ILL

Document Delivery

REG-10003701

Relais
DONALD WAUUGHW BLACE
ATTH: SUBMITTED: 2010-05-19
PHOME : PRINTED: 2010-05-19 1R/:09:10
Fax: REQUEST HNO. : REG-10003701
E-MATL: SENT VIA: Manual
REG Regular Copy Journal

DELIVEEY :
REPLY:

THIS IS5 HOT A BILL.

E-mail Fost to Welk: dbhlack@uci.edu
Mail:

KEEP THIS RECEIPT TO RECONCILE WITH THIS INVOICE.

NOTICE:-THIS MATERIAL MAY BE PROTECTED BY COPYRIGHT LAwW (TITLE 17, U.3.

CODE)

ILL Document Delivery

ber:

ILL Number:

pdstDate: 17-MAY-2010
Pate: 24-MAY-2010

Call Number:
Format:
Title:

Article Author:
Article Title:

Yol./Issue:
Part Pub. Date:
Pages:

Pub. Place:
Requester:

Patron Name:
Patron e-mail:
Service Level:
Delivery Method:
Request Note:

Need by Date:
Verification Source:
Supplier Reference:

Owned By:

L1356 2y, N\

O A

3917537
SRLF;SRLF
Article Printed

Logic, methodology and philosophy of
science

Cobham, Alan

The Intrinsic Computational Difficulty of
Functions

1964
1965 '
24- unknown

Amsterdam [etc.],
UCI Science Library

Black,Donald Vaughn (Graduate [])
DBLACK@UCIL.EDU

Normal - Full Search

Electronic Mail

Prefer PDF of pages 24-77,The Intrinsic
Computational Difficulty of Functions,
Cobham -

MELVYL-melvyl:journal

SRLF

TGQ or OCLC #:

TGQ or OCLC #:
1D:
ISBN/ISSN:

Publisher:

Address:

Service Type:
Max Cost:
Payment Type:

" Copyright Compliance:

Requester Symbol:
Return To:

I

3917528
UI3
0074-3402

North-Holland Pub. Co. [etc.],/Amsterdam
[etc.],

University of California - Irvine

Document Access & Delivery

Science Library

P.O. Box 19557

Ariel: 128.200.102.110, Fax: 949-824-3695

Copy non returnable LN e
USD50
IFM

CCG

SRLF =
305 DeNeve Drive

Los Angeles,

90095-1388

30\

THE INTRINSIC COMPUTATIONAL DIFFICULTY OF FUNCTIONS

ALAN COBHAM
I.B.M. Research Center, Yorktown Heights, N. Y., U.S. A.

The subject of my talk is perhaps most directly indicated by simply asking
two questions: first, is it harder to multiply than to add? and second, why?
I grant I have put the first of these questions rather loosely; nevertheless, |
think the answer, ought to be: yes. Itis the second, which asks for a Jjustifica-
tion of this answer which provides the challenge.

The difficulty does not stem from the fact that the first question has been
imprecisely formulated. There seems to be no substantial problem in show-
ing that using the standard algorithms it is in general harder—in the sense
that it takes more time or more scratch paper—to multiply two decimal
numbers than to add them. But this does not answer the question, which is
concerned with the computational difficulty of these two operations without
reference to specific computational methods; in other words, with proper-
ties intrinsic to the functions themselves and not with properties of particular
related algorithms. Thus to complete the argument, I would have to show
that there is no algorithm for multiplication computationally as simple as
that for addition, and this proves something of a stumbling block. Of course,
as I have implied, I feel this must be the case and that multiplication is in
this absolute sense harder than addition, but I am forced to admit that at

present my reasons for feeling so are of an essentially extra-mathematical
character,

Questions of this sort belong to a field which I think we might wellcall
metanumerical-analysis. The name seems appropriate not only because it is
suggestive of the subject matter, namely, the methedology of computation,
but also because the relationship of the field to computation is closely
analogous to that of metamathematics to mathematics. In metamathemat-
ics, we encounter problems concerned with specific proof systems; e.g., the
existence of proofs having a certain form, or the adequacy of a system in a
given context. We also encounter problems concerned with provability but
independently of any particular proof system; e.g., the undecidability of
mathematical theories. So in metanumerical-analysis we encounter problems
related to specific computational systems or categories of computing ma-
chines as well as problems such as those mentioned above which, though con-

24

varl
ene
we

(ins
its!
duri
one

=3

[e—

Such
4

vari

st

THE INTRINSIC COMPUTATIONAL DIFFICULTY OF FUNCTIONS 25

cerned with computation, are independent of any particular method of com-
putation. It is this latter segment of metanumerical-analysis 1 would like to
look at more closely.

Let me begin by stating two of the very few results which fall squarely
within this area. (Others appear in references [3], [4] and [5].) Both are drawn
from Ritchie’s work on predictably computable functions [6], the first being
an almost immediate generalization of one part of that work, the second an
incomplete rendering of another part. These relate, perhaps not in the most
happy fashion, the computational complexity of a function with its location
in the Grzegorczyk hierarchy [2]. Recall that this hierarchy is composed of
a sequence of classes:

o cflefia...,

each properly contained in the next, and having as union the class of all
primitive recursive functions. % can be characterized as the smallest class
containing the successor and multiplication functions, and closed under the
operations of explicit transformation, composition and limited recursion.
The classes & (which is the familiar class of Kalmar elementary functions)
and g* have similar characterizations, with exponentiation and the function

x> respectively, replacing multiplication in the characterization of £2,
3

The higher classes can be characterized inductively in like manner.

With each single-tape Turing machine Z which computes a function of one
variable we may associate two functions, o, and 7,. Assuming some standard
encoding of natural numbers—we might take decimal notation to be specific—
we define o,(n), where n is a natural number, to be the numbers of steps
(instruction executions) in the computation on Z starting with n encoded on
its tape, and define 1,(n) to be the number of distinct tape squares scanned
during the course of this computation. Restricting attention to functions of
one variable, we have the following.

THEOREM. For each k = 3 the following five statements are equivalent:
1. f e6%;
2. there exists a Turing machine Z which computes f and such that o & &%;

3. there exists a Turing machine Z which computes f and a function g & &*
such that, for all n, o,(n) < g(n); '
4. - 5. Same as 2 -3 with Tz in place of 7.

This theorem has an immediate generalization to functions of several
variables. From it we can infer that (in effect, but not quite precisely) if one

A. COBHAM

function is simpler to compute than another, in the very strong sense that
for any value of the urgument the computation can be done in teyver steps or
with ie.s;s tape, then that function lies no higher than the other in the ‘Grze»
gorczyk hierarchy. We cannot conclude the C(?nve.rse however: that if one
function lies lower than another, it is necessarily simpler to compu.te. Asa
matter of fact, it appears that a function in the lower part of the hierarchy
may actually be on average harder to compute than one higher up, though, of
cmx-rse, it cannot be harder for all values of the argument.

A word is needed as to why I have included a theorem involving Turing
machines in a discussion which I said was going to be about method-
independent aspects of computation. The fact is the theorem remaing
correct even if one considers far wider classes of computing machines. In
particular, it holds for Turing machines with more than one tape or with
multi-dimensional tapes providing the cells of the latter are arranged in reas-
onably orderly fashion. It also holds if the set of possible instructions is
extended to include, e.g., erasure of an entire tape or resetting of a scanning
head to its initial position (although I doubt such operations should be con-
sidered steps since it does not appear that they can be executed in a bounded
amount of time).

The reason for such general applicability can be found on examination of
the proof of this theorem. There we find that the fact that we are dealing
with a particular class of Turing machines is quite incidental: it is the form
of their arithmetization which counts. The geometry and basic operations
of a Turing machine are of a sort which admit an arithmetization in which
the functions which describe the step-by-step course of a computation on it
are of a very simple nature, lying, in particular, well within the class &2. This
is all that is needed to obtain the preceding theorem (as well as the one which
follows). Now the class & is so rich in functions that it is almost inconceiv-
able to me that there could exist real computers not having mathematical
models whose arithmetization could be carried out in such a way that these
associated functions would fall within it. Thus I suspect this theorem does
indeed say something about the absolute computational properties of func-
tions, and so fits properly in the discussion.

The five equivalences of the preceding theorem do not hold for k < 3.
Ritchie has obtained a hierarchy which decomposes the range between &>
and 6% into classes of functions of varying degrees of computational diffi-
culty; however, rather than g0 into this, I would like now to turn to the
problem of classifying the functions within 62, where many of the functions
most frequently encountered in computational work, addition and multi-

plication in particular, are located. First, concerning &2 itself, we have [6]
the following,

ta

tu
fo

fo
he
i

ck
Il
0
fi
ko

tic
ril
ex

THE INTRINSIC COMPUTATIONAL DIFFICULTY OF FUNCTIONS 27

THEOREM. A function f belongs to & if and only if there exists a Turing
machine Z which computes f and constants ¢, and ¢, such that tz(n) £ ¢1 1(n)
+e,s Sfor all n.

Here I(n) is the length of #, that is, the number of digits in its decimal
representation. Machines which compute in the fashion described are equi-
valent to those which Myhill has called linear bounded automata [4]. Since
merely writing n requires /() tape squares, we must have ¢, = 1. As a matter
of fact, if we consider machines with arbitrarily large alphabets, then ¢, need
only be enough larger than this to permit writing of the answer on the tape;
e.g., if f(n)=n*wecantake ¢, =2;if f{n) < n for all n we can take ¢; = L. In
other words, if we have enough space to write the larger of the value and the
argument of a function in &2 then we have enough space to carry out the
entire computation. Consequently, the function 7 is not a suitable tool for
making fine distinctions concerning the computational difficulty of functions
within #2. We might attempt to redefine what we mean by the amount of
tape used during a computation by distinguishing between those locations
used for writing input and output and those used in the actual computation.
But the artificiality of such a seemingly ad hoc distinction would seem to be
trending away from our goal of obtaining a natural analysis independent of
the method or type of machine used in the computation.

This may be a good point to mention that, although I have so far been
tacitly equating computational difficulty with time and storage require-
ments, I don’t mean to commit myself to either of these measures. It may
turn out that some measure related to the physical notion of work will lead
to the most satisfactory analysis; or we may ultimately find that no single
measure adequately reflects our intuitive concept of difficulty. In any case,
for the present, I see no harm in restricting the discussion somewhat and,
having discarded t as a tool for reasons just stated, confining further atten-
tion to the analysis of computation time.

This leaves us some latitude for differentiating among functions in&2. The
closest analog of the foregoing theorem concerning o, rather than 7, that
1 know of states that for any fin &2 there exists a Turing machine Z which
computes it and such that o, is bounded by a polynomial in its argument.
fitself must also be bounded by a polynomial in its argument, but I don’t
know whether these two conditions in turn imply that £ isin &2.

To obtain some idea as to how we might go about the further classifica-
tion of relatively simple functions, we might take a look at how we ordina-
rily set about computing some of the more common of them. Suppose, for
example, that m and # are two numbers given in decimal notation with one
written above the other and their right ends aligned. Then to add m and n we

e

5 A. COBHAM

start at the right and proceed digit-by-digit to the left wri'ting down the sum_
No matter how large m and n, this process terminates with the answer after
a number of steps equal at most to one greater than the larger of /(m) and
{{n), Thus the process of adding m and 1 can be'carried outina nu‘ml‘aer of
steps which is bounded by a linear polynomial in /(m) and /(n). Slplllarly,
we can multiply m and nin a number of steps bounded by a qu?dratlc poly-
nomual in /{m) and /(n). So, too, the number of steps involved in the extrac.
tion of square roots, calculation of quotients, etc., can be bounded by poly-
nomials in the lengths of the numbers involved, and this seems to be a pro-
perty of simple functions in general. This suggests that we consider the class,
which I will call #, of all functions having this property.

For several reasons the class % seems a natural one to consider. For one
thing, if we formalize the above definition relative to various general classes
of computing machines we seem always to end up with the same well-defined
class of functions. Thus we can give a mathematical characterization of %
having some confidence that it characterizes correctly our informally defined
class. This class then turns out to have several natural closure properties,
being closed in particular under explicit transformation, composition and
limited recursion on notation (digit-by-digit recursion). To be more explicit
concerning the latter operation, which incidentally seems quite appropriate
to computational work, we say that a function S is defined from functions
& Mg....shg, and k by limited recursion on notation (assuming decimal no-
tation) if

Jix, 0) = g(x)
S0 = hix, 3, /%) (=0,.,9: i #0ify=0
fx,3) 5 kx,),

where s; is the generalized successor: () = 10y + i % is in fact the
smallest class closed under these operations and containing the functions
siand X%, It is closely related to, perhaps identical with, the class of what
Bennett has called the extended rudimentary functions [1]. Since & contains
x4, which cannot, by the second of the theorems mentioned earlier, belong
to&?, & is not a subclass of&2. On the other hand, I stron gly suspect that the
function f(n) = the nth prime, which is known to be in &2, does not belong
to . If this is the case then &2 and are incomparable and we have the
unsurprising result that the categorization of the simpler functions as to
computational difficulty yields divergent classifications according to the
criterion of difficulty selected—in this case time and storage requirements.
Concerning functions which are relatively simple under both criteria, that
is, those in both &2 and 2,1 can only offer further conjecture, namely that
62N Z ir a subclass of the constructive arithmetic functions, probably even

furl

If
el
fon,

gefin
fad|
mac
W
f2asd
that |

fter
and
r of
rly,
oly-
-ac-
sly-
ro-
ass,

ne
sses
1ed

1ed
ies,
ind
icit
ate
ms
i0-

‘he
ms
1at
ins
ng
he

ng

to
he
ts.
1at
1at
en

THE INTRINSIC COMPUTATIONAL DIFFICULTY OF FUNCTIONS 29

a proper subclass. (The function f(#) = 1 or 0, according as # is or is not
prime, is constructive arithmetic but seemingly not in £.)

An attempt to construct a natural computational hierarchy within & now
brings out quite sharply one of the basic problems entailed in the study of
absolute or intrinsic computational properties of functions. Suppose we
start out in the obvious way and define, for each k, a subclass Z* of &
consisting of all functions which can be computed in such a way that the num-
ber of steps in the computation is bounded by a polynomial of degree k in
the lengths of the arguments. So defined, the classes #* form an increasing
sequence whose union is #. Clearly, almost as a matter of definition, the
analog of the theorem concerning the Grzegorczyk hierarchy I mentioned
earlier will hold for this hierarchy: a function in the upper part of the
hierarchy cannot be simpler to compute for every argument than one
further down.

If we are to make any application of this theorem, we need a precise,
mathematical characterization of the classes £*. Unlike the foregoing situa-
tion, however, we find that it makes a definite difference what class of com-
putational methods and devices we consider in our attempt to formalize the
definition. Thus, if we restrict attention to single-tape Turing machines, we
find that addition does not belong to %', whereas it does if we permit our
machines to have several tapes. Similarly, multiplication gets into #? only if
we permit multi-tape machines. This certainly does not mean that there is no
reasonable formalization of the classes of this hierarchy, but it does suggest
that there may be some difficulty both in finding this formalization and,
once found, in convincing oneself that it correctly captures all relevant
aspects of the intuitive model.

The problem is reminiscent of, and obviously closely related to, that of
the formalization of the notion of effectiveness. But the emphasis is different
in that the physical aspects of the computation process are here of predom-
inant concern. The question of what may legitimately be considered to con-
stitute a step of a computation is quite unlike that of what constitutes an
effective operation. I did not dwell particularly on what I consider to be the
properties of legitimate step when I was discussing the classification of
functions outside of &2 because, as I pointed out, one could admit all sorts of
questionable operations as steps and, so long as they could be represented by
functions in &2, the resylts obtained would remain unaltered. Quite similar
remarks can be made concerning permissible geometric arrangements of
the working area of a computation, and even concerning the types of nota-
tion used for representing natural numbers. If, however, we are to make
fine distinctions, say between functions in %' and functions in £, then we
must have an equally fine analysis of all phases of the computational pro-

30 A. COBHAM

cess, It is no longer a problem of finding convincing arguments that every
conceivable computing method can be arithmetized within 62 but rather of
finding convincing arguments that these can somehow be arithmetized within
whatever presumably more restricted class we settle upon as a formalization
for #'. Of course, at the same time, we must be prepared to argue that we
haven't taken too broad a class for £, and thus admitted to it functions not
in actuality computable in a number of steps linearly bounded by the lengths
of its arguments. [think this is one of the fundamental problems of metany.-

merical-analysis and one whose resolution may well call for considerable

patience and discrimination, but until it, and several related problems, have

received more intensive treatment, I doubt we can find any really satisfying

proof that multiplication is indeed harder than addition.

REFERENCES

{11 J. H. BennerT, On Spectra, doctoral dissertation, Princeton University, 1962,
{2} A. Grzegorczyk, Some Classes of Recursive Functions, Rozprawy Matematyczne,
1953,

[3] J. Hartmanis and R. E. STEARNS, On the Computational Complexity of Algo-
rithms, Notes for the University of Michigan Summer Conference on Automata
Theory, 1963, 59-79.

[4] J. Mynu, Linear Bounded Automata, WADD Tech. Notes 60-165, University of
Pennsylvania, Report No. 60-22, 1960,

[5] M. O. RasIN, Degree of Difficulty of Computing a Function and a Partial Ordering
of Recursive Sets, Applied Logic Branch, Hebrew University, Jerusalem, Technica]
Report No. 2, 1960.

[6] R. W. Rircuik, Classes of Predictably Cemputable Functions, Trans. Amer. Math,
Soc. 106, 1963, 139-173.

|

il
t’f |
Tht
il
{he

mal
ob
Brol
part
matl
over
pred
prim
1-op
Th
betw
are §
sical
basie
lawi¢
plas
The.
tulati
nunl
num
sont
hawe
funct

—

1
the N

1
versior

LOGIC, METHODOLOGY AND
PHILOSOPHY OF SCIENCE

PROCEEDINGS OF THE 1964 INTERNATIONAL CONGRESS

Edited by

YEHOSHUA BAR-HILLEL

Professor of Logic and Philosophy of Science
The Hebrew University of Jerusalem, Israel

NORTH-HOLLAND PUBLISHING COMPANY
AMSTERDAM

