
File: ARCHIV 149001 . By:BV . Date:28:05:97 . Time:09:36 LOP8M. V8.0. Page 01:01
Codes: 6451 Signs: 4283 . Length: 60 pic 11 pts, 257 mm

Journal of Computer and System Sciences � SS1490

journal of computer and system sciences 54, 465�474 (1997)

On Fixed-Parameter Tractability and Approximability of
NP Optimization Problems1

Liming Cai2

School of Electrical Engineering and Computer Science, Ohio University, Athens, Ohio 45701

and

Jianer Chen3

Department of Computer Science, Texas A6M University, College Station, Texas 77843-3112

Received February 24, 1994; revised June 17, 1996

Fixed-parameter tractability of NP optimization problems is studied
by relating it to approximability of the problems. It is shown that an NP
optimization problem is fixed-parameter tractable if it admits a fully
polynomial-time approximation scheme, or if it belongs to the class
MAX SNP or to the class MIN F+61 . This provides strong evidence
that no W[1]-hard NP optimization problems belong to these
optimization classes and includes a very large class of approximable
optimization problems into the class of fixed-parameter tractable
problems. Evidence is also demonstrated to support the current
working hypothesis in the theory of fixed-parameter tractability.
] 1997 Academic Press

1. INTRODUCTION

Recently, a framework of fixed-parameter tractability has
been introduced by Downey and Fellows [11] to study the
intractable behavior of computational problems whose
input contains a significant numerical parameter. The com-
plexity of such parameterized problems is specified in the
value of the parameter, as well as the length of the input.
Although, this framework has originally been addressed
toward general parameterized problems, it is of particular
interest to computational optimization problems because
usually a decision problem can be formulated from an
optimization problem by the parameterization of certain
quantitative description (usually the solution size) in the
optimization problem [14].

Many parameterized problems studied in [1, 2, 5, 11, 12]
are parameterized optimization problems. It has been
observed that quite a few optimization problems, although
NP-hard in the general sense, have the time complexity that
varies with respect to the value of the parameter. For
example, consider the problem Vertex Cover (given a graph
G and a parameter k, decide whether G has a vertex cover
of size k) and the problem Dominating Set (given a graph
G and a parameter k, decide whether G has a dominating set
of size k). When the value of the parameter k is fixed, the
problem Vertex Cover can be solved in time O(nc), where c
is a constant independent of the parameter k; while the
problem Dominating Set has the contrasting situation that
the best known algorithms are of the time complexity
O(nk+1). According to Downey and Fellows [11], a
parameterized problem is fixed-parameter tractable if it can
be solved in time O(nc), where c is a constant independent
of the parameter. Many optimization problems have been
shown to be fixed-parameter tractable, while many other
optimization problems, such as Dominating Set and
Independent Set, are not know to be fixed-parameter
tractable. Downey and Fellows [12] have introduced the
class FPT of fixed-parameter tractable problems and
a hierarchy of fixed-parameter intractable problems (the
W-hierarchy).

In the present paper, we study fixed-parameter trac-
tability of NP optimization problems by relating it to
approximability of the problems. Our main concern here
is to investigate what types of approximability of NP
optimization problems imply their fixed-parameter trac-
tability. This study serves for two purposes. First, by
identifying the type of approximability that implies fixed-
parameter tractability, we can include automatically a class
of optimization problems into the class FPT, instead of
developing (maybe fairly involved) fixed-parameter tractable

article no. SS971490

465 0022-0000�97 �25.00

Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

1 A preliminary version of this work was reported in ``Proc. 2nd Israel
Symposium on Theory and Computing Systems (ISTCS'93), 1993,''
pp. 118�126.

2 Supported in part by Engineering Excellence Award from Texas A6M
University. E-mail: cai�cs.ohiou.edu.

3 Supported in part by the National Science Foundation under
Grant CCR-9110824 and an HTP 863 grant of P. R. China. E-mail:
chen�cs.tamu.edu.

File: ARCHIV 149002 . By:BV . Date:28:05:97 . Time:09:36 LOP8M. V8.0. Page 01:01
Codes: 6132 Signs: 4936 . Length: 56 pic 0 pts, 236 mm

algorithm for each individual problem in the class. Second,
under the current working hypothesis in the theory of
fixed-parameter tractability [2], we can immediately
exclude from the class of optimization problems with the
identified approximability those problems that are hard
for a variety of levels of the W-hierarchy. Thus, this
approach may provide a new and potentially powerful tool
in the study of nonapproximability of NP optimization
problems.

Our first result is that the class of optimization problems
that have fully polynomial-time approximation schemes
must be fixed-parameter tractable. This result immediately
includes a number of knapsack-like problems and sche-
duling problems into the class FPT. This result also gives a
strong evidence that no optimization problem that is hard
for the first level of the W-hierarchy has a fully polynomial-
time approximation scheme, thus complementing a well-
known result by Garey and Johnson [14] that strongly
NP-hard optimization problems have no fully polynomial-
time approximation scheme unless P=NP. In particular,
our result gives a strong evidence that the problem V-C
Dimension has no fully polynomial-time approximation
scheme.

We then show that all maximization problems in the
class MAX SNP introduced by Papadimitriou and Yanna-
kakis [18] and all minimization problems in the class
MIN F+61 introduced by Kolaitis and Thakur [16] are
fixed-parameter tractable. This includes a very large class of
constant-ratio approximable NP optimization problems
into the class FPT. In fact, there are very few known
NP optimization problems that are constant-ratio
approximable but belong to neither MAX SNP nor
MIN F+61 . This result shows a strong evidence that
optimization problems in the W-hierarchy that are hard for
the first level of the W-hierarchy should not be constant-
ratio approximable in polynomial time.

Our study is based on the current working hypothesis in
the theory of fixed-parameter tractability, which claims that
no parameterized problem hard for the first level of the
W-hierarchy is fixed-parameter tractable. Therefore, it will
be nice to prove that the hypothesis really holds. However,
attempting a direct proof for the hypothesis may be a bit too
ambitious because the hypothesis implies P{NP [12].
Thus, it may be more feasible to provide strong evidence
supporting the hypothesis instead of a direct proof. In the
second part of the current paper, we provide such an
evidence by giving a sufficient and necessary condition in
terms of classical complexity theory for each level of the
W-hierarchy to collapse to the class FPT. Essentially, our
characterization says that a level of the W-hierarchy does
not collapse to the class FPT unless a deterministic poly-
nomial-time computation can ``guess'' a string of length
|(log n). This strengthens previous results in the study of
structural properties of the W-hierarchy, in which only

either sufficient or necessary (but not both) conditions were
given for the collapsing of the W-hierarchy.

2. PRELIMINARIES

An NP optimization problem Q is either a minimization
problem or a maximization problem and is given as a 4-tuple
(IQ , SQ , fQ , optQ), where

v IQ is the set of input instances. It is recognizable in poly-
nomial time;

v SQ(x) is the set of feasible solutions for the input x # IQ

such that there is a polynomial p and a polynomial-time
computable predicate ? (p and ? only depend on Q) such
that for all x # IQ , SQ(x) can be expressed as SQ(x)=
[y : | y|�p(|x|) 7 ?(x, y)];

v fQ(x, y) # N is the objective function4 for each x # IQ and
y # SQ(x). The function fQ is computable in polynomial
time;

v optQ # [max, min].

An optimal solution for an input instance x # IQ is a feasible
solution y # SQ(x) such that fQ(x, y)=optQ[fQ(x, z) | z #
SQ(x)]. To simplify the expressions, the value optQ[fQ(x, z)
| z # SQ(x)] is denoted optQ(x).

An algorithm A is an approximation algorithm for Q if,
given any input instance x in IQ , A finds a feasible solution
yA(x) in SQ(x). A maximization problem (resp. minimiza-
tion problem) Q is polynomial-time approximable to a ratio
r(n) if there is a polynomial-time approximation algorithm
A for Q such that the relative error

RA(x)=
optQ(x)& fQ(x, yA(x))

fQ(x, yA(x))

\resp. RA(x)=
fQ(x, yA(x))&optQ(x)

optQ(x) +
is bounded by r(|x|)&1 for all input instances x # IQ . An
optimization problem Q has a polynomial-time approxima-
tion scheme if there is an algorithm A that takes a pair x # IQ

and =>0 as input and outputs a feasible solution in SQ(x)
such that the relative error is bounded by = for all input
instances x # IQ and the running time of A is bounded by a
polynomial of |x| for each fixed =. We further say that the
optimization problem Q has a fully polynomial-time
approximation scheme if the running time of the algorithm A
is bounded by a polynomial of |x| and 1�=.

Definition [11]. A parameterized problem Q is a subset
of 0*_N, where 0 is a fixed alphabet. Therefore, each

466 CAI AND CHEN

4 N denotes the set of all natural numbers.

File: ARCHIV 149003 . By:BV . Date:28:05:97 . Time:09:36 LOP8M. V8.0. Page 01:01
Codes: 5924 Signs: 4577 . Length: 56 pic 0 pts, 236 mm

instance of the parameterized problem Q is a pair (x, k) ,
where the second component k is called the parameter.

The complexity of a parameterized problem can be
specified in terms of the two components of its instances.

Definition [11]. A parameterized problem Q is (strongly)
fixed-parameter tractable if there is an algorithm to decide
whether (x, k) is a member of Q in time f (k) |x| c, where
f (k) is a recursive function and c is a constant independent
of the parameter k. Let FPT denote the class of fixed-
parameter tractable problems.

A reduction has been introduced [11] that preserves the
fixed-parameter tractability of parameterized problems.

Definition [11]. Let Q and Q$ be two parameterized
problems. Q is uniformly reducible to Q$ if there is an
algorithm M that transforms (x, k) into (x$, g(k)) in
time f (k) |x| c, where f and g are recursive functions and c
is a fixed constant, such that (x, k) # Q if and only if
(x$, g(k)) # Q$.

We say that a circuit : is a 6h-circuit if : is of unbounded
fan-in and of depth at most h with an �-gate at the output.
A circuit ; is a 6 c

h-circuit if ; is a 6h+1 -circuit in which
gates at input level have fan-in at most c. The weight of a
Boolean string is the number of 1's in the string. Let h and
c be two integers, we define a parameterized problem as
follows:

Wcs(h, c)=[(:, k) | The 6 c
h -circuit : accepts an input

of weight k].

Definition [11]. For each integer h�1, the class
W[h] consists of all parameterized problems that are
uniformly reducible to the parameterized problem Wcs(h, c)
for some constant c.

The above leads to an interesting hierarchy (called the
W-hierarchy [11])

FPT�W[1]�W[2]� } } } �W[h]� } } }

for which a wide variety of natural problems are now known
to be complete or hard for various levels (under the uniform
reduction) [1, 11, 12]. It is easy to see that if a problem Q
hard for the class W[h] is fixed-parameter tractable, then
all problems in the class W[h] are fixed-parameter trac-
table.

Current Working Hypothesis [2]. The class FPT is a
proper subclass of the class W[1]. Thus, no parameterized
problem that is hard for W[1] is fixed-parameter tractable.

3. FPT AND APPROXIMABILITY

In this section, we demonstrate interesting relationship
between fixed-parameter tractability and approximability of
NP optimization problems. In particular, we will show
the fixed-parameter tractability for some well-known NP
optimization classes and investigate the approximability of
NP optimization problems based on their fixed-parameter
tractability. We will see that in many cases, fixed-parameter
intractability of an NP optimization problem implies non-
approximability of the problem. Thus, the study of fixed-
parameter intractability may provide a new and potentially
powerful approach to proving nonapproximability of NP
optimization problems.

There are many ways to parameterize an NP optimiza-
tion problem. We adopt the most natural and reasonable
parameterization scheme that associates the parameter with
the value of the objective function of the problem.

Definition. Let Q=(IQ , SQ , fQ , optQ) be an NP
optimization problem, the corresponding parameterized
problem Q= is defined by

Q==[(x, k) | x # IQ and k=optQ(x)].

The other two parameterized problems Q� and Q� can be
defined similarly based on the NP optimization problem Q
by replacing the relation k=optQ(x) in the definition by
k�optQ(x) and k�optQ(x), respectively.

We say that the optimization problem Q is fixed-
parameter tractable if its corresponding parameterized
problem Q= is fixed-parameter tractable.

The complexity of the parameterized problems Q= , Q� ,
and Q� have been studied in the literature. For example,
Leggett and Moore [17] showed that for many NP
optimization problems Q, the problems Q� and Q� are in
NP _ coNP, while the problem Q= is not in NP _ coNP
unless NP=coNP. On the other hand, from the viewpoint
of fixed-parameter tractability, the problems Q= , Q� , and
Q� have the same complexity, as shown in the following
lemma.

Lemma 3.1. Let Q be an arbitrary NP optimization
problem. Then the three parameterized problems Q= , Q� ,
Q� are either all fixed-parameter tractable, or all fixed-
parameter intractable.

Proof. Suppose that the parameterized problem Q� is
fixed-parameter tractable. Thus, there is an algorithm A�

that solves the problem Q� in time O(f (k) nc), where f is a
recursive function, and c is a constant independent of the
parameter k. To show that the parameterized problem
Q= is fixed-parameter tractable, note that the condition
k=optQ(x) is equivalent to the condition (k�optQ(x))6
((k+1)>optQ(x)). Therefore, given an instance (x, k) for

467FIXED PARAMETER TRACTABILITY

File: ARCHIV 149004 . By:BV . Date:28:05:97 . Time:09:36 LOP8M. V8.0. Page 01:01
Codes: 6215 Signs: 5264 . Length: 56 pic 0 pts, 236 mm

the parameterized problem Q= , we can run the algorithm
A� on the input (x, k) and on the input (x, k+1) to
decide whether k=optQ(x). The total running time is
obviously bounded by O((f (k)+ f (k+1)) nc). Thus, the
problem Q= is fixed-parameter tractable.

Conversely, suppose that the problem Q= is fixed-
parameter tractable. Then there is an algorithm A= that
solves the problem Q= in time O(f $(k) nc$), where f $ is a
recursive function and c$ is a constant independent of
the parameter k. Now given an instance (x, k) of the
parameterized problem Q� , we run the algorithm A= on k
inputs (x, 0) , (x, 1) , ..., (x, k&1). It is easy to see that
(x, k) is a no-instance of the parameterized problem Q� if
and only if the algorithm A= concludes yes for at least one
of those k inputs. Note that the running time of the above
process is bounded by O(kf $(k) nc$). Thus, the problem Q�

is fixed-parameter tractable.
Therefore, the parameterized problem Q= is fixed-

parameter tractable if and only if the parameterized
problem Q� is fixed-parameter tractable. In a similar way,
we can show that the parameterized problem Q� is fixed-
parameter tractable if and only if the parameterized
problem Q= is fixed-parameter tractable. K

Fixed-parameter tractability provides a necessary condi-
tion for an NP optimization problem to have a very good
polynomial-time approximation algorithm.

Theorem 3.2. If an NP optimization problem has a fully
polynomial-time approximation scheme, then it is fixed-
parameter tractable.

Proof. Suppose that an NP optimization problem
Q=(IQ , SQ , fQ , optQ) has a fully polynomial-time appro-
ximation scheme A. Then, the algorithm A takes as input
both an instance x # IQ of Q and an accuracy requirement
=>0, and then outputs a feasible solution in time
O(p(1�=, |x|)) such that the relative error RA(x) is bounded
by =, where p is a two-variable polynomial.

First we assume that Q is a maximization problem. By
Lemma 3.1, we only need to show that the problem Q� is
fixed-parameter tractable. Given an instance (x, k) for the
parameterized problem Q� , we run the algorithm A on
input x and 1�2k. In time O(p(2k, |x|)), the algorithm A
produces a feasible solution y # SQ(x) such that

RA(x)=
optQ(x)& fQ(x, y)

fQ(x, y)
�

1
2k

<
1
k

.

If k� fQ(x, y), then certainly k�optQ(x) since Q is a
maximization problem. On the other hand, if k> fQ(x, y),
then k&1� fQ(x, y). Combining this with the inequality
(optQ(x)& fQ(x, y))�fQ(x, t)<1�k, we get immediately k>
optQ(x). Therefore, k�optQ(x) if and only if k� fQ(x, y).
Since the feasible solution y can be constructed by the

algorithm A in time O(p(2k, |x|)), we conclude that the NP
optimization problem Q is fixed-parameter tractable.

The case when Q is a minimization problem can be
proved similarly by showing that the problem Q � is fixed-
parameter tractable. K

Theorem 3.2 immediately includes a number of knapsack-
like problems and scheduling problems [15, 20] into the
class FPT. Under our current working hypothesis that FPT
is a proper subclass of W[1], Theorem 3.2 exhibits a strong
evidence that many NP optimization problems do not have
fully polynomial-time approximation scheme, as stated in
the following corollary.

Corollary 3.3. The NP optimization problems that are
W[1]-hard under the uniform reduction have no fully polyno-
mial-time approximation scheme unless W[1]=FPT.

Corollary 3.3 complements a classical result of Garey and
Johnson (Theorem 6.8 in [14, p. 140]) that a strongly
NP-hard optimization problem Q with optQ(x)<p(|x|,
num(x)) for some two-variable polynomial p has no fully
polynomial-time approximation scheme unless P=NP,
where num(x) is the largest integer appearing in the input
instance x. The consequence W[1]=FPT in Corollary 3.3
is weaker than P=NP but the assumption in Corollary 3.3
requires neither strong NP-hardness nor the condition
optQ(x)<p(|x|, num(x)).

We show an application of Theorem 3.2. The V-C Dimen-
sion problem has been studied recently in the literature. It
has been proved that the V-C dimension of a family C of
subsets of some finite set is a reasonable precise estimate of
the complexity of learning C [4]. Papadimitriou and
Yannakakis [19] have shown strong evidence that the
problem V-C Dimension is in NP but neither in P or NP-
complete. Therefore, the problem V-C Dimension does not
seem to be strongly NP-hard, and Theorem 6.8 of Garey
and Johnson [14] is not applicable. On the other hand,
Downey and Fellows [13] have recently shown that the
corresponding parameterized V-C Dimension problem is
W[1]-hard under the uniform reduction. Thus, it is unlikely
to be fixed-parameter tractable. By Theorem 3.2, the
problem V-C Dimension is unlikely to have fully polyno-
mial-time approximation scheme even though it seems
easier than NP-complete problems.

The condition of having a fully polynomial-time approxi-
mation scheme in Theorem 3.2 is not necessary. In the
following, we show that for a very large class of important
optimization problems that are polynomial-time approxi-
mable to a constant ratio, the corresponding parameterized
problems are fixed-parameter tractable.

The first class of optimization problems we will study is
the class MAX SNP introduced by Papadimitriou and
Yannakakis [18]. It has been shown that several natural
and well-studied NP optimization problems belong to this

468 CAI AND CHEN

File: ARCHIV 149005 . By:BV . Date:28:05:97 . Time:09:36 LOP8M. V8.0. Page 01:01
Codes: 5925 Signs: 4852 . Length: 56 pic 0 pts, 236 mm

class and that all NP optimization problems in this class can
be approximated in polynomial time to a constant ratio
[18]. Formally, a maximization problem Q=(IQ , SQ , fQ ,
optQ) is in the class MAX SNP if its optimum optQ(X),
X # IQ , can be expressed as

optQ(X)=max
S

|[v : �(v, X, S)]|,

where the input instance X=(U, P1, ..., Pb) is described by
a finite structure over the finite universe U and Pi is a
predicate of arity ri for some integer ri�1, S is also a finite
structure over the universe U, v is a vector of fixed arity of
elements in U, and � is a quantifier-free formula.

Arora et al. [3] have recently made a breakthrough and
shown that MAX SNP-complete optimization problems
have no polynomial-time approximation scheme unless
P=NP. Therefore, Theorem 3.2 is not applicable. We show
in the following theorem the fixed-parameter tractability of
problems in MAX SNP.

Theorem 3.4. All maximization problems in the class
MAX SNP are fixed-parameter tractable.

Proof. Let c be a fixed constant. Consider the following
MAX c-SAT problem:

Max c-Sat. Given a set of Boolean formulas
,1 , ,2 , ..., ,m , each has at most c variables, find
a truth assignment that satisfies the maximum
number of the formulas.

We first show that the corresponding parameterized
problem (Max c-Sat)= is fixed-parameter tractable for
every constant c. By Papadimitriou and Yannakakis [18],
for any input instance x=[,1 , ..., ,m] of the problem
Max c-Sat, the optimal value of x is at least m�2c.
Moreover, since each formula in x has at most c variables,
the total number of variables appearing in x is bounded by
cm. Therefore, the following algorithm demonstrates the
fixed-parameter tractability of the parameterized problem
(Max c-Sat)= : given a pair (x, k), where x=[,1 , ..., ,m]
is an instance of the problem Max c-Sat and k is an integer,
we first compare the values k and m�2c. If k<m�2c, then
(x, k) is obviously a no-instance for the parameterized
problem (Max c-Sat)= . If k�m�2c, then we check all
assignments to the variables in x to verify that whether the
maximum number of formulas in x that can be satisfied by
a single assignment is k. Since the total number of variables
in x is bounded by cm, there are at most 2cm different
assignments to the variables in x. Therefore, the above algo-
rithm runs in time O(2cmm), which is bounded by O(2O(k)m)
since m=O(k). This shows that the parameterized problem
(Max c-Sat)= is fixed-parameter tractable.

According to Papadimitriou and Yannakakis [18], every
MAX SNP problem Q can be reduced to the problem

Max c-Sat for some constant c in the following sense: there
is a polynomial-time algorithm that, given an input instance
x # IQ of Q, constructs an input instance x$ of Max c-Sat
such that the optimal value for the instance x of the problem
Q is equal to the optimal value for the instance x$ of the
problem Max c-Sat. Therefore, the membership of the
input instance (x, k) for the parameterized problem Q= is
identical to the membership of the input instance (x$, k)
for the parameterized problem (Max c-Sat)= . Since x$
can be constructed from x in polynomial time and the
parameterized problem (Max c-Sat)= is fixed-parameter
tractable, we conclude that the optimization problem Q in
MAX SNP is also fixed-parameter tractable. Since Q is an
arbitrary problem in the class MAX SNP, the theorem
follows. K

We can also show that an important class of minimiza-
tion problems introduced by Kolaitis and Thakur [16] are
fixed-parameter tractable.

Definition. Define MIN F+61(h), h�2, to be the
class of all minimization problems Q whose optimum can be
expressed as

optQ(X)=min
S

[|S | : \v�(v, S, X)],

where S=(U, P0) and P0 is a predicate of arity 1 over the
finite universe U, |S | denotes the weight of the predicate P0 ,
i.e., the number of elements of the universe U on which the
predicate P0 has truth value, and �(v, S, X) is a quantifier-
free CNF formula in which all occurrences of P0 are
positive, and P0 occurs at most h times in each clause.
Finally, let MIN F+61 be the union �h�2 MIN F+61(h).

The class MIN F+61 contains a number of well-studied
minimization problems, including Vertex Cover and a large
number of vertex-deletion and edge-deletion graph problems
[16]. It is known that all minimization problems in
MIN F+61 are polynomial-time approximable to a con-
stant ratio [16]. Theorem 3.2 is not applicable to the class
MIN F+61 since the problem Vertex Cover is MAX SNP-
hard [18], so it does not have a fully polynomial-time
approximation scheme unless P=NP [3]. In the following,
we derive a direct proof for the fixed-parameter tractability
of MIN F+61 .

Theorem 3.5. All minimization problems in the class
MIN F+61 are fixed-parameter tractable.

Proof. Let Q be a minimization problem in the class
MIN F+61(h), where h�2 is a fixed integer. Then the
optimum optQ(X) for any input instance X of Q can be
expressed as

optQ(X)=min
S

[|S | : \v�(v, S, X)],

469FIXED PARAMETER TRACTABILITY

File: 571J 149006 . By:XX . Date:26:05:97 . Time:11:38 LOP8M. V8.0. Page 01:01
Codes: 3519 Signs: 2540 . Length: 56 pic 0 pts, 236 mm

FIG. 1. The algorithm WeightedCNF(F, k).

where S=(U, P0), and P0 is a predicate of arity 1 over the
finite universe U, v=(v1 , ..., vd) is a vector over U of arity d
for some fixed d, �(v, S, X) is a quantifier-free CNF formula
in which all occurrences of P0 are positive, and P0 occurs at
most h times in each clause.

We show below that the parameterized problem Q� is
fixed-parameter tractable.

Fix an input instance X of Q. Consider the formula

F(X, S)= �
v # Ud

�(v, S, X).

Note that the formula F(X, S) is a quantifier-free CNF for-
mula in which the only unknowns are P0(u), where u # U.
Moreover, according to the definition of �, each clause of
F(X, S) contains at most h unknowns P0(u), u # U, and all
of them occur positively. Since the number of elements of
the universe U is bounded by the length |X | and d is a fixed
integer, the formula F(X, S) can be constructed from the
input instance X in polynomial time.

Now given an instance (X, k) of the parameterized
problem Q� , we first construct the formula F(X, S)=
[C1 , C2 , ..., Cs], then execute the algorithm Weighted
CNF(F, k) described in Fig. 1. It is easy to verify the correct-
ness of the algorithm WeightedCNF(F, k). If the algorithm
WeightedCNF(F, k) accepts, then there is a finite structure
S0=(U, P0), |S0 |<k, and F(X, S0)=\v�(v, S0 , X)=1.
Therefore,

optQ(X)=min
S

[|S | : \v�(v, S, X)]�|S0 |<k.

Thus, (X, k) is a no-instance of the parameterized problem
Q� . Otherwise we should have

optQ(X)=min
S

[|S | : \v�(v, S, X)]

=min
S

[|S | : F(X, S)]�k.

Thus, (X, k) is a yes-instance of the parameterized problem
Q� . Therefore, the problem Q� can be solved through the
algorithm WeightedCNF.

We claim that the running time of the algorithm
WeightedCNF(F, k) is bounded by O(hk |F |). This is
certainly true when k�1. If k�2, then the loop body of
Step 4 is executed at most h times, each time involves a
recursive call WeightedCNF(F $, k&1), where |F $|�|F |.
By the inductive hypothesis, the running time of each call of
WeightedCNF(F $, k&1) is bounded by O(hk&1 |F |). The
conclusion follows.

Note that the length of the formula F is bounded by a
polynomial of the length of the input X which is inde-
pendent of the parameter k, and h is a constant. Conse-
quently the parameterized problem Q� is fixed-parameter
tractable. K

Under our current working hypothesis, no W[1]-hard
parameterized problem is fixed-parameter tractable.
Therefore, Theorem 3.2, Theorem 3.4, and Theorem 3.5
immediately exclude any W[1]-hard optimization problems
from the classes MAX SNP and MIN F+61 , and from the
class of optimization problems with fully polynomial-time

470 CAI AND CHEN

File: ARCHIV 149007 . By:BV . Date:28:05:97 . Time:09:36 LOP8M. V8.0. Page 01:01
Codes: 6395 Signs: 5440 . Length: 56 pic 0 pts, 236 mm

approximation schemes. Note that there have been several
dozens of NP optimization problems in the W-hierarchy
that are known to be W[1]-hard [12], and none of them is
known to be polynomial-time approximable with a con-
stant ratio. Therefore, fixed-parameter intractability seems
to hint nonapproximability for NP optimization problems.
The study of fixed-parameter tractability may provide a new
and potentially very powerful approach to the study of non-
approximability of NP optimization problems.

4. FPT AND THE W-HIERARCHY

We have seen from the previous section that for many
NP optimization problems, nonapproximability of the
problems can be derived from fixed-parameter intractability
of the problems, provided our current working hypo-
thesis holds. However, attempting a direct proof for the
hypothesis seems a bit ambitious because it would imply
P{NP [11]. In this section, we show that the collapsing of
the W-hierarchy is equivalent to an unlikely fact in classical
complexity theory. This connection establishes a strong
evidence supporting the current working hypothesis.

Our discussion will be based on the following GC model
(for ``Guess-then-Check'') introduced by Cai and Chen [7].

Definition. Let s(n) be a function and let C be a
complexity class. A language L is in the class GC(s(n), C) if
there are a language A # C and an integer c>0 such that for
all x, x # L if and only if _y # [0, 1]*, | y|�c } s(|x|), and
(x, y) # A.

Intuitively, the first component s(n) in the GC(s(n), C)
model specifies the length of the guessed string y, which is
the amount of nondeterminism allowed to make in the
computation, while the second component C specifies the
verifying power of the computation. A number of restricted
forms of the GC model have been studied recently in the
literature [6, 7, 10, 19].

We are particularly interested in the classes GC(s(n) 6 B
h),

where s(n)=|(log n), and 6 B
h is the class of languages

accepted by O(log n) times alternating Turing machines
that make at most h alternations and always begin with
universal states (such alternating Turing machines will be
called ``6 B

h -ATMs''). By our current knowledge, a deter-
ministic polynomial-time computation can only ``guess'' a
string of length at most 3(log n) by exhaustively enumer-
ating all strings of length 3(log n). Moreover, it has now
become well-known that the class 6 B

h is a proper subclass of
the class P [21]. Therefore, the model GC(s(n), 6 B

h) has
a (presumely) stronger guessing ability but (provably)
weaker computational power than deterministic poly-
nomial-time computations. (For more detailed discussion of
the model GC(s(n), 6 B

h), the reader is referred to our recent
papers [7, 8].)

Theorem 4.1. For any nondecreasing function t(n)
constructible in polynomial time and for any integer h>1, the
following language Csat(t, h) is complete for the class
GC(t(n) log(n), 6 B

h) under the polynomial-time reduction:

Csat(t, h). The set of all strings of the form
x=:*w, where w is an integer not larger than
t(|x|), and : is a 6-circuit that accepts an input of
weight w.

Proof. The authors have shown in another paper
(Theorem 4.4 and Theorem 4.7 in [7]) that for any
nondecreasing function t(n) constructible in polynomial
time, the language Csat(t, h) is hard for the class
GC(t(n) log(n), 6 B

h) under the polynomial-time reduction
for all h>1. Therefore, to prove the theorem, we only have
to show that the language Csat(t, h) is in the class
GC(t(n) log(n), 6 B

h). Consider the algorithm Csat(t, h)-
Simulator in Fig. 2. We shall show that the algorithm
Csat(t, h)-Simulator can be implemented by a 6 B

h -ATM
such that for all x=:*w, x # Csat(t, h) if and only if there
is a string y # [0, 1]*, | y|�2t(|x|) log(|x|) such that the
algorithm accepts (x, y).

The binary string y of length 2w log(|x|) encodes a
weight w input vy of the circuit : as follows. The first
(w+1) log(|x|) bits of y are interpreted as w+1 pairs
(p0 , p1), (p1 , p2), ..., (pw&1 , pw), (pw , pw+1), with 0=
p0<p1<p2< } } } <pw<pw+1=m+1, such that the j th
bit of vy is 1 if and only if j= pi for some i, 0<i<w+1.
Here without loss of generality, we assume that log(|x|)�
2 |m| so that a pair (pi , pi+1) of integers with 0�pi , pi+1�
m+1 can be encoded into log(|x|) bits. The rest part of the
string y will be ignored in the simulation.

It is not very difficult to verify that the step ``Checking'' of
the algorithm can be implemented by a 6 B

2 -ATM. Now we
analyze the step ``Simulation.''

Since the output gate of : is an �-gate, the first execution
of the loop body in Step 2 is a universal branch, which is
combined with the starting universal branching of the algo-
rithm to form the first phase of the algorithm.

The loop execution of Step 2 simply simulates the com-
putation of the circuit :. After h executions of the loop body
in Step 2, the algorithm is in its h th phase, which is an
existential phase if h is even, or a universal phase if h is odd.
Therefore, the branching in Step 3 can be combined with the
last phase in Step 2 to form the last phase of the algorithm.
Therefore, the algorithm Csat(t, h)-Simulator makes at
most h alternations. Moreover, it is obvious that each com-
putation path of the algorithm takes time O(log n). This
concludes that the algorithm Csat(t, h)-Simulator can be
implemented by a 6 B

h -ATM.
Recall that vy is the weight w Boolean string of length m

such that the jth bit of vy is 1 if and only if there is a pair
(pi , pi+1) in y, i>0 and j= pi . We show that the algorithm

471FIXED PARAMETER TRACTABILITY

File: 571J 149008 . By:XX . Date:26:05:97 . Time:11:39 LOP8M. V8.0. Page 01:01
Codes: 3193 Signs: 2385 . Length: 56 pic 0 pts, 236 mm

FIG. 2. The algorithm Csat(t, h)-Simulator.

Csat(t, h)-Simulator on input (x, y) correctly simulates
the circuit : on input vy , where x=:*w. First assume that
h is an even number. Let g0 be a gate at input level of :,
which must be an �-gate. Therefore, the gate g0 gets value
1 on the input vy if and only if either an input of g0 is a
positive literal vj and there is a pair (pi , pi+1) in y such that
j= pi , or an input of g0 is a negative literal v� j and j is not any
pi contained in y; i.e., there is a pair (pi , pi+1) in y such that
pi< j<pi+1. This process is correctly simulated by a
last phase of the algorithm Csat(t, h)-Simulator, which
guesses an input of g0 in the last phase of Step 2 and a pair
(pi , pi+1) in Step 3 and checks the above conditions. The
case that h>1 is odd can be verified similarly.

This concludes that the algorithm Csat(t, h)-Simulator
is a 6 B

h -ATM, which accepts (x, y), where x=:*w, if and
only if y is a string of length 2w log(|x|) that encodes a
weight w Boolean string vy of length m as described above,
and the circuit : accepts the input vy .

For any x=:*w, if x # Csat(t, h), then w�t(|x|) and :
accepts an input v of weight w. Let yv be the binary string of
length 2w log(|x|) that encodes v as described above. Then
the pair (x, yv) is accepted by the algorithm Csat(t, h)-
Simulator, and | yv |=2w log(|x|)�2t(|x|) log(|x|). On

the other hand, if x � Csat(t(n), h), then the pair (x, y) is
not accepted by the algorithm Csat(t, h)-Simulator for
any y of length at most 2t(|x|) log(|x|) (note that by the
algorithm, a string of length at most 2t(|x|) log(|x|) cannot
be used to encode an input of : that has weight larger than
t(|x|)).

Thus, the language Csat(t, h) is in the class GC(t(n)
log(n), 6 B

h) and consequently, is complete for the class
GC(t(n) log(n), 6 B

h) under the polynomial-time reduction. K

A single Boolean literal is called a 60-normalized Boolean
expression as well as a 70-normalized Boolean expression.
Inductively, a 6h -normalized Boolean expression is an ``�''
of 7h&1-normalized Boolean expressions, and a 7h-nor-
malized Boolean expression is an ``�'' of 6h&1-normalized
Boolean expressions.

Theorem 4.2 [11]. For h>1, the following para-
meterized problem Esat(h) is complete for the class W[h]
under the uniform reduction:

Esat(h). The set of all pairs (;, k) , where ; is a
6h -normalized Boolean expression that has a
satisfying assignment of weight k.

472 CAI AND CHEN

File: ARCHIV 149009 . By:BV . Date:28:05:97 . Time:09:36 LOP8M. V8.0. Page 01:01
Codes: 6499 Signs: 5418 . Length: 56 pic 0 pts, 236 mm

Now we are ready for our main theorem of this section.

Theorem 4.3. For all h>1, W[h]=FPT if and only if
there is an unbounded, nondecreasing function t(n)�n
computable in polynomial time such that the class
GC(t(n) log(n), 6 B

h) is a subclass of the class P.

Proof. Suppose that GC(t(n) log(n), 6 B
h) is a subclass of

the class P, then by Theorem 4.1, the problem Csat(t, h)
is in P. An algorithm Esat(h)-Solver solving the
parameterized problem Esat(h) can be described as follows:
given an input (;, k) , first compare the values k and t(|;|).
If k>t(|;|), then the algorithm tries all possible
assignments of weight k to the expression ; to see if any
of these assignments satisfies the expression ;. In case
k�t(|;|), the algorithm first converts the expression ; into
a 6h-circuit :; ; then it solves the problem Csat(t, h) on
input x=:;*k.

We analyze the above algorithm Esat(h)-Solver. Define

{(k)=min[m | for all n�m, t(n)�k].

Since t(n) is unbounded, nondecreasing, and computable in
polynomial time, the function {(k) is well-defined and recur-
sive. In the case k>t(|;|), the size |;| of the Boolean
expression ; is bounded by {(k). In particular, the number
of variables in the Boolean expression ; is bounded by {(k).
Thus, the number of assignments of ; that have weight k is
bounded by ({(k))k. Therefore, in this case, the algorithm
Esat(h)-Solver takes time O(({(k))k |;| 2) to examine all
possible assignments of weight k to the expression ;,
assuming we are using a straightforward quadratic-time
algorithm to evaluate a Boolean expression given an assign-
ment. On the other hand, if k�t(|;|), then the algorithm
Esat(h)-Solver takes time O(|:; | c)=O(|;|)c for some
constant c independent of the parameter k because of our
assumption that the problem Csat(t, h) is in P. In conclu-
sion, the algorithm Esat(h)-Solver runs in time
O(({(k))k |;|d), where d�2 is a constant independent of
the parameter k. That is, the problem Esat(h) is fixed-
parameter tractable. By Theorem 4.2, we have W[h]=
FPT.

Conversely, suppose that W[h]=FPT, where h>1.
By Theorem 4.2, the parameterized problem Esat(h) is
fixed-parameter tractable. Suppose that Esat(h)-Settler
is an algorithm of running time O(f (k) nc) which solves
the problem Esat(h), where f can be assumed to be an
unbounded nondecreasing recursive function [9] and
c�1 is a constant. Let t be the inverse function of f defined
by

t(m)=max[n | f (n)�m].

Without loss of generality, we can assume that t(n)�n, and
that t(n) is unbounded, nondecreasing, and computable in

time polynomial in n (see [9] for a formal proof). Now
an algorithm Csat(t, h)-Settler solving the problem
Csat(t, h) can be described as follows: on input x=:*w,
where : is a 6h-circuit and w�t(|x|), first convert : into an
equivalent 6h -normalized Boolean expression ;: ; then call
the algorithm Esat(h)-Settler on input (;: , w) .

Since the value t(|x|) can be computed in time bounded
by a polynomial in |x|, the condition w�t(|x|) can be
checked in polynomial time. The 6h-normalized Boolean
expression ;: equivalent to the 6h -circuit : has size |;: |
bounded by |:|h because the depth of the circuit : is
bounded by h. Moreover, it is easy to see that the 6h -nor-
malized Boolean expression ;: can be constructed from the
6h-circuit : in time O(|;: | 2). Now by our assumption, the
running time of the algorithm Esat(h)-Settler on input
(;: , w) is bounded by O(f (w) |;: | c). Since w�t(|x|) and
the function f is nondecreasing, we have f (w)� f (t(|x|))�
|x|=O(|;: |), where the second inequality comes from the
fact that the function t is the inverse function of the function
f. Therefore, the time complexity of the algorithm
Csat(t, h)-Settler is bounded by O(|;: | 2)+O(|;: | c+1)=
O(|:|h(c+1))=O(|x|h(c+1)).

This shows that the problem Csat(t, h) can be solved in
polynomial time. By Theorem 4. 1, the language Csat(t, h)
is complete for the class GC(t(n) log(n), 6 B

h) under the
polynomial-time reduction. Therefore, the class GC(t(n)
log(n), 6 B

h) is a subclass of the class P. K

A deterministic polynomial-time computation can
enumerate all strings of length c log n for a fixed constant c.
However, it is unknown whether a deterministic polyno-
mial-time computation can ``guess'' a string of length larger
than 3(log n). Note that for any unbounded nondecreasing
function t(n), the function t$(n)=t(n) log(n) is of order
|(log n). Thus, the model GC(t(n) log n, 6 B

h) seems to have
a stronger ability of guessing than a deterministic polyno-
mial-time computation. Theorem 4.3 basically says that the
W-hierarchy does not collapse unless a deterministic poly-
nomial-time computation can guess a string of length larger
than 3(log n), which seems unlikely based on our current
understanding of nondeterminism.

We should point out that Theorem 4.3 gives the first
sufficient and necessary condition for each level of the
W-hierarchy to collapse to FPT. Previous study on the
structural properties of the W-hierarchy has also
investigated the consequence of collapsing the W-hierarchy
but was only able to give either sufficient or necessary con-
ditions, but not both, for the collapsing of the W-hierarchy.
Abrahamson, Downey, and Fellows [2] have carefully
studied the relationship between the class FPT and the class
W[P], which contains the entire W-hierarchy, and were
able to derive a sufficient and necessary condition for the
class W[P] to collapse to FPT. For each even level W[2h]
of the W-hierarchy, they demonstrated that FPT=W[2h]

473FIXED PARAMETER TRACTABILITY

File: ARCHIV 149010 . By:BV . Date:28:05:97 . Time:09:39 LOP8M. V8.0. Page 01:01
Codes: 9399 Signs: 3759 . Length: 56 pic 0 pts, 236 mm

implies a necessary consequence that seems very unlikely in
classical complexity theory.

ACKNOWLEDGMENTS

We thank Rod Downey and Mike Fellows for informing us of the most
recent progress in the study of fixed-parameter tractability and providing
valuable comments on this work. We are thankful to Mihalis Yannakakis
who read an earlier version of this work and provided valuable advice. In
particular, part of the proof of Theorem 4.1 was hinted by a personal com-
munication from him. Finally, we would like to thank an anonymous
referee, whose comments, suggestions, and criticism have greatly improved
the presentation.

REFERENCES

1. K. R. Abrahamson, R. G. Downey, and M. R. Fellows, ``Fixed
Parameter Intractability, II,'' Lecture Notes in Computer Science,
Vol. 665, pp. 374�385, Springer-Verlag, New York�Berlin, 1993.

2. K. R. Abrahamson, R. G. Downey, and M. R. Fellows, Fixed
parameter intractability and completeness IV: On completeness for
W[P] and PSPACE analogues, Ann. Pure Appl. Logic 73 (1995),
235�276.

3. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof
verification and intractability of approximation problems, in
``Proceedings, 33th IEEE Symposium on Foundations of Computer
Science, 1992,'' pp. 14�23.

4. A. Blummer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth,
Learnability and the Vapnik�Chervonenkis dimension, J. Assoc.
Comput. Mach. 36 (1989), 929�965.

5. H. L. Bodlaender, M. R. Fellows, and M. T. Hallett, Beyond NP-
completeness for problems of bounded width: Hardness for the
W-hierarchy, in ``Proc. 26th ACM Symposium on Theory of Com-
puting, 1994,'' pp. 449�458.

6. J. F. Buss and J. Goldsmith, Nondeterminism within P, SIAM
J. Comput. 22 (1993), 560�572.

7. L. Cai and J. Chen, ``On the Amount of Nondeterminism and the
Power of Verifying,'' Lecture Notes in Computer Science, Vol. 711,
pp. 311�320, Springer-Verlag, New York�Berlin, 1993; SIAM J. Com-
put., to appear.

8. L. Cai and J. Chen, On input read-modes of alternating Turing
machines, Theoret. Comput. Sci. 148 (1995), 33�55.

9. L. Cai, J. Chen, R. G. Downey, and M. R. Fellows, On the structure
of parameterized problems in NP, Inform. and Comput. 123 (1995),
38�49.

10. J. Di� az and J. Tora� n, Classes of bounded nondeterminism, Math.
System Theory 23 (1990), 21�32.

11. R. G. Downey and M. R. Fellows, Fixed-parameter intractability,
in ``Proc. 7th Structure in Complexity Theory Conference, 1992,''
pp. 36�49.

12. R. G. Downey and M. R. Fellows, Fixed-parameter intractability and
completeness I: basic results, SIAM J. Comput. 24 (1995), 873�921.

13. M. R. Fellows, private communication, 1992.
14. M. R. Garey and D. S. Johnson, ``Computers and Intractability:

A Guide to the Theory of NP-Completeness,'' Freeman, San Francisco,
1979.

15. O. H. Ibarra and C. E. Kim, Fast approximation algorithms for the
knapsack and sum of subset problems, J. Assoc. Comput. Mach. 22
(1975), 463�468.

16. P. G. Kolaitis and M. N. Thakur, Approximation properties of NP
minimization classes, J. Comput. System Sci. 50 (1995), 391�411.

17. E. W. Leggett, Jr. and D. J. Moore, Optimization problems and the
polynomial hierarchy, Theoret. Comput. Sci. 15 (1981), 279�289.

18. C. H. Papadimitriou and M. Yannakakis, Optimization, approxi-
mation, and complexity classes, J. Comput. System Sci. 43 (1991),
425�440.

19. C. H. Papadimitriou and M. Yannakakis, On limited nondeterminism
and the complexity of the V-C dimension in ``Proc. 8th Structure in
Complexity Theory Conference, 1993,'' pp. 12�18,

20. S. Sahni, Algorithms for scheduling independent tasks, J. Assoc.
Comput. Mach. 23 (1976), 116�127.

21. A. Yao, Separating the polynomial-time hierarchy by oracles, in ``Proc.
26th Annual Symposium on Foundations of Computer Science, 1985,''
pp. 1�10.

474 CAI AND CHEN

