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SUMMARY

This study presents an alternative method to estimate
the motion parameters for the gradient-based method. The
proposed method is a faster version of a hyperplane-inter-
section method. The hyperplane-intersection method esti-
mates the motion parameters between images as an
intersection position of estimated hyperplanes in a parame-
ter space. The hyperplanes approximate the zero positions
of the partial derivatives of a continuous similarity measure
with respect to each parameter. The method employs a
straightforward computation to estimate the parameters,
instead of using an iterative framework. The non-iterative
method could be suitable for hardware implementation. The
method is the region- and intensity-based technique using
any dissimilarity or similarity measure such as sum of
squared differences (SSD) or zeromean normalized cross
correlation (ZNCC), which can be selected adequately in
consideration of a property of input image sequence and a
required computation time. The faster version of the
method is realized with precomputed warped images of the
template, which reduce the computational cost for each
input frame. This study also compares the computational
cost and the accuracy of the estimated parameters of the
proposed algorithm with the gradient descent method. Ex-
periments using synthesized-motion sequences and real
image sequences are performed to confirm the compari-
sons. The SSD and ZNCC are used for the faster version of
the hyperplane-intersection method to overcome a nonuni-
form illumination change in the image sequences to dem-
onstrate the effectiveness of the method. © 2007 Wiley
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1. Introduction

Image registration and motion parameter estimation
are extremely important fundamental tasks [3, 21] for vari-
ous image processing methods, such as stereo vision, image
mosaicing, three-dimensional (3D) reconstruction, super-
resolution, measurement, and machine vision. Numerous
studies and methods have been proposed to estimate the
motion parameters. They each offer advantages and present
disadvantages. Image processing applications should use an
appropriate method for the goal and targeting images of the
application.

Motion estimation methods are classifiable into the
following three: (a) feature-based, (b) 2D (translational
motion) intensity-based, and (c) multi- (more than two-)
dimensional (more complex motion) intensity-based.

(a) The feature-based method is based on region-,
line-, or point-features that are detected in the images [21].
In many cases, images used for computer vision or remote
sensing contain rich details to detect a sufficient number of
features. Subpixel accuracy is realizable both by extracting

© 2007 Wiley Periodicals, Inc.



features in subpixel resolution and motion computation
using least-squares method. Nevertheless, the accuracy of
estimated motion parameters is not constant because the
number of features depends on the images to process. The
feature-based method, in principle, can be used for any
degree-of-freedom motion.

(b) The 2D intensity-based method usually uses the
pixel value directly without any image interpolation. SAD
(L; norm), SSD (L, norm), and ZNCC are the most com-
monly used similarity measures between the pixel values in
the region of interest (ROI). Subpixel displacement can be
calculated by fitting a quadratic function to the similarity
values [5, 20]. To estimate a highly precise subpixel dis-
placement, we have proposed the simultaneous estimation
method [15, 18]. The intensity-based method works well in
most cases, even if the image contains less texture, such as
medical images or human skin images. Needless to say, it
is also useful for richly textured images.

The 2D gradient-based method [9, 12] is also consid-
ered to belong to the second category. The gradient-based
method can estimate the subpixel displacement. But the
method could be affected by image noise, illumination
change, or occlusions [6]. The method can hardly adopt
ZNCC similarity measure that has robustness for illumina-
tion change, since the gradient-based method seeks the
optimal parameters that minimize the square error between
the images.

The frequency domain method also belongs to the
same category. The method is robust against noise and
nonuniform illumination changes [3]; the subpixel registra-
tion is explained in Ref. 4. Nevertheless, the method is
strictly limited to translational motion. The scale change
and rotation can be estimated using the log-polar transfor-
mation. Still, the number of parameters is limited to two.

(c) The multidimensional intensity-based method has
been considered as an optimization problem using gradient
descent [2, 11, 19] or difference-decomposition [7]. We
have shown that the simultaneous estimation method can
be extended to multiparameter cases [16, 18] (hereafter the
hyperplane-intersection method; note that the method can
be referred to as the simultaneous estimation method for the
pure translational motion case).

The contribution of this paper is to present a faster
version of the hyperplane-intersection method, which is a
noniterative computation to estimate motion parameters
precisely. The comparison with the gradient descent
method is another contribution of this study. The hyper-
plane-intersection method offers all the advantages of the
2D intensity-based method, including a wide choice of
similarity measures, subpixel fitting functions [14, 17], and
their optional reduction of the subpixel estimation error [13,
17]. The choice can be made in consideration of a required
computational cost and an expected illumination change.
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This paper is organized as follows. The next section
describes the hyperplane-intersection method, which is an
extension of two-parameter simultaneous estimation. We
present a faster version of the hyperplane-intersection
method in Section 3. Then we compare the computational
complexity with the gradient descent method in Section 4.
Section 5 presents the experimental results to verify the
comparison. Conclusions are given in Section 6.

2. Hyperplane-Intersection Method

This section briefly explains the two-parameter si-
multaneous estimation method [15] to estimate a pure
translational motion, and the hyperplane-intersection
method [16, 18] that is an extension to a multiparameter
case.

2.1. Subpixel estimation as
hyperplane-intersection

Block matching using SSD has been used widely to
estimate pure translational motion because of its simple and
straightforward algorithm without any iteration.” The SSD
values are interpolated using a quadratic function to obtain
subpixel displacement to enhance the positional resolution
without additional computational cost as shown in Fig. 1(a).
Subpixel displacement is estimated separately in the hori-
zontal and vertical directions in many cases. But as shown
in Fig. 1(b), the estimated subpixel position could have a
large error that depends on the 2D similarity shape accord-
ing to the image texture.

The simultaneous estimation method is a technique
to find a true peak using two estimated lines in the similar-
ity space. As shown in Fig. 2(a), these two lines, HEL
(Horizontal Extremal Line) and VEL (Vertical Extremal
Line), approximate the zero positions of the partial deriva-
tives of a continuous SSD with respect to horizontal and
vertical displacement, respectively. The intersection point
of the HEL and VEL is the position that takes the minimum
of 2D continuous SSD. As shown in Figs. 2(b) and 2(c), the
HEL and VEL can be estimated independently by least-
squares method with three 1D subpixel positions (black
circles), which are obtainable from three 1D quadratic
interpolation, comprising nine SSD values in all. For exam-
ple, the HEL estimation shown in Fig. 2(b) utilizes the three

“The iterative computation is referred to as a computation with conver-
gence to an optimum solution from an initial value in this paper.

SSD expresses dissimilarity, but the proposed method can deal with both
similarity and dissimilarity. We use “similarity” hereafter, and consider
the subpixel estimation method to find a maximum position of the simi-
larity.
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Fig. 2. Two-parameter simultaneous subpixel estimation. Horizontal and vertical subpixel displacements are
obtained simultaneously as the intersection point of the two lines.
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where i = {1, ..., 15} is the index of subpixel positions,
and m denotes an initial parameter vector. The following
15x 3 vectors s| _;5(x) describe a group of motion parame-
ters for the 45 SSD values with respect to the #; component:

- -

[ si(k) ]| RWAN o ... 0
s3(k) KA1 —=Ay ... 0
S% (K)) _ Kk-A1 +Aqy ... 0 4@
5%4(’("’) K- A1 0 —Ag

| sis(k) | | k-Ar 0 +As

where k = £1, 0. Therein, the vector [Ay, .. ., Ag]T denotes
the optimal sampling interval for 8D SSD space [16, 18].
In all, a set of 129 motion vectors are required to estimate
the eight hyperplanes. Each vector warps the input image.
We adopt the bilinear interpolation for image warping.
Then 129 SSD values are computed from the warped im-
ages and template.

(2) Hyperplane: The 15 subpixel positions are ob-
tained from a quadratic fitting as

1 _ p(z,—l) _p(7'7+1)
B =) - 260 +o0G 1) O

to estimate the hyperplane with respect to the 4; compo-
nent. The computational cost of Eq. (5) is negligible. These
subpixel positions are used to estimate the hyperplane by
least-squares method, as

aj1p1 + ajep2 + ...+ ajgps +ajo =0 (6)

where a=ay, ap, ..., ajg]T denotes the normal vector of
the hyperplane with respect to the h; component and p;
denotes the 8D parameter space axes; j= {1, ..., 8} denotes
a parameter index.

(3) Intersection: Finally, the eight parameters can be
estimated simultaneously using the equation

-1

a1 ... Qis aig

+m @)

asi ass asg

The computational complexities of each stage are
described in the next section.

2.3. Initial value estimation

Both the hyperplane-intersection method and the gra-
dient descent method require adequate initial parameters.
In our experiments (Sections 5.2, 5.3, and 5.4), the follow-
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ing initial parameter estimation has been used for the se-
quential image.

1. First, the input image is low-pass filtered using a
Gaussian convolution kernel, followed by downsampling
to one-quarter size in area.

2. Second, the motion between the previous and
current frame is approximated with a pure translational
motion and is estimated using two-parameter simultaneous
estimation for reduced size images.

3. Then the eight-parameter hyperplane-intersec-
tion is performed for them. The estimated parameters
become the initial values for the current frame in the
original size.

In our implementation for the gradient-based
method, a one-level image pyramid is used to estimate the
initial values, which is a similar method to that of hyper-
plane-intersection, but the translational motion is estimated
using a two-parameter gradient-based method.

2.4. Exception handling

Two types of exception can occur: (a) a quadratic
interpolation failure in Eq. (3) and (b) a singular configu-
ration in Eq. (7).

The quadratic interpolation failure can occur when
the initial parameters are not adequate. The hyperplane-in-
tersection method expects that initial parameters are cor-
rect, specifically the 129 motion vectors sample the SSDs
surrounding the true peak; otherwise, the zero positions of
the partial derivatives of a continuous SSD with respect to
each parameter axis cannot be estimated.

This failure is checked every time for quadratic inter-
polations. The following exception handling will be per-
formed if failure is detected. By adding an offset to x in Eq.
(4), the three SSDs can be shifted to satisfy
p(i, 0) < p(i, —1) and p(i, 0) < p(i, +1). Numerous experi-
ments using both synthesized motion sequences and real
image sequences indicate that the range of -3 <k < +3 is
sufficient. In this exception, warped template images,
which are described in the next section, are required and
generated. They are stored in memory to shorten the com-
putation time of the next possible exception.

The singular configuration in Eq. (7) can occur if
some of the normal vectors of the estimated hyperplanes
are close to each other; such conditions can be detected
before finding the matrix inverse. Through many experi-
ments, some crisp images with detailed texture were shown
to generate the condition. We used a smoothing filter before
registration in such cases.



3. Fast Algorithm for
Hyperplane-Intersection

3.1. Merit and demerit of
hyperplane-intersection method

Up to now, readers might have the impression that the
hyperplane-intersection method is a heavy algorithm, in
contrast to the gradient-based method. However, in prac-
tice, the hyperplane-intersection consists of a simple com-
putation without iteration.

The gradient-based method can be considered as a
parameter optimization algorithm that minimizes the L,
norm error (SSD). Any illumination changes should be
normalized in advance or modeled using additional pa-
rameters [1, 8], since the SSD is the only norm which can
be used for the method.

The hyperplane-intersection method, in contrast, util-
izes a simple computational element, that is, the subpixel
position estimation in 1D using three similarity samples.
This element can adopt any similarity measures such as
SAD, SSD, or ZNCC; it can also adopt any interpolation
functions. Our experiment demonstrates the property.

The gradient-based method can only detect a small
displacement.” The method is usually used with the image
pyramid. A small ROI, however, will limit the level of the
pyramid, engendering registration failure for a large mo-
tion. Moreover, a slight feature could disappear through the
use of the pyramid. An approach has been proposed to
estimate an accurate motion parameter after rough estima-
tion of the translational motion using the block matching
[6].

Figure 3 illustrates the hyperplane-intersection
method as it stands. The method needs 129 warped images
using a set of 129 motion parameters for each frame. These
warped images differ slightly from each other. The SSDs
between the template image and these 129 images allow
estimating the motion of the input image as described in
Section 2.2. The demerit of the hyperplane-intersection
method is the large computational cost to perform 129
warps for each input image. The next subsection addresses
the problem.

3.2. Fast algorithm

The proposed fast algorithm prepares 129 warped
images from the changeless template as a precomputation,
as shown in Fig. 4. The precomputation is similar to that of
Hessian matrix of the template image in the faster version
of the gradient-based method [2, 8]. Using this algorithm,
129 SSDs are obtainable between images that are prepared

It depends on the image texture, but =1 [pixel] is a safety bound.
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Fig. 3. A template image and an input image, which is
warped onto the template.

as precomputations and a sequential input image that is
warped only once using an initial parameter.

The SSD between the template and the initially
warped image is described as

S I(Wxm) - T (Wesh)|” ®
xeROI

where m = [m, my, . . ., mg]T and h respectively denote an
initial parameter and a parameter to be estimated. The
transformation matrix, which warps the ROI of an input
image onto the template, becomes
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Fig. 4. The proposed fast algorithm.



Table 1. Computational complexity of the naive (upper)
and the fast (lower) implementation of
hyperplane-intersection method
Procedure |Computational complexity|in case of N = 8

Warp O((2N? +1)NS) 0(1032S9)
SSD O((2N?% +1)8) 0(1298)
Hyperplane |O(N*%) 0(4096)
Intersection | O(N?3) 0(512)
Total O(((2N? + )N + 1)S+

N* 4+ N®)  |O(1161S + 4608)
Procedure |Computational complexity |in case of N = 8
Pre-comp. |[O((2N? +1)NS) 0(10328S)
Initial warp | O(NS) 0(85S)
SSD O((2N? +1)S) 0(1299)
Hyperplane |O(N*) 0(4096)
Intersection | O(N3) 0(512)
Inverse O(N?®) 0(512)
Total O((2N? + N +1)S+

N* 4+ 2N3) |0(137S + 5120)

Table 1 describes the computational complexities of
each stage of the hyperplane-intersection method, where N
and S respectively represent the parameter number and area
of ROL

The computational complexity of a warp corresponds
to the number of motion parameters with respect to each
pixel. Therefore, (2N? + 1) warps require the computational
complexity of 0((2N2 + D)NS). The SSD computation
requires O(S); the SSD stage requires O((2N? + 1)S). The
ZNCC computation could require OQQ2N? + 1)S) (see
Appendix). The hyperplane stage requires O(N*) because
of the N-times matrix inversion that requires O(N?). The
intersection stage requires a single matrix inversion of
O(N?).

Table 1 (lower) shows the computational complexity
of the fast algorithm. Compared to the naive implementa-
tion, the total complexity ratio becomes 137/1161 = 1/8.5.
That is, the fast algorithm will be about 8.5 times faster for
a large ROL

3.3. Equivalence of the fast and the naive
algorithm

Figure 5 illustrates the relation of the estimated mo-
tion parameters between the naive and the fast implemen-
tation of the hyperplane-intersection method.

The naive implementation directly estimates the pa-
rameter h using Eq. (7), as a subpixel correction to an initial
estimate m. The fast algorithm, on the contrary, finds the
parameter f, which describes a motion from the template
to a temporal warped image using an initial parameter m.
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Fig. 5. Image warps in the naive and the proposed fast
algorithm.

The resultant estimated parameter of the fast algorithm is
given by Eq. (9). The inverse of the parameter fi can be
obtained stably, because f is very close to the identity
matrix.

Obviously, the two estimation results are identical
except the negligible round-off error in the matrix inversion
and multiplication. We have checked both results in all
experiments, but differences have not been found.

4. Comparison with Gradient Descent
Method

The gradient descent method was proposed as a tech-
nique to estimate the pure translational motion between
images [9, 12]. It was subsequently extended to estimate
affine deformation parameters. Furthermore, it was ex-
tended to projective transformation [11, 19]. Those results
are explained in the latest comprehensive study of fast
algorithms [2].

The gradient descent method is intended to estimate
the deformation parameters that minimize E(h) in Eq. (2).
The algorithm updates the parameters h «<— h + Ah, and
iterates while X, IAA/ is above a threshold (forward-additive
(FA) algorithm [12]). A faster algorithm that precomputes
the Hessian matrix has been proposed (inverse-composi-
tional (IC) algorithm [2, 8]). The respective computational
complexities of the two types of algorithm are described in
Table 2 [2]."

The proposed fast algorithm costs as much as 1.3
iterations of the forward-additive and 8.0 iterations of the
inverse-compositional, without precomputation. That is,
the fast hyperplane-intersection is faster if the forward-ad-
ditive iterates more than once, and if the inverse-composi-
tional iterates more than eight times. The complexity for the
precomputation of the hyperplane-intersection is larger
than the inverse-compositional, but it requires only 130 ms
for a rather large ROI of 100 x 100 pixels (Pentium 4, 2.8
GHz).

“In Ref. 2, those complexities are explained with some abbreviations.



Table 2. Computational complexity of the
forward-additive (upper) and the inverse-compositional

(lower)

Computational complexity

in case of N = 8

Pre-comp.

Per iteration

O(N3 + N?S +5NS + S)

0(1058 + 512)

Computational complexity

in case of N = 8

Pre-comp.

O(2N?S 4+ 2NS)

0(1445)

Per iteration

O(N3+2NS+8)

O(17S + 512)

5. Experimental Results

5.1. Verification of computational complexity

The algorithms of the hyperplane-intersection and
the gradient-based methods have been compared in the
previous sections, and the computational complexities also
have been shown. The first experiment verifies the compu-
tational complexity described previously using functioning
software.

For this purpose, a synthesized motion sequence with
very slow movement is used because of the lack of a
requirement for initial parameter estimation. The inter-
frame motion is less than one pixel. The estimated motion
parameter for the previous frame is used for the initial
parameter for the next frame. The image sequence is syn-
thesized from a portion of high-resolution still image.”
Figure 6(a) shows the images used for this experiment. The
image size is 480 X 640 pixels; the sequence comprises 100
frames.

Figure 6(b) shows the complexities for each frame.
The solid lines depict the estimated complexities, which
differ with the number of iterations for the gradient descent
method, whereas the hyperplane-intersection remains con-
stant. The dashed lines and marks demarcate the measured
time in CPU cycles. We used ippCoreGetCpu-
Clocks () function [10] for that measurement. An actual
computation of O(10 x 10%) takes 2.51 x 10® CPU cycles.
The actual computation times are obtainable as the CPU
cycles X clock period.

Note that the computational complexity and meas-
ured CPU cycles of the hyperplane-intersection method
shown in Fig. 6(b) correspond to Table 1 using SSD. With
ZNCC, the computational complexity and measured CPU
cycles could be 12.9 x 10° and 3.3 x 10® for the naive
implementation, respectively; 2.7 x 10° and 0.69 x 10® for
the fast algorithm, respectively. The computational com-
plexity and measured CPU cycles for the naive implemen-

*Figures 6(a) and 7(a) are images from the Japanese Standards Associa-
tion.
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(a) The first and the last frame.
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Fig. 6. (a) The first and the last frame of the
synthesized motion sequence. (b) The computational
complexity and measured CPU cycles for ROI = 100 x
100 [pixel]. The forward-additive (FA) and
inverse-compositional (IC) increase the complexity and
cycles as iteration increases, whereas the
hyperplane-intersection (HI) remains constant. The
actual computation times are obtainable as the CPU
cycles X clock period.

tation would not largely differ from those with SSD, be-
cause the image warp requires much more computational
cost than the SSD computation.

The results are obtained from the average of 10
complete computations for 10 different ROI (100 x 100
pixels) positions in the image. The measurements agreed
very well with the estimated complexities: the perform-
ances are comparable in terms of the number of iterations
to the gradient descent method.

5.2. Synthetic motion sequence

The second experiment demonstrates the choice of
similarity in the hyperplane-intersection using a synthetic
motion sequence with an illumination change. An affine
model is used as the illumination change model, which
changes the pixel value with a linear spatial dependence.



The pixel value at the top-left increases as the frame number
increases, while the pixel value at the bottom right does not
change. Figure 7(a) shows the first and last frames: the
sequence comprises 100 frames and its size is 640 x 480
pixels. The ROI size is 100 x 100 pixels.

The initial value for the motion parameter is esti-
mated as described in Section 2.3. The motion estimation
accuracy is evaluated by root-mean-square errors (RMSE)
of estimated positions in pixels [2], since the motion is
known.

Figure 7(b)(upper) depicts the RMSE of positions of
100 x 100 positions in ROI. The hyperplane-intersection
with ZNCC is able to track the region until the last frame
with accurate estimation results. Note that the last frame has
little texture due to the saturation. In contrast, the hyper-
plane-intersection with SSD and the inverse-compositional
produce almost the same accuracy.

Figure 7(b)(lower) depicts the number of iterations
of the inverse-compositional. Dashed and solid lines re-
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(b) Upper: RMSE of positions in ROl between the first frame
and warped frames using estimated parameters.
Lower: Number of iterations of IC.

Fig. 7. Experimental results using a synthesized
illumination and motion sequence. Black
square denotes the ROI.

spectively depict the corresponding number of iterations of
the hyperplane-intersection with SSD and with ZNCC. The
complexity of the hyperplane-intersection with ZNCC can
be estimated as O(2(2N? + 1)S) for the SSD stage (see
Appendix). For the early frames, the inverse-compositional
runs faster than the hyperplane-intersection. As illumina-
tion changes, however, the number of iterations increases
and finally it goes to the upper limit (30 iterations) that is
set by the implementation. The inverse-compositional can
estimate the motion parameters for 30 to 60 frames, but it
takes more computational time for these frames than the
hyperplane-intersection. The upper limit of the inverse-
compositional does not affect the tracking failure.

5.3. Stationary camera sequence

The third experiment also demonstrates the choice of
similarity in the hyperplane-intersection. Figure 8(a) shows
the images: the sequence comprises 250 frames and its size
is 720 x 480 pixels. The ROI size is 100 x 100 pixels. The

(a) The first and the 161st frame.
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(b) Upper: RMSE of intensity in ROI between the first and the
warped input frames using estimated parameters.
Lower: Number of iterations of IC.

Fig. 8. Experimental results using real images captured
using a stationary camera. Black square denotes the ROI.



target is a printed aerial poster on a stationary flat surface.
The camera is at a fixed position and orientation, but a slight
amorphous-shaped shadow is moving on the poster. Esti-
mated motion parameters should be the identity matrix that
warps the image to the same position.

Figure 8(b) (upper) depicts the RMSE of positions of
100 x 100 positions in ROI. Figure 8(b)(lower) depicts the
number of iterations of the inverse-compositional. Both
figures show almost the same results as in the previous
section.

5.4. Hand-held camera sequence

The final experiment also demonstrates the choice of
similarity in the hyperplane-intersection using a video se-
quence captured by a hand-held camera. Figure 9(a) shows
the images: the sequence comprises 270 frames and its size
is 720 x 480 pixels. The ROI size is 100 x 100 pixels. The
target is a textured flat surface in the open air. It has a

(a) The first and the last frame.
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(b) Upper: RMSE of intensity in ROI between the first and the
warped input frames using estimated parameters.
Lower: Number of iterations of IC.

Fig. 9. Experimental results using real images captured
using a hand-held camera. Black square denotes the ROI.
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nonuniform illumination change that can be expected to be
tracked well using a 2D ZNCC tracker. The illumination
change can be seen at the top of the textured surface as
shown in Fig. 9(a). The ROI, which is represented as
quadrangular in Fig. 9(a), also has a nonuniform and time-
varying illumination change.

Figure 9(b) (upper) depicts the RMSE of image in-
tensity between the first frame (template) and warped
frames using estimated parameters. As the illumination
changes, the RMSE increases. We use the RMSE of image
intensity, since the motion is unknown for this sequence.
Note that the RMSE of image intensity contains both the
motion parameter error and the illumination change; the
values are larger than in Figs. 7(b) and 8(b), which show
the RMSE of positions.

The hyperplane-intersection with SSD misses track-
ing the region first, followed by the inverse-compositional.
In contrast, hyperplane-intersection with ZNCC is able to
track the region until the last frame. Figure 9(b) (lower)
depicts the number of iterations of the inverse-composi-
tional. For the early frames, the inverse-compositional runs
faster than the hyperplane-intersection. As illumination
changes, however, the number of iterations increases and
finally it goes to the upper limit (30 iterations) that is set by
the implementation.

6. Conclusions

This paper has presented a faster version of the hy-
perplane-intersection method. It is a noniterative computa-
tion to estimate precise motion parameters. The
hyperplane-intersection method offers all the advantages of
the 2D intensity-based method, including a wide choice of
similarity measures, subpixel fitting functions, and their
optional reduction of the subpixel estimation error. This
study also compared the proposed method to the gradient
descent method. Experimental results show that our pro-
posed method presents an alternative to gradient-based
image registration technique. The following is the summary
of the experimental results.

e The iteration of inverse-compositional (IC)
strongly depends on the illumination change. The
IC is faster if the object in the sequence does not
change its brightness, but it is a rare case in real
situations.

e The estimation results of the hyperplane-intersec-
tion and IC are almost identical, and the illumina-
tion change affects both of them.

e The hyperplane-intersection using ZNCC is
barely affected by the illumination change, and
provides a more accurate estimation result.



The SSD is commonly used in the template matching
to estimate translational motions and the results are very
similar with ZNCC in most cases. However, there is a large
difference in the hyperplane-intersection method with the
SSD and ZNCC. An adequate choice can be made in
consideration of a required computational cost and an ex-
pected illumination change.

REFERENCES

1. Altunbasak Y, Mersereau RM, Patti AJ. A fast para-
metric motion estimation algorithm with illumina-
tion and lens distortion correction. IEEE Trans Image
Process 2003;12:395-408.

2. Baker S, Matthews I. Lucas-Kanade 20 years on: A
unifying framework. Int J Computer Vision
2004;56:221-255.

3. Brown LG. A survey of image registration tech-
niques. ACM Comput Surv 1992;24:325-376.

4. Foroosh H, Zerubia JB, Berthod M. Extension of
phase correlation to subpixel registration. IEEE Trans
Image Process 2002;11:188-200.

5. Frischholz RW, Spinnler KP. A class of algorithms
for real-time subpixel registration. Europto Confer-
ence, Munich, June 1993.

6. Fukao T, Kanade T. Two step algorithm for point
feature tracking with robustness to occlusions. Infor-
mation Processing Society of Japan, Computer Vi-
sion and Image Media, No. 141 (CVIM-141), p
111-118, November 2003. (in Japanese)

7. Gleicher M. Projective registration with difference
decomposition. Proc Computer Vision and Pattern
Recognition, p 331-337, 1997.

8. Hager GD, Belhumeur PN. Efficient region tracking
with parametric models of geometry and illumina-
tion. IEEE Trans Pattern Anal Mach Intell
1998;20:1025-1039.

9. Horn BKP, Schunck BG. Determining optical flow.
Artif Intell 1981;17:185-204.

10. Intel. Intel(R) Integrated Performance Primitives 4.0.
2004.

11. Irani M, Rousso B, Peleg S. Computing occluding
and transparent motions. Int J Computer Vision
1994;12:5-16.

12. Lucas B, Kanade T. An iterative image registration
technique with an application to stereo vision. Proc
International Joint Conference on Artificial Intelli-
gence, p 674-679, 1981.

13. Shimizu M, Okutomi M. Precise subpixel estimation
on area-based matching. Syst Computers Japan
2002;33:1-10.

14. Shimizu M, Okutomi M. Significance and attributes
of sub-pixel estimation on area-based matching. Syst
Computers Japan 2003;34:1-10.

32

15. Shimizu M, Okutomi M. Two-dimensional simulta-
neous sub-pixel estimation for area-based matching.
Syst Computers Japan 2005;36:1-11.

16. Shimizu M, Yano T, Okutomi M. Precise simultane-
ous estimation of image deformation parameters.
Second IEEE Workshop on Image and Video Regis-
tration, Washington DC, 2004.

17. Shimizu M, Okutomi M. Sub-pixel estimation error
cancellation on area-based matching. Int ] Computer
Vision 2005;63:207-224.

18. Shimizu M, Okutomi M. Multi-parameter simultane-
ous estimation on area-based matching. Int J Com-
puter Vision 2006;67:327-342.

19. Shum H-Y, Szeliski R. Construction of panoramic
mosaics with global and local alignment. Int J Com-
puter Vision 2000;36:101-130. Erratum published,
2002;48:151-152.

20. Tian Q, Huhns MN. Algorithms for subpixel registra-
tion. Computer Vision, Graphics and Image Process-
ing 1986;35:220-233.

21. Zitova B, Flusser J. Image registration methods: A
survey. Image and Vision Computing 2003;21:977-
1000.

APPENDIX

Computational Complexity of ZNCC

The ZNCC between the input image [ and the tem-
plate T can be written as

YU -I)(T-T)
VEI - DP/E(T - T)

S IT — SIT

\/(ZP—SP) (S 12 - §72)
SIT- LY INT

J(Er-3 S0 (-t (1))

where § is an area of ROI. The sum is a summation over the
ROI, and 7 and T are the averages of the input image and
the template over the ROI, respectively.

Equation (10) represents that it is not necessary to
obtain / and 7T in advance, and the ZNCC can be computed
directly from X2 L X T, X 2, > T2, and X IT. This computa-
tion is well known as the variance formula.

The X T and X T* for the changeless template can be
precomputed in advance. The remaining X I, X I, and
X IT should be computed for every frame, but the cost for
X I'is negligible. In the sequel, the complexity of ZNCC is
O(2(2N?* + 1)S), which is twice that of SSD.
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