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Abstract— Automated planning systems (APS) are gaining
acceptance for use on NASA missions as evidenced by APS
flown on missions such as Earth Orbiter 1 and Deep Space 1,
both of which were commanded by onboard planning
systems. The planning system takes high level goals and
expands them onboard into a detailed plan of action that the
spacecraft executes. The system must be verified to ensure
that the automatically generated plans achieve the goals as
expected and do not generate actions that would harm the
spacecraft or mission. These systems are typically tested
using empirical methods. Formal methods, such as model
checking, offer exhaustive or measurable test coverage
which leads to much greater confidence in correctness.1 2

This paper describes a formal method based on the SPIN
model checker. This method guarantees that possible plans
meet certain desirable properties. We express the input
model in Promela, the language of SPIN [1] [2] and express
the properties of desirable plans formally. The Promela
model is then checked by SPIN to see if it contains violations
of the properties, which are reported as errors. We have
applied this approach to an APS and found a defect. 
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1.  INTRODUCTION

Automated Planning Systems (APS) have commanded two
NASA technology validation missions: DS1 and EO1.
Unlike traditional flight software, which executes a fixed
sequence, an automated planning system takes as input a few
high level goals and automatically generates a sequence
(plan) that achieves them. The plan can be modified onboard
in response to faults, new situations, and unexpected
execution outcomes. This added flexibility allows the system
to respond to unexpected situations and opportunities that a
fixed sequence cannot. However, this same flexibility also
makes a planner far more difficult to verify. The planner
must be shown to generate the correct plan for a vast number
of situations. Empirical test cases can cover only a handful
of the most likely or critical situations. Formal methods can
prove that every plan meets certain properties.

An APS system consists of planner domain models, the
planning engine, or planner, and the executor that carries out
the plan. Each of these components is a potential test target.
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Verification of the planner domain models is our focus in this
work. We want to answer the question: how do we know that
an APS will produce only desirable plans when it is flown?
The cost of a bad plan can potentially be very high, ranging
from loss of science return to loss of an entire multi-million
dollar mission. Once a planner generates a plan, we can
prove that the plan is consistent with the planner domain
model provided to the planner, but there is currently no
method to check that the planner domain model will allow
only desirable plans.

Many safety considerations and flight rules can be captured
directly as constraints in the planner domain model.
However, certain properties, such as what constitutes an
acceptable overall plan, can not be enforced directly in the
planner domain model. For example, in a system consisting
of a camera, solid state recorder and a radio, we would want
to ensure that for all plans, if an image is taken and stored, it
is eventually uplinked. There is no way to express this type
of desirable property directly in the planner domain model
and so in this work we have developed a technique to verify
AI input model compliance with desirable plan properties.

In other work, the real-time model checker UPPAAL was
used to check for violations of mutual exclusion properties
and to check for the existence of a plan meeting a set of goals
[3]. In contrast, the work reported in this paper shows that
for verification of a set of properties of interest, it is not
necessary to reason about time. SPIN has also been used to
verify plan execution engines [4] [5]. Automatically
generated test oracles have been used to assist in the
interpretation of test plan outputs from APS [6]. A
comparison of three popular model checkers, SPIN, SMV
and Murphi showed that these model checkers can be used to
check for the existence of a plan meeting a set of goals and to
check that from any state in an AI input model it is possible
to reach a desired goal state [7]. This last work demonstrates
the existence of a single desirable plan or the possibility of

reaching a goal state from any model state. In contrast, this
present work seeks to check models for the presence of
undesirable plans in an AI input model and explores how
best to exploit the capabilities of the Spin Model Checker for
verifications.

EMPIRICAL TESTING CONTRASTED WITH 
VERIFICATION

As shown in Figure 1, the empirical method for testing AI
Models is test plan generation that includes these steps:
inspect the AI model, request a finite number of sample
plans from the APS, and manually inspect the plans to
determine if they are good or bad. The number of sample
plans requested will correspond to the amount of time
available for manual analysis of the plans. A typical number
of plans requested may be in the order of 100 plans [8].
When a undesirable plan is discovered in the sample set, the
constraints portion of the input model is adjusted to prevent
that particular undesirable plan and the sampling and manual
analysis is repeated until the sample set produced by the APS
contains no undesirable plans. 

In contrast, our approach, shown in Figure 2, uses the SPIN
model checker to determine that the space defined by the AI
input model either contains only desirable plans, or if
undesirable plans exist, to expose them explicitly as errors. If
an exhaustive check is not tractable we use an approximation
technique. In either case, our technique examines millions of
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plans, as opposed to the sampling method of the traditional
testing process where only 100 or so plans are analyzed.

The AI Model is expressed first as a Promela model, the
language of the SPIN model checker. We develop properties
of desirable plans from mission requirements. The property
is not an example desirable plan but a more abstract
representation of the characteristics of a desirable plan. The
properties are expressed formally using the Timeline Editor
[9]. The AI input model is then checked exhaustively by
SPIN to determine if it contains undesirable plans. If a
undesirable plan is found, SPIN reports it as an error in the
form of a sequence diagram. Human analysis of the
undesirable plan will reveal that the input model is under or
over constrained and an adjustment, such as the relaxation or
addition of a constraint is made and the process is repeated
until SPIN reports that there are no undesirable plans.

2.  MODEL CHECKING CASE STUDY

In this section we show how SPIN verifies whether all plans
generated by a planning system will meet certain properties.
For purposes of this example, we chose a domain model for
the CASPER continuous planning system. The model
generates plans for a sample acquisition and analysis
scenario of a possible comet landing mission. We chose this
particular model because it is easily understood and has been
documented in the literature [10]. The model generates plans
for the sample acquisition phase which consists of
collecting, ‘baking’ and evaluating terrain samples in a gas
chromatograph/mass spectrometer and taking images of the
comet surface.

CASPER Overview
CASPER is a Continuous Activity Scheduling Execution
and Re-planning (CASPER) system built around a modular
and reconfigurable application framework known as the
Automated Scheduling and Planning Environment (ASPEN)
[11]. ASPEN is a modular and reconfigurable application
framework capable of supporting a wide variety of planning
and scheduling applications that includes these components:

• an modeling language for defining the domain
• a resource management system
• a temporal reasoning system, and
• a graphical interface for visualizing plans
The Continuous Activity Scheduling Planning Execution
and Re-planning (CASPER) system supports continuous
modification and updating of a current working plan in light
of a changing operating context. Applications of CASPER
have included autonomous spacecraft such as Earth Orbiter 1
and 3 Corner Satellite, Rover Sequence Generation,
Distributed Rovers, and Closed Loop Execution and
Recovery

A planner domain model is expressed in the CASPER
modeling language that includes four constructs: goals,
resources, states, and activities. Goals are the high level
science and engineering activities performed by a spacecraft.
An example goal is performance of a science experiment.
Activities are actions and are the means by which goals are
satisfied. A drilling activity might be one of the activities by
which a science experiment goal is satisfied. Activities

contain temporal constraints and resource reservations that
must be satisfied for the activity to be scheduled. States,
represented by state variables, are the means by which
resource reservations are made and tracked. For instance,
before drilling can occur the drill must be at the desired
location. A state would be the means by which the drill
location is tracked. State changes are performed by
activities. For instance, the sample activity would change the
drill location to hole1 if no other activity has a reservation on
the drill location state variable. Resources, are those items
that are necessary to, or used up in the course of, carrying out
an activity. Drilling, for instance, will use battery power.
Resource levels are updated by activities. For instance, when
the sample activity begins drilling, it decrements the power
resource and when drilling ends the power resource is
restored.

SPIN Overview
SPIN is a logic model checker that is used to formally verify
distributed software systems. Development of the tool began
in 1980 in the original Unix group of the Computing
Sciences Research Center at Bell Labs. The software has
been freely available since 1991, and continues to evolve to
keep pace with new developments in the field.

SPIN is the most widely used logic model checker with over
10,000 users. In April 2002 SPIN was the recipient of the
prestigious System Software Award for 2001 by the
Association for Computing Machinery (ACM). SPIN
verifies software, not hardware and has a high level language
for describing systems, called PROMELA (a PROcess MEta
LAnguage). Spin has been used to trace logical design errors
in distributed systems designs, such as operating systems,
data communications protocols, switching systems,
concurrent algorithms, railway signaling protocols, etc. The
tool checks the logical consistency of a specification. Spin
reports deadlocks and unspecified receptions, and flags
incompleteness, race conditions, and unwarranted
assumptions about the relative speeds of processes.

Example Planner Domain Model
The sample acquisition phase consists of taking three terrain
samples and two images. Each sampling activity should
contain a set of serial sub activities of: drilling, mining for a
sample, moving the drill to the oven, depositing the sample
in the oven and baking the sample and taking measurements.
Other activities that were not part of the goals were data
compression, used to partially free up memory in the data
buffer, and data uplinking to the orbiter.

For the portion of the landed phase that we analyzed, the
resources included:

• 2 ovens
• 1 camera
• 1 robotic arm with drill
• power (renewable)
• battery power (non-renewable)
• memory (renewable)
State variables included these: oven 1 and oven 2, camera,
telecom and drill location. The legal states and state
transitions for state variables are shown in Figure 3. Default
states are shaded. All transitions are allowed for the drill
location, camera and telecom state variables. For the ovens,
all transitions are allowed except for transitions out of the
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failed state. Once an oven enters the failed state it will stay in
the failed state.

A small portion of the planner domain model is shown in
Figure 4. The goals shown are two pictures, take1, and take2.
An initial start time for this activity is seven hours after the
beginning of the plan. The CASPER planner may move the
activity start time but can not delete the activity as indicated
by the no_permissions variable.

The resources shown in Figure 4 are the camera, the telecom
device and the data buffer. The camera and telecom are
atomic devices, meaning that only one activity can utilize the
resource at a time. The data buffer is a shared resource that
can be depleted, and has a capacity and a minimum value.

The take_picture activity may start between 10 minutes after
the start of the plan and infinity and its duration may be
between 1 and 10 minutes. Reservations that are needed in
order for the take_picture activity to be scheduled are:

• exclusive access to the telecom device (comm)
• exclusive access to the camera (civa)
• use of 5 Mb of the data buffer
• and the camera (civa) must be “on” for the duration of 

the activity.

Planner Domain Model Expressed in Promela
To express the planner domain model in Promela we first
observed that each activity in the CASPER model should
correspond to an instance of a Promela proctype. A Promela
proctype is a process type that defines the behavior of a
process instance. The take picture activity, for instance,

would be defined in Promela as a proctype, take_picture. In
an initialization step, two instances of take_picture would be
created to correspond to the two images desired in the
model’s goals. In the model checking step, SPIN explores all
possible interleavings of the take_picture activities with all
other activities.

The behavior we desired for each activity is that after the
activity is created the activity may schedule itself as soon as
its constraints are satisfied. This semantics coincides
precisely with Promela semantics where each Promela
statement is either executable or blocked. As soon as a
Promela statement is executable it may be passed and if it is
not executable, the process containing the statement blocks
until the statement evaluates to true.

The take_picture activity proctype is defined on lines 11
through 29 of Figure 5. The guard, or block, on the
executability of the take_picture activity is on lines 12
through 14. The guard stipulates that either state variable
civa_sv must be set to on (line 12), or there should be no other
reservation for the civa_sv state variable (line 13). Also, the
camera should be on (line 14) and there should be available
space in data_buffer (line 15) to record the picture.

1 unsigned data_buffer : 3 = 4;
2 mtype = {on, off, failed, picture};
3 bool civa = 1; /* atomic resource:
4 1 is available,
5 0 is in use */
6 unsigned count : 3; /* # of memory using
7 activities scheduled */
8 unsigned power : 6 = 32; /* non-depletable 
resource with capacity=35000/1094= 32and 
min_value=0
9   ** power values scaled to fit in an 
unsigned with 6 bits .. i.e. 32 */
10 mtype civa_sv = off;
11 chan mutex_civa = [2] of {pid};
12 chan plan = [0] of {mtype};
13
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Figure 3 - example CASPER planner domain model state 
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take_picture take1 {
start_time = 7h;
file = “IMAGE1”;
no_permissions = 
(“delete”);

};

take_picture take2 {
start_time = 18h;
file = “IMAGE2”;
no_permissions = 
(“delete”);

resource civa {//camera
type = atomic;

};

resource comm {
type = atomic;

};

resource data_buffer {
type = depletable;
capacity = 30;
min_value = 0;

activity take_picture {
start_time = [10, infinity];
duration = 1m,10m];
reservations =

comm,
civa,
data_buffer use 5,
civa_sv must_be “on”;
};

state_variable civa_sv {
states = (“on”, “off”, 
“failed”);
default_state = “off;

};

goals resources

activity states

Figure 4 - CASPER/ASPEN model for taking a picture
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14 proctype take_picture() {
15 atomic {(((civa_sv == on) || \
16 empty(mutex_civa)) && \
17 civa && \
18 ((data_buffer-1) >= 0)) ->
19 if
20 :: (civa_sv != on) ->
21 civa_sv = on;
22 power = power - 9;
23    :: else
24 fi;
25 mutex_civa!_pid;
26 data_buffer--;
27 civa = 0; /* camera in use */
28 plan!picture; /* take picture */
29 count++;
30 } 
31
32 d_step {
33 civa = 1;
34 mutex_civa??eval(_pid);
35 } 
36 }
37
38 proctype civa_off() {
39 unsigned i : 2;
40 start:
41 do
42 :: atomic {
43         ((civa_sv == on) && \
44 (empty(mutex_civa))) ->
45 civa_sv = off;
46 power = power + 9;
47    }
48 od
49 }
50
51 proctype server() {
52 /* prints scheduled activity on MSC, pre-
serving order */
53 mtype x;
54 do
55 :: atomic {
56 plan?x ->
57 printf("MSC: %e\n", x);
58 }
59 od;
60 }
61
62 init {
63 atomic {
64
65
66 run take_picture();
67 run take_picture();
68 run civa_off();
69 run server();
70 printf("MSC: %d\n", _nr_pr);
71 }
72 }

Figure 5 - Promela model fragment for taking a picture
 
At the beginning of the model several variables are declared
and initialized. On line 1, the data_buffer is declared to store
a 3 bit value and is initialized to 4. The mtype declaration on
line 2 causes integer values to be assigned to represent some
state names. On line 3, the civa camera is declared as a
boolean to capture whether the civa, an atomic resource, is
available or in use. On line 6, count is declared to store a 3
bit value and is initialized to 0. The count variable will be
used by our property as will be described later. On line 8,
power, measured in watts is a renewable resource and is
declared to hold an 6 bit integer with a default value of 32.
On line 10, civa_sv, that tracks the state of the camera, is
declared to store an mtype and is initialized to ‘off’ to
correspond to the default state of the camera. On line 11,
mutex_civa is declared as a channel, or queue, with a
capacity of 2 messages of size pid, which corresponds to a
byte. mutex_civa is used to track reservations of state values,

place by activities, for civa_sv variable. On line12 another
channel, plan, is used to make activity scheduling explicit
and easy to see on XSPIN’s sequence chart output. The plan
channel is a special rendezvous channel that has a capacity
of 0.

The take_picture proctype is defined on lines 14 through 36.
take_picture is a meta type. Two copies of take_picture are
created in the initialization step on lines 66 and 67. The first
few statements on lines 15 through 18 form the guard for the
activity. The guard ensures that activity won’t get scheduled
until the reservations and resources are available. In the case
of the camera, for example, the state variable civa_sv tracks
the state of the camera, which can be either ‘on’ or ‘off’. The
take_picture activities’ reservation requirement (line 15) on
civa_sv is that civa_sv ‘must be’ on, which means that the
camera must be ‘on’ at the onset of and during the entire
take_picture activity. If the camera is not already on, the
take_picture activity needs to turn the camera on. It can only
do so if no other activity has a reservation on the state of the
camera (line 16). The civa variable must be 1 indicating that
the camera is available and not being used by another
activity. Finally, before a picture is taken we need to ensure
that there is enough room in the data buffer to store the
results. This check is made on line 18.

On lines 19 through 27 state variables and resources are
modified. The civa_sv variable is set to ‘on’ and power is
decremented to reflect the power draw of the camera. A
reservation on the value of civa_sv is created on line 25. The
general method for handling reservations will be explained
presently. The available capacity of the data buffer is
decremented on line 26. The lock on the camera is modified
to show that the camera is in use on line 27. On line 28 a
message is sent to the rendezvous channel containing the
mtype ‘picture.’ This model artifact appears only to improve
our ability to interpret the error traces that XSPIN displays as
sequence charts. Each scheduled activity appears as a
distinct message with ordering preserved.

To track reservations on state variables we use Promela
channels, which are similar to message queues. Each state
variable has a corresponding channel that can hold several
messages. For instance the state variable civa_sv has an
associated channel mutex_civa for tracking reservations on
its value. When an activity wants to control the value of a
state variable it may only do so if it can pass this guard: (1)
the value of the state variable is already the value desired by
the activity, or (2) there are no reservations on the state
variable. The guard for the take_picture activity appears on
lines 15 through 18. If the value of the state variable is
already the value desired by the activity, the activity sends its
process id (pid) to the state variable’s reservation channel.
The check of the guard and the message send must be
performed in an atomic step to ensure that no other activity
obtains a reservation between the guard check and the
message send. The take_picture activity, for instance, sends
mutex_civa its pid on line 25 after passing the guard
expression. The take_picture activity now has a reservation
on the value of civa_sv and no other activity can change the
value of civa_sv until the take_picture activity, and all other
activities that have reservations on the value of civa_sv, have
removed their reservations. A reservation is removed after
the activity has completed. For instance, take_picture
removes its reservation of the value of civa_sv by removing
its pid from the mutex_civa channel on line 34.
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The count variable that is incremented on line 29 is used in
the correctness property and will be described in more detail
later. The guard and the steps that follow it are placed in an
atomic statement to ensure that no other activity coopts the
resources and reservations between the step when
reservations are made and when they are claimed.

Lines 32 to 35 are the termination of the activity and return
and release of reservations and resources. 

The civa_off proctype is used to model the turning off of the
camera when it has no reservation on its state. The server
proctype handles the rendezvous receive of the messages
activity send when the activity is scheduled. The init is a
special type of process that is scheduled as the first step(s)
and in our model is used to create instances of the proctypes.

Model Consistency Checks
The example AI input model was converted to Promela by
hand, which was feasible because of the small size of the
model. The Promela model was tested for consistency with
the AI input model by manual inspection, by Spin random
simulations, and by formally checking for the existence of

desirable plans. To check for the existence of desirable plans,
formal properties were written and Spin checked against the
Promela version of the model. These properties were
expressed as ‘errors’, or things that should never happen, so
that SPIN would report the desired plans. The presence of
the desirable plans in the Promela model was an additional
indication that the Promela model was consistent with the
original AI input model.

Model Tractability
For our model checking task to be tractable, that is; possible
within the constraints of desktop computing power and
reasonable response time, we employed several modeling
and abstraction techniques. We abstracted the timeline to the
minimum number of timepoints needed to check the
property of interest. As a result, the check we performed was
more robust, in a sense, because it checked all plans, not just
those that fit on particular timeline. But the increase in
robustness comes with a potential penalty; reports of false
positives. The false positives would be plans, flagged as
errors, that would not fit on the actual timeline. We did not
experience any false positives, but if we had, they could have
been eliminated with a simple post-processing check

Another method we used to avoid the state space explosion
problem was to scale integer variables to fit in a byte or
several bits. We used this technique for resources such as
power and memory. We also used atomic sequences as much
as possible. Atomic sequences are sequences of execution
steps that can not be interleaved with execution steps from
other processes. Use of these sequences reduces the number
of states that SPIN needs to explore.

Expressing the Property of Interest
The test concern for the example planner domain model was
the question of whether it might permit the APS to select
undesirable plans. There are two types of undesirable plans:
plans that imperil the safety of the mission, and plans that
waste resources resulting in a reduction in science return.
Although this technique can be applied to check for both
types of undesirable plans, we used it to check the latter type.
The concern we addressed was that the AI input model
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would permit the APS to select plans that would waste
resources and therefore not meet the mission’s science goals.

It is much easier to specify how a system should work rather
than all the ways in which a system can break. Similarly, we
wanted to specify the characteristics of a desirable plan
rather than try to enumerate all the undesirable plans since
the AI input model is so complex that we would inevitably
miss some undesirable plans. Fortunately, the model
checking paradigm explicitly supports specifying the desired
properties of a system and letting the model checker do all
the work to find exceptions to the desired properties.

For the example planner domain model, a desirable plan was
one that achieved all the goals: 2 images and 3 samples. An
example of one such desirable plan that was produced by
SPIN in a random simulation run is shown in Figure 6. Time
progresses to the right. The occurrences of the activities,
sample and image, that satisfy the goals are shown in green.
Uplink and compress data are permitted activities that do not
directly satisfy the goals. Uplink transmits data to the orbiter
part of the mission and compress data is used to free up
memory so that additional data products can be stored. The
state variables oven1, oven2, camera and drill location and

their values over time are shown beneath the goals. The
values of resources power use and memory use are shown at
the bottom of the timeline. This presentation of a plan
closely resembles the visual output for plans generated by
CASPER. 

Although the simulated desirable plan shows that at least one
desirable plan exists in the AI input model, we need to show
that all possible plans are good. To do this we first defined
the desired property formally using the Timeline Editor [9].
The Timeline Editor is a visual tool for expressing properties
and automatically converting properties to SPIN never
claims. A never claim is simply something that should never
happen. The desirable plan property, expressed as a timeline,
is shown on the top-left of Figure 7. Time progresses from
left to right. The vertical bars labelled ‘0’, ‘1’, and ‘2’ are
marks or locations where interesting events can be placed.
The ‘0’ mark indicates the beginning of an execution. In
between two marks zero or more execution steps may occur.
To specify what should happen between marks we may use
constraints, which would appear as horizontal lines between
marks. We do not need to use constraints to express this
particular property.

The first event on the timeline is both ovens in default state.

This event is an e event, denoting a regular event that is
neither required or an error. By including the e event on the
timeline we have specified that we are interested in

executions where sometime after the beginning of the
execution both ovens are in their default state. The second
event, all memory using activities completed, is an r event,
meaning that it is required. If the first event occurs but the
second event never occurs this is an error. The two events

Figure 7 - ‘Desirable plan’ Property for the example planner domain model expressed using the Timeline Editor
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shown are expressed informally and formally. The informal
representation is the English prose that appears as an event
label. The formal definition of the event expresses the event
label in terms of the values of variables in the model. For
instance, the formal definition of both ovens in default state
is:

((oven1_sv == off_cool) && (oven2_sv == off_cool))

where oven1_sv and oven2_sv are both state variables in the
model, and off_cool is the oven state variable’s default value.

The formal definition of all memory using activities
completed is:

(count == 5)

The count variable is not part of the input model but a global
variable that we added to enable the check. As shown in the
take_picture Promela proctype in Figure 5, the count
variable is incremented when the take_picture activity
occurs. An increment to count is also made when experiment
occurs. Experiment is a sub activity within the sample
activity. When count is equal to 5 the property is satisfied. If
SPIN can find an execution where count does not eventually
reach 5 it will report it as an error.

The graphical automaton version of the property on the
right-top of Figure 7 shows the property in a form similar to
a finite state machine. Symbols p1 and p2 are assigned to
represent the two events of interest. When execution begins
we are in the start state, S0. At each execution step in the
model we must take a transition. The true self loop on S0 can
always be taken. When p2 becomes true, corresponding to
both ovens in default state, we can transition to S1 or remain
in S0 by taking the true self loop. Thus we check both the
first occurrence of p2 and all subsequent occurrences of p2.
S1 is a special state, called an accepting state and is denoted
by the double circle. If we can return to accepting state S1
infinitely often in an execution, that execution is an error.
Hence, if for the remainder of the execution, we can return to
S1 by taking the p2 transition corresponding to all memory
using activities not completed, then SPIN will report that
execution as an error. If p1 occurs, corresponding to all
memory using activities completed, we take transition p1 to
S2 and the execution under consideration is not an error.

The SPIN never claim version of the property that is
generated by the Timeline Editor is shown at the bottom of
Figure 7. The never claim can be appended to the model or
saved to a file and included by reference from XSPIN
(SPIN’s graphical user interface).

VERIFICATION RESULTS

We used two of SPIN’s numerous strategies for verification
of large models; partial order reduction to reduce the

number of system states that must be searched, and collapse
compression to reduce the amount of memory needed to
store each state [2]. In the verification run with SPIN, an
error (undesirable plan) was reported within 1 second after
checking only 43 states. The undesirable plan, which was

sample

image

compress data

uplink

oven1

oven2

camera

drill location

power use

memory use

sample1 sample2

image 1

uplink

compress

off-cool

off-cool

on off-warm off-cool on off-warm off-cool

off on off

hole1 oven1 hole2 oven1

sample2

on off-warm off-cool

oven2 hole3

Figure 8 - The undesirable plan found by SPIN shown in CASPER-like output format
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reported as a sequence diagram by SPIN, is depicted in the
output form used by CASPER. The undesirable plan found
by SPIN omits the third sample activity and therefore
contains only four of the required five goal activities. In the
undesirable plan the second imaging activity could not be
scheduled because all the activities that clear out memory
were scheduled at the beginning of the plan when no
memory had yet been used. Both imaging and sampling
activities use memory and there is only enough memory to
store the results of four instances of these activity types.
Sometime after the first memory activity but before the
fourth memory using activity, either data compression or
uplinking should take place to make room in memory to
store the results of the fifth memory using activity.

To fix the model we observed that the undesirable plan
occurred because data compression and uplinking were
allowed to occur when memory was empty. The fix we chose
was to add a guard to prevent data compression from

occurring when memory is empty. In Figure 9, this guard,
omitted from the original model containing the undesirable
plan, is shown in bold on line 4. This guard has been added
to the Promela version of the compress_data proctype so that
the process will block until the memory (data_buffer) is non-
empty. In this case data_buffer, that tracks unused capacity, is
4 when memory is empty and is 0 when memory is full.

1 proctype compress_data() {
2 atomic
3 {
4 (data_buffer < 4) ->
5 data_buffer = data_buffer + 1;
6 plan!compress;
7 }
8 }

Figure 9 - compress_data activity specification in Promela

 

We repeated the model checking step on the repaired model
and SPIN did an exhaustive search, checking 670 million
states and reported no errors. Hence, we can conclude that
the input model with the added constraint would not allow
the APS to select a undesirable plan.

CONCLUSIONS

Using an example planner domain model we demonstrated
the ability of the SPIN model checker to verify planner
domain models. Specifically, we manually converted the
planner domain model to Promela, the language of the SPIN
model checker, formulated a correctness property for
desirable plans, and asked SPIN to find and report
undesirable plans. SPIN quickly found and reported an

Figure 10 - An erroneous plan found by SPIN shown as an XSPIN Message Sequence 
Chart and example Data Values during the second Sample activity
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undesirable plan that arose due to a missing constraint in the
AI input model. We analyzed the error report then added a
constraint and repeated the check. In an exhaustive search of
the model, SPIN found no additional undesirable plans in the
planner domain model.

Testing AI input models using SPIN can dramatically
increase the confidence that AI input models are safe to fly.
In this case in our verification using SPIN we were able to
check millions of plans, replacing a sampling based test
technique that checks in the order of 100 plans.

Manual conversion of the planner domain model into
Promela was feasible in this example because the AI input
model was small, and it was easy to check the Promela
model against the AI input model for consistency. In the next
phase of our work we plan to use this technique to check the
much larger AI input models of the Earth Observer 1 (EO1)
mission. EO1 employs the CASPER planner and has been in
autonomous operation since May, 2004. To enable model
checking of such a large AI input model, we are developing
tools to automatically convert AI input models to Promela.
We are also exploring how best to incorporate SPIN
verification of AI input models into the existing process of
developing AI input models.
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