proceedings 25th TEEFE Intl. Conf. on Systems, Man and Cyber-
netics.

[DEF93] R. Nowney, P. Evans and M. Fellows, “Parameterized T.earning Complexity,”
Proc. 6th ACM Workshop on Computational Learning Theory (1993), 51 57.

[Dend3] G. Deuck, “New Optimization Heuristics: the Great Deluge Algorithm and the
Record-to-Record-Travel,” J. Computational Physics 104 (1993), 86 92.

[DF93] R. Downey and M. Fellows, “Fixed Parameter Tractability and Completeness T1T:
Some Structural Aspects of the W-Hierarchy,” in: K. Ambos-Spies, S. Homer and
U. Schoning, editors, Complexity Theory: Current Research, Cambridge Univ. Press
(1993), 166 191.

[DF95a] R. G. Downey and M. R. Fellows, “Fixed Parameter Tractability and Complete-
ness I: Basic Theory,” STAM Journal of Computing 24 (1995), 873 921.

[DF95b] R. G. Downey and M. R. Fellows, “Fixed Parameter Tractability and Com-
pleteness TT: Completeness for W[1],” Theoretical Computer Science A 141 (1995),
109 131.

[DF95¢] R. G. Downey and M. R. Fellows, “Parametrized Computational Feasibility,” in:
Feasible Mathematics II, P. Clote and J. Remmel (eds.) Birkhauser, Boston (1995)

219 244.
[DF98] R. G. Nowney and M. R. Fellows, Parameterized Complexity, Springer-Verlag,
1998.

[DFKHW94] R. G. Downey, M. Fellows, B. Kapron, M. Hallett, and H. T. Wareham. “The

> Proceedings

Parameterized Complexity of Some Problems in T.ogic and Tinguistics,’
Symposium on Logical Foundations of Computer Science (L.FCS), Springer-Verlag,
Tecture Notes in Computer Science vol. 813 (1994), 89 100.

[DFRO9%a] R. G. Downey, M. R. Fellows and K. W. Regan, “Parameterized Circuit Com-
plexity and the W Hierarchy,” Theoretical Computer Science A 191 (1998), 91 115.

[DFRO98b] R. G. Nowney, M. Fellows and K. Regan. “Threshold Dominating Sets and an
Tmproved Characterization of W[2],” Theoretical Computer Science A, to appear.

[DFT96] R. G. Downey, M. Fellows and U. Taylor, “The Parameterized Complexity of
Relational Database Queries and an Tmproved Characterization of W[1],” in: Combi-
natorics, Complexity and Logic: Proceedings of DMTCS’96, Springer-Verlag (1997),
194 213.

[DEFVWOR] R. Downey, M. Fellows, A. Vardy and G. Whittle, “The Parameterized Com-
plexity of Some Fundamental Problems in Coding Theory,” STAM J. Computing, to
appear.

[DKT.96] T.Nean, J. Kirman and S.-H. Lin, “Theory and Practice in Planning,” Technical
Report, Computer Science Department, Brown University, 1996.

[Dued3d] G. Dueck, “New Optimization Heuristics: the Great-Deluge Algorithm and the
Record-to-Record Travel,” J. Computational Physics 104 (1993), 86 92.

[Felo7] J. Felsenstein. Private communication, 1997.

[FHK95] M. Fellows, M. Hallett and D. Kirby, “The Parameterized Complexity of the

Shortest Common Supersequence Problem,” manuscript, 1995.

PARAMETERIZED COMPLEXITY 55

[FHWO93] M. Fellows, M. Hallett and H. T. Wareham, “DNA Physical Mapping: Three
Ways Difficult,” in: Algorithms FSA’93: Proceedings of the First Furopean Sym-
posium on Algorithms, Springer-Verlag, T.ecture Notes in Computer Science vol. 726
(1993), 157 168.

[Fis95] S. T. Fischer, “A Note on the Complexity of T.ocal Search Problems,” Information
Processing Letters 53 (1995), 69 75.

[FK93] M. Fellows and N. Koblitz, “Fixed-Parameter Complexity and Cryptography,”
Proceedings of the 10th Intl. Symp. on Applied Algebra, Algebraic Algorithms and
Frror-Correcting Codes, Springer-Verlag, Berlin, T.ecture Notes in Computer Science
vol. 673 (1993), 121 131.

[FKS98] M. Fellows, C. Korostensky and U. Stege, “Theory-Based Heuristics for Fditing
Gaps in Multiple Sequence Alignments,” manuscript, 1998.

[F1.87] M. Fellows and M. TLangston, “Nonconstructive Proofs of Polynomial-Time Com-
plexity,” Information Processing Letters 26(1987/88), 157 162.

[F1.88] M. Fellows and M. Tangston, “Nonconstructive Tools for Proving Polynomial-
Time Complexity,” Journal of the Association for Computing Machinery 35 (1988)
727 739.

[F1.89] M. R. Fellows and M. A. T.angston, “An Analogue of the Myhill-Nerode Theorem
and its Use in Computing Finite-Basis Characterizations,” Proceedings of the IEFFE
Symposium on the Foundations of Computer Science (1989), 520 525.

[F1.94] M. R. Fellows and M. A. T.angston, “On Search, Decision and the FEfficiency of
Polynomial-Time Algorithms,” Journal of Computer and Systems Science 49 (1994),
769 779.

[FN71] R. E. Fikes and N. J. Nilsson, “STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving,” Artificial Intelligence 2 (1971), 189 208.
[FPT95] M. Farach, T. Przytycka, and M. Thorup. “On the agreement of many trees”

Information Processing Letters 55 (1995), 297 301.

[Fro7] J. Franco, J. Goldsmith, J. Schlipf, E. Speckenmeyer and R.P. Swaminathan, “An
Algorithm for the Class of Pure ITmplicational Formulas,” to appear in Discrete Ap-
plied Mathematics.

[GJ79] M. Garey and D. Johnson. Computers and Iniractability: A Guide to the Theory
of NP-completeness. W.H. Freeman, San Francisco, 1979.

[GT.R92] R. Govindan, M. T.angston and S. Ramachandramurthi, “A Practical Approach
to Layout Optimization,” Proceedings of the International Conference on VILST De-
sign, Bombay, India, January 1992.

[GM75] G. R. Grimmet and C. H. J. McDiarmid, “On Colouring Random Graphs,”
Math. Proc. Cambridge Philos. Soc. 77 (1975), 313 324.

[GM84] S. Goldwasser and S. Micali, “Probabilistic Fncryption,” J. Computer and Sys-
tems Science 28 (1984), 270 299.

[GS94] J. Gustedt and A. Steger, “Testing Hereditary Properties Efficiently on Average,”
Orders, Algorithms and Applications: Proceedings of the International Workshop
ORDAL’94, Springer-Verlag, T.ecture Notes in Computer Science, vol. 831 (1994),
100 116.

[Gur89] Y. Gurevich, “The Challenger-Solver Game: Variations on the Theme of
P=tNP Bulletin FATCS 39 (1989), 112 121.

[Hal96] M. Hallett. “An Tntegrated Complexity Analysis of Some Problems in Computa-
tional Biology,” Ph.D. dissertation, Department of Computer Science, University of
Victoria, 1996.

[Hart94] J. Hartmanis, “About the Nature of Computer Science,” Bulletin FATCS 53
(1994), 170 190.

[Has96] J. Hastad, “Fast and Efficient Testing of the T.ong Code,” Proc. ACM Symposium
on the Theory of Computing (STOC) (1996).

56 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

[HGS98] M. Hallett, G. Gonnet, and U. Stege, “Vertex Cover Revisited: A Hybrid Algo-
rithm of Theory and Heuristic,” manuscript 1998.

[AT.92] J. Hartmanis and H. T.in, editors, Computing the Future: A Broader Agenda for
Computer Science and Fngineering, National Academy Press, 1992.

[AM91] F. Henglein and H. G. Mairson, “The Complexity of Type Inference for Higher-
Order Typed T.ambda Calculi.” In Proc. Symp. on Principles of Programming Lan-
guages (POPL) (1991), 119-130.

[Hoch97] D. Hochbaum, “Various Notions of Approximations: Good, Better, Best and
More,” in: Approzimation Algorithms for NP-Hard Problems (1). Hochbaum, ed.),
PWS Publishing Co., Boston (1997), 346 398.

[Hoo95] J. N. Hooker, “Testing Heuristics: We Have Tt All Wrong,” J. Heuristics1 (1995),
33 42.

[TK75] O. H. Tharra and C. F. Kim, “Fast Approximation for the Knapsack and Sum of
Subset Problems,” J. Assoc. Computing Machinery 22 (1975), 463 468.

[IDUGG74] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey and R. T.. Graham,
“Worst-Case Performance Bounds for Simple One-Dimensional Packing Algorithms,”
STAM 1. Computing 3 (1974), 299 325.

[Jo&7] D. S. Johnson, “The NP-Completeness Column: An Ongoing Guide (19th edi-
tion),” Journal of Algorithms 8 (1987), 285 303.

[IM93] D. S. Johnson and C. McGeoch (eds.), Network Flows and Matching: First DI-
MACS Implementation Challenge, American Mathematical Society, 1993.

[TMc97] D.S. Johnson and T..A. McGeoch, “The Traveling Salesman Problem: A Case
Study,” in: Aarts and Tenstra (eds.), Local Search in Combinatorial Optimization,
John Wiley and Sons, 1997.

[JPY&R8] N.S. Johnson, C.H. Papadimitriou and M. Yannakakis, “How Fasy is T.ocal
Search?” Journal of Computer and System Sciences 37 (1988), 79 100.

[IT96] M. S. Johnson and M. Trick (eds.), Cliques, Coloring and Satisfiability: Second
DIMACS Implementation Challenge, American Mathematical Society, 1996.

[Karp72] R. M. Karp, “Reducibility Among Combinatorial Problems,” in: Complezity of
Computer Applications, Plemum Press, New York (1972), 85 103.

[Karp&6] R. M. Karp, “Combinatorics, Complexity and Randomness,’
of the ACM 29 (1986), 9% 109.

[Kr90] M.W. Krentel, “On Finding and Verifying T.ocally Optimal Solutions,” STAM Jour-
nal on Computing 19 (1990), 742 751.

[KS94] S. Kirkpatrick and B. Selman, “Critical Behavior in the Satisfiability of Boolean
Formulae,” Science 264 (1994), 1297 1301.

[KST94] H. Kaplan, R. Shamir and R. E. Tarjan, “Tractability of Parameterized Comple-
tion Problems on Chordal and Interval Graphs: Minimum Fill-Tn and DNA Physical
Mapping,” in: Proc. 835th Annual Symposium on the Foundations of Computer Sci-
ence (FOCS), TEEE Press (1994), 780 791.

[KT92] A.Kornai and 7. Tuza, “Narrowness, Pathwidth and Their Application in Natural
T.anguage Processing,” Discrete Applied Mathematics 36 (1992), 87 92.

[T.en90] T. T.engauer, “VI.SI Theory,” in: Handbook of Theoretical Computer Science
vol. A, Flsevier (1990), 835 868.

[T.ev&6] T.. Tevin, “Average Case Complete Problems,” SIAM J. Computing 15 (1986),
285 286.

[TK73] S. Tin and B.W. Kernighan, “An Effective Heuristic Algorithm for the Traveling
Salesman Problem,” Operations Research 21 (1973), 498 516.

[T.P85] O.T.ichtenstein and A. Pneuli. “Checking That Finite-State Concurrents Programs
Satisfy Their TLinear Specification.” In: Proceedings of the 12th ACM Symposium on

> Communications

Principles of Programming Languages (1985), 97 107.
[T.RI1] M. T.angston and S. Ramachandramurthi, “Dense T.ayouts for Series-Parallel
Graphs,” Proc. Great Lakes Symposium on VLST (1991), 14 17.

PARAMETERIZED COMPLEXITY 57

[Tuks82] F. Tuks, “Isomorphism of Graphs of Bounded Valence Can Be Tested in Poly-
nomial Time,” J. Comput. and Systems Sci. 25 (1982), 42 65.

[Mad72] W. Mader, “Hinreichende Bedingungen fuer die Existenz von Teilgraphen, die zu
einem vollstaendigen Graphen homomorph sind,” Abt. Math, Sem. Hamburg Univ.
37 (1972), 86 97.

[MP94] S. Mahajan and J. G. Peters, “Regularity and Tocality in k-Terminal Graphs,”
Discrete Applied Mathematics 54 (1994), 229 250.

[MR95a] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Univ. Press,
1995.

[MR95b] S. Mahajan and H. Ramesh, “Derandomizing Semidefinite Programming Based
on Approximation Algorithms,” in Proceedings of the 36th Annual TEFFE Symposium
on Foundations of Computer Science (1995), 162 169.

[MR98] M. Mahajan and V. Raman, “Parameterizing Above the Guarantee: MaxSat and
MaxCut,” to appear in J. Algorithms.

[MST.92] D. Mitchell, B. Selman and H. T.evesque, “Hard and Fasy Distributions of SAT
Problems,” in: Proceedings AAAT-92, AAAT (1992), 459 465.

[NP85] J. Nesetiil and S. Poljak, “On the Complexity of the Subgraph Problem,”
Comm. Math. Univ. Carol. 26 (1985), 415 419.

[Pet&1] J.T.. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981.

[PGWRS96] C. Papadimitriou, O. Goldreich, A. Wigderson, A. Razborov and M. Sipser,
“The Future of Computational Complexity Theory: Part 1,” STGACT News 27 (1996),
6 12.

[PY96] C.Papadimitrion and M. Yannakakis, “On Timited Nondeterminism and the Com-
plexity of the VC Dimension,” J. Computer and Systems Sciences 53 (1996), 161 170.

[Rag88] P. Raghavan, “Probabilistic Construction of Deterministic Algorithms: Approx-
imating Packing Integer Programs,” J. Computer and Systems Sciences 37 (1988),
130 143.

[RS85] N. Robertson and P. . Seymour, “Graph Minors: A Survey,” in Surveys in Combi-
natorics, I. Anderson, ed. (Cambridge University Press: Cambridge, 1985), 153 171.

[RS96] N. Robertson and P. . Seymour, “Graph Minors XV. Giant, Steps,” J. Comb. The-
ory Ser. B 68 (1996), 112 148.

[Sha97] R. Shamir. Private communication, 1997.

[SOWH96] D. T.. Swofford, G. J. Olsen, P. J. Waddell and). M. Hillis, “Phylogenetic
Inference,” in: D. M. Hillis, C. Moritz and B. K. Mable (eds.) Molecular Systematics.
Sinauer Associates, Tnc. (1996), 407 514.

[SS77] R. Solovay and V. Strassen, “A Fast Monte Carlo Test for Primality,” STAM
JI. Computing (1977), 84 85.

[Tho7] M. Thorup, “Structured Programs Have Small Tree-Width and Good Register

9

Allocation,” Proceedings 23rd International Workshop on Graph-Theoretic Concepts
in Computer Science, W(GE’97, R. Mohring (ed.), Springer Verlag, T.ecture Notes in
Computer Science vol. 1335 (1997), 318 332.

[To91] S. Toda, “PP is as Hard as the Polynomial Time Hierarchy,” STAM J. Comput.
(1991), 865 877.

[Wilf’5] H. Wilf, “Some FExamples of Combinatorial Averaging,” Amer. Math. Monthly
92 (1985), 250 261.

[Yan95] M. Yannakakis. “Perspectives on Database Theory,” Proceedings of the TEEFE
Symposium on the Foundations of Computer Science (1995), 224 246.

[YV70] A.S. Yessenin-Volpin, “The Ultraintuitionistic Criticism and the Antitraditional
Program for Foundations of Mathematics,” in: Intuitionism and Proof Theory: Pro-
ceedings of the Summer Conference at Buffalo, N.Y., 1968, A. Kino, J. Myhill and
R. E. Vesley (eds.), North-Holland, 1970.

58 RODNEY G. DOWNEY, MICHAFEIL R. FELLOWS, AND ULRIKE STEGE

RopNEY G. DOWNEY, SCHOOL OF MATHEMATICS AND COMPUTING SCIENCES, P.O.
Box 600, VicTorTtA UNTVERSITY, WELLINGTON, NEW 7ZEALAND. RESEARCH SUPPORTED
BY A GRANT FROM THE UNITED STATES/NEW ZEALAND COOPERATIVE SCIENCE FOUN-
DATION AND BY THE NEW 7ZEATLAND MARSDEN FUND FOR BASIC SCIENCE.

F-mail address: rod.downey@vuw.ac.nz

MricraFRL R. FrRLLOWS, DEPARTMENT OF COMPUTER SCIENCE, UNTVERSITY OF VIC-
TORTA, VIcTORTA, B.C. VEW 3P6, CANADA. RESEARCH SUPPORTED BRY THE NATIONAT,
SCIENCE AND ENGINEERING RESEARCH COUNCI, OF CANADA.

F-mail address: mfellows@csr.uvic.ca

ULRTKE STEGE, COMPUTATIONAT, BIOCHEMISTRY RESEARCH GroUP, RTH ZURICH,
CH-8092 ZURICH, SWITZERLAND
FE-mail address: stege@inf.ethz.ch

