

Abstract--This paper presents a literature survey about the

method of creating/modifying a game on a game development
framework (GDF) as an assignment to learn software engineering
(SE), and we share our recommendation for choosing an
appropriate GDFs.

I. INTRODUCTION
Games have been used in schools for many years to help

students learn skills in math, language, science, engineering
and other domains in an interesting and motivating way.
Another innovative way is to provide exercises that require
students to work individually or in groups to modify or
develop a game as a part of a course using a game
development framework (GDF) to learn skills within computer
science or software engineering (SE) [1-3]. GDF denotes all
toolkits used to develop games. This paper focuses on criteria
for selecting appropriate GDFs that can be used in student
exercises to learn SE skills. The motivation for teaching SE
through game development is to utilize the students’
enthusiasm for game creation. More specifically, we wanted to
investigate how GDFs are used in SE education through our
own experiences and a literature survey.

II. EXPERIENCES
We present our experiences as an example to explain how

we apply XNA as a GDF in software architecture course in
2008 [1]. In this course, 30% of the grade is based on an
evaluation of a software architecture project all students have
to do. The rest 70% is given from a written examination. The
goal of the project is to let students work in groups and apply
the methods and theory from the course to design a software
architecture for a game and implement it based on the XNA
framework. The project consists of the following phases:

1) COTS (Commercial Off-The-Shelf) exercise: Learn the
technology to be used through developing a simple game.

2) Design pattern: Learn how to use and apply design
pattern by making changes in an existing game.

3) Requirements and architecture: List functional and
quality requirements and design the software architecture for a
game.

4) Architecture evaluation: Use the ATAM (Architecture
Tradeoff Analysis Method) evaluation method to evaluate the
software architecture of game project in regards to the quality
requirements.

5) Implementation: Do a detailed design and implement the
game based on the created architecture and on the changes
from the Architecture evaluation.

6) Project evaluation: Evaluate the project as a whole using

a PMA (Post-Mortem Analysis) method.
The course staff issued the tasks of making a functioning

game using XNA, based on students’ own defined game
concept. However, the game had to be designed according to a
specified and designed software architecture. Further, the
students had to develop an architecture where they had to
focus on one particular quality attribute. We used following
definitions for the quality attributes in the game projects:
Modifiability, the game architecture and implementation
should be easy to change in order to add or modify
functionality; and Testability, the game architecture and
implementation should be easy to test in order to detect
possible faults and failures. These two quality attributes also
were related to the course content. Finally, we got positive
feedback from students’ survey [1-3].

III. RESEARCH CONTEXT SURVEY
The scope of this paper is limited to the selection of GDFs

only used in SE education, as SE is the major teaching field
where GDFs applied. The survey is based on literature from
IEEE Xplore and ACM digital library.

When looking into the background of how GDFs are used
in SE education, we focus on why apply a GDF in a SE course
in the first place. It is common to describe the teaching design
using a GDF from the angle of teachers previous experiences
from the course, not explaining its learning theory context [4,
5]. However, we still can find literatures that explain this
learning activity, especially in SE education field.

For example, the paper “Learning Through Game
Modding” [2] presents its experiences of using a GDF to teach
students SE. It considers the learning activity of
modifying/creating a game in a GDF in SE education as a
design activity that has educational benefits such as learning
content, skills, and strategies [6]. Design activities are
meaningful and engaging to students for exploring skills
(analysis, synthesis, evaluation, revision, planning and
monitoring) and concepts to understand how they can be
applied in the real world. Further, learning by
modifying/creating games can be considered as variant of
several available construction activities.

Seymour Papert presents programming as one example of
the constructionism learning theory [2]. Constructionism
involves two activities [7]. The first is the mental construction
of knowledge that occurs with world experiences, a view
borrowed from Jean Piaget’s constructivist theories of learning
and development. The second is a more controversial belief
that new knowledge can be constructed with particular
effectiveness when people engage in constructing products

 Bian Wu, Alf Inge Wang

Norwegian University of Science and Technology

Game Development Frameworks for SE Education

2011 IEEE International Games Innovation Conference (IGIC) 1569470241

978-1-4577-0257-0/11/$26.00©2011 IEEE 97

that are personally meaningful. The important issue is that the
design and implementation of products are meaningful to
those creating them, and that learning becomes active and self-
directed through the construction of artifacts. In SE education,
creating games on GDFs could be this artifact.

A similar positive response to above is [8]. It presents a
case study to use double stimulation [9] to guide the exercise
designs based on a GDF. It also considers that using a GDF in
SE education could be a knowledge construction process. It
describes how to use double stimulus to guide a teaching
activity, including the learning activity from creating a game.
In schools, learners face a challenge, a problem, or a task that
has been designed for a particular pedagogical purpose or they
face situations that are likely to appear in work and public life.
In both cases the purpose of exploiting tools is for learners to
respond to such challenges. Based on constructionism, it
constructs the relationship between the educational tasks and
the material artifacts. This relationship is at the heart of
Vygotsky’s notion of double stimulation [9], a method for
studying cognitive processes and not just results. In a school
setting, typically the first stimulus would be the problem or
challenge to which learners are expected to respond. The
second stimulus would be the available mediating tools, like
GDFs.

Similarity, using GDFs in SE education is related to
Problem-Based Learning (PBL) [10, 11]. PBL is a
pedagogical model that emphasizes the role of a real-life
problem and a collaborative discovery process in learning
[12]. Within a typical PBL setting, students are first given a
challenging but realistic problem of significant size, relevant
to the learning objectives of a given course. They are then
encouraged to solve the problem in a group throughout the
semester as independently as possible with minimum help
from the instructor of the course. Apart from the traditional
lecture-oriented teaching approach, PBL puts more emphasis
on the instructors’ role as facilitators, to prepare meaningful
and interesting problems, and to create and organize course
materials in a manner that students have a just right dose of
information in each class to incrementally develop a final
solution based on a GDF to the primary problem of the
semester.

IV. SURVEY OF GDFS USED IN SE EDUCATION
In order to identify the main feature of several GDFs, we

classify them according to two categories: GDFs for novices,
and GDFs for developers.

The focus of GDFs for novices is to provide visual interface
for customizing game templates and to allow creating or
designing games with little or no programming skills. Here are
examples of GDFs used in assignments to learn SE from
literature survey and its resource link: Alice [13-16]; Scratch
[17-19]; CeeBot Series [20]; Warcraft3 Editors [2]; Never
Winter Night Toolsets [21] ; Greenfoot [22]; Game maker [23,
24]; StarLogo TNG [25]; and Wu’s castle [26]. The way these
GDFs are used in SE education varies. E.g., Alice and Scratch
are typically used for introducing programming or object-

orientation concept to students where the students get
introduced to programming concepts through visually
manipulating objects in order to implement some simple game
behaviors from scratch. Other GDFs are mainly editors or
modifiers for existing games, such as the Warcraft3 editor or
the Never Winter Night toolsets. The educational approach
when using such GDFs are totally different, as the focus is on
tailoring or modifying existing behavior in the game instead of
building everything from scratch.

The focus of GDFs for developers is to offer toolkits that
support development of high quality 2D/3D rendering, special
effects, physics, animations, sound playback, and network
communication in common programming languages such as
C++, C# and Java. Most of the commercial game engines
belong in this category. Here are examples of such GDFs used
in SE education: BiMIP [27]; Unreal Engine [2, 5]; XNA [28,
29]; XQUEST[30]; XNACS1Lib framework [31];
Android/Sheep [8]; MUPPETS framework [32]; and SIMPLE
framework [33]. When using GDFs such as XNA, XQUEST
and Android/Sheep, the students will mainly develop
everything from scratch and follow the whole software cycle.
But for other GDFs, such as Unreal game engine, the basic
game functionality is in place and the programming will focus
on the game instance. This is a more restrictive approach in
what you can learn and the application of the software
development process. If the goal of the SE course is to go
through the whole software cycle, game engines are not
usually suitable GDFs.

V. RECOMMENDATIONS
From both of our experiences and literature survey,

introducing a GDF in a SE course can have positive effects
such as higher enrollment, improved student motivation and
project group dynamics, and more effort put into projects/
assignments [34]. The higher enrollment is mainly due to most
of students think it is more interesting to work on a game
project than e.g. a banking system. The improved student
motivation and group dynamics is mainly due to collaboration
of the teamwork provides the possibility of creating their own
imaginative games and game development require other than
pure technical skills.

However, there are also some obvious disadvantages. The
most evident one is that some students will focus too much on
the game development thus loosing focus on what they shall
learn in SE. This means that the design of the course and the
project must be carried out in such a way that the students are
forced to learn and use the SE methods and disciplines being
taught in the course. One approach to enforce SE elements in
exercises and projects is to require documentation during the
whole project focusing on the SE learning goals and
emphasize that the evaluation of the exercise and project will
mainly focus on the quality of these SE deliverables and less
on the game being produced. This is from our experiences on
using XNA in the software architecture course. To ensure the
SE focus, the students had to deliver part-deliveries focusing
on different areas of software architecture, such as design and

98

architectural patterns, functional and quality requirements, a
software architecture for the game described through several
views, an architectural evaluation, and an implementation of
the game where the students had to adhere to their quality
requirements, their chosen patterns and their designed
software architecture.

Further, it is really important to choose the appropriate GDF
to be used in a SE course. There are many factors that come
into play when conceiving an assignment based on a GDF:

Educational goal: The educational goal of the SE course
will greatly affect the choice of GDF, e.g. if the focus of the
course will be on requirements, software architecture, design,
implementation, testing, maintenance, project management or
the software process. As mentioned before, SE courses
focusing on the whole development cycle should use GDFs
that allow the students to develop a game from scratch such as
XNA. However, if a SE course only focuses on testing or
quality assurance, a game engine can be very effective for the
education goals such as Unreal can work very well. Another
important factor is whether course’s focus on procedural
programming vs. Object Oriented (OO) programming. For SE
courses with more technical requirements, GDFs such as
XNA, XQUEST or Android/Sheep are more appropriate. In
other courses, the most important goal is not to learn
programming, but rather to learn the SE principles such as
requirements, design, and the project management. For such
courses, GDFs with visual programming such as Alice,
Scratch or the Warcraft3 editor can be used.

SE constraints: All GDFs have constraints related to SE in
how they have been designed or how they are released. One
example is open source GDFs that make it possible to do
white-box testing on the GDF, while for other GDFs the
source code is not available for the students. Open source
GDFs are also important in courses where it is necessary to
understand the details of the components used in students’
game creation. Further, some GDFs might constrain how you
can design your games, what design and architectural patterns
you can use, how event handling must be managed, the
freedom of expanding the GDFs functionality and more. These
constraints must be integrated in the SE teaching to introduce
the students to the real world where software never is built
from scratch. Another important issue is the openness of the
GDF to other tools. This issue could be very important e.g. the
integration of test tools.

Programming experience: The programming experience
of the students will highly affect the choice of GDF between
the ones for novices and the ones for developers. Another
factor is what programming languages the students know, such
as Java, C#, C, C++ etc. E.g. to use XNA/XQUEST or
Android/Sheep, the students must know OO programming
well and be familiar to design patterns and OO principles in
addition to C# and Java. And some GDFs offer their own
programming languages to simplify the game programming
(scripting). From our own experience, the hardest part for the
students is not the programming language itself but rather the
libraries and APIs they have to learn.

Staff expertise: It is essential that the course staff have
technical experience in a GDF used in a SE course to provide
help to students to avoid having them focusing on only the
technical matter and not the SE challenges. From our own
experiences on running a software architecture course, it is
necessary to have dedicated staff to provide technical GDF
support. Although it is important that the teacher teaching the
SE course knows the basics of the GDFs, it is not necessary
for this teacher to have a complete technical insight of the
GDF. However, it is critical to have course staff available that
can help the student with technical problems during the
exercises or project.

Usability of the GDF: To avoid too much focus on
technical matters and problems, it must be possible to learn the
GDF quickly without too much of a hassle. In practice this
means that the GDF must be well-designed, have a logical
structure, provide high-level APIs, provide correct, updated
and available documentation, provide helpful and many
examples, and have many available tutorials. It is also a huge
advantage if an active developer community supports the
GDF. XNA is a good example of a GDF, which is well
designed with high-level APIs, well documented and
supported, and an active community. It is recommended to
establish a GDF community within a course e.g. using a web
forum, as well as encouraging the students to use external web
resources.

Technical environment: Technical considerations must be
taken into account when selecting a GDF. Typical technical
considerations include operating system and hardware
compatibility, license policies, tool support, support for third-
party tools, and how difficult the software is to install on the
students’ PCs. The technical requirements might also be an
economical issue, as the choice of GDF might force hardware
upgrades or paying for expensive licenses. A typical problem
is e.g., that XNA runs only on Windows, and many students
now have PCs running Linux or Mac OS X. As our
experiences on using XNA in a software architecture course,
many of the students did not have a Windows PC at first and
these students were told to use the available computer labs.
Soon, however, we discovered that the existing computer labs
running thin-clients were insufficient for running XNA. The
problem was partly solved by the students themselves as many
of the Mac OS X and Linux users installed Windows on their
PCs (dual boot). In addition, our department gave access to a
computer lab with stand-alone PCs powerful enough to run
XNA.

The list of considerations above should be included in the
process of finding the appropriate GDF for a SE course. If an
appropriate GDF is chosen and the project or exercises “force”
students to provide SE deliveries through the semester, the
result is likely to be improved project results as the students
are better motivated and put more effort into the work.

VI. CONCLUSIONS AND FURTHER WORK
Through our experiences and literature survey on the

theoretical context and various GDFs used in SE education, it

99

has shown that this method has potential motivation to help
students to learn SE courses. In order to select an appropriate
GDF, we also identify the impact factors that play important
roles on design process for the course when using GDFs in SE
education. We believe that our study can provide the guidance
for the teachers or researchers in the area of SE education,
even for the GDFs’ designers in the aspect of the enhancement
of GDFs’ educational features.

However, time, cost and expertise are significant barriers to
experimenting with GDFs in educational settings, and there
are limitations to what skills can be acquired using GDFs [2].
Based on our initial survey, this area deserves more research
on the applications of GDF for SE education and how to
design and improve the teaching process to maximize the
effectiveness of using GDF in education.

REFERENCE
[1] A. I. Wang and B. Wu, "An Application of a Game Development

Framework in Higher Education," International Journal of Computer
Games Technology, vol. 2009, 2009.

[2] M. S. El-Nasr, "Learning through game modding," Computers in
entertainment, vol. 4, 2006.

[3] B. Wu, et al., "An Evaluation of Using a Game Development
Framework in Higher Education," Proceedings / Conference on
Software Engineering Education and Training, 2009.

[4] S. v. Delden, "Industrial robotic game playing: an AI course," J.
Comput. Small Coll., vol. 25, pp. 134-142, 2010.

[5] E. L. Wynters, "3D video games: no programming required," J. Comput.
Small Coll., vol. 22, pp. 105-111, 2007.

[6] S. Puntambekar and J. L. Kolodner, "Toward implementing distributed
scaffolding: Helping students learn science from design," Journal of
Research in Science Teaching, vol. 42, pp. 185-217, 2005.

[7] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas. New
York, 1980.

[8] B. Wu, et al., "Extending Google Android's Application as an
Educational Tool," presented at the The 3rd IEEE Information
Conference on Digital Game and Intelligent Toy Enhanced Learning
(DIGITEL 2010), Kaohsiung, Taiwan, April 12-16, 2010. , 2010.

[9] L. S., Mind in society: The development of higher psychological
processes, 1978.

[10] A. Garrido, et al., "Using graphics: motivating students in a C++
programming introductory course," in EAEEIE Annual Conference,,
2009, pp. 1-6.

[11] J. Ryoo, "Teaching object-oriented software engineering through
problem-based learning in the context of game design," in 21st
Conference on Software Engineering Education and Training, 2008, p.
137.

[12] H. S. Barrows, "A taxonomy of problem-based learning methods,"
Medical Education, vol. 20, pp. 481-486, 1986.

[13] R. H. Seidman, "Alice first: 3D interactive game programming,"
SIGCSE Bull., vol. 41, pp. 345-345, 2009.

[14] E. W. Amerikaner, "Introduction to computer science using Alice 2.0:
tutorial presentation," J. Comput. Small Coll., vol. 25, pp. 141-141,
2010.

[15] K. Anewalt, "Making CS0 fun: an active learning approach using toys,
games and Alice," J. Comput. Small Coll., vol. 23, pp. 98-105, 2008.

[16] L. Werner, et al., "Can middle-schoolers use Storytelling Alice to make
games?: results of a pilot study," presented at the Proceedings of the 4th
International Conference on Foundations of Digital Games, Orlando,
Florida, 2009.

[17] G. Fesakis and K. Serafeim, "Influence of the familiarization with
"scratch" on future teachers' opinions and attitudes about programming
and ICT in education," presented at the Proceedings of the 14th annual
ACM SIGCSE conference on Innovation and technology in computer
science education, Paris, France, 2009.

[18] P. A. G. Sivilotti and S. A. Laugel, "Scratching the surface of advanced
topics in software engineering: a workshop module for middle school
students," SIGCSE Bull., vol. 40, pp. 291-295, 2008.

[19] W. Jui-Feng, et al., "Teaching Boolean Logic through Game Rule
Tuning," IEEE Transactions on Learning Technologies, vol. 3, pp. 319-
328, 2010.

[20] T. Phit-Huan, et al., "Learning Difficulties in Programming Courses:
Undergraduates' Perspective and Perception," in International
Conference on Computer Technology and Development, 2009(ICCTD
'09), 2009, pp. 42-46.

[21] J. Robertson and C. Howells, "Computer game design: Opportunities for
successful learning," Computers & Education, vol. 50, pp. 559-578,
2008.

[22] M. Al-Bow, et al., "Using game creation for teaching computer
programming to high school students and teachers," SIGCSE Bull., vol.
41, pp. 104-108, 2009.

[23] Y. Rankin, et al., "The impact of game design on students' interest in
CS," presented at the Proceedings of the 3rd international conference on
Game development in computer science education, Miami, Florida,
2008.

[24] Yulia and R. Adipranata, "Teaching object oriented programming course
using cooperative learning method based on game design and visual
object oriented environment," in 2nd International Conference on
Education Technology and Computer (ICETC),, 2010, pp. V2-355-V2-
359.

[25] K. Wang, et al., "3D game design with programming blocks in StarLogo
TNG," presented at the Proceedings of the 7th international conference
on Learning sciences, Bloomington, Indiana, 2006.

[26] M. Eagle and T. Barnes, "Experimental evaluation of an educational
game for improved learning in introductory computing," presented at the
Proceedings of the 40th ACM technical symposium on Computer
science education, Chattanooga, TN, USA, 2009.

[27] A. Garrido, et al., "Using graphics: motivating students in a C++
programming introductory course," in EAEEIE Annual Conference,
2009, 2009, pp. 1-6.

[28] B. Wu, et al., "An Evaluation of Using a Game Development
Framework in Higher Education," 22nd Conference on Software
Engineering Education and Training, 2009, pp. pp.41-44, 2009.

[29] K. Sung, et al., "Game-Themed Programming Assignment Modules: A
Pathway for Gradual Integration of Gaming Context Into Existing
Introductory Programming Courses," IEEE Transactions on Education,
2010.

[30] B. Wu, et al., "XQUEST used in software architecture education," in
International IEEE Consumer Electronics Society's Games Innovations
Conference,(ICE-GIC 2009), 2009, pp. 70-77.

[31] R. Angotti, et al., "Game-themed instructional modules: a video case
study," presented at the Proceedings of the Fifth International
Conference on the Foundations of Digital Games, Monterey, California,
2010.

[32] K. J. Bierre and A. M. Phelps, "The use of MUPPETS in an introductory
java programming course," presented at the Proceedings of the 5th
conference on Information technology education, Salt Lake City, UT,
USA, 2004.

[33] H. C. Jiau, et al., "Enhancing Self-Motivation in Learning Programming
Using Game-Based Simulation and Metrics," IEEE Transactions on
Education, vol. 52, pp. 555-562, 2009.

[34] A. I. Wang, "Extensive Evaluation of Using a Game Project in a
Software Architecture Course," Transactions on Computing Education
(ACM), vol. Volume 11,, February 2011. 2011.

100

