
Abstract – Developing a virtual world environment from

scratch normally involves a large number of model creations,

animations and event simulations. Such undertakings generally

require a large amount of man-hours and expensive software.

This paper introduces an open-source approach that will enable

developers to easily and quickly create scenario-driven

collaborative environments for serious games. A case study based

on the development of a virtual crisis room in the Pandora

project
1
 is provided to demonstrate the effectiveness of the

approach.

I. INTRODUCTION

A virtual world (VW) is a genre of online community that

often takes the form of a simulated 3D environment, through

which users, represented by avatars, can interact with one

another, and use or create virtual objects [2]. Virtual worlds

are normally used for entertainment purposes, such as

socializing as in Second Life [10] and massively multiplayer

online games as in World of Warcraft [14]. Recently VWs

have become more popular for serious games for medical

purposes, professional training, and military applications [5].

For example, Starlight Children’s Foundation has been using

VWs to help hospitalised children (suffering from painful

diseases or autism for example) to create a comfortable and

safe environment which can expand their situation, experience

interactions they may not have been able to experience

without a virtual world [4]. VWs have also been applied to

training for emergency management. Simulation and

modelling technology can recreate major disasters and

emergencies from severe flooding and earthquakes, to large-

scale terrorist attacks and CBRN dispersal events [3]. There

are existing projects employing VWs such as TruSim [11] and

Pandora [1], [9].

Developing a virtual world environment can involve

creation of a large number of models, animations and event

simulations, which requires a large amount of time and

expensive software. Due to the current economic recession,

many Small and Medium Enterprises (SMEs) and universities

are looking for a more cost-effective way to develop VWs. In

this paper, we introduce an open-source approach that will

enable developers to easily and quickly create scenario-driven

virtual worlds to achieve their goals.

II. BRIEF OVERVIEW OF VW DEVELOPMENT

Developing a VW from scratch is a very complex process.

At the minimum level, it involves these key component

developments:

 3D Modelling: model 3D objects and avatars.

1 Project FP7-ICT-2007-1- 225387. The project was co-funded by the

European Commission under the mixed call on ICT and Security.

 Animation: temporal description of an object and an avatar,

i.e., how it moves and deforms over time.

 Physics: this involves the introduction of the laws of

physics (e.g. Newtonian) for the purpose of making the

effects appear more real to the observer.

 Object Engine: it controls and gives behaviour to objects.

 Scenario Engine: it generates discrete-events that represent

specific storylines (e.g. training scenarios) within the VW.

 Online Hosting: A VW is a distributed system that users can

access through the Internet. Development includes

constructing server-client architectures, addressing

security issues, communication mechanisms, etc.

To complete these developments would consume a large

amount of human resources (e.g. skilled programmers are

needed for complicated programming from networking and

physics to graphic and feature implementation), and also there

is a need for expensive commercial software (e.g. 3D Max and

Massive for modelling and simulation). For example, the well-

known massively multiplayer online game World of Warcraft

took roughly 4 years to develop, with a price tag of over 63

million US dollars [13]. Its development team size as of 2009

was around 900 [15].

A. Build VW based on existing Platforms

Where the development goal can be satisfied by a slightly

small-scale virtual environment, fortunately, there are many

existing platforms providing basic features of virtual worlds

that can be used straightaway. They provide basic 3D models

for simulating a real world (land, sky, the sun, avatars, etc.),

basic animations (walking, smiling, sun rising, etc.) and on-

line hosting capabilities. Developers can expand these virtual

world stubs by creating objects, customising animations and

adding scripts to control objects or avatars. This can be easily

done through their built-in object creation tools and supported

script languages, for example, LSL (Linden Script Language

[12]) and OSSL (OpenSim Script Language [7]).

Developing VWs based on these platforms significantly

simplifies the development process.

Examples of such existing VW platforms are Second Life

[10], OLIVE (On-Line Interactive Virtual Environment) [6],

OpenSim (or OpenSimulator) [7] and Openwonderland [8].

Second Life is a popular online virtual world developed by

Linden Lab which was launched in 2003. To host a

customized VW, developers need to buy a land from Second

Life. OLIVE, owned by Forterra Systems, has a range of

license pricing models or hosting services for small-scale or

enterprise-grade virtual worlds. OpenSim, in contrast, is an

open-source server platform for hosting virtual worlds. It is

compatible with the client for Second Life and can host

alternative worlds with differing feature sets with multiple

protocols. Openwonderland is yet another open-source

 Hao Liu, Yasmine Arafa, Cornelia Boldyreff and Mohammad Dastbaz

Cost-effective Virtual World Development for Serious Games

University of East London

2011 IEEE International Games Innovation Conference (IGIC) 1569466279

978-1-4577-0257-0/11/$26.00©2011 IEEE 48

platform for creating collaborative 3D virtual worlds,

developed by fully in Java.

After considering the above VW platforms, we chose

OpenSim to be the development platform. The following

reasons led to this choice: 1. it is open-source and free to use;

2. since it is developed by a public community there is no

dependence on a single commercial vender; 3. it is compatible

with Second Life, which has already been accepted by the

public; and 4. instead of buying lands from Second Life,

OpenSim gives us more flexibility in terms of hosting own

servers, with full management capabilities and no limitation

on the number of islands created.

III. SCENARIO-DRIVEN VW DEVELOPMENT

A virtual world used for serious games is usually a

controlled environment where in-world events are governed

by pre-set training or gaming scenarios. This is different from

a public open environment used for socialising or online

community building, where users have no constraints and no

specific guideline for playing the virtual world.

However, OpenSim and other VW platforms were initially

designed for on-line societies, not for scenario-driven virtual

worlds. We need to add a scenario engine to make the virtual

environment to adapt to our serious game usage. To achieve

flexibility, the scenarios should not be hard-coded, instead,

they should be easily re-configured as needed, i.e., plug-and-

play.

A. Scenarios

A scenario is a synthetic description of a series of actions

and events. It can be a linear storyline where the users cannot

change the story line or ending of the story, or a branching

scenario, where the users’ decisions can affect the events and

situations encountered. The events will drive the associated

objects of the VW, for example: how NPCs (Non-Player

Characters) move, when to play a video, how to respond

depending on user’s decisions and actions. Fig. 1 shows a part

of a storyline used for training in crisis management. It is a

series of events that define when and how to deliver the crisis

information into the VW. In this scenario, the crisis

information is delivered into the VW through in-world videos,

maps, NPCs. etc. For example, the first event defines that the

VW will play a video showing the weather news bulletin at

timestamp 1. The storyline also contains interactive events that

will ask the users to respond with their decisions via text

input, multiple-choice, etc. According to users’ responses, the

scenario can correspondingly generate new crisis events.

A scenario can be stored into a XML file (Fig. 2). Once we

have the scenario story, we need to send those events into the

VW to manipulate objects and avatars.

B. Add Scenarios into VW

We use LSL script to give behaviours to objects and avatars

in the OpenSim powered VW. There are three types of LSL

functions that allow VW to communicate with programs

running outside OpenSim: XML-RPC, HTTP-In, and HTTP-

Request. LSL XML-RPC sends XML-RPC function calls [16]

that remote system then handles. HTTP-In creates a temporary

server in Opensim and enables outside sources to request data

from scripts. While HTTP-Request enables LSL scripts

request data from outside HTTP-accessible servers. Here we

use the LSL HTTP-Request function because of the reliability

limitations of other two with which we have experienced i.e.

XML-RPC and HTTP-In.

Fig. 1 Example of scenario storyline, from Pandora project [9]

Fig. 2 XML representative of scenario storyline

Fig. 3 shows the architecture of the scenario-driven virtual

world. The Scenario Engine firstly generates events according

to the storyline timestamps at runtime. Once an event is

generated, it will pass the event to the Scenario Web Server.

The LSL Object Engine continuously pulls new events from

the web server using llHTTPRequest(), and then manipulates

related objects or avatars according to the events. In this way,

what the users eventually see is a scenario-driven virtual world

which is continuously developing on the basis of the scenario.

Once the users perform some in-world actions, this

information will also be passed back to the Scenario Engine

through LSL HTTP-Request. An intelligent engine will

possibly generate different events according to users’ different

reactions.

49

Fig. 3 Scenario-driven virtual world architecture

 In this architecture, the virtual world hosting and the

scenario setup are loosely-coupled. Users can easily

reconfigure the storyline (which is suitable for the game

scene) as needed, without making changes to objects and

scripts in the virtual world.

IV. CASE STUDY - PANDORA VIRTUAL CRISIS ROOM

We have applied the approach to develop Pandora [9]

virtual crisis room (Fig. 3). Pandora is a European FP7 ICT

project, which is aimed to bridge the gap between table-top

exercises and real world simulation exercises, providing a

near-real training environment for Gold Command level crisis

management at affordable cost. It authentically simulates all

the dynamic events of the entire disaster environment and

emulates an immersive and stressful crisis room.

The Pandora virtual crisis room is the "place" where a

training exercise is conducted. It is comprised of a selection of

audiovisual components and appropriate displays,

communication and data delivery channels (Fig. 4). In this

room, trainees (Gold Commanders) will receive a variety of

crisis information over time and decide how to deal with the

crisis.

By using the virtual crisis room, the trainees can log in

remotely and engage in training exercise scenarios from

geographically distributed locations. Participating trainees will

each control a 3D avatar, represented within the virtual room,

using their keyboard, mouse and/or microphone. Crisis events

(e.g. Fig. 1) within an overall crisis scenario are generated

over time by the Pandora scenario engine and passed to the

VW.

When a training session starts, the VW continuously

receives events from the scenario engine. As Fig 4 shows,

when a new event comes, each trainee will firstly be notified

by a pop-up event message. If this is a public event which is

shared by all the trainees, the event and its multimedia

contents will be immediately shown on these public big

screens. Otherwise, if it is a private event, the information

will be only shown on the trainee’s in-world personal

computer screen. For some events the VW requires trainees to

bring up the built-in browser to view the contents. Those

contents are normally maps or html documents which are not

suitable to be shown on the virtual screens. In this case,

trainees can click the screen to open the built-in browser and

explore the document inside of the browser (Fig. 5). For

interactive events, trainees (or a nominated chair) need to

make a response within a required time (Fig. 6). Trainees can

collaborate with each other by in-world typing, speaking or

emailing as needed to discuss the crisis situation and make a

group decision.

Fig. 4 The virtual crisis room. Area 1 is a pop-up text to show the description

of a new coming event. Area 2 shows the description of new event on the

screen; and area 3 shows the event’s multimedia contents such as videos,
images, maps, etc. Area 4 is the personal computer screen which will show

private information for the user.

Fig. 5 Open the built-in browser to view the map content.

Fig.6 Ask trainee’s decision by a pop-up multi-choice menu.

V. CONCLUSION

In this paper we have introduced a cost-effective approach

based on OpenSim to easily develop a scenario-driven virtual

world, and demonstrated its effectiveness by a real world

example, the Pandora virtual crisis room. Although the quality

50

of 3D models cannot compare with those developed by

commercial software such as 3D max or Maya, this approach

using freely available open-source software can be a good

choice for SMEs and universities allowing them to develop

small-scale virtual worlds for training and education purposes.

VI. ACKNOWLEDGEMENT

This work is funded by the EU Pandora project (FP7-ICT-

2007-1-225387). We would like to thank the project partners

for their collaboration.

REFERENCE

[1] Boldyreff, C., Dastbaz, M., Liu, H., and Arafa, Y., “Engineering

advanced training environment for crisis management: The Pandora

project”, Proceedings of Advances in Computing and Technology

Conference, pp.125-131, 2011.

[2] Bishop, J., “Enhancing the understanding of genres of web-based

communities: the role of the ecological cognition framework”, Int. J.

Web Based Communities 5, pp. 4–17, November 2009.

[3] Cole, J., “Virtual emergencies: can technology replace live exercising?”,

Contingency Today Online Magazine, March 21, 2011.

[4] Dallas, U., “Avatars help asperger syndrome patients learn to play the

game of life.”, http://www.utdallas.edu/news/2007/11/18-003.html

[5] De Freita, S., “Emerging trends in serious games and virtual worlds”,

Emerging Technologies for Learning, volume 3, 2008.

[6] Olive, http://www.saic.com/products/simulation/olive/.

[7] Opensimulator. http://opensimulator.org/wiki/Main_Page.

[8] Openwonderland. http://openwonderland.org/.

[9] Pandora project. http://pandora.eupm.net/public.

[10] Second life. http://secondlife.com/.

[11] Trusim. http://www.trusim.com/.

[12] Heaton, J., Introduction to Linden Scripting Language for Second Life,

Heaton Research, Inc., 2007.

[13] World of Warcraft Cost $63 Million, digitalbattle.com,

http://www.digitalbattle.com/2006/06/15/world-of-warcraft-cost-63-

million/

[14] Walter Simonson, World of Warcraft, Wildstorm, 2010.

[15] GDC Austin: An Inside Look At The Universe Of Warcraft,

http://www.gamasutra.com/php-bin/news_index.php?story=25307

[16] XML-RPC, http://www.xmlrpc.com/

51

