
A Simplified Level Editor

Brent Cowan, and Bill Kapralos
Faculty of Business and Information Technology, Health Education Technology Research Unit (HETRU),

University of Ontario Institute of Technology. Oshawa, Ontario, Canada.

Email: brent.cowan@uoit.ca, bill.kapralos@uoit.ca

Abstract—The majority of game engines include their own
level editing software (a level editor) which can take months or
even years for a user to become proficient with. Level editors
often contain tools that duplicate some of the features found in
modeling software packages even though they are typically used
in conjunction with modeling packages. In this paper, we present
a level editor that simplifies the creation of three-dimensional
models/scenes by concentrating only on the features specific to the
arrangement of models and materials needed to create a three-
dimensional environment/scene only. The level editor presented
here is intuitive, simple to use, and allows a three-dimensional
scene to be created with minimal experience and effort.

I. INTRODUCTION

The task of creating a three-dimensional environment (e.g.,

level) is commonplace in game development. However, cre-

ating such environments from “scratch” is a complex and

potentially time consuming task requiring the use of special-

ized software tools [3]. There are a number of software tools

currently available for 3D modeling and 3D scene creation.

For example, UnrealEd is the real-time level editor integrated

into the Epic Games Unreal rendering engine and has been

optimized for building real-time 3D environments. It provides

a WYSIWYG camera view, immediate display of all lighting,

texture placement and geometry operations in addition to

“single-click playability” whereby the designer can launch the

Unreal viewer and explore their developing scene in real-time

[2]. However, in general these available tools are difficult to

use, requiring many hours of training and use before one can

become proficient with them [3]. One of the reasons for such

a steep learning curve is that level editing software packages

attempt to offer the most (and impressive) features, loaded with

additional tools at the cost of compromising core functionality.

Many level editors are large and complex partially because

they have branched out to the point where their toolset overlaps

that of art programs and game engines.

Current level editors often allow users to perform modeling

tasks, lighting effects, particle effects, game play scripting, and

artificial intelligence. However, modeling, lighting, and other

graphical effects can be performed using modeling-specific

software tools such as Autodesk Maya or 3D Studio Max,

and do not need to be part of a level editor package. Similarly,

scripting, artificial intelligence, and game play elements are a

function of the game or game engine and don’t necessarily

need to be incorporated into level editing packages. Further-

more, many level editors are proprietary and thus designed to

be used in conjunction with a specific game series, or game

engine. As a result, after investing months to become proficient

with a specific level editor, one may be required to learn a

completely new tool depending on their current project. To

quote Richard “The Levelord” Gray when asked about the

difficulties inherent in the transition from one company to

another because each company has their own proprietary level

editing software, “When you ask about standards, I presume
you mean like in the software industry where engineering
disciplines are used such that individuals can bounce from
one application, project, or company to another with little
re-education. This sort of scale of standardization has not
happened yet” [1].

We believe the goal of creating this “do-it-all” tool is out

of scope with the current gaming industry whereby tasks

are typically divided into smaller parts, each completed by a

separate person or team similar to an assembly line. Level

editors that are not game or engine specific need to be

developed. In this paper, we introduce a level editor (three-

dimensional scene creator) that focuses solely on the creation

of three-dimensional scenes/levels. The level editor is intuitive,

simple to use, and preliminary (informal) results indicate it

requires minimal (if any) training to use unlike the majority

of existing level editors and level editing tools.

II. OVERVIEW

Level editing software can be simplified by restricting the

functionality to features not already available in modeling

packages. Thus, lighting effects such as shadows and ambient

occlusion are not part of the level editor presented here. Fur-

thermore, our level editor does not provide tools to edit models

as modeling is best left to the many excellent modeling-

specific programs such as Autodesk Maya or 3D Studio Max.

Our level editor focuses on the placement of objects in an

organized manner and provides a WYSIWYG view of the

virtual world. A minimalist 2D interface provides information

about the current object selected, the current position, the

number of objects present, and the number of polygons used.

The frames per second is displayed in the title bar so that

the user is able to easily detect “slow spots” caused by an

excessive number of polygons placed close together. Three

different camera modes (viewing perspectives) are supported:

i) first person, ii) third person, and iii) object mode. A first

person perspective is used by many games, so it is intuitive and

useful to allow the user to explore the environment using this

point of view. A third person perspective is generally better for

editing as it allows the user to view the object in its intended

surroundings. In object mode the level is viewed as one giant

2011 IEEE International Games Innovation Conference (IGIC) 1569463307

978-1-4577-0257-0/11/$26.00©2011 IEEE 52

1 Stone/Floor0 0 0 0 0 360 0
47 Metal100/Wall100 1000 80 0 0 360 0
47 Metal100/Wall100 800 120 0 0 360 0
26 Metal40/Wall40 800 -40 0 0 360 0
19 Metal20/Wall20 1000 -40 0 0 360 0
7 Ice/Floor0 2000 40 -800 0 90 0
7 Ice/Floor0 1800 40 -800 0 90 0
7 Ice/Floor0 1600 40 -800 0 90 0
52 arrow/Down 1600 -40 1000 0 180 0
52 arrow/Down -1800 -40 -400 0 180 0

(a)
Stone Floor0 Ground_0.obj stonesTexture.jpg 200 40 360 90 360 0
Ice Floor100 Ground_100.obj ice.jpg 200 40 360 90 360 0
Metal Floor0 Ground_0.obj Metal_100w.jpg 200 40 360 90 360 0
Metal Floor20 Ground_20.obj Metal_100w.jpg 200 40 360 90 360 0
Metal Floor40 Ground_40.obj Metal_100w.jpg 200 40 360 90 360 0
Metal20 Ramp20 MetalRamp_20.obj Metal_20.jpg 200 40 360 90 360 0
Metal20 RampR20 MetalRamp2_20.obj Metal_20.jpg 200 40 360 90 360 0
Metal20 URampR20 MetalURamp2_20.obj Metal_20.jpg 200 40 360 90 360 0
Metal20 URamp20 MetalURamp_20.obj Metal_20.jpg 200 40 360 90 360 0
Metal20 Angle20 MetalAngle_20.obj Metal_20.jpg 200 40 360 90 360 0

(b)

Fig. 1. Sample level editor file. (a) Level file. (b) Catalogue file used to
create the levels

object in the center of the screen that can be rotated and viewed

from the outside looking in.

The level editor was developed using the OpenGL graphics

API and the cross-platform image library DevIL. OpenGL

Shading Language (GLSL) support is also incorporated to

allow for various “shader effects” to be added to the level

and its models. The created levels can be saved and loaded in

a very simple and easily parsed file thus allowing the levels

to be incorporated into any engine that allows levels to be

created in a modular fashion. Each level file is an ASCII text

(human readable) file where each object present in the level is

assigned a unique number and label, followed by a series of

numbers specifying its location and orientation in the world

(see Figure 1(a) for a sample level file).

Of course levels can contain hundreds, even thousands of

objects. To a game, these items might not all be physical

objects. For example, sounds, way-points, or other elements

that do not have a graphical representation in the game could

be placed using the editor. These objects can be given an

appearance such as a box with an icon painted on it to allow

them to be positioned in the scene and found later. The objects

available to the editor are specified in an ASCII text file

called a “catalogue” file (see Figure 1(b) for an example).

This allows the editor’s content to be altered without the need

to recompile any code. Ideally, the level editor itself would

provide a graphical interface to search and edit the potentially

lengthy catalogue files (the current version does not support

this).

Referring to Figure 1(b), the first column of the catalogue

file specifies the group that an object belongs too. Groups

work in a manner similar to folders within a file system,

thus providing a simple manner of organize objects. In the

level editor, these groups help users find the object they are

looking for. The second column contains the actual name of

the individual object. The third column lists the file name and

path of the model and the fourth column lists the path and

file name of the texture to be applied to the model. Entering

“NULL” here implies that the model is non-textured. The fifth

and sixth columns specify the horizontal and vertical grid

respectively that this object snaps to (objects are “snapped

to a grid”). In the editor, the grid appears as a wireframe

axis aligned box that can only be moved in increments equal

to the box size. Grids are useful for levels that are built in

sections so that models can be reused. Specifying a grid size

of zero indicates that the corresponding object can be placed

freely. The next three columns specify the rotational snapping

about the ‘x’, ‘y’, and ‘z’ axes. A value of zero indicates

that the object can be rotated freely about the corresponding

axis, while a value of 360 indicates that the object cannot be

rotated. In Figure 1(b), all of the objects have a rotational

value of (360, 90, 360) implying that they can only be rotated

about the ‘y’ axis and that their rotation is snapped to the

nearest 90◦ increment. The last column is used to indicate the

maximum number of objects of this particular type that can

be placed within a level. For example, most levels can only

have one player or one camera. A value of “0” indicates that

there is no restriction to the number of objects allowed in the

level.

A. Using the Level Editor

There is a small white box in the center of the screen that

represents the cursor. The left, right, up, and down arrow keys

allow the cursor to be moved (relative to the direction that the

camera is facing) left, right, up, and down respectively. Moving

the mouse will cause the camera to rotate about the cursor.

Pressing and holding the ‘I’ key (“In”) will move the camera

closer to the cursor. Pressing and holding ‘O’ key (“Out”) will

back the camera away from the cursor. Switch to first person

mode is accomplished by holding the ‘I’ key down until the

cursor disappears. Objects cannot be added or deleted in first

person mode. The exact position of the cursor is displayed in

the bottom left corner of the screen. Pressing the ‘X’, ‘Y’, or

‘Z’ keys will toggle between the locked and unlocked state

for each of the axes. When an axis is locked, the axis label is

shown in black and the cursor cannot move along that axis. A

wire frame preview is shown for the currently selected object

type within the editor window. The previewed object rotates

with the camera and the rotation of each object can be snapped

if desired. Some objects should only rotate about the ‘y’ axis

for example, and the rotation can be snapped so that objects

rotate in increments of 90◦.

Objects are removed from the scene using the right mouse

click. An object will only be removed if it is the same type as

the currently selected object. Pressing the ‘Q’ key allows for

the cycling through of object groups while pressing the ‘W’

key allows for the cycling through of items within a group.

Pressing the space-bar moves the cursor to the nearest instance

of the currently selected object type making it easy to locate

a specific object such as the player spawn point. This feature

also allows the user to delete all the instances of the selected

object in an area very quickly by first selecting the type of

object to delete, and then pressing the space-bar followed by

the right mouse button repeatedly. A sample scene created

using the level editor outlining a city landscape is provided in

Figure 2.

53

(a)

(b)

Fig. 2. Examples. Sample scene of a city landscape created with the level
editor. The building models were part of the “Megacity Construction Kit”
purchased from 3DRT.com. (a) First-person camera view. (b) Third-person
camera view.

An example from Marble Run, a game developed using

the level editor, is provided in Figure 3. Marble Run is a

multiplayer online physics based marble game. Players engage

in a friendly competition with the goal of being the first to

reach the end of the level. Each player steers their “marble”

by tilting a motion sensing controller (or by pressing the arrow

keys on the keyboard). Marble Run can also be played by a

single player competing against their own best time for each

of the ten challenging levels. A sample scene of Marble Run
being developed within the level editor is illustrated in Figure

3(a) while an in-game screenshot is shown in Figure 3(b).

III. SUMMARY AND FUTURE WORK

Here we have presented a level editor that is specific to

editing levels (e.g., creating three-dimensional scenes) only

and therefore, game engine-specific tasks such as lighting and

modeling are not included. We have also presented Marble
Run, a game with all of its levels created solely using the

level editor. We believe that separating level editing software

from game engines provided greater choice while reducing

costs. Future work will include the addition of a GUI-based

interface to edit the catalogue of objects, and the ability to

(a)

(b)

Fig. 3. The Marble Run game developed using the level editor. (a) Sample
scene created with the editor. (b) In-game screenshot.

allow entire levels to be exported as OBJ models. Scripting

will also be added and a terrain editor will be incorporated

allowing for easy terrain manipulation. Finally, future work

will also include networking capabilities to allow for remote

collaborative level development. In a networked version, when

a user logs in, they would be sent the current version of the

level from the host. Each user will be able to the other cursors

associated with other users moving about the environment

with the corresponding user names over the appropriate cursor.

Users will be able to add, edit, and delete objects simultane-

ously and chat in real time.

ACKNOWLEDGMENT

The financial support of the Natural Sciences and Engineering
Research Council of Canada (NSERC) in the form of a

Post-Graduate Scholarship (PGS B) to Brent Cowan and a

Discovery Grant to Bill Kapralos is gratefully acknowledged.

REFERENCES

[1] E. Byrne. Game Level Design. Charles River Media, Hingham, MA.
USA, 2004.

[2] V. Miliano. Unrealty: Application of a 3D game engine to enhance
the design, visualization and presentation of commercial real estate. In
Proceedings of Virtual Reality in a New Virtual Millennium, Dundee,
Scotland, September 1-3 1999.

[3] G. Smith, T. Salzman, and W. Stuerzlinger. 3D scene manipulation
with 2D devices and constraints. In B. Fisher, K. Dawson-Howe, and
C. O’Sullivan, editors, Virtual and Augmented Architecture, pages 35–
46. Springer, 2001.

54

