

Abstract—This paper explores ways of using mood-based
audio extraction methods on player-selected music to drive
content in mobile video games. Specifically, we describe the
methods employed in the development of a game adapting the
CLAM C++ Library for the Apple iPod.

I. INTRODUCTION

 User-selected music can be used to drive game elements.
This concept was introduced by Vib-Ribbon in 1999, in which
the music chosen by the player created the structure of the
gameplay through altering the game’s generation of level
mapping. The game scanned the user’s CD and made two
obstacle courses for each song (one easy and one difficult), so
that the game was as varied as the music the player chose.
Since Vib-Ribbon’s release, there have been a handful of
games to use the player’s music as a way to alter game
content. Phase, for instance, was designed by Harmonix for
the fifth generation iPod. Audiosurf, a puzzle-racing game that
uses the player’s input music files to design the game maps
gained much attention after its release in 2008. These games
rely on extracting information from the player’s music to
procedurally generate gameplay elements. Until recently, such
games have primarily relied on beat mapping and tempo.
Rosso, Tzanetakis and Gooch describe a method for analyzing
player actions and translating it into a beat sequence
synchronized to an existing musical track [1]. Arrasvuori and
Holm developed a more extensive approach in the creation of
two game prototypes where they explore a wide variety of
musical properties that could be used to drive gameplay, but
do not mention mood [2]. Arrasvuori and Holm describe a list
of game parameters that could respond to music, including for
instance speed of game, type of objects, location, properties or
behaviour of objects, camera angle, rules, scoring, and so on
[2]. We will be drawing on their list in developing musical
mood-based game prototypes.
 In this paper, we propose a method of adding the concept of
musical mood to drive gameplay. Here, we describe our
approach to adapting open source software library CLAM
(C++ Library for Audio and Music) for the iPod, and explain
some of the methods used for developing musical mood
extraction algorithms. Our engine is still in prototype stage, so
we describe here an early game that we have built to employ
user-selected song frequency as one parameter of mood.

II. TECHNICAL DESCRIPTION

 The Apple iPod makes a logical choice for a music–driven
game, since players will already have their own musical
selections stored on the device, it is a popular device for both
music listening and casual gaming, and there is ample support
for game developers. We are using a 4th generation iPod
Touch (iOS 4.3.3). We ported portions of the existing CLAM

C++ library to the device. CLAM is an audio signal extraction
and analysis library with a strong tonal analysis
implementation. We have opted to use elements of the CLAM
library alongside existing hardware-optimized frameworks.
Specifically, Apple’s Accelerate framework contains many
DSP calculations necessary for audio and mood feature
extraction, and so these are favoured over CLAM’s existing
FFTW (Fastest Fourier Transform in the West)-based analysis.
 Our approach to mood extraction is currently focused on
two areas: 1) descriptive tonal analysis, both on the instant
tonality (chord) and the overall tonality (key) of the piece, and
2) a tempo and time signature analysis, which follows a
similar implementation but filters high frequency ranges and
performs basic onset detection on the resulting low frequency
spectrum. An overview of this algorithm is presented in Fig 1.

Fig. 1 – An overview of an audio feature extraction algorithm being
implemented for research on music-driven games.

The audio file is converted to 16 Bit Linear PCM WAV, an
uncompressed digital music format. The Accelerate
Framework’s vDSP functions are used to perform a Forward
Fast Fourier Transform on a split complex vector
representation, and the output returns a split real vector. In this
form, a frequency can be calculated for each bin by squaring
the bin magnitude.

The Constant Q Transform, where Q is the ratio of centre
frequency to bandwidth, is implemented following CLAM’s
approach and that described by Brown and Puckette [3]. The
transform range used is the audio band from 55Hz to 8000Hz.
This frequency range is chosen because it encompasses most
frequencies produced in contemporary popular music and
vocals, and because it is less computationally expensive to

Alexander HODGE, Karen COLLINS, Kelvin LAM and Peter J. TAILLON
The Games Institute, University of Waterloo

Musical Mood-Based Mobile Gaming

2011 IEEE International Games Innovation Conference (IGIC) 1569465141

978-1-4577-0257-0/11/$26.00©2011 IEEE 5

perform analysis on a narrower band than on the entire audible
range. It is common for our chosen range to be subdivided
further; the bass range usually existing at 55-300Hz (the
fundamental frequencies for most instruments and vocals
occur here), the midrange at 300-2400Hz (harmonic
frequencies responsible for much of the detail in a musical
piece), and the high range at 2400-8000Hz (most brass and
orchestral instruments reside in this area of the audio band).

III. DEVELOPING MOOD DETECTION: METHODS

 Musical mood is largely a culturally specific phenomenon.
While certain aspects of musical mood have a universal
element to them (due primarily to bio-acoustic properties: for
instance, low bass is heard as threatening), most of the
semiotics of music are due to cultural convention. In the West,
this convention has evolved over centuries through a
combination of folk music and European art music. We have
chosen to use these Western conventions for our purposes of
determining mood. In other words, our mood detection may
only work on Western musical styles. We developed a
database of musical elements (harmonic content,
instrumentation, tempo, articulation, timbre, pitch range, and
dynamics) that contribute to each mood through a number of
different related projects.

Fig 2. Quantifiable Elements of musical mood

A. Distributed Classification Games

 Distributed classification is a method of collecting a large
number of responses of multiple users, commonly used for
meta-data. Users tag media objects with text keywords in a
free-association fashion. Tags can then be combined into non-
hierarchical groups of associated terminology. In order to
engage the audience and increase the amount of tags collected,
tagging games can be created [4]. Approaches that encourage
players to tag musical data have been developed [5][6]. We
developed two distributed classification games and collected
data over two years [7].

B. Sheet Music Analysis

 Photoplay scores are the sheet music used by the pianist that
would accompany so-called “silent” films. These short pieces
of music were typically arranged according to genre of movie
and mood, and were accompanied by keywords that would
represent the intended type of scene or mood associated. For

example, the 4-bar Mysterioso by Julian Rutt was labeled
“burglars and creepy business” [8]. We converted the sheet
music into usable MIDI files and stored the keywords as
metadata associated with the file.

C. Existing Databases

 We have drawn on existing databases that categorize
popular songs according to mood, such as Moodstream,
StereoMood, AllMusic and Aupio. In Aupio, for instance,
songs are categorized according to mood keyword.
StereoMood uses its own musical mood categorization to
create mood-based playlists for players, although to our
knowledge it uses no extraction techniques, but rather has
categorized songs with keywords manually. We obtained as
many MIDI files as possible of these songs and stored the
keywords as metadata in a database.

D. Artificial Neural Networks

 Using the MIDI files and affiliated metadata, we used the
MIDI Toolbox plug-in for Matlab to develop artificial neural
networks to scan and compare tagged MIDI files [9]. A neural
network uses software to explore data and search for patterns,
such as if there are any melodic or harmonic patterns in all of
the ‘sad’ songs. MIDI is limited in that it cannot represent
timbre, spatialization or voice. However, we were able to
explore patterns of harmony, rhythm and melodic contour
within given mood groups.

IV. CREATING THE MOOD ENGINE

 The end result of this data collection is a large database of
musical traits of potential influence on mood. We say potential
of course, because individually each of these elements cannot
in and of themselves indicate a mood. For instance, while
musical mode is often cited as a determinant of mood in
Western music (major = happy, minor = sad), this is certainly
not always the case, particularly in folk music (most sea
shanties are minor mode, for instance). However, when
combined with other factors—tempo, dynamic range, and so
on—we suggest that musical mood can be anticipated with
somewhat reasonable accuracy. Simply put, “slower tempo +
minor key + narrow dynamic range” for instance is more
likely to contribute to a sad feeling than any of these factors
individually.
 Our current musical mood engine is in its early stages and is
not yet ready for full explication here. While we continue to
develop and create a more accurate algorithm to determine
musical mood, we have been working on demonstration
implementations for iPod.

V. OUR FIRST PROTOTYPE

 In order to test our ability to determine musical mood as
a gameplay element, we developed a prototype game, called
Frequency Faller.

articulation

dynamic
range

timbre tempo

instrument-
ation

harmonic
content (e.g.

chord
progression)

frequency
range

musical
mood

6

Figure 3. iPod Library selection and screenshot of game play in Frequency
Faller

 Written in Objective-C, Frequency Faller uses the iPod
Library Access API released in iOS 4.0 for media selection
and conversion, a RemoteIO Audio Unit for playback, and a
render callback that passes blocks of sample data to the
game’s Fourier classes using a bespoke C++ interface. During
game play this callback is executed approximately once every
23 milliseconds, and the block of audio is simultaneously
passed to the device hardware output and analyzed on separate
threads.
 The game requires user input from the device’s built-in
accelerometer to navigate a character (in this instance, a
triangle) around falling obstacles (in this instance, musical
notes) with the goal of collecting point bonuses (the star in the
image above). The positions of the graphical music notes are
determined by the frequency content in the audio band of the
chosen musical track. The calculated frequency is scaled
linearly along the X-axis from 55-8000Hz, and as the player
progresses, the naïve algorithm indexes the bin magnitudes
and can return the 3 highest bins in this index, resulting in a
basic form of polyphonic pitch detection.
 Our first iteration of our prototype game currently uses
frequency range to drive game play, however the rate of
advancement in game play is held constant. Future iterations
of this game will account for the other elements of musical
mood described in Section III, and will cross-reference these
elements to our mood database to determine mood. We
anticipate, for instance, that the combination of musical mood
with frequency could invert the positive and negative objects
falling, alter colors, and so on.

VI. NEXT STEPS AND FUTURE WORK

 There are a number of musical elements that contribute to
the concept of musical mood, as discussed (harmonic content,
instrumentation, tempo, articulation, timbre, pitch range, and
dynamics). Our present iteration only takes into consideration
frequency, and thus cannot yet call on our database of musical
mood, but rather is limited to a quite mechanical extraction of
auditory elements.
 We anticipate some future difficulties in our mood-based
gaming engine for the iPod. The iPod is limited in its
processing and memory, and simultaneously analysing music
and generating graphics/gameplay will likely introduce some
lag. A pre-scan of the player’s song will solve this problem,

but if the player wishes to change music in the middle of
gameplay, this may cause problems. Games that procedurally
generate or alter content based on music can be limited.
Certain types of music work better than others in these types
of games, of course, particularly when it comes to beat
mapping—abstract ambient music tends to throw off these
types of games, and so the player’s experience can vary
greatly, depending on their choice of music. Using musical
mood and other musical parameters is one way to overcome
this problem, but how effective it will be in generating
interesting gameplay remains to be seen.

REFERENCES
[1] S. Rosso, G. Tzanetakis and B. Gooch, “Adapting Personal Music for

Synesthetic Game Play.” FDG 2010, June 19-21, Monterey, CA, USA.
[2] J. Arrasvuori, and J. Holm. “Background Music Reactive Games,”

MindTrek 2010, October 6th-October 8th 2010, Tampere, Finland.
[3] J. Brown, M. Puckette, “An efficienct algorithm for the calculation of a

Constant Q Transform” June 16 1992
http://www.wellesley.edu/Physics/brown/pubs/effalgV92P2698-
P2701.pdf

[3] L. von Ahn and L. Dabbish, “Labeling images with a computer game”.
ACM Conference on Human Factors in Computing Systems, 2004, pp.
319–326.

[4] E. Law, L. von Ahn, R. Dannenberg and M. Crawford, “Tagatune: A
Game for Music and Sound Annotation” Proceedings of the
International Conference on Music Information Retrieval (2007)
http://ismir2007.ismir.net/schedule.html .

[5] D. Turnbull, R. Liu, L. Barrington and G. Lackriet, “A Game-Based
Approach for Collecting Semantic Annotations of Music” Proceedings
of the International Conference on Music Information Retrieval (2007)
http://ismir2007.ismir.net/schedule.html.

[6] K. Collins, “Generating Meaningful Sound: Quantifying the Affective
Attributes of Sound Effects for Real-Time Sound Synthesis.” Audio
Engineering Society 35th International Conference: Audio for Games,
London, UK. February 11-13. 2009. London, UK.

[7] E. Rapée. Motion Picture Moods for Pianists and Organists. New York:
G. Schirmer, 1942.

[8] O. Lartillot, P. Toiviainen, and T. Eerola. A matlab toolbox for music
information retrieval. In Preisach, C., Burkhardt, H., Schmidt-Thieme,
L., and Decker, R., editors, Data Analysis, Machine Learning and
Applications, Data Analysis, Machine Learning and Applications:
Studies in Classification, Data Analysis, and Knowledge Organization,
pp. 261–268, Berlin, Germany. Springer. (2008).

7

