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2 R. Downey and M. FellowsFor many other problems involving more than one input we have asharply contrasting situation (much like the apparent di�erence betweenP and NP ). For example, the best known algorithm for the MinimumDominating Set problem [GJ] which takes as input a graph G and a positiveinteger k and seeks to determine whether G has a set of k vertices that\covers" the vertex set of G, involves checking all of the k-element sets ofvertices and requires time O(nk+1).In addition to our structural-theoretic interest in how parameters con-tribute to the complexity of problems, there are several practical motiva-tions for our interest in parameterized complexity. We give three examples.Example 1. Graph width metrics: VLSI, computational biology and natu-ral language processing.There are a number of di�erent width metrics for graph and hyper-graph linear layout problems, for example, pathwidth [RS1], cutwidth [GJ],gate matrix layout [DKL], vertex separation number [Le], and bandwidth[GJ]. For a number of these problems, good algorithms for �nding lay-outs of width less than or equal to k, for �xed values of k � 10 wouldhave useful applications in VLSI design [DKL]. For the Perfect Phylogenyproblem of computational biology [Gu], the number of characters used inconstructing the phylogenetic tree corresponds to treewidth (another graphwidth metric). Phylogenies are routinely computed for data sets based ona small number of characters [BFW]. It has been proposed that the syntac-tic structure of sentences of natural languases be modeled by dependencygraphs of pathwidth no more than 6 (corresponding in some sense to the\bandwidth" of human attention) [Mo].Thus for many natural parameterized problems, a small range of pa-rameter values captures many important applications, and we are thereforekeenly interested in whether e�cient algorithms for �xed-parameter ver-sions of the problems can be devised, or whether, by completeness demon-strations, they may be unlikely to exist.For all of the width metrics w mentioned above, determining whetheran input graphG satis�es w(G) � k is NP -complete, yet we can distinguishimportant qualitative di�erences in the way the parameter contributes tothe complexity of the problem. For example, for every �xed value of k itcan be determined in linear time whether a graph has cutwidth at most k,while the best known algorithm for the k-bandwidth problem has runningtime O(nk).Example 2. Logic programming.Type inference is a problem of importance to implementations of pro-gramming languages such as ML that are based on polymorphic typed�-calculus. In [HM] it is shown that the problem is complete for deter-ministic exponential time, yet it has been widely noted that in practicethe problem is solvable quickly. One explanation for this discrepancy be-tween theory and practice comes from noting that the logic formulas thatoccur in natural programs tend to have small bounded depth of let's. For



Parameterized Computational Feasibility 3a parameter k bounding this depth, it can be shown that the problem is�xed-parameter tractable [Ab].Thus the study of parameterized complexity can shed new light on theobserved complexity of some well-known problems.Example 3. Hardware implementations of public-key cryptosystems.Some proposals for implementations of public key cryptosystems haveconsidered limiting the size or Hamming weight of keys in order to obtainfaster processing times. A cautionary note is sounded by the result [FK]that for every �xed k, with high probability it can be determined in timef(k)n3 whether an n-bit positive integer has a prime divisor less than nk. Ifa similar result holds for the Discrete Logarithm problem for exponents ofbounded Hamming weight, then the security of cryptographic implementa-tions such as proposed in [AMOV] may be compromised. (Both problemsare trivially solvable in time O(nk+c), where c is a small constant.)The perspective provided by a theory of parameterized complexity en-courages us to perceive and address problems such as the above.The formal framework for our study is established as follows.De�nition. A parameterized problem is a set L � �� � �� where � is a�xed alphabet.In the interests of readability, and with no e�ect on the theory, weconsider that a parameterized problem L is a subset of L � �� �N . For aparameterized problem L and k 2 N we write Lk to denote the associated�xed-parameter problem (k is the parameter) Lk = fxj(x; k) 2 Lg.There are natural examples (some of which are discussed in the nextsection) of the following three avours of �xed-parameter tractability.De�nition. We say that a parameterized problem L is:(1) nonuniformly �xed-parameter tractable if there is a constant � and asequence of algorithms �x such that, for each x 2 N , �x computes Lx intime O(n�);(2) uniformly �xed-parameter tractable if there is a constant � and an algo-rithm � such that � decides if (x; k) 2 L in time f(k)jxj� where f : N ! Nis an arbitrary function;(3) strongly uniformly �xed-parameter tractable if L is uniformly �xed-parameter tractable with the function f recursive.The reader familiar with classical recursion theory will notice the anal-ogy with the classical notion of piecewise recursive recursively enumerablesets. We de�ne three corresponding avours of reducibility.De�nition. Let A;B be parameterized problems. We say that A isuniformly P -reducible to B if there is an oracle algorithm �, a constant �,and an arbitrary function f : N ! N such that(a) the running time of �(B; hx; ki) is at most f(k)jxj�,



4 R. Downey and M. Fellows(b) on input hx; ki, � only asks oracle questions of B(f(k)) whereB(f(k)) = [j�f(k)Bj = fhx; ji : j � f(k)&hx; ji 2 Bg(c) �(B) = A.If A is uniformly P -reducible to B we write A �uT B. Where appro-priate we may say that A �uT B via f . If the reduction is many:1 (anm-reduction), we will write A �um B.De�nition. Let A;B be parameterized problems. We say that A is stronglyuniformly P -reducible to B if A �uT B via f where f is recursive. We writeA �mT B in this case.De�nition. Let A;B be parameterized problems. We say that A isnonuniformly P -reducible to B there is a constant �, a function f : N ! N ,and a collection of procedures f�k : k 2 Ng such that �k(B(f(k))) = Akfor each k 2 N , and the running time of �k is f(k)jxj�. Here we writeA �nT B.Note that the above are good de�nitions, since whenever A < B with< any of the reducibilities, if B is �xed-parameter tractable so too is A.Note that if P = NP then problems such as MinimumDominating Setare �xed-parameter tractable. Thus, a completeness program to addressthe apparent �xed-parameter intractability of this and other problems isreasonable.A variety of methods are now known for demonstrating the severalavours of �xed-parameter tractability. It Section 2 we describe some ex-amples of these results and techniques. Some of the methods are straight-forward and elementary, and some depend on very deep results in combi-natorics.In Section 3 we describe the basic framework and results of the com-pleteness theory for �xed-parameter tractability.In Section 4 we discuss some new results that serve to illustrate howthe basic reducibilities in �xed-parameter complexity theory di�er fromthe reducibilities in NP -completeness theory. In particular, we prove thatthe problem of determining whether a tournament has dominating set ofcardinality k is W [2]-complete (the general problem is unlikely to be NP -complete), and we discuss some applications of �xed-parameter reducibili-ties in computational learning theory.Section 5 concludes with a discussion of some of the many open prob-lems in this subject.1 Fixed-Parameter Tractability: Flavors andTechniquesIn x1 we de�ned three di�erent forms of �xed-parameter tractability. Thereare important natural examples of all three of these, and there are identi�-



Parameterized Computational Feasibility 5able general methods for obtaining such results. We believe it would be fairto say that the toolkit of algorithm design techniques for �xed-parametertractability is both rich, and somewhat distinctive from the usual toolkit oftechniques for demonstrating polynomial-time complexities. The distinc-tive nature of some of these methods reects various approaches to shiftingthe complexity burden onto the parameter.1.1 Non-uniform Fixed-Parameter TractabilityOne of the most striking recent developments in combinatorial mathemat-ics has been the theory of graph minors (and immersions) pioneered byRobertson and Seymour. Their deep results in the area of well-quasi-ordering theory give very powerful and easy to use methods for establishingnon-uniform �xed-parameter tractability. For background on these meth-ods and various applications, see [RS1] and [FL1]. It seems likely that thebasic theory of well-quasi-ordering will continue to develop, and to supportapplications to decision problems for many di�erent kinds of combinatorialobjects.We are concerned here with explaining how these methods, which applyto a great variety of natural parameterized problems (see, for example [FL1]and [FL4]), relate to the forms of �xed-parameter tractability de�ned inx1. The complexity of the following three parameterized problems can beaddressed by means of the Graph Minor Theorem (stated below).Graph Linking NumberInstance: A graph G.Parameter: A positive integer k.Question: Can G be embedded in 3-space in such a way that no set of kor more vertex disjoint cycles in G is topologically linked?Diameter Improvement for Planar GraphsInstance: A planar graph G.Parameter: A positive integer k.Question: Can G be augmented with additional edges in such a way thatthe resulting graph G0 remains planar, and so that the diameter of G0 is atmost k?Planarity Edit DistanceInstance: A graph G = (V;E).Parameter: A positive integer k.Question: Is there a set of at most k vertices V 0 � V such that G� V 0 isplanar?A graph H is a minor of a graph G, written H �m G if a graphisomorphic to H can be obtained from G by a sequence of the operations:(1) taking a subgraph, and (2) contracting an edge. (In the contractionof an edge, the the endpoints of the edge become identi�ed as the edge is\shrunk" to nothing.)The Graph Minor Theorem. (Robertson and Seymour [RS4]) If F is a fam-



6 R. Downey and M. Fellowsily of �nite graphs that is closed under the minor order (G 2 F andH �m Gimply H 2 F), then there is a �nite set of graphs OF = fH1; : : : ;Htg suchthat G =2 F if and only if G �m Hi for some Hi 2 F .A family of graphs F as in the statement of the Graph Minor Theoremis termed a minor order lower ideal, and the set of graphs OF is termed theobstruction set for F . A classical example of an obstruction set is given by(the minor order version of) Kuratowski's theorem: Oplanar = fK3;3;K5g.It is easy to verify that for each �xed parameter value k the set of yes-instances for the above problems are minor order lower ideals.The reader can readily verify that the GraphMinor Theorem provides anonuniform �xed-parameter Turing reduction of each of the above problemsto the problem of Minor Testing.Minor TestingInstance: A graph GParameter: A graph HQuestion: Is G �m H?Minor Testing has been shown by Robertson and Seymour [RS3] tobe (strongly uniformly) �xed-parameter tractable in cubic time. Con-sequently, each of the above problems is nonuniformly �xed-parametertractable. The Graph Minor Theorem alone does not yield any strongerform of �xed-parameter tractability, because we know only that a �niteobstruction set exists for each parameter value k. No information is givenby either the theorem or its proof on how many obstructions there are inOk, how large they are, or how they might be determined.At the present time, we know only that Graph Linking Number isnonuniformly �xed-parameter tractable, by the above considerations. Forthe other two problems we can apply general techniques (described below)to show stronger forms of �xed-parameter tractability.The following theorem shows that the Turing reducibilities providedby the Graph Minor Theorem can be made many:1.Theorem 2.1 Given a set of graphs G;H1; : : : ;Ht we can compute in poly-nomial time graphs G0 and H 0 such that G0 �m H0 if and only if G �m Hifor some i, 1 � i � t.Proof. (Sketch) Let N = 1 + maxfjHij : 1 � i � tg. G0 has a centralvertex u of degree t, as does H 0. An example of the construction for t = 4is shown in Figure 1. In this construction, G0 is essentially a tree withleaves attached to copies of the complete graph KN and to one copy of G.An attachment to a copy of KN consists of a single edge to a vertex of KN .The attachment to the copy of G consists of edges from the leaf to eachvertex of G, as indicated pictorially in the �gure. The attachments of theleaf vertices of H 0 to the graphs of the obstruction set and to the copies ofKN are similar. 2
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LLDD AAA ��� SS���%%��\\ ���aa�� ��AAPPBB��QQKN G KNKNKNKNKNKN KN KNKNKNH1 H2H3 H4G0 H0Figure 1: An example of the construction for t = 4.1.2 Uniform Fixed-Parameter TractabilityMany of the computational problems to which the Graph Minor Theoremcan be applied can be shown constructively to be uniformly �xed-parametertractable by the method of [FL2] based on polynomial time self-reducibility.We illustrate this method with the problem of Diameter Improvement forPlanar Graphs.Theorem 2.1 Diameter Improvement for Planar Graphs is (constructively)uniformly �xed-parameter tractable.Proof. For this problem it is easy to describe the following three algorithmswhich we will use as subroutines. The �rst of these, A, is simply a decisionalgorithm for the problem (that does not run in polynomial time) based onexhaustively examining all possible embeddings of G and all possible aug-mentations of these to a triangulation of the plane. The second auxiliaryalgorithmB is a polynomial-time self-reduction of the naturally associatedsearch problem (�nding a diameter improvement scheme, if one exists) tothe decision problem. The third algorithm C that we will use as a subrou-tine, is a polynomial time algorithm to check whether a given improvementscheme is correct. C simply checks the diameter of the improved graph,and checks that the improved graph is planar.Here is how algorithmB works. Note that this is an oracle algorithm forwhich we assume that a decision algorithm for the Diameter Improvementproblem is available to use as a black box, and that our job is to computean improvement scheme, if one exists, in time polynomial in the number nof vertices in the graph, and assuming that each consultation of the oraclerequires unit time. For each pair of vertices u; v of G, we may ask the



8 R. Downey and M. Fellowsblack box whether the graph G+ uv is k-improvable. If G is k-improvable(and does not already have diameter � k) then at least one such probe willsucceed. We repeat this procedure (at most O(n2) times) until we havediscovered an improvement scheme.Now we argue that using the above three algorithms as subroutines, wehave uniform �xed-parameter tractability for the problem. First, we havean additional procedure D which generates all �nite graphs, beginning withthe empty graph. How e�cient D is does not matter to our argument.Suppose we are given G and k as input. We repeatedly use procedureD together with procedure A to �nd a \new" obstruction. We do this bysimply generating graphs usingD until we �nd a graphH with the property(using A to identify this) that H =2 F but every proper minor of H belongsto F (this property characterizes the obstructions for F). Having found a\new" obstruction, we add it to a list L of known obstructions. Note thatnone of the computations here refer to the graph G, and that we will repeatthis generative cycle at most a �nite number of times for a given k, sinceOk is �nite. Thus the total amount of computation involved in this part ofthe algorithm is simply bounded by some (unknown, and not necessarilyrecursive) function of k.Having found a \new" obstruction H we do the following:(1) We run the algorithm for Minor Testing to see if G �m H. If so, thenwe are done, since this shows that G =2 F . This requires time O(n3) forjGj = n for each such H, of which there are �nitely many, since Ok is�nite.(2) If the above step (1) fails to settle the question negatively, then weattempt to discover a positive resolution by running procedure B using thelist L as a (possibly faulty) oracle for F-membership (using the algorithmfor Minor Testing for each of the graphs on the list L). The procedure Bmay malfunction (which we can detect) because of the potentially faultyoracle we are using, or it may produce a purported improvement scheme.We can check, using procedure C, whether any such purported solutionis correct. If so, then we are done, having produced a certi�cate for theanswer yes.If neither of (1) or (2) above produces a (certi�ably correct) answer,then we return to the generative cycle to �nd a new unknown obstruction.Within a �nite number of cycles, since Ok is �nite, either (1) or (2) mustproduce a correct answer. It is easy to see that entire algorithm runsin polynomial time; this depends particularly on the fact that our self-reduction algorithm B runs in polynomial time, as well as procedure C forchecking a solution. 2This method cannot presently be applied to the problem of Graph Link-ing Number, for the primary reason that a polynomial-time self-reductionis not known for this problem. Note that the method does not yield anyknowledge of the function f(k) in the running time.



Parameterized Computational Feasibility 91.3 Strongly Uniform Fixed-Parameter TractabilityThe Planarity Edit Distance problem can be shown to be strongly uni-formly �xed-parameter tractable by the method of [FL3]. This essentiallyconsists of a uniform method for computing the obstruction sets for theproblem. Although this method is applicable to many of the natural lowerideals in the minor order, we presently do not know how to apply it tothe Diameter Improvement problem. The method is based on a graph-theoretic generalization of the Myhill-Nerode theorem of formal languagetheory, and is developed further in [AF].For the remainder of our discussion of uniform�xed-parameter tractabil-ity we focus on two widely applicable elementary techniques: (1) SearchTrees, and (2) Reduction to a Problem Kernel.1.3.1 The Method of Search TreesWe next describe how the Search Tree technique can be applied to thewell-known problems: Vertex Cover, Dominating Set for Planar Graphs,and Feedback Vertex Set [GJ]. We show how it can be used to improve theresults of [BM] on the face cover number of plane graphs. The problemsthat we consider are de�ned as follows.Vertex CoverInstance: A graph G = (V;E).Parameter: A positive integer k.Question: Is there a set of vertices V 0 � V of cardinality at most k, suchthat for every edge uv 2 E, either u 2 V 0 or v 2 V 0?Feedback Vertex SetInstance: A graph G = (V;E).Parameter: A positive integer k.Question: Is there a set of vertices V 0 � V of cardinality at most k suchthat G� V 0 is acyclic?Dominating Set for Planar GraphsInstance: A planar graph G = (V;E).Parameter: A positive integer k.Question: Is there a set of vertices V 0 � V of cardinality at most k suchthat for every vertex u 2 V , there is an edge uv 2 E for some vertexv 2 V 0?Face Cover Number for Plane GraphsInstance: A planar graph G = (V;E) together with an embedding of G inthe plane.Parameter: A positive integer k.Question: Is there a set F of at most k faces of the embedding such thatevery vertex of G occurs on the boundary of at least one of face f 2 F?Theorem 2.1 Vertex Cover can be solved in time O(2k � n) where n is thenumber of vertices in the graph (and the hidden constant is independent



10 R. Downey and M. Fellowsof both n and k).Proof. We construct a binary tree of height k as follows. Label the rootof the tree with the empty set, and the graph G. Choose an edge uv 2 E.In any vertex cover V 0 of G we must have either u 2 V 0 or v 2 V 0, so wecreate children of the root node corresponding to these two possibilities.Thus the �rst child is labeled with fug and G� u, and the second child islabeled with fvg and G� v. The set of vertices labeling a node representsa \possible" vertex cover, and the graph labeling the node represents whatremains to be covered in G. In general, for a node labeled with the set ofvertices S and the subgraph H of G, we choose an edge uv 2 E(H) andcreate the two child nodes labeled, respectively, S [ fug and H � u, andS [fvg and H� v. If we create a node at height at most k in the tree thatis labeled with a graph having no edges, then a vertex cover of cardinalityat most k has been found. There is no need to explore the tree beyondheight k. 2Theorem 2.2 Feedback Vertex Set can be solved in time O((2k+ 1)k �n2).Proof. First note that a graph G has a feedback vertex set of size k ifand only if the reduced graph G0 has one, where G0 is obtained from G byreplacing each maximal path in G having internal vertices all of degree 2with a single edge. Note that the reduced graph G0 may have loops andmultiple edges, but that if G0 is simple then it has minimumdegree 3. Thereduced graph G0 can be computed from G in linear time. Also, in lineartime, a k-element feedback vertex set that has been identi�ed in G0 can belifted to a k-element feedback vertex set in G.As in the proof of Theorem 2.1, we build a search tree where each nodeis labeled with a set of vertices S representing a possible partial solution.The cardinality of a label corresponds to the height of the node in the tree,and we will therefore explore the tree to a height of no more than k. Inlinear time we can check whether a set S is a solution. If the label set Sof a node in the search tree is not a solution and the node has height lessthan k, then we can generate the children of the node, as follows.Let H denote the graph G � S, and let H 0 be the reduction of H (asdescribed above). If a vertex v of the H 0 has a self-loop, then v must belongto every feedback vertex set of H 0. Corresponding to this observation, wecreate a single child node with label S [ fvg.If the reduced graph H 0 of the graph H = G � S has multiple edgesbetween a pair of vertices u; v 2 V (H), then either u or v must belong toevery feedback vertex set of H 0, and we correspondingly create two childnodes with labels, respectively, S [ fug and S [ fvg.If the reduced graph H 0 has no loops or multiple edges, then we canmake use of the following.Claim. If a simple graph J of minimum degree 3 has a k-element feedbackvertex set, then the girth of J (the length of a shortest cycle) is boundedabove by 2k.We prove this by induction on k. If J is simple then by a standard



Parameterized Computational Feasibility 11result J must contain a subdivision of K4 [Lo], and this implies that afeedback vertex set must contain at least two elements.For the induction step suppose U 0 is a feedback vertex set consistingof k + 1 vertices of J . Suppose that u; v 2 U 0 with the distance from u tov, d(u; v) � 2 in J . Contracting the edges of a shortest path from u to vyields a graph J 0 of minimum degree 3 that has a feedback vertex set of kelements. By the induction hypothesis, there is a cycle C in J 0 of length atmost 2k. This implies that there is a cycle in J of length at most 2k + 2.Otherwise, suppose no two vertices u; v of U 0 have d(u; v) � 2 in J . Thenevery vertex of J � U 0 has degree at least two, and so there is a cycle inJ not containing any vertex of U 0, a contradiction. This establishes ourclaim.By the above claim, we know that for the node of the search tree thatwe are processing, either H 0 contains a cycle of length at most 2l wherel = k � jSj, or that S cannot be extended to a k-element feedback vertexset. An algorithm of Itai and Rodeh [IR] can be employed to �nd in H 0 acycle of length 2l or 2l+1 in time O(n2). Thus in time O(n2) we can eitherdecide that the node should be a leaf of the search tree (because there isno cycle in H 0 of length at most 2l + 1) or we can �nd a short cycle andcreate at most 2l + 1 children, observing that at least one vertex of theshort cycle that we discover in H 0 must belong to any feedback vertex set.2 We remark that it is possible to show that Feedback Vertex Set is lineartime �xed-parameter tractable [Bo,DF] with running time O((17k4)! � n).Whether the directed version of the problem is �xed-parameter tractableis presently unknown.For the next example of the Tree Search technique, we will make useof the following lemma concerning planar graphs.Lemma 2.3 If G = (V;E) is a simple planar graph with a vertex partitioninto two sets V = V1 [ V2 satisfying:(1) the minimum degree of vertices in V1 is at least 3, and(2) V1 is an independent set in G,then there is a vertex u 2 V2 of degree at most 10 in G.Proof. Let G be a counterexample of minimum possible order having amaximum number of edges, and consider an embedding of G in the plane.Let H denote the subgraph of G induced by V2. In any face of the inheritedembedding of H, there can be at most one vertex of V1, else an edge couldbe added between two vertices of V2 on the boundary of the face, andtherefore G would not have a maximum number of edges as supposed. Letu be a vertex of degree at most 5 in H. The vertex u is on the boundaryof at most 5 faces of H, and consequently in G, u has degree at most 10.2Theorem 2.4 Dominating Set for Planar Graphs can be solved in timeO(11k � n).Proof. We construct a search tree for which each node has at most 10



12 R. Downey and M. Fellowschildren. Each node in the tree is labeled with a set of vertices S thatrepresents a partially constructed dominating set.The root node, labeled with the empty set, will have at most 6 childrenbased on the following consideration. Since G is planar, G has a vertex vof degree at most 5 which can be found in linear time. Any dominating setfor G must contain either v or one of the neighbors of v. We create a childnode for each possible choice of a vertex to dominate v.In general, for a node in the search tree, we �rst check whether S isa dominating set. This can be done in linear time. The levels of the treecorrespond to the cardinality of the labels S, so the tree will have heightat most k. To compute the children of a node, we �nd a vertex u in G notdominated by S that has degree at most 10, and create a child node foreach possible choice y of a vertex to dominate u (there can be at most 11possibilities, including u). The child node is labeled with S[fyg. We mustargue that such a vertex u must be available; this being so, it can easilybe found in linear time. We term such a vertex u a splitter for the node inthe search tree.Let U denote the set of vertices not dominated by S, and let T =V � S � U be the set of vertices not in S and not in U . Let H be thesubgraph of G induced by V � S = T [ U , and let H 0 be the subgraph ofH obtained by deleting from H any edges between vertices of T .Observe that a set of vertices W � V �S has the property that S [Wis a dominating set in G if and only if W is a dominating set in H 0. Inother words, we may restrict our attention to H 0 in searching for a splitter.H 0 satis�es condition (2) of Lemma 3.3, but there may be vertices in Tthat have degree 2 in H 0. Necessarily any such vertex r 2 T of degree 2has two neighbors s; t 2 U . Consider the graph H 00 obtained from H 0 bydeleting such vertices r and adding the edges st. Lemma 3.3 applies to H 00,so there is a vertex u 2 U in H 00 of degree at most 10. The splitter vertexu also has degree at most 10 in H 0, H and G. 2We can prove a similar result for the following more general problem.Planar Red/Blue Dominating SetInstance: A planar bipartite graph G = (V;E), V = Vred [ Vblue.Parameter: A positive integer k.Question: Is there a set V 0 � Vred of cardinality at most k such that everyvertex of Vblue is adjacent to at least one vertex of Vred?Theorem 2.5 Planar Red/Blue DominatingSet is solvable in timeO(12k�n).Proof. Let G be an instance of the problem. We apply the search treetechnique essentially as in Theorem 2.4. The central point we must argueis that a node can be expanded to at most 12 children in linear time,without losing the possibility of discovering a solution if one exists.Let S � Vred be the label on a node in the search tree. Let B(S) �Vblue denote the vertices in Vblue dominated by S. Let T = Vred � S andU = Vblue�B(S). It su�ces to argue that there is a vertex u 2 U of degreeat most 10 in the subgraph H induced by the vertices of T [ U .



Parameterized Computational Feasibility 13Let Ti � T be the vertices of T in H of degree i, for i = 1; 2. Notethat any two vertices x; y of T1 adjacent to the same vertex of U in H areequivalent, in the sense that there is an extension of S that is a solution forG containing x if and only if there is a solution extension of S containingy. Thus, without loss of generality, we may assume: (*) each vertex of Uin H is adjacent to at most one vertex of T1.Let H 0 be the same graph as H�T1, but considering each vertex of T2as a \virtual edge" between the two vertices of U to which it is adjacent.H0 satis�es the conditions of Lemma 2.3 and therefore there is a vertexu 2 U of degree at most 10 in H 0 and in H � T1 as well. Taking (*) intoaccount, it su�ces to create at most 12 children in the search tree for thenode being processed. 2Theorem 2.6 Face Cover Number for Plane Graphs can be solved in timeO(12k � n).Proof. Let G be a plane graph (a graph together with an embedding in theplane). In linear time we may reduce the problem of �nding k faces of theembedding which cover all vertices of G to an instance of red/blue planardominating set, by creating one red vertex for each face of the embeddingof G and connecting it to each (blue) vertex on the boundary of the face.2 We remark that Theorem 2.6 is an improvement on the result for thisproblem in [BM], where a time bound of O(28k �n) is obtained. Our methodof proof is also considerably simpler.1.3.2 The Method of Reduction to a Problem KernelThe main idea of this method is to reduce (in polynomial time) a probleminstance I to an \equivalent" instance I 0, where the size of I 0 is boundedby some function of the parameter k. The instance I 0 is then exhaustivelyanalyzed, and a solution for I 0 can be lifted to a solution for I, in the casewhere a solution exists. We illustrate the method with the problems VertexCover and Max Leaf Spanning Tree [GJ] (de�ned below).Theorem 2.7 (Buss [Bu]) Vertex Cover can be solved in time O(n+ kk).Proof. Observe that for a simple graph H any vertex of degree greaterthan k must belong to every k-element vertex cover of H.Step 1: Locate all vertices in H of degree greater than k; let p equalthe number of such vertices. If p > k, there is no k-vertex cover.otherwise, let k0 = k � p.Step 2: Discard all p vertices found in step 1 and the edges incident tothem. If the resulting graph H 0 has more than k0(k + 1) vertices,reject.Step 3: If H 0 has no k0-vertex cover, reject. Otherwise, any k0-vertexcover of H 0 plus the p vertices from step 1 comprise a k-vertex coverof H.



14 R. Downey and M. FellowsThe bound 2k0(k + 1) in step 2 is justi�ed by the fact that a simplegraph with a k0-vertex cover and degrees by bounded by k has no more thatk0(k+ 1) vertices. For �xed k this makes step 3 a constant time operation,where the constant is O(kk). 2We can similarly solve the following problem.Max Leaf Spanning TreeInstance: A graph G = (V;E).Partameter: A positive integer k.Question: Is there a spanning tree of G with at least k leaves?Theorem 2.8 Max Leaf Spanning Tree can be solved in timeO(n+(2k)4k).Proof. Note that any graph G that is a yes instance must be connected.We will argue that any su�ciently large graph without useless vertices ofdegree 2 is necessarily a yes instance. Note also that if G has a vertex ofdegree at least k, then G is a yes instance.A vertex v of degree 2 is termed useless if it has neighbors u;w ofdegree 2. Say that a useless vertex v is resolved by deleting v from G andadding an edge between u and w. Let G0 denote the graph obtained fromG (in linear time) by resolving all useless vertices.Our algorithm for Max Leaf Spanning Tree is very simply described:Step 1. Check whether G is connected, and whether there is a vertex ofdegree � k.Step 2. If the answer is still undetermined, then compute G0. If G0 has atleast 3k(k + 1) vertices then the answer is yes.Step 3. Otherwise, exhaustively analyze G0 and answer accordingly, sinceG0 has a k-leaf spanning tree if and only if G does.The argument that the algorithm is correct is elementary; details willbe given elsewhere [CCDF, DF6]. 2Theorem 2.8 improves a result of Bodlaender, who showed that MaxLeaf Spanning Tree is linear-time �xed-parameter tractable with a multi-plicative factor depending on k [Bo1].We remark that we do not at present know whether the problemsFeedback Vertex Set or Planar Dominating Set can be shown to be linear�xed-parameter tractable by the method of reduction to a problem kernel,or whether they can be solved in time O(n+ Ck) by any method.The exploration and articulation of standard techniques for algorithmdesign for �xed-parameter problems (with the goal of establishing �xed-parameter tractability) is an interesting area for further research. It ap-pears that demonstrations of �xed-parameter tractability can sometimesbe obtained by novel approaches that shift the complexity burden ontothe parameter. In some cases, e�ective strategies for doing this seem torun counter to our established practices and habits of thought in designingpolynomial-time algorithms. In the parameterized setting, the parametercan be \sacri�ced" in interesting ways.How much improvement might be possible in Theorems such as 2.4and 2.8? Because the algorithms are uniform, and assuming P 6= NP , we



Parameterized Computational Feasibility 15must expect an additive or multiplicative factor that is super-polynomialin k. Yet conceivably running times such O(ck � n) are possible, where cis a small number greater than 1, and may be practical for a reasonablerange of parameter values.Note that the method of reduction to a problem kernel raises issuessimilar to those considered in the model of advice classes such as P=poly[KL]. Here, however, in reasonable time we can answer for instances of ar-bitrary size, given the help provided by a kernel of advice for the parametervalue k. For example, in the case of Theorem 2.8 this could take the formof a circuit to determine for a graph of order at most 3k(k + 1) whetherthe graph has a k-leaf spanning tree.2 Parameterized Complexity ClassesIn order to frame a completeness theory to address the apparent �xed-parameter intractability of Dominating Set and other problems, we needto de�ne appropriate classes of parameterized problems. The classes thatwe de�ne below are intuitively based on the complexity of the circuitsrequired to check a solution, or alternatively the \natural logical depth" ofthe problem. (See also [CC] for a view of this idea in terms of alternatinglogarithmically bounded Turing Machines.)We �rst de�ne circuits in which some gates have bounded fan-in andsome have unrestricted fan-in. It is assumed that fan-out is never restricted.De�nition. A Boolean circuit is ofmixed type if it consists of circuits havinggates of the following kinds.(1) Small gates: not gates, and gates and or gates with bounded fan-in.We will usually assume that the bound on fan-in is 2 for and gates and orgates, and 1 for not gates.(3) Large gates: And gates and Or gates with unrestricted fan-in.We will use lower case to denote small gates (or gates and and gates),and upper case to denote large gates (Or gates and And gates).De�nition. The depth of a circuit C is de�ned to be the maximumnumberof gates (small or large) on an input-output path in C. The weft of a circuitC is the maximum number of large gates on an input-output path in C.De�nition. We say that a family of circuits F has bounded depth if thereis a constant h such that every circuit in the family F has depth at mosth. We say that F has bounded weft if there is constant t such that everycircuit in the family F has weft at most t. F is monotone if the circuits ofF do not have not-gates. F is a decision circuit family if each circuit has asingle output. A decision circuit C accepts an input vector x if the singleoutput gate has value 1 on input x. The weight of a boolean vector x isthe number of 1's in the vector.



16 R. Downey and M. FellowsDe�nition. Let F be a family of decision circuits. We allow that F mayhave many di�erent circuits with a given number of inputs. To F weassociate the parameterized circuit problem LF = f(C; k) : C accepts aninput vector of weight kg.De�nition. A parameterized problem L belongs to W [t] (monotone W [t])if L uniformly reduces to the parameterized circuit problem LF for somefamily F of bounded depth, mixed type (monotone) decision circuits ofweft at most t.As an example of problem classi�cation we o�er the following. The V-C dimension of a family of sets is an important concept in computationallearning theory [BEHW].De�nition. The Vapnik-Chervonenkis dimension of a family of sets F of abase set U is de�ned to be the maximum cardinality of a set S � U that isshattered by F . That is, for each subset T � S there is a set A 2 F suchthat A \ S = T .Proposition 3.1. The problem of determining whether the V-C dimensionof a family of sets is at least k is in W [1].Proof. Let F � 2U denote the family of sets under consideration. SupposeF = fXj : 1 � j � mg and U = f1; : : : ; ng. It su�ces to show that intime f(k) � (mn)� we can produce a product-of-sums Boolean expressionE in which the clauses have size bounded by some constant, and such thatE has a satisfying truth assignment of weight k0 = g(k) if and only if theV-C dimension of F is at least k.The set of variables for E is V = V1 [ V2 where:V1 = fa[i; j] : 1 � i � 2k; 1 � j � mgV2 = fb[r; s] : 1 � r � k; 1 � s � ngThe variables of V1 serve to indicate which sets in F witness the shat-tering of the k-element subset of U indicated by the variables of V2. Let be a �xed 1:1 correspondence between the integers i in the range 1 � i � 2kand the length k 0-1 vectors, and write i(l) 2 f0; 1g to indicate the valueof the l-th component of the vector associated to i.We will take k0 = k + 2k, and E = E1 �E2 as follows.E1 is a product of small clauses that enforces the conditions:(1) For each index value of i (r) in the de�nition of V1 (V2), at most onevariable of V1 (V2) is set to true.(2) If b[i; j] and b[i0; j0] are set to true, with i < i0, then j < j0.This can be accomplished with clauses of size 2.Note that any satisfying truth assignment to E1 of weight k+2k mustset exactly one variable of V1 (V2) true for each index value of i (r).E2 is the product of clauses expressing the implications: a[i; j] ):b[r; s] for all incompatible pairs of indices (i; j) and (r; s), where sucha pair is de�ned to be incompatible if and only if either (1) i(r) = 1 ands =2 Xj, or (2) i(r) = 0 and s 2 Xj .The veri�cation that this works correctly is straightforward. 2De�nition. We denote the class of �xed-parameter tractable problems



Parameterized Computational Feasibility 17FPT .Thus we have the containmentsFPT � W [1] � W [2] � :::and we conjecture that each of these containments is proper. We term theunion of these classes the W Hierarchy, and denote it WH. We have thefollowing implication if P = NP .Lemma 3.1 If P = NP then WH � FPT . 2The following theorem plays a role in our theory analogous to Cook'stheorem for NP -completeness. A parameterized variation of Satis�abilitybased on a normal form for boolean expressions supplies the problems thatwe identify as complete for the various levels of WH.De�nition. A boolean expression X is termed t-normalized if:(1) t = 2 and X is in product-of-sums (P-o-S) form,(2) t = 3 and X is in product-of-sums-of-products (P-o-S-o-P) form,(3) t = 4 and X is in P-o-S-o-P-o-S form,... etc.Weighted t-Normalized Satis�abilityInput: A t-normalized boolean expression X and a positive integer k.Question: Does X have a satisfying truth assignment of weight k?Theorem 3.2 [DF1] Weighted t-Normalized Satis�ability is complete forW [t] for t � 2. 2Independent Set is an example of a problem complete for W [1] (see[DF3]). Dominating Set is shown to be complete for W [2] in [DF1]. Inorder to address the issue of �xed-parameter complexity for problems forwhich solutions can be checked in polynomial time it is natural to de�nethe following complexity class.De�nition. A parameterized problemL belongs toW [P ] (monotoneW [P ])if L uniformly reduces to the parameterized circuit problem LF for somefamily of circuits F .Note thatW [t] is contained inW [P ] for every t, and thatW [P ] = FPTif P = NP . The following problems, for example, are complete for W [P ](see [ADF2]):Monotone Circuit Satis�abilityInstance: A monotone circuit C and a positive integer k.Question: Does C accept an input vector of weight k?Degree Three Subgraph AnnihilatorInstance: A graph G = (V;E) and a positive integer k.Question: Is there a set X � V of at most k vertices such that G�X hasno subgraph of minimum degree three.Density questions concerning parameterized complexity classes and re-ducibilities o�er signi�cantly more di�cult challenges than do correspond-ing questions in the study of ordinary polynomial-time reducibility. By



18 R. Downey and M. Fellowsrather demanding methods (e.g., 000 priority arguments) we have been ableto show the following analogue of Ladner's classical density theorem.Theorem 3.3 [DF5] If any of the containmentsFPT � W [1] � W [2] � � � �of the W Hierarchy is proper, then there are in�nitely many interveningequivalence classes of parameterized problems with respect to strong uni-form reductions. 2The analogous density question with respect to uniform reductionsremains open. A compendium of parameterized problems presently knownto be complete for various levels of the W hierarchy can be found in [DF4]and [DF6].3 Fixed-Parameter Reducibilities and Com-pletenessIn this section we describe a number of new results which serve to illustratehow the reductions in the theory of �xed-parameter complexity di�er fromthe familiar reductions of NP -completeness.De�nition. A tournament is a directed graph G = (V;A) such that forevery pair of vertices u; v 2 V exactly one of uv and va belongs to the setof arcs A.It is easy to observe that a tournament of order n must have a dominat-ing set of order logn. (One can be constructed by repeatedly selecting andremoving a vertex having outdegree � indegree.) Thus, this problem can besolved with a polylogarithmic amount of nondeterminism, and therefore isunlikely to be complete for NP . (For a other studies of polynomial-timecomputational power augmented by limited amounts of nondeterminismsee [BG], [Re] and [CC].)Tournament Dominating SetInstance: A tournament T and a positive integer parameter k.Question: Does T have a dominating set of cardinality at most k?Theorem 4.1 Tournament Dominating Set is complete for W [2].Proof. As a special case of Dominating Set it is easily seen to be in W [2].To show that it is hard for W [2] we reduce from Dominating Set. LetG = (V;E) be an undirected graph for which we wish to determine whetherG has a dominating set of size k. We describe how a tournament T can beconstructed that has a dominating set of size k + 1 if and only if G has adominating set of size k. The size of T is O(2k � n) where n is the numberof vertices of G, and T can be constructed in time polynomial in n and 2k.The vertex set of the tournament T is partitioned into three sets: VA,VB and VC . The vertices in the set VA are in 1:1 correspondence with thevertices of G, and we write VA = fa[u] : u 2 V (G)g. The set of vertices VB



Parameterized Computational Feasibility 19of T corresponds to m copies of the vertex set of G and we may write thisas VB = fb[i; u] : 1 � i � m;u 2 V (G)g. (The appropriate cardinality form is determined below.) VC consists of just a single vertex which we willdenote c.The construction of T must insure that for every pair of vertices x; yof T , one of the arcs xy or yx is present. Let T0 be any tournament on nvertices (we will use T0 as \�ller"). Include arcs in T to make a copy of T0between the vertices of each of the n-element sets VA and VB(i) = fb[i; u] :u 2 V (G)g for i = 1; : : : ;m.Let T1 be a tournament on m vertices that has no dominating set ofsize k + 1. It can be shown that there are easy constructions of such atournament, with m = O(2k+1). Consider that the vertex set of T1 isV (T1) = f1; : : : ;mg. For each arc ij in T1 include in T an arc from eachvertex of VB(i) to each vertex of VB(j).The adjacency structure of G is represented in T in the following way:for each vertex u 2 V (G) include arcs from the vertex a[u] to the verticesb[i; v] for every v 2 NG[u] and for each i, 1 � i � m, and from every othervertex in VB include an arc to a[u]. Thus the neighborhood structure of Gis represented in arcs from VA to VB , and otherwise there are arcs from VBto VA.Finally, there are arcs in T from c to every vertex in VA and from everyvertex in VB to c.We now argue that the construction works correctly. If there is a k-element dominating set S in G, then the corresponding vertices in VA dom-inate all of the vertices in VB. Thus together with c we have a dominatingset of size k + 1 in T .Conversely, suppose T has a dominating set D of size k + 1. At leastone vertex of D must belong to VB or VC , else the vertex c is not domi-nated. Thus there are at most k vertices of D in VA. Let SA denote thecorresponding vertices of G. If SA is not a dominating set in G, then let xdenote some vertex of G that is not dominated. Let DA = D \VA, and letDB = D \ VB.The vertices b[i; x] of VB for 1 � i � m are not dominated in T by thevertices of DA. The vertices of VB can be viewed as belonging to m copiesof V (G) for which we have introduced the notation VB(i), 1 � i � m. Saythat a copy VB(i) is occupied if VB(i) \DB 6= ;. There are at most k + 1occupied copies of V (G) in VB. Because of the structure of T1 used in theconstruction of T , these occupied copies do not dominate all of the copiesof V (G) in VB. Let j be the index of an undominated copy. But then thevertex b[j; x] of T is not dominated by D, a contradiction. Thus SA mustbe a dominating set of cardinality at most k in G. 2The above reduction would not su�ce to demonstrate that the problemis NP -complete, for the reason that the reduction is, \exponential in k."This is one fundamental way in which parameterized problem reducibilitesmay di�er from the \usual" polynomial-time reducibilities. The fact that



20 R. Downey and M. Fellowsthe blow-up is \only" exponential in k yields as a Corollary the result of[PY] that Tournament Dominating Set is complete for the complexity classLOGSNP. We remark, however, that most of our earlier reductions in, forinstance, [DF1-5], are in fact polynomial in both n and k, and yield com-pleteness results simultaneously for all intermediate classes such as LOGNPetc as well as for NP . Since determination of the V � C dimension isLOGNP complete ([PY]), it is a very interesting question to ask if thisproblem is, for instance, W [1]-complete.The reduction in Theorem 4.1 also has an interesting property that wewill term blindness, informally de�ned as follows.The Blindness of the Reduction. The vertex set of the tournament T (G)that is constructed depends only on the size of G, and furthermore, thecorrespondence between the solutions to the two problems is such that fora pair of corresponding problem instances (G; T (G)):(1) A solution for T (G) can be computed from a solution for G, even if Gis invisible, that is, knowing only the size of G.(2) A solution for G can be similarly computed from a solution for T (G),even if T (G) is invisible.A moment's reection on familiar reductions in the theory of NP -completeness will reveal that the reductions there almost never have thisproperty. Reductions in �xed-parameter complexity theory often do possessthis property, which provides for interesting applications in computationallearning theory. We briey describe how these applications come about.In the model of exact learning by membership and (extended) equiv-alence queries we study the situation where the Teacher possesses (for ex-ample) a graph on n vertices that is hidden from the Learner. We assumethat the Learner initially knows nothing about the graph, not even its size.The goal of the Learner is to produce \knowledge" of, for example, thedominating sets in the graph. Such knowledge can be represented by analgorithm (e.g., a circuit) which decides whether a given set of vertices isa dominating set in the graph being taught.There are two ways in which the Learner may interact with the Teacher:(1) By presenting a knowledge representation to the Teacher and askingwhether it is correct. The Teacher responds either yes (in which casethe Learner is done), or provides a counterexample to the correctness ofthe knowledge representation. This interaction is termed an (extended)equivalence query.(2) By asking whether a particular set of vertices is a dominating set inthe graph being taught. The Teacher responds either yes or no. Thisinteraction isPte9ved a membership query.The central question that is studied is whether there is an algorithmthat the Learner can execute in polynomial time (in the size of the graphto be learned) which will yield a complete and correct knowledge repre-sentation in interaction with any Teacher who responds correctly (but notnecessarily judiciously) to the queries.



Parameterized Computational Feasibility 21The blindness of the reduction of Theorem 4.1 allows us to prove thefollowing.Theorem 4.2 If the k-element dominating sets of a tournament can belearned in �xed-parameter polynomial time, then so can the k-elementdominating sets in an arbitrary graph.Proof. (Sketch) The Learner is interacting with a Teacher of k-elementdominating sets in a graph of unknown size. By diagonalization, however,the Learner can be presumed to have knowledge of the size of the graph.The Learner forms a mental model of a tournament as described by thereduction of Theorem 4.1. Since the graph is not visible to the Learner,this model is not complete. The Learner pretends to learn the dominatingsets in the tournament. Because of the blindness of the reduction, queriesthat the Learner wishes to make about the tournament can be translatedinto queries about dominating sets in the graph that the Teacher actuallypresent is teaching, and similarly, counterexamples provided by the Teachercan be translated into counterexamples concerning the (imaginary) tour-nament. When the Learner has a correct knowledge representation of thedominating sets in the tournament, this provides (by composing with theblind translation of solutions between the problems) a correct representa-tion of the dominating sets in the graph. 2By a similar but more intricate argument using the �xed-parameterreduction of Weighted Satis�ability to Monotone Weighted Satis�abilitywe have been able to prove the following strengthening of a theorem ofValiant [Val]. (Details will appear elsewhere. [DEF])Theorem 4.3 Arbitrary DNF formulas can be exactly learned in polynomialtime by extended equivalence queries (only) if and only if monotone DNFformulas can be so learned. 2The main point of this discussion is that �xed-parameter reducibilitiesdi�er in a number of interesting and non-trivial ways from the reductionsusually found in the theory of NP -completeness. We also note that inmany cases they seem to be somewhat more di�cult to devise, althoughmany problems have been identi�ed as complete or hard for various levelsof the W hierarchy. (A published compendium can be found in [DF4] andthe authors maintain a current list available electronically).4 Open ProblemsThere are a number of concrete problems for which a demonstration ofeither �xed-parameter tractability or completeness (or hardness) for somelevel of theW hierarchy would be interesting, and in the case of tractability,of possible practical signi�cance. The current \most wanted" list includesthe problems: Directed Feedback Vertex Set [GJ], Perfect Phylogeny fork Characters [BFW], Graph Bandwidth [GJ], V-C Dimension [BEHW],Traveling Salesman Tour of at least k Cities [GJ], and k-Small Steiner



22 R. Downey and M. FellowsTrees in Graphs [GJ].An important issue that has so far been little explored is that of�xed-parameter approximation algorithms. One of the cornerstones of theRobertson-Seymour results concerning graph minors is an algorithm that intime f(k)�n2 either determines that an input graph G has treewidth greaterthan k, or produces a tree decomposition of width at most 5k. (This hassince been improved by a number of authors, with the best result presentlydue to Bodlaender [Bo2].) What are the prospects for similar approxi-mation algorithms for Dominating Set and other parameterized problems?(Note that this is di�erent from the question of the existence of a relativeapproximation algorithm in the usual sense.)Perhaps the foremost structural question regarding the W hierarchyis whether collapse at the k-th level (W [k � 1] = W [k]) propagates eitherdownward (so that FPT = W [k]) or upward (so that W [k� 1] = WH).In [ADF2] the following connection is made between the issue of theproper nature of the W hierarchy and a \quantitative" version of P vs NPquestion.Theorem. FPT = W [P ] if and and only if Satis�ability can be solvedin time p(n) � 2 o(v) where p is a polynomial, n is the size of the booleanexpression, and v is the number of variables.References[Ab] K. Abrahamson, private communication, May, 1992.[ADF1] K. Abrahamson, R. Downey and M. Fellows,\Fixed-Parameter In-tractability II,"in Proceedings 10th Annual Symposium on Theoretical As-pects of Computer Science, (STACS' 93), Springer-Verlag Lecture Notes inComputer Science, (1993) 374-385.[ADF2] K. Abrahamson, R. Downey and M. Fellows, \Fixed-ParameterTractability and Completeness IV: On Completeness forW [P ] and PSPACEAnalogues," to appear Annals Pure and Applied Logic.[AF] K. Abrahamson andM. Fellows, \Finite Automata, Bounded Treewidthand Well-Quasiordering," in Grapd Structure Theory (ed. N. Robertsonand P. Seymour) Contemporary Mathematics Vol. 147, American Mathe-matical Society, Rhode Island, (1993) 539-564.[AMOV] G. B. Agnew, R. C. Mullin, I. M. Onyszchuk and S. A. Vanstone,\An Implementation for a Fast Public-Key Cryptosystem," J. Cryptology3 (1991), 63-79.[An] D. Angluin, \Learning Regular Sets From Queries and Counterexam-ples," Information and Computation 75 (1987), 87-106.[BEHW] A. Blumer, A. Ehrenfeucht, D. Haussler and M.Warmuth, \Learn-ability and the Vapnik-Chervonenkis Dimension," J. ACM 36 (1989), 929-965.[BM] D. Bienstock and C. L. Monma, \On the Complexity of CoveringVertices by Faces in a Planar Graph," SIAM J. Comp. 17 (1988), 53-76.
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