Parameterized Computational Feasibility

RODNEY G. DOWNEY *and MICHAEL R. FELLOWS 1
24 November 1992, revised 5 May 1994

Abstract

Many natural computational problems have input consisting of
two or more parts. For example, the input might consist of a graph
and a positive integer. For many natural problems we may view one
of the inputs as a parameter and study how the complexity of the
problem varies if the parameter is held fixed. For many applications
of computational problems involving such a parameter, only a small
range of parameter values is of practical significance, so that fixed-
parameter complexity is a natural concern. In studying the complex-
ity of such problems, it is therefore important to have a framework in
which we can make qualitative distinctions about the contribution
of the parameter to the complexity of the problem. In this paper
we survey one such framework for investigating parameterized com-
putational complexity and present a number of new results for this
theory.

Introduction

Many natural computational problems have input that consists of two or
more objects. For example, the Graph Genus problem is that of determin-
ing for an input pair (G, k), where G is a graph and k is a positive integer,
whether the graph G has genus at most k. The problem of Minor Testing
is that of determining for an input pair of graphs (G, H) whether the graph
H is a minor of the graph . For every fixed graph H the latter problem
can be solved in time O(n?) [RS3].

There are also many natural reducibilities between parameterized prob-
lems, such as the reduction of the Graph Genus problem to the problem
of Minor Testing established by the Graph Minor Theorem [RS3]. This
particular reduction has the striking consequence that for every fixed & the
Graph Genus problem can be solved in time O(n?).

*Research supported in part by a grant from the Victoria University IGC, by the
United States / New Zealand Cooperative Science Foundation under grant INT 90-
20558, and by the Mathematical Sciences Institute at Cornell and Cornell University.
Email address: downey@math.vuw.ac.nz.

tResearch supported in part by the National Science and Engineering Research Coun-
cil of Canada, and by the United States National Science Foundation under grant MIP-
8919312. Email address: mfellows@csr.uvic.ca.

2 R. Downey and M. Fellows

For many other problems involving more than one input we have a
sharply contrasting situation (much like the apparent difference between
P and NP). For example, the best known algorithm for the Minimum
Dominating Set problem [GJ] which takes as input a graph G and a positive
integer k and seeks to determine whether G has a set of k vertices that
“covers” the vertex set of GG, involves checking all of the k-element sets of
vertices and requires time O(n**t1).

In addition to our structural-theoretic interest in how parameters con-
tribute to the complexity of problems, there are several practical motiva-
tions for our interest in parameterized complexity. We give three examples.
Ezample 1. Graph width metrics: VLSI, computational biology and natu-
ral language processing.

There are a number of different width metrics for graph and hyper-
graph linear layout problems, for example, pathwidth [RS1], cutwidth [GT],
gate matriz layout [DKL], verlex separation number [Le], and bandwidth
[GJ]. For a number of these problems, good algorithms for finding lay-
outs of width less than or equal to k, for fixed values of & < 10 would
have useful applications in VLSI design [DKL]. For the Perfect Phylogeny
problem of computational biology [Gu], the number of characters used in
constructing the phylogenetic tree corresponds to treewidth (another graph
width metric). Phylogenies are routinely computed for data sets based on
a small number of characters [BFW]. It has been proposed that the syntac-
tic structure of sentences of natural languases be modeled by dependency
graphs of pathwidth no more than 6 (corresponding in some sense to the
“bandwidth” of human attention) [Mo].

Thus for many natural parameterized problems, a small range of pa-
rameter values captures many important applications, and we are therefore
keenly interested in whether efficient algorithms for fixed-parameter ver-
sions of the problems can be devised, or whether, by completeness demon-
strations, they may be unlikely to exist.

For all of the width metrics w mentioned above, determining whether
an input graph G satisfies w(G) < k is N P-complete, yet we can distinguish
important qualitative differences in the way the parameter contributes to
the complexity of the problem. For example, for every fixed value of & it
can be determined in linear time whether a graph has cutwidth at most &,
while the best known algorithm for the k-bandwidth problem has running
time O(n*).

Ezample 2. Logic programming.

Type inference is a problem of importance to implementations of pro-
gramming languages such as ML that are based on polymorphic typed
A-calculus. In [HM] it is shown that the problem is complete for deter-
ministic exponential time, yet it has been widely noted that in practice
the problem is solvable quickly. One explanation for this discrepancy be-
tween theory and practice comes from noting that the logic formulas that
occur in natural programs tend to have small bounded depth of let’s. For

Parameterized Computational Feasibility 3

a parameter k bounding this depth, it can be shown that the problem is
fixed-parameter tractable [Ab].

Thus the study of parameterized complexity can shed new light on the
observed complexity of some well-known problems.

Erample 3. Hardware implementations of public-key cryptosystems.

Some proposals for implementations of public key cryptosystems have
considered limiting the size or Hamming weight of keys in order to obtain
faster processing times. A cautionary note is sounded by the result [FK]
that for every fixed &, with high probability it can be determined in time
f(k)n® whether an n-bit positive integer has a prime divisor less than n*. If
a similar result holds for the Discrete Logarithm problem for exponents of
bounded Hamming weight, then the security of cryptographic implementa-
tions such as proposed in [AMOV] may be compromised. (Both problems
are trivially solvable in time O(n**¢), where ¢ is a small constant.)

The perspective provided by a theory of parameterized complexity en-
courages us to perceive and address problems such as the above.

The formal framework for our study is established as follows.
Definition. A parameterized problem is a set L C X* x X* where X i1s a
fixed alphabet.

In the interests of readability, and with no effect on the theory, we
consider that a parameterized problem L is a subset of L C X* x N. For a
parameterized problem L and k € N we write L; to denote the associated
fixed-parameter problem (k is the parameter) Ly = {z|(z, k) € L}.

There are natural examples (some of which are discussed in the next
section) of the following three flavours of fized-parameter tractability.
Definition. We say that a parameterized problem L is:

(1) nonuniformly fized-parameter tractable if there is a constant « and a
sequence of algorithms @, such that, for each € N, &, computes L, in
time O(n®);

(2) uniformly fized-parameter tractable if there is a constant & and an algo-
rithm @ such that ® decides if (z, k) € L in time f(k)|z|® where f: N —= N
is an arbitrary function;

(3) strongly uniformly fized-parameter tractable if L is uniformly fixed-
parameter tractable with the function f recursive.

The reader familiar with classical recursion theory will notice the anal-
ogy with the classical notion of piecewise recursive recursively enumerable
sets. We define three corresponding flavours of reducibility.

Definition. Let A, B be parameterized problems. We say that A is
uniformly P-reducible to B if there is an oracle algorithm @, a constant «,
and an arbitrary function f : N — N such that

(a) the running time of ®(B; (x, k)) is at most f(k)|z|*,

4 R. Downey and M. Fellows

(b) on input {(x, k), ® only asks oracle questions of BU(¥)) where

BYGSD = |} By ={{w,j) 1 j < f(k)&(=,j) € B}
J<f(k)
(c) ®(B) = A.

If A is uniformly P-reducible to B we write A <% B. Where appro-
priate we may say that A <Y B wvia f. If the reduction is many:1 (an
m-reduction), we will write A <Y B.

Definition. Let A, B be parameterized problems. We say that A is strongly
untformly P-reducible to B if A <% B via f where f is recursive. We write
A <P B in this case.

Definition. Let A, B be parameterized problems. We say that A is
nonuniformly P-reducible to B there is a constant «, a function f : N — N,
and a collection of procedures {®; : k € N} such that @k(B(f(k))) = A;
for each k¥ € N, and the running time of ®; is f(k)|x|*. Here we write
A<} B.

Note that the above are good definitions, since whenever A < B with
< any of the reducibilities, if B is fixed-parameter tractable so too is A.

Note that if P = N P then problems such as Minimum Dominating Set
are fixed-parameter tractable. Thus, a completeness program to address
the apparent fixed-parameter intractability of this and other problems is
reasonable.

A variety of methods are now known for demonstrating the several
flavours of fixed-parameter tractability. It Section 2 we describe some ex-
amples of these results and techniques. Some of the methods are straight-
forward and elementary, and some depend on very deep results in combi-
natorics.

In Section 3 we describe the basic framework and results of the com-
pleteness theory for fixed-parameter tractability.

In Section 4 we discuss some new results that serve to illustrate how
the basic reducibilities in fixed-parameter complexity theory differ from
the reducibilities in N P-completeness theory. In particular, we prove that
the problem of determining whether a tournament has dominating set of
cardinality & is W[2]-complete (the general problem is unlikely to be N P-
complete), and we discuss some applications of fixed-parameter reducibili-
ties in computational learning theory.

Section 5 concludes with a discussion of some of the many open prob-
lems in this subject.

1 Fixed-Parameter Tractability: Flavors and
Techniques

In §1 we defined three different forms of fixed-parameter tractability. There
are important natural examples of all three of these, and there are identifi-

Parameterized Computational Feasibility 5

able general methods for obtaining such results. We believe it would be fair
to say that the toolkit of algorithm design techniques for fixed-parameter
tractability is both rich, and somewhat distinctive from the usual toolkit of
techniques for demonstrating polynomial-time complexities. The distinc-
tive nature of some of these methods reflects various approaches to shifting
the complexity burden onto the parameter.

1.1 Non-uniform Fixed-Parameter Tractability

One of the most striking recent developments in combinatorial mathemat-
ics has been the theory of graph minors (and immersions) pioneered by
Robertson and Seymour. Their deep results in the area of well-quasi-
ordering theory give very powerful and easy to use methods for establishing
non-uniform fixed-parameter tractability. For background on these meth-
ods and various applications, see [RS1] and [FL1]. Tt seems likely that the
basic theory of well-quasi-ordering will continue to develop, and to support
applications to decision problems for many different kinds of combinatorial
objects.

We are concerned here with explaining how these methods, which apply
to a great variety of natural parameterized problems (see, for example [FL1]
and [FL4]), relate to the forms of fixed-parameter tractability defined in
§1. The complexity of the following three parameterized problems can be
addressed by means of the Graph Minor Theorem (stated below).

Graph Linking Number

Instance: A graph G.

Parameter: A positive integer k.

Question: Can G be embedded in 3-space in such a way that no set of &
or more vertex disjoint cycles in GG is topologically linked?

Diameter Improvement for Planar Graphs

Instance: A planar graph G.

Parameter: A positive integer k.

Question: Can G be augmented with additional edges in such a way that
the resulting graph G’ remains planar, and so that the diameter of G’ is at
most k7

Planarity Edit Distance

Instance: A graph G = (V, F).

Parameter: A positive integer k.

Question: Is there a set of at most k vertices V/ C V such that G — V' is
planar?

A graph H is a minor of a graph G, written H <,, G if a graph
isomorphic to H can be obtained from G by a sequence of the operations:
(1) taking a subgraph, and (2) contracting an edge. (In the contraction
of an edge, the the endpoints of the edge become identified as the edge is
“shrunk” to nothing.)

The Graph Minor Theorem. (Robertson and Seymour [RS4]) If F is a fam-

6 R. Downey and M. Fellows

ily of finite graphs that is closed under the minor order (G € F and H <, G
imply T € F), then there is a finite set of graphs O = {H;,..., H;} such
that G ¢ F if and only if G >, H; for some H; € F.

A family of graphs F as in the statement of the Graph Minor Theorem
is termed a minor order lower ideal, and the set of graphs Ox is termed the
obstruction set for F. A classical example of an obstruction set is given by
(the minor order version of) Kuratowski’s theorem: Opianar = {K33, K5}.
It is easy to verify that for each fixed parameter value k the set of yes
instances for the above problems are minor order lower ideals.

The reader can readily verify that the Graph Minor Theorem provides a
nonuniform fixed-parameter Turing reduction of each of the above problems
to the problem of Minor Testing.

Minor Testing
Instance: A graph G
Parameter: A graph H
Question: Is G >, H?

Minor Testing has been shown by Robertson and Seymour [RS3] to
be (strongly uniformly) fixed-parameter tractable in cubic time. Con-
sequently, each of the above problems is nonuniformly fixed-parameter
tractable. The Graph Minor Theorem alone does not yield any stronger
form of fixed-parameter tractability, because we know only that a finite
obstruction set ezists for each parameter value k. No information is given
by either the theorem or its proof on how many obstructions there are in
Oy, how large they are, or how they might be determined.

At the present time, we know only that Graph Linking Number is
nonuniformly fixed-parameter tractable, by the above considerations. For
the other two problems we can apply general techniques (described below)
to show stronger forms of fixed-parameter tractability.

The following theorem shows that the Turing reducibilities provided
by the Graph Minor Theorem can be made many:1.

Theorem 2.1 Given a set of graphs G, Hy, ..., H; we can compute in poly-
nomial time graphs G’ and H' such that G’ >,, H’ if and only if G >,, H;
for some 7, 1 < i <t¢.

Proof. (Sketch) Let N = 14+ max{|H;| : 1 < i < t}. G’ has a central
vertex u of degree ¢, as does H’. An example of the construction for ¢t = 4
is shown in Figure 1. In this construction, G’ is essentially a tree with
leaves attached to copies of the complete graph Kn and to one copy of G.
An attachment to a copy of K consists of a single edge to a vertex of K.
The attachment to the copy of G consists of edges from the leaf to each
vertex of (G, as indicated pictorially in the figure. The attachments of the
leaf vertices of H’ to the graphs of the obstruction set and to the copies of
K are similar. O

Parameterized Computational Feasibility 7

& & " ® W

Figure 1: An example of the construction for ¢ = 4.

1.2 Uniform Fixed-Parameter Tractability

Many of the computational problems to which the Graph Minor Theorem
can be applied can be shown constructively to be uniformly fixed-parameter
tractable by the method of [FL2] based on polynomial time self-reducibility.
We illustrate this method with the problem of Diameter Improvement for
Planar Graphs.

Theorem 2.1 Diameter Improvement for Planar Graphs is (constructively)
uniformly fixed-parameter tractable.

Proof. For this problem it is easy to describe the following three algorithms
which we will use as subroutines. The first of these, A, is simply a decision
algorithm for the problem (that does not run in polynomial time) based on
exhaustively examining all possible embeddings of G and all possible aug-
mentations of these to a triangulation of the plane. The second auxiliary
algorithm B is a polynomial-time self-reduction of the naturally associated
search problem (finding a diameter improvement scheme, if one exists) to
the decision problem. The third algorithm C' that we will use as a subrou-
tine, is a polynomial time algorithm to check whether a given improvement
scheme is correct. C' simply checks the diameter of the improved graph,
and checks that the improved graph is planar.

Here is how algorithm B works. Note that this is an oracle algorithm for
which we assume that a decision algorithm for the Diameter Improvement
problem is available to use as a black box, and that our job i1s to compute
an improvement scheme, if one exists, in time polynomial in the number n
of vertices in the graph, and assuming that each consultation of the oracle
requires unit time. For each pair of vertices u,v of GG, we may ask the

8 R. Downey and M. Fellows

black box whether the graph G + uv is k-improvable. If GG is k-improvable
(and does not already have diameter < k) then at least one such probe will
succeed. We repeat this procedure (at most O(n?) times) until we have
discovered an improvement scheme.

Now we argue that using the above three algorithms as subroutines, we
have uniform fixed-parameter tractability for the problem. First, we have
an additional procedure D which generates all finite graphs, beginning with
the empty graph. How efficient D) is does not matter to our argument.

Suppose we are given G and k as input. We repeatedly use procedure
D together with procedure A to find a “new” obstruction. We do this by
simply generating graphs using D until we find a graph H with the property
(using A to identify this) that H ¢ F but every proper minor of H belongs
to F (this property characterizes the obstructions for F). Having found a
“new” obstruction, we add it to a list L of known obstructions. Note that
none of the computations here refer to the graph G, and that we will repeat
this generative cycle at most a finite number of times for a given k, since
Oy, 1s finite. Thus the total amount of computation involved in this part of
the algorithm is simply bounded by some (unknown, and not necessarily
recursive) function of k.

Having found a “new” obstruction H we do the following:

(1) We run the algorithm for Minor Testing to see if G >,, H. If so, then
we are done, since this shows that G ¢ F. This requires time O(n?) for
|G| = n for each such H, of which there are finitely many, since Oy, is
finite.

(2) If the above step (1) fails to settle the question negatively, then we
attempt to discover a positive resolution by running procedure B using the
list I as a (possibly faulty) oracle for F-membership (using the algorithm
for Minor Testing for each of the graphs on the list L). The procedure B
may malfunction (which we can detect) because of the potentially faulty
oracle we are using, or it may produce a purported improvement scheme.
We can check, using procedure C', whether any such purported solution
is correct. If so, then we are done, having produced a certificate for the
answer yes.

If neither of (1) or (2) above produces a (certifiably correct) answer,
then we return to the generative cycle to find a new unknown obstruction.
Within a finite number of cycles, since Oy, is finite, either (1) or (2) must
produce a correct answer. It is easy to see that entire algorithm runs
in polynomial time; this depends particularly on the fact that our self-
reduction algorithm B runs in polynomial time, as well as procedure C for
checking a solution. ad

This method cannot presently be applied to the problem of Graph Link-
ing Number, for the primary reason that a polynomial-time self-reduction
1s not known for this problem. Note that the method does not yield any
knowledge of the function f(k) in the running time.

Parameterized Computational Feasibility 9

1.3 Strongly Uniform Fixed-Parameter Tractability

The Planarity Edit Distance problem can be shown to be strongly uni-
formly fixed-parameter tractable by the method of [FL3]. This essentially
consists of a uniform method for computing the obstruction sets for the
problem. Although this method is applicable to many of the natural lower
ideals in the minor order, we presently do not know how to apply it to
the Diameter Improvement problem. The method is based on a graph-
theoretic generalization of the Myhill-Nerode theorem of formal language
theory, and is developed further in [AF].

For the remainder of our discussion of uniform fixed-parameter tractabil-
ity we focus on two widely applicable elementary techniques: (1) Search
Trees, and (2) Reduction to a Problem Kernel.

1.3.1 The Method of Search Trees

We next describe how the Search Tree technique can be applied to the
well-known problems: Vertex Cover, Dominating Set for Planar Graphs,
and Feedback Vertex Set [GJ]. We show how it can be used to improve the
results of [BM] on the face cover number of plane graphs. The problems
that we consider are defined as follows.

Vertex Cover

Instance: A graph G = (V, F).

Parameter: A positive integer k.

Question: Is there a set of vertices V! C V of cardinality at most k, such
that for every edge uv € E, either u € V' or v € V'?

Feedback Verter Set

Instance: A graph G = (V, F).

Parameter: A positive integer k.

Question: Is there a set of vertices V/ C V of cardinality at most k such
that G — V' is acyclic?

Dominating Set for Planar Graphs

Instance: A planar graph G = (V, E).

Parameter: A positive integer k.

Question: Is there a set of vertices V/ C V of cardinality at most k such
that for every vertex u € V, there is an edge uv € E for some vertex
veV'?

Face Cover Number for Plane Graphs

Instance: A planar graph G = (V, F) together with an embedding of G in
the plane.

Parameter: A positive integer k.

Question: Is there a set F' of at most k faces of the embedding such that
every vertex of GG occurs on the boundary of at least one of face f € F'7
Theorem 2.1 Vertex Cover can be solved in time O(2* - n) where n is the
number of vertices in the graph (and the hidden constant is independent

10 R. Downey and M. Fellows

of both n and k).

Proof. We construct a binary tree of height k as follows. Label the root
of the tree with the empty set, and the graph . Choose an edge uv € E.
In any vertex cover V' of G we must have either u € V' or v € V', so we
create children of the root node corresponding to these two possibilities.
Thus the first child is labeled with {u} and G — u, and the second child is
labeled with {v} and G — v. The set of vertices labeling a node represents
a “possible” vertex cover, and the graph labeling the node represents what
remains to be covered in GG. In general, for a node labeled with the set of
vertices S and the subgraph H of G, we choose an edge uv € E(H) and
create the two child nodes labeled, respectively, S U {u} and H — u, and
SU{v} and H —v. If we create a node at height at most k in the tree that
is labeled with a graph having no edges, then a vertex cover of cardinality
at most k has been found. There is no need to explore the tree beyond
height &. a
Theorem 2.2 Feedback Vertex Set can be solved in time O((2k + 1)* - n?).
Proof. First note that a graph G has a feedback vertex set of size k if
and only if the reduced graph G’ has one, where G’ is obtained from G by
replacing each maximal path in G having internal vertices all of degree 2
with a single edge. Note that the reduced graph G’ may have loops and
multiple edges, but that if G’ is simple then it has minimum degree 3. The
reduced graph G’ can be computed from G in linear time. Also, in linear
time, a k-element feedback vertex set that has been identified in G’ can be
lifted to a k-element feedback vertex set in G.

As in the proof of Theorem 2.1, we build a search tree where each node
is labeled with a set of vertices S representing a possible partial solution.
The cardinality of a label corresponds to the height of the node in the tree,
and we will therefore explore the tree to a height of no more than &. In
linear time we can check whether a set S is a solution. If the label set S
of a node in the search tree is not a solution and the node has height less
than k, then we can generate the children of the node, as follows.

Let H denote the graph G — S, and let H' be the reduction of H (as
described above). If a vertex v of the I’ has a self-loop, then v must belong
to every feedback vertex set of H’. Corresponding to this observation, we
create a single child node with label S U {v}.

If the reduced graph H' of the graph H = G — S has multiple edges
between a pair of vertices u,v € V(H), then either « or v must belong to
every feedback vertex set of H’, and we correspondingly create two child
nodes with labels, respectively, S U {u} and SU {v}.

If the reduced graph H' has no loops or multiple edges, then we can
make use of the following.

Claim. If a simple graph J of minimum degree 3 has a k-element feedback
vertex set, then the girth of J (the length of a shortest cycle) is bounded
above by 2k.

We prove this by induction on k. If J is simple then by a standard

Parameterized Computational Feasibility 11

result J must contain a subdivision of K4 [Lo], and this implies that a
feedback vertex set must contain at least two elements.

For the induction step suppose U’ is a feedback vertex set consisting
of k + 1 vertices of J. Suppose that u,v € U’ with the distance from u to
v, d(u,v) < 2 in J. Contracting the edges of a shortest path from u to v
yields a graph J’ of minimum degree 3 that has a feedback vertex set of k
elements. By the induction hypothesis, there is a cycle C' in J’ of length at
most 2k. This implies that there is a cycle in J of length at most 2k + 2.
Otherwise, suppose no two vertices u, v of U’ have d(u,v) < 2 in J. Then
every vertex of J — U’ has degree at least two, and so there is a cycle in
J not containing any vertex of U’, a contradiction. This establishes our
claim.

By the above claim, we know that for the node of the search tree that
we are processing, either H’ contains a cycle of length at most 2/ where
[=k —|S], or that S cannot be extended to a k-element feedback vertex
set. An algorithm of Ttai and Rodeh [IR] can be employed to find in H' a
cycle of length 21 or 2/+1 in time O(n?). Thus in time O(n?) we can either
decide that the node should be a leaf of the search tree (because there is
no cycle in H' of length at most 2{ 4+ 1) or we can find a short cycle and
create at most 2/ + 1 children, observing that at least one vertex of the
short cycle that we discover in H’ must belong to any feedback vertex set.
O

We remark that it 1s possible to show that Feedback Vertex Set is linear
time fixed-parameter tractable [Bo,DF] with running time O((17k%)! - n).
Whether the directed version of the problem is fixed-parameter tractable
is presently unknown.

For the next example of the Tree Search technique, we will make use
of the following lemma concerning planar graphs.

Lemma 2.3 If G = (V, E) is a simple planar graph with a vertex partition
into two sets V = V; U V5 satisfying:

(1) the minimum degree of vertices in V; is at least 3, and

(2) V1 is an independent set in G,

then there is a vertex u € V5 of degree at most 10 in G.

Proof. Let G be a counterexample of minimum possible order having a
maximum number of edges, and consider an embedding of G in the plane.
Let H denote the subgraph of GG induced by V5. In any face of the inherited
embedding of H, there can be at most one vertex of V7, else an edge could
be added between two vertices of V5 on the boundary of the face, and
therefore G would not have a maximum number of edges as supposed. Let
u be a vertex of degree at most 5 in H. The vertex u is on the boundary
of at most 5 faces of H, and consequently in G, u has degree at most 10.
O

Theorem 2.4 Dominating Set for Planar Graphs can be solved in time
O(11* - n).

Proof. We construct a search tree for which each node has at most 10

12 R. Downey and M. Fellows

children. Each node in the tree is labeled with a set of vertices S that
represents a partially constructed dominating set.

The root node, labeled with the empty set, will have at most 6 children
based on the following consideration. Since G is planar, GG has a vertex v
of degree at most 5 which can be found in linear time. Any dominating set
for G must contain either v or one of the neighbors of v. We create a child
node for each possible choice of a vertex to dominate v.

In general, for a node in the search tree, we first check whether S is
a dominating set. This can be done in linear time. The levels of the tree
correspond to the cardinality of the labels S, so the tree will have height
at most k. To compute the children of a node, we find a vertex u in G not
dominated by S that has degree at most 10, and create a child node for
each possible choice y of a vertex to dominate u (there can be at most 11
possibilities, including). The child node is labeled with SU {y}. We must
argue that such a vertex u must be available; this being so, it can easily
be found in linear time. We term such a vertex u a splitter for the node in
the search tree.

Let U denote the set of vertices not dominated by S, and let T =
V — S — U be the set of vertices not in S and not in U. Let H be the
subgraph of G induced by V — S =T UU, and let H' be the subgraph of
H obtained by deleting from H any edges between vertices of T

Observe that a set of vertices W C V — S has the property that SUW
is a dominating set in G if and only if W is a dominating set in H’. In
other words, we may restrict our attention to H' in searching for a splitter.
H' satisfies condition (2) of Lemma 3.3, but there may be vertices in T'
that have degree 2 in H’. Necessarily any such vertex r € T of degree 2
has two neighbors s,# € U. Consider the graph H” obtained from H’ by
deleting such vertices r and adding the edges st. Lemma 3.3 applies to H”,
so there is a vertex u € U in H” of degree at most 10. The splitter vertex
u also has degree at most 10 in H’, H and G. ad

We can prove a similar result for the following more general problem.
Planar Red/Blue Dominating Sel
Instance: A planar bipartite graph G = (V, E), V = Vg U Viye.
Parameter: A positive integer k.

Question: Is there a set V'’ C V.4 of cardinality at most k such that every
vertex of Vi, 1s adjacent to at least one vertex of V.47

Theorem 2.5 Planar Red/Blue Dominating Set is solvable in time O(12%-n).
Proof. Let G be an instance of the problem. We apply the search tree
technique essentially as in Theorem 2.4. The central point we must argue
is that a node can be expanded to at most 12 children in linear time,
without losing the possibility of discovering a solution if one exists.

Let S C Vieq be the label on a node in the search tree. Let B(S) C
Viiwe denote the vertices in Vi, dominated by S. Let T'= V,.q — S and
U = Ve — B(S). Tt suffices to argue that there is a vertex u € U of degree
at most 10 in the subgraph H induced by the vertices of TUU.

Parameterized Computational Feasibility 13

Let T; C T be the vertices of T in H of degree i, for ¢ = 1,2. Note
that any two vertices x,y of 71 adjacent to the same vertex of U in H are
equivalent, in the sense that there is an extension of S that is a solution for
G containing z if and only if there is a solution extension of S containing
y. Thus, without loss of generality, we may assume: (*) each vertex of U
in H is adjacent to at most one vertex of 7.

Let H’ be the same graph as H — T}, but considering each vertex of T3
as a “virtual edge” between the two vertices of U to which it 1s adjacent.
H'’ satisfies the conditions of Lemma 2.3 and therefore there is a vertex
u € U of degree at most 10 in H' and in H — 7} as well. Taking (*) into
account, it suffices to create at most 12 children in the search tree for the

node being processed. ad
Theorem 2.6 Face Cover Number for Plane Graphs can be solved in time
O(12% - n).

Proof. Let G be a plane graph (a graph together with an embedding in the
plane). In linear time we may reduce the problem of finding k faces of the
embedding which cover all vertices of G to an instance of red/blue planar
dominating set, by creating one red vertex for each face of the embedding
of G and connecting it to each (blue) vertex on the boundary of the face.
O

We remark that Theorem 2.6 1s an improvement on the result for this
problem in [BM], where a time bound of O(2%.n) is obtained. Our method
of proof is also considerably simpler.

1.3.2 The Method of Reduction to a Problem Kernel

The main idea of this method is to reduce (in polynomial time) a problem
instance I to an “equivalent” instance I’, where the size of I’ is bounded
by some function of the parameter k. The instance I’ is then exhaustively
analyzed, and a solution for I’ can be lifted to a solution for I, in the case
where a solution exists. We illustrate the method with the problems Vertex
Cover and Max Leaf Spanning Tree [GJ] (defined below).

Theorem 2.7 (Buss [Bu]) Vertex Cover can be solved in time O(n + k*).
Proof. Observe that for a simple graph H any vertex of degree greater
than k& must belong to every k-element vertex cover of H.

Step 1: Locate all vertices in H of degree greater than k; let p equal
the number of such vertices. If p > k, there is no k-vertex cover.
otherwise, let ¥/ = k — p.

Step 2: Discard all p vertices found in step 1 and the edges incident to
them. If the resulting graph H' has more than k/(k + 1) vertices,
reject.

Step 3: I H' has no k’-vertex cover, reject. Otherwise, any k’-vertex
cover of H' plus the p vertices from step 1 comprise a k-vertex cover

of H.

14 R. Downey and M. Fellows

The bound 2k'(k + 1) in step 2 is justified by the fact that a simple
graph with a k’-vertex cover and degrees by bounded by k has no more that
k'(k 4+ 1) vertices. For fixed k this makes step 3 a constant time operation,
where the constant is O(k*). O

We can similarly solve the following problem.

Maz Leaf Spanning Tree

Instance: A graph G = (V, E).

Partameter: A positive integer k.

Question: Is there a spanning tree of G with at least &k leaves?

Theorem 2.8 Max Leaf Spanning Tree can be solved in time O(n+(2k)*).
Proof. Note that any graph G that i1s a yes instance must be connected.
We will argue that any sufficiently large graph without useless vertices of
degree 2 is necessarily a yes instance. Note also that if G has a vertex of
degree at least k, then GG 1s a yes instance.

A vertex v of degree 2 is termed useless if it has neighbors u, w of
degree 2. Say that a useless vertex v is resolved by deleting v from G and
adding an edge between u and w. Let G’ denote the graph obtained from
G (in linear time) by resolving all useless vertices.

Our algorithm for Max Leaf Spanning Tree is very simply described:
Step 1. Check whether GG is connected, and whether there is a vertex of
degree > k.

Step 2. If the answer is still undetermined, then compute G’. If G’ has at
least 3k(k + 1) vertices then the answer is yes.

Step 3. Otherwise, exhaustively analyze G’ and answer accordingly, since
G’ has a k-leaf spanning tree if and only if G does.

The argument that the algorithm is correct is elementary; details will
be given elsewhere [CCDF, DF6]. O

Theorem 2.8 improves a result of Bodlaender, who showed that Max
Leaf Spanning Tree is linear-time fixed-parameter tractable with a multi-
plicative factor depending on k [Bol].

We remark that we do not at present know whether the problems
Feedback Vertex Set or Planar Dominating Set can be shown to be linear
fixed-parameter tractable by the method of reduction to a problem kernel,
or whether they can be solved in time O(n + C}%) by any method.

The exploration and articulation of standard techniques for algorithm
design for fixed-parameter problems (with the goal of establishing fixed-
parameter tractability) is an interesting area for further research. Tt ap-
pears that demonstrations of fixed-parameter tractability can sometimes
be obtained by novel approaches that shift the complexity burden onto
the parameter. In some cases, effective strategies for doing this seem to
run counter to our established practices and habits of thought in designing
polynomial-time algorithms. In the parameterized setting, the parameter
can be “sacrificed” in interesting ways.

How much improvement might be possible in Theorems such as 2.4
and 2.87 Because the algorithms are uniform, and assuming P # N P, we

Parameterized Computational Feasibility 15

must expect an additive or multiplicative factor that i1s super-polynomial
in k. Yet conceivably running times such O(c* - n) are possible, where ¢
is a small number greater than 1, and may be practical for a reasonable
range of parameter values.

Note that the method of reduction to a problem kernel raises issues
similar to those considered in the model of advice classes such as P/poly
[KL]. Here, however, in reasonable time we can answer for instances of ar-
bitrary size, given the help provided by a kernel of advice for the parameter
value k. For example, in the case of Theorem 2.8 this could take the form
of a circuit to determine for a graph of order at most 3k(k + 1) whether
the graph has a k-leaf spanning tree.

2 Parameterized Complexity Classes

In order to frame a completeness theory to address the apparent fixed-
parameter intractability of Dominating Set and other problems, we need
to define appropriate classes of parameterized problems. The classes that
we define below are intuitively based on the complexity of the circuits
required to check a solution, or alternatively the “natural logical depth” of
the problem. (See also [CC] for a view of this idea in terms of alternating
logarithmically bounded Turing Machines.)

We first define circuits in which some gates have bounded fan-in and
some have unrestricted fan-in. It is assumed that fan-out is never restricted.
Definition. A Boolean circuit is of mized type if it consists of circuits having
gates of the following kinds.

(1) Small gates: not gates, and gates and or gates with bounded fan-in.
We will usually assume that the bound on fan-in is 2 for and gates and or
gates, and 1 for not gates.

(3) Large gates: And gates and Or gates with unrestricted fan-in.

We will use lower case to denote small gates (or gates and and gates),
and upper case to denote large gates (Or gates and And gates).
Definition. The depth of a circuit C 1s defined to be the maximum number
of gates (small or large) on an input-output path in C'. The weft of a circuit
C is the maximum number of large gates on an input-output path in C.
Definition. We say that a family of circuits F' has bounded depth if there
is a constant h such that every circuit in the family /' has depth at most
h. We say that F' has bounded weft if there is constant ¢ such that every
circuit in the family F' has weft at most t. F' is monotone if the circuits of
F do not have not-gates. F'is a decision circuit family if each circuit has a
single output. A decision circuit C' accepts an input vector z if the single
output gate has value 1 on input z. The weight of a boolean vector z is
the number of 1’s in the vector.

16 R. Downey and M. Fellows

Definition. Let F' be a family of decision circuits. We allow that F' may
have many different circuits with a given number of inputs. To F' we
associate the parameterized circuit problem Lp = {(C,k) : C accepts an
input vector of weight k}.

Definition. A parameterized problem L belongs to W{t] (monotone W[t])
if L uniformly reduces to the parameterized circuit problem Lp for some
family F of bounded depth, mixed type (monotone) decision circuits of
weft at most ¢.

As an example of problem classification we offer the following. The V-
C dimension of a family of sets 1s an important concept in computational
learning theory [BEHW].

Definition. The Vapnik-Chervonenkis dimension of a family of sets F of a
base set U 1s defined to be the maximum cardinality of a set S C U that is
shattered by F. That is, for each subset T C S there 1s a set A € F such
that ANS="1T.

Proposition 3.1. The problem of determining whether the V-C dimension
of a family of sets is at least k is in W[1].

Proof. Let F C 2V denote the family of sets under consideration. Suppose
F={X;:1<j<m}and U ={1,...,n}. It suffices to show that in
time f(k) - (mn)® we can produce a product-of-sums Boolean expression
E in which the clauses have size bounded by some constant, and such that
F has a satisfying truth assignment of weight &' = g(k) if and only if the
V-C dimension of F is at least k.

The set of variables for £ 1s V = V] U V5 where:
Vi=A{ali,j]:1<i<2%, 1<j<m}

Vo={b[r,s]: 1 <r<k, 1<s<n}

The variables of V] serve to indicate which sets in F witness the shat-
tering of the k-element subset of U indicated by the variables of V5. Let v
be a fixed 1:1 correspondence between the integers i in the range 1 < i < 2F
and the length k 0-1 vectors, and write v;({) € {0,1} to indicate the value
of the /[-th component of the vector associated to i.

We will take k' = k + 2%, and E = E; - E as follows.

FEy 1s a product of small clauses that enforces the conditions:

(1) For each index value of ¢ (r) in the definition of ¥ (V3), at most one
variable of V1 (V3) is set to true.

(2) If b[i, 4] and b[¢’, j'] are set to true, with ¢ < ¢, then j < j’.

This can be accomplished with clauses of size 2.

Note that any satisfying truth assignment to £ of weight & + 2% must
set exzactly one variable of V; (V2) true for each index value of i (r).

E5 is the product of clauses expressing the implications: afi,j] =
=b[r, s] for all incompatible pairs of indices (¢,j) and (r,s), where such
a pair is defined to be incompatible if and only if either (1) v;(r) = 1 and
s¢ X;,0r(2) vi(r)=0and s € X;.

The verification that this works correctly is straightforward. ad
Definition. We denote the class of fixed-parameter tractable problems

Parameterized Computational Feasibility 17

rPT.

Thus we have the containments
FPTCWI[CW[2]C ..

and we conjecture that each of these containments is proper. We term the
union of these classes the W Hierarchy, and denote it W H. We have the
following implication if P = N P.
Lemma 3.1 If P= NP then WH C FPT. a
The following theorem plays a role in our theory analogous to Cook’s
theorem for N P-completeness. A parameterized variation of Satisfiability
based on a normal form for boolean expressions supplies the problems that
we identify as complete for the various levels of W H.
Definition. A boolean expression X is termed t-normalized if:
(1) t = 2 and X is in product-of-sums (P-0-S) form,
(2) t = 3 and X is in product-of-sums-of-products (P-0-S-0-P) form,
(3) t =4 and X is in P-0-S-0-P-0-S form,
.. etc.
Weighted ¢-Normalized Satisfiability
Input: A t-normalized boolean expression X and a positive integer k.
Question: Does X have a satisfying truth assignment of weight £7
Theorem 3.2 [DF1] Weighted ¢-Normalized Satisfiability is complete for
Wit] for ¢ > 2. O
Independent Set is an example of a problem complete for W1] (see
[DF3]). Dominating Set is shown to be complete for W[2] in [DF1]. In
order to address the issue of fixed-parameter complexity for problems for
which solutions can be checked in polynomial time it is natural to define
the following complexity class.
Definition. A parameterized problem L belongs to W[P] (monotone W[P])
if L uniformly reduces to the parameterized circuit problem Lg for some
family of circuits F'.
Note that WTt] is contained in W[P] for every ¢, and that W[P] = FPT
if P = NP. The following problems, for example, are complete for W[P]
(see [ADF2)):

Monotone Circuit Satisfiability
Instance: A monotone circuit C' and a positive integer k.
Question: Does C accept an input vector of weight &7

Degree Three Subgraph Annihilator
Instance: A graph G = (V| E) and a positive integer k.
Question: Is there a set X C V of at most & vertices such that G — X has
no subgraph of minimum degree three.

Density questions concerning parameterized complexity classes and re-
ducibilities offer significantly more difficult challenges than do correspond-
ing questions in the study of ordinary polynomial-time reducibility. By

18 R. Downey and M. Fellows

rather demanding methods (e.g., 0" priority arguments) we have been able
to show the following analogue of Ladner’s classical density theorem.
Theorem 3.3 [DF5] If any of the containments

FPTCWCW[2C---

of the W Hierarchy is proper, then there are infinitely many intervening
equivalence classes of parameterized problems with respect to strong uni-
form reductions. ad

The analogous density question with respect to uniform reductions
remains open. A compendium of parameterized problems presently known
to be complete for various levels of the W hierarchy can be found in [DF4]
and [DF6].

3 Fixed-Parameter Reducibilities and Com-
pleteness

In this section we describe a number of new results which serve to illustrate
how the reductions in the theory of fixed-parameter complexity differ from
the familiar reductions of N P-completeness.

Definition. A tournament is a directed graph G = (V, A) such that for
every pair of vertices u,v € V exactly one of uv and va belongs to the set
of arcs A.

It is easy to observe that a tournament of order n must have a dominat-
ing set of order logn. (One can be constructed by repeatedly selecting and
removing a vertex having outdegree > indegree.) Thus, this problem can be
solved with a polylogarithmic amount of nondeterminism, and therefore is
unlikely to be complete for NP. (For a other studies of polynomial-time
computational power augmented by limited amounts of nondeterminism
see [BG], [Re] and [CC].)

Tournament Dominating Set

Instance: A tournament 7" and a positive integer parameter k.

Question: Does T have a dominating set of cardinality at most &7
Theorem 4.1 Tournament Dominating Set is complete for W[2].

Proof. As a special case of Dominating Set it is easily seen to be in W/[2].
To show that it is hard for W[2] we reduce from Dominating Sel. Let
G = (V, E) be an undirected graph for which we wish to determine whether
G has a dominating set of size k. We describe how a tournament 7" can be
constructed that has a dominating set of size k£ + 1 if and only if G has a
dominating set of size k. The size of T is O(2* - n) where n is the number
of vertices of G, and T can be constructed in time polynomial in n and 2*.

The vertex set of the tournament 7" is partitioned into three sets: Vjy,
Vg and V. The vertices in the set V4 are in 1:1 correspondence with the
vertices of G, and we write V4 = {a[u] : u € V(G)}. The set of vertices Vg

Parameterized Computational Feasibility 19

of T corresponds to m copies of the vertex set of G and we may write this
as Vp = {bli,u] : 1 < i< m,u € V(G)}. (The appropriate cardinality for
m is determined below.) Ve consists of just a single vertex which we will
denote c.

The construction of 1" must insure that for every pair of vertices z,y
of T', one of the arcs xy or yx is present. Let Ty be any tournament on n
vertices (we will use Ty as “filler”). Include arcs in T to make a copy of Tg
between the vertices of each of the n-element sets V4 and Vp(i) = {b[¢, u] :
weV(G)}fori=1,...,m.

Let T be a tournament on m vertices that has no dominating set of
size k + 1. It can be shown that there are easy constructions of such a
tournament, with m = O(2%t!). Consider that the vertex set of 7T} is
V(Ty) = {1,...,m}. For each arc ¢j in T} include in 7" an arc from each
vertex of V(i) to each vertex of Vg (j).

The adjacency structure of (G is represented in 7' in the following way:
for each vertex u € V(G) include arcs from the vertex afu] to the vertices
b[i,v] for every v € Ng[u] and for each i, 1 < i < m, and from every other
vertex in Vg include an arc {o a[u]. Thus the neighborhood structure of G
is represented in arcs from V4 to Vg, and otherwise there are arcs from Vg
to VA.

Finally, there are arcs in 7" from ¢ to every vertex in V4 and from every
vertex iIn Vg to c.

We now argue that the construction works correctly. If there 1s a k-
element dominating set S in GG, then the corresponding vertices in V4 dom-
inate all of the vertices in V. Thus together with ¢ we have a dominating
set of size k +11n T

Conversely, suppose 7" has a dominating set D of size k£ + 1. At least
one vertex of D must belong to Vg or Vi, else the vertex c¢ is not domi-
nated. Thus there are at most k& vertices of D in V4. Let S4 denote the
corresponding vertices of (G. If S4 is not a dominating set in G, then let z
denote some vertex of G that is not dominated. Let D4 = DN Vy, and let
Dg=DnVg.

The vertices b[i, 2] of Vg for 1 < i < m are not dominated in 7" by the
vertices of D 4. The vertices of Vg can be viewed as belonging to m copies
of V(G) for which we have introduced the notation Vg (i), 1 < < m. Say
that a copy V(i) is occupied if V(i) N Dp # 0. There are at most k + 1
occupied copies of V(G) in Vp. Because of the structure of 77 used in the
construction of 7', these occupied copies do not dominate all of the copies
of V(G) in Vp. Let j be the index of an undominated copy. But then the
vertex b[j, «] of T is not dominated by D, a contradiction. Thus S4 must
be a dominating set of cardinality at most £ in G. ad

The above reduction would not suffice to demonstrate that the problem
is N P-complete, for the reason that the reduction is, “exponential in k.”
This is one fundamental way in which parameterized problem reducibilites
may differ from the “usual” polynomial-time reducibilities. The fact that

20 R. Downey and M. Fellows

the blow-up is “only” exponential in k yields as a Corollary the result of
[PY] that Tournament Dominating Set is complete for the complexity class
LOGSNP. We remark, however, that most of our earlier reductions in, for
instance, [DF1-5], are in fact polynomial in both n and k, and yield com-
pleteness results simultaneously for all intermediate classes such as LOGNP
etc as well as for NP. Since determination of the V — C dimension is
LOGNP complete ([PY]), it is a very interesting question to ask if this
problem is, for instance, W[1]-complete.

The reduction in Theorem 4.1 also has an interesting property that we
will term blindness, informally defined as follows.

The Blindness of the Reduction. The vertex set of the tournament 7'(G)
that is constructed depends only on the size of G, and furthermore, the
correspondence between the solutions to the two problems is such that for
a pair of corresponding problem instances (G, T(G)):

(1) A solution for T(G) can be computed from a solution for G, even if G
is tnwvistble, that is, knowing only the size of G.

(2) A solution for G can be similarly computed from a solution for T(G),
even if T(G) is invisible.

A moment’s reflection on familiar reductions in the theory of N P-
completeness will reveal that the reductions there almost never have this
property. Reductions in fixed-parameter complexity theory often do possess
this property, which provides for interesting applications in computational
learning theory. We briefly describe how these applications come about.

In the model of exact learning by membership and (extended) equiv-
alence queries we study the situation where the Teacher possesses (for ex-
ample) a graph on n vertices that is hidden from the Learner. We assume
that the Learner initially knows nothing about the graph, not even its size.
The goal of the Learner i1s to produce “knowledge” of, for example, the
dominating sets in the graph. Such knowledge can be represented by an
algorithm (e.g., a circuit) which decides whether a given set of vertices is
a dominating set in the graph being taught.

There are two ways in which the Learner may interact with the Teacher:
(1) By presenting a knowledge representation to the Teacher and asking
whether it is correct. The Teacher responds either yes (in which case
the Learner is done), or provides a counterexample to the correctness of
the knowledge representation. This interaction is termed an (extended)
equivalence query.

(2) By asking whether a particular set of vertices is a dominating set in
the graph being taught. The Teacher responds either yes or no. This
interaction isPte9ved a membership query.

The central question that is studied is whether there is an algorithm
that the Learner can execute in polynomial time (in the size of the graph
to be learned) which will yield a complete and correct knowledge repre-
sentation in interaction with any Teacher who responds correctly (but not
necessarily judiciously) to the queries.

Parameterized Computational Feasibility 21

The blindness of the reduction of Theorem 4.1 allows us to prove the
following.
Theorem 4.2 1If the k-element dominating sets of a tournament can be
learned in fixed-parameter polynomial time, then so can the k-element
dominating sets in an arbitrary graph.
Proof. (Sketch) The Learner is interacting with a Teacher of k-element
dominating sets in a graph of unknown size. By diagonalization, however,
the Learner can be presumed to have knowledge of the size of the graph.
The Learner forms a mental model of a tournament as described by the
reduction of Theorem 4.1. Since the graph is not visible to the Learner,
this model is not complete. The Learner pretends to learn the dominating
sets in the tournament. Because of the blindness of the reduction, queries
that the Learner wishes to make about the tournament can be translated
into queries about dominating sets in the graph that the Teacher actually
present is teaching, and similarly, counterexamples provided by the Teacher
can be translated into counterexamples concerning the (imaginary) tour-
nament. When the Learner has a correct knowledge representation of the
dominating sets in the tournament, this provides (by composing with the
blind translation of solutions between the problems) a correct representa-
tion of the dominating sets in the graph. ad

By a similar but more intricate argument using the fixed-parameter
reduction of Weighted Satisfiability to Monotone Weighted Satisfiability
we have been able to prove the following strengthening of a theorem of
Valiant [Val]. (Details will appear elsewhere. [DEF])
Theorem 4.3 Arbitrary DNF formulas can be exactly learned in polynomial
time by extended equivalence queries (only) if and only if monotone DNF
formulas can be so learned. ad

The main point of this discussion is that fixed-parameter reducibilities
differ in a number of interesting and non-trivial ways from the reductions
usually found in the theory of N P-completeness. We also note that in
many cases they seem to be somewhat more difficult to devise, although
many problems have been identified as complete or hard for various levels
of the W hierarchy. (A published compendium can be found in [DF4] and
the authors maintain a current list available electronically).

4 Open Problems

There are a number of concrete problems for which a demonstration of
either fixed-parameter tractability or completeness (or hardness) for some
level of the W hierarchy would be interesting, and in the case of tractability,
of possible practical significance. The current “most wanted” list includes
the problems: Directed Feedback Vertex Set [GJ], Perfect Phylogeny for
k Characters [BFW], Graph Bandwidth [GJ], V-C Dimension [BEHW],
Traveling Salesman Tour of at least k Cities [GJ], and k-Small Steiner

22 R. Downey and M. Fellows

Trees in Graphs [GJ].

An important issue that has so far been little explored is that of
fized-parameter approzimation algorithms. One of the cornerstones of the
Robertson-Seymour results concerning graph minors is an algorithm that in
time f(k)-n? either determines that an input graph G has treewidth greater
than k, or produces a tree decomposition of width at most 5k. (This has
since been improved by a number of authors, with the best result presently
due to Bodlaender [Bo2].) What are the prospects for similar approxi-
mation algorithms for Dominating Set and other parameterized problems?
(Note that this is different from the question of the existence of a relative
approximation algorithm in the usual sense.)

Perhaps the foremost structural question regarding the W hierarchy
is whether collapse at the k-th level (W[k — 1] = W{k]) propagates either
downward (so that FPT = W{k]) or upward (so that W[k — 1] = WH).

In [ADF2] the following connection is made between the issue of the
proper nature of the W hierarchy and a “quantitative” version of P vs NP
question.

Theorem. FPT = W[P] if and and only if Satisfiability can be solved
in time p(n) - 2 °(v) where p is a polynomial, n is the size of the boolean
expression, and v is the number of variables.

References
[Ab] K. Abrahamson, private communication, May, 1992.
[ADF1] K. Abrahamson, R. Downey and M. Fellows, “Fixed-Parameter In-
tractability I1,”in Proceedings 10th Annual Symposium on Theoretical As-
pects of Computer Science, (STACS’ 93), Springer-Verlag Lecture Notes in
Computer Science, (1993) 374-385.
[ADF2] K. Abrahamson, R. Downey and M. Fellows, “Fixed-Parameter
Tractability and Completeness IV: On Completeness for W[P]and PSPACE
Analogues,” to appear Annals Pure and Applied Logic.
[AF] K. Abrahamson and M. Fellows, “Finite Automata, Bounded Treewidth
and Well-Quasiordering,” in Grapd Structure Theory (ed. N. Robertson
and P. Seymour) Contemporary Mathematics Vol. 147, American Mathe-
matical Society, Rhode Island, (1993) 539-564.
[AMOV] G. B. Agnew, R. C. Mullin, I. M. Onyszchuk and S. A. Vanstone,
“An Implementation for a Fast Public-Key Cryptosystem,” J. Cryptology
3 (1991), 63-79.
[An] D. Angluin, “Learning Regular Sets From Queries and Counterexam-
ples,” Information and Computation 75 (1987), 87-106.
[BEHW] A. Blumer, A. Ehrenfeucht, D. Haussler and M. Warmuth, “Learn-
ability and the Vapnik-Chervonenkis Dimension,” J. ACM 36 (1989), 929-
965.
[BM] D. Bienstock and C. L. Monma, “On the Complexity of Covering
Vertices by Faces in a Planar Graph,” STAM J. Comp. 17 (1988), 53-76.

Parameterized Computational Feasibility 23

[Bol] H. L. Bodlaender, “On Linear Time Minor Tests and Depth First
Search.” In F. Dehne et al., eds., Proc. 1st Workshop on Algorithms and
Data Structures, Lecture Notes in Computer Science, Vol. 382 (Springer,
Berlin, 1989), 577-590.

[Bo2] H. L. Bodlaender, “On Disjoint Cycles,” Technical Report RUU-
CS-90-29, Dept. of Computer Science, Utrecht University, Utrecht, The
Netherlands, August 1990.

[Bu] S. Buss, private communication, 1989.

[BFW] H. L. Bodlaender, M. R. Fellows and T. Warnow, “Two Strikes
Against Perfect Phylogeny,” in: W. Kuich (editor), Proceedings of the
19th International Colloguium on Automata, Languages and Programming
(ICALP’92), Springer-Verlag, Berlin, Lecture Notes in Computer Science,
volume 623, pp. 273-283.

[BG] J. F. Buss and J. Goldsmith, “Nondeterminism Within P,” STAM J.
Comp., Vol 22, (1993) 560-572.

[CC] L. Cai and J. Chen, “On the Amount of Nondeterminism and the
Power of Verifying,” manuscript, November 1992.

[CCDF] L. Cai, J. Chen, R. Downey and M. Fellows,“Advice Classes of
Parameterized Tractability,” to appear.

[DEF] R. Downey, P. Evans, and M. Fellows, “Parameterized learning Com-
plexity,” in Proceedings of the Sixth Annual Conference on Computational
Learning Theory, (COLT’93) IEEE, (1993) 51-57.

[DF1] R. G. Downey and M. R. Fellows, “Fixed Parameter Tractability
and Completeness,” Congr. Num., 87 (1992) 161-187.

[DF2] R. G. Downey and M. R. Fellows, “Fixed Parameter Tractability
and Completeness I: Basic Results,” to appear SIAM J. Computing.
[DF3] R. G. Downey and M. R. Fellows, “Fixed Parameter Tractability
and Completeness IT: On Completeness for W(1],” to appear Theoretical
Computer Science.

[DF4] R. G. Downey and M. R. Fellows, “Fixed Parameter Intractability
(Extended Abstract),” Proceedings of the Seventh Annual IEEE Conference
on Structure in Complexity Theory (1992), 36-49.

[DF5] R. G. Downey and M. R. Fellows, “Fixed Parameter Tractability
and Completeness III: Some Structural Aspects of the W-Hierarchy,” in
Complezity Theory (Ed. K. Ambos-Spies, S. Homer and U. Schoning)
Cambridge University Press, (1993) 166-191.

[DF6] R. G. Downey and M. R. Fellows, “Paramelerized Complexily,”
monograph in preparation.

[DKL] N. Deo, M. S. Krishnamoorthy and M. A. Langston, “Exact and
Approximate Solutions for the Gate Matrix Layout Problem,” IEEE Trans.
Computer-Aided Design 6 (1987), 79-84.

[FK] M. R. Fellows and N. Koblitz, “Fixed-Parameter Complexity and
Cryptography,” to appear in Proceedings of the Tenth International Con-
ference on Algebraic Algorithms and Error-Correcting Codes (AAECC 10),
Springer-Verlag, Lecture Notes in Computer Science, 1993.

24 R. Downey and M. Fellows

[FL1] M. R. Fellows and M. A. Langston, “Nonconstructive Tools for Prov-
ing Polynomial-Time Decidability,” J. ACM 35 (1988), 727-739.

[FL2] M. R. Fellows and M. A. Langston, “On Search, Decision and the
Efficiency of Polynomial-Time Algorithms.” In Proc. Symp. on Theory of
Computing (STOC) (1989), 501-512.

[FL3] M. R. Fellows and M. A. Langston, “An Analogue of the Myhill-
Nerode Theorem and Its Use in Computing Finite Basis Characteriza-
tions.” In Proc. Symp. PFoundations of Comp. Sci. (FOCS) (1989),
520-525.

[FL4] M. R. Fellows and M. A. Langston, “On Well-Partial-Order Theory
and Its Application to Combinatorial Problems of VLSI Design,” SIAM
Journal on Discrete Mathematics 5 (1992), 117-126.

[GJ] M. R. Garey and D. S. Johnson, Computers and Intractabilily: A
Guide to the Theory of N P-Completeness (Freeman, San Francisco, 1979).
[Gu] D. Gusfield, “Efficient Algorithms for Inferring Evolutionary Trees,”
Networks 21 (1991), 19-28.

[HM] F. Henglein and H. G. Mairson, “The Complexity of Type Inference
for Higher-Order Typed Lambda Calculi.” In Proc. Symp. on Principles
of Programming Languages (POPL) (1991), 119-130.

[TR] A. Itai and M. Rodeh, “Finding a Minimum Circuit in a Graph,” Proc.
9th ACM Symposium in Theory of Computing (1977), 1-10.

[KL] R. M. Karp and R. J. Lipton, “Turing Machines that Take Advice,”
L’ Enseignement Mathematique 28 (1982), 191-209.

[La] R. Ladner, “On the Structure of Polynomial Time Reducibility,” J.A.C. M.
22 (1975), 155-171.

[Le] T. Lengauer, “Black-White Pebbles and Graph Separation,” Acta In-
formatica 16 (1981), 465-475.

[Lo] L. Lovasz, “Combinatorial Problems and FEzercises,” Akadémiai
Kiadé, Budapest, 1979.

[Mo] M. Mosbah, “Pathwidth and Natural Languages,” Discrete Applied
Mathematics, 1992.

[PY] C. H. Papadimitriou and M. Yannakakis, “On Limited Nondetermin-
ism and the Complexity of the V-C Dimension,” in Structure in Complexity,
8th Annual Conference IEEE, (1993) 12-18.

[Re] K. Regan, “Finitary Substructure Languages, With Application to the
Theory of N P-Completeness,” Proc. 4th Structure in Complexity Theory
Conf. (1989), 87-96.

[RS1] N. Robertson and P. D. Seymour, “Graph Minors: A Survey,” in
Surveys in Combinatorics, I. Anderson, ed. (Cambridge University Press:
Cambridge, 1985), 153-171.

[RS2] N. Robertson and P. D. Seymour, “Graph Minors IV. Treewidth and
Well-Quasi-Ordering,” J. Comb. Theory Ser. B 48 (1990), 227-254.

[RS3] N. Robertson and P. D. Seymour, “Graph Minors XIII. The Disjoint
Paths Problem,” to appear.

[RS4] N. Robertson and P. D. Seymour, “Graph Minors XV. Wagner’s

Parameterized Computational Feasibility 25

Conjecture,” to appear.
[Va] L. G. Valiant, “A Theory of the Learnable,” Comm. ACM 27 (1984),
1134-1142.

Rodney Downey Michael Fellows

Mathematics Department Department of Computer Science
Victoria University University of Victoria

P.O. Box 600, Wellington Victoria, British Columbia, VW 3PY

New Zealand Canada

