

Abstract-- The paper presented here provides an account of the

research carried out in the field of Game Artificial Intelligence

(AI) related to mimicking human player strategies in fighting

games. The problem is introduced followed by a description of

the Proof of Concept game that is used as a test bed for the

implementation of a novel AI system. An overview of the system

is also provided with the detailed results of a demonstration that

alludes to the effectiveness of the system.

I. INTRODUCTION

The increasing popularity of online multiplayer games has

given rise to a new forum for the use of Artificial Intelligence

(AI) to mimic human players. Many fighting games are now

available for playing online against other human players,

allowing for fresh play styles and challenges. Fighting games

can typically be played as either a single player experience, or

against another human player, whether it is via a network or a

traditional multiplayer experience. However, there are two

issues with these approaches. First, the single player offering

in many fighting games is regarded as being simplistic in

design, often relying upon Finite State Machines, making the

moves predictable [1]. Secondly, while new challenges and

unique fighting strategies can be provided by having human

players play one another, this may not always be achievable

due to the logistics involved in setting up such a bout and the

availability of both players. Game AI could provide a solution

to both of these issues, allowing a human player’s strategy to

be learned and then mimicked by the CPU fighter.

While much research within the field of Game AI focuses

on improving the AI and providing more of a challenge to the

player [2], research on mimicking human player strategies is

limited. The research conducted here focuses on the latter.

In related research, machine learning was used to classify

tactics to pre-defined states in a data driven finite state

machine which was referred to in real time to mimic the

overall strategy of a human player [3]. However, the pre-

defined states made for a rigid framework that could only

cater for a small subset of strategies. This restriction

drastically limits the usage of the aforementioned architecture.

Furthermore, only the health parameter is used to trigger state

transitions, as opposed to mult-parameters used in many

modern fighting games.

 The novel architecture proposed in this paper addresses

these issues by combining data driven finite state machines,

unsupervised learning and classification within a multi-

parameter fighting game. Strategies and the corresponding

tactical moves are mimicked such that the CPU player is able

to play against another human player by utilizing the strategy

learned from another human opponent. A proof of concept

fighting game based on this approach has been designed and

created as a test bed that lends itself to strategic gameplay.

II. PROOF OF CONCEPT

The proof of concept game is a basic one-on-one, hand-to-

hand fighting game. Players’ moves are restricted to a

multitude of attack techniques that vary in range, damage and

speed. A growing trend in fighting games since the mid 1990s

is the use of multiple parameters to add a strategic element to

the gameplay. Capcom’s Street Fighter Alpha 3 makes use of

three separate parameters per fighter; health, the block gauge

(which caps the amount of blocking done consecutively), and

the super combo meter (which builds up throughout gameplay,

allowing for powerful attacks to be performed). The proof of

concept game is in the same vein with three parameters in use

per player; health, morale and stamina. This makes for a total

of six game parameters. Health depletes as players endure

damage; stamina depletes as players perform moves, blocks

and attacks; and morale is increased with successful evasions.

As morale increases beyond certain thresholds, so does the

proportion of damage dealt to the opponent. Each player’s

health and stamina is initiated at 100, while morale is initiated

at 50.

Further to attacking, players can perform low or high blocks

and a variety of evasions. Certain attacks are blocked by using

the high block, while others can only be blocked using the low

block. The various moves and their effects within the game are

presented in Table I.

Figure 1 – Screenshot of Proof of Concept game.

Simardeep S. Saini, Christian W. Dawson, and Paul W. H. Chung

Department of Computer Science,

 Loughborough University,

Loughborough, UK, LE11 3TU

S.S.Saini@lboro.ac.uk

Mimicking player strategies in fighting games

2011

2011 IEEE International Games Innovation Conference (IGIC) 1569473393

978-1-4577-0257-0/11/$26.00©2011 IEEE 44

TABLE I

GAME MOVES

Move

Distance

From Distance To

Health

Depleted

Stamina

 Depleted

Morale Gained

for Evasion Blocked Evasion Notes

Jab 4.1 5 1 1 Stam - 1 Back

Cross 4.1 5.5 2 2 Stam – 1 Left

Right Hook 4 4.7 3 2 Stam – 1 Back

Left Hook 4 4.7 3 2 Stam – 1 Back

Uppercut 0 4 4 2 Stam – 1 Right

Haymaker 4 4.5 10 5 Unblockable

Right Body Shot 0 4 2 1 Stam – 1

Left Body Shot 0 4 2 1 Stam – 1

Short Jab 0 4 2 1 Stam – 1 Back

Short Cross 0 4 3 2 Stam – 2 Left

Evade Back 2 Evasion

Evade Left 2 Evasion

Evade Right 2 Evasion

Push 0 4 2 1 Stam – 1 Pushes opponent 5 back

Block Blocks high attacks

Low Block Blocks low attacks

Low Kick 0 4 2 1 Stam – 1

Sidekick 4.1 5.5 4 2 Stam – 2

F Lunge 5 Moves player 6 Forward

B Lunge 5 Moves player 6 Back

TABLE II

VECTOR CALCULATION

Move

x0

(No. of

Moves)

x1

(Total

Damage)

x2

(Damage

Ratio)

x3

(No. of

Blocks)

x4

(No. of Evasions)

x5

(No. of Front

Lunges)

x6

(No. of Back

Lunges)

x7

(Distance between

 players)

Jab +1 +1 x1 / x0 Execution distance

Cross +1 +2 x1 / x0 Execution distance

Right Hook +1 +3 x1 / x0 Execution distance

Left Hook +1 +3 x1 / x0 Execution distance

Uppercut +1 +4 x1 / x0 Execution distance

Haymaker +1 +10 x1 / x0 Execution distance

Right Body Shot +1 +2 x1 / x0 Execution distance

Left Body Shot +1 +2 x1 / x0 Execution distance

Short Jab +1 +2 x1 / x0 Execution distance

Short Cross +1 +3 x1 / x0 Execution distance

Evade Back +1 x1 / x0 +1 Execution distance

Evade Left +1 x1 / x0 +1 Execution distance

Evade Right +1 x1 / x0 +1 Execution distance

Push +1 +2 x1 / x0 Execution distance

Block +1 x1 / x0 +1 Execution distance

Low Block +1 x1 / x0 +! Execution distance

Low Kick +1 +2 x1 / x0 Execution distance

Sidekick +1 +4 x1 / x0 Execution distance

F Lunge +1 x1 / x0 +1 Execution distance

B Lunge +1 x1 / x0 +1 Execution distance

TABLE III

LIKE STATE TRANSITIONS

Prev Curr Next P1H P1S P1M P2H P2S P2M

S0 S1 S2 63 31 51 88 47 86

S0 S1 S2 61 30 40 15 34 65

S0 S1 S2 62 29 23 78 54 73

Variance 0.7 0.7 132.7 1044.3 68.7 75.0

III. SYSTEM DESIGN

The AI design uses a variety of existing techniques to

mimic the human player. The game is initially played by

two human players fighting one another, one of whom is to

be mimicked. This is repeated numerous times, during

45

which, data including each of the six parameters of the

game, as well as the moves that are carried out, are spooled

to a text file. There is an underlying assumption that the

player being mimicked uses the same strategy each time.

The design addresses each of the layers of decision

making with a different technique; an all-encompassing

data driven finite state machine is used at the strategic level,

hierarchical clustering is used at the tactical level, and

Nearest Neighbour classification is used at the operational

level. Fig 2 shows the flow of data as well as the stages at

which various techniques are used within the system

architecture.

Figure 2 – AI data flow

Data are collated during the initial bouts where the two

human players play against one another. These data contain

various statistics based on the game parameters and moves

performed. Before the moves within the collated data can

be used to form the states for data driven finite state

machine (DDFSM), they must be assigned some

meaningful values such that like-instances can be grouped.

In order to achieve this, each of the moves and

combinations of moves performed are quantified to a vector

X, such that X = (x0, x1, x2, x3, x4, x5, x6, x7), where

x0…x7 represent the parameters listed in Table II. These

vectors are then clustered using complete linkage

hierarchical clustering :

 (1)

 This is where the distance between two clusters is defined

as being the distance between the two furthest elements [4].

For the purposes of the research conducted here, a distance

criterion of 2 has been set, beyond which clusters are not

merged. The clustered datasets, s0, s1, s2,….,sn, act as

states for a DDFSM, with moves and combinations of

moves residing within each state.

Having established the states, the raw data from the

human vs. human bouts are re-analysed and state transitions

determined. As this is a multi-parameter game, the game

must be played several times between the same humans

using the same strategies. Upon re-analysing the data,

similar state transitions are identified. This is where the

previous, current and next states for one bout are the same

as those for subsequent bouts. For example, all transitions

across the multiple bouts where the previous state was s0,

the current state is s1 and the next state is s2, would be

collated. The values of each of the six game parameters for

each of the similar transitions are assessed, and the

variances between the parameter values in one transition

and those of similar transitions are calculated. If the

variance between two of the same parameters is below a

threshold of 10, the parameter and its mean value is

considered a transition function for that particular state

transition. For example, the data shown in Table III could

be considered.

Table III shows three similar transitions and the values of

each of the parameters when the transition occurred during

the human vs. human bouts. The variance is calculated for

each of the six game parameters. Player 1 health and player

2 stamina have a variance below the threshold, therefore, it

is assumed that these parameters trigger the state transition.

The mean value across the three bouts for these parameters

is calculated and is used as the threshold for this particular

transition function. It is deduced that when player 1 health

falls below 61, and player 1 stamina falls below 30, the

CPU can move from state s1 to state s2, provided the

previous state was s0.

 Having previously clustered the moves to states, once

the variances have been calculated, the DDFSM can be

generated. During gameplay against the CPU fighter, once a

state within the DDFSM has been entered, an operation is

selected. This is achieved by calculating the Euclidean

distance between the query vector r, which represents real

time parameters of the game, and each vector in the set V,

which represents the set of vectors containing game

parameters collated during the human vs. human bout.

Each state has a corresponding file containing the moves

that are to be performed as well as the values of the

parameters under which they had been performed during

the human vs. human bouts. The values of the parameters

represent the vectors belonging to V, whereas the

corresponding moves for each vector form the set of

outputs, O. The Euclidian distance between r and every

element within V is calculated using the following equation:

 (2)

The vector in V with the shortest distance to r is

determined and the corresponding output from O is

performed. The calculation of the Euclidean distance and

selection of the output is performed during gameplay.

IV. IMPLEMENTATION

To demonstrate the effectiveness of this approach, a

strategy has been formulated and played out three times in

human vs. human bouts. The strategy and it’s associated

tactics are highlighted in Table IV.

After collating the data from the three human vs. human

bouts, the clustering is performed using the complete

linkage hierarchical clustering capability found in

MultiDendrograms [4]. The clustering gives rise to states,

each containing tactics as outlined in Table V.

Once the states have been established, like state

transitions are identified and variances between the

46

parameters amongst the like-counterparts are calculated (as

described above). The DDFSM shown in Table VI is

created and used during the human vs. CPU bout.

TABLE IV

STRATEGY FOR HUMAN VS HUMAN BOUT

Description Moves Performed

Begin by performing long range

moves/combinations at a distance.

[Jab, Cross]

[Jab, Jab, Cross]

[Jab]

[Cross]

If health depletes below 68, block

opponents attacks

[Block]

[Low Block]

If stamina depletes below 55, begin

evading the opponent’s attacks.

[Evade Back]

[Evade Left]

If player’s morale exceeds 75, begin

performing close range attacks.

[Uppercut, Right Body]

[Uppercut]

[Right Body, Left Body]

[Low Kick, Left Body]

TABLE V

GENERATED STATES

State Tactics

s0 [Jab, Cross] [Jab, Jab, Cross] [Jab] [Cross]

[Right Body, Left Body] [Uppercut]

s1 [Block] [Low Block]

s2 [Evade Back] [Evade Left]

s3 [Uppercut, Right Body] [Uppercut]

[Right Body, Left Body] [Low Kick, Left Body]

s4 [Uppercut]

TABLE VI

DATA DRIVEN FINITE STATE MACHINE

Previous Current Next Transition Function

null s0 s1 CPU Health < 67

s0 s1 s2 CPU Stamina < 52

s1 s2 s3 CPU Morale > 76

TABLE VII

REALTIME DATA SNAPSHOTS

P1

Health

P1

Morale

P1

Stam

CPU

Health

CPU

Morale

CPU

Stam Moves

100 50 100 100 50 99 Jab, Jab

90 50 78 81 50 89 Cross

89 50 78 81 50 88 Cross

88 50 76 78 50 87

Jab,

Cross

87 50 65 66 50 84 Block

87 50 59 66 50 78 Block

87 50 52 66 50 73 Block

87 50 46 66 50 68

L

Block

87 50 37 66 50 59 Block

87 50 31 66 52 53 Back

87 50 23 66 68 53 Back

87 50 20 66 74 53 Back

83 50 19 66 76 50 Upper

75 50 19 66 76 49 Upper

55 50 19 66 76 44 Upper

51 50 19 66 76 42

R.Body

L.Body

31 50 19 66 76 38 R.Body

23 50 19 66 76 36 L.Body

The FSM shown in Table VI is in accordance to the

strategy outlined in Table IV. When the FSM is actioned

during gameplay, once within a state, the appropriate moves

are selected. The Table VII contains snapshots of data at

certain intervals, outlining the moves that were performed

under various circumstances. Table VII shows that the

moves selected at the operational level from the pool of

moves within each state fall in line with the strategy

outlined in Table IV, therefore demonstrating the usefulness

of this technique.

V. CONCLUSION

The results of the demonstration presented in Table V,

Table VI and Table VII indicate that both the tactics and the

overall strategy have been successfully mimicked. There

are no restrictions on the number of states that can be

implemented. Furthermore, this proposed architecture can

cater for multi-parameter transitions. However, there is

currently no noise reduction implemented. Anomalies in the

data caused by human error during the human vs. human

bouts have the potential to prevent the successful

application of this approach.

If a human player does not play out there strategy exactly

in a number of bouts, the variance between like transitions

may exceed the threshold, thus invalidating the DDFSM.

Further to this, the vector calculation presented in Table II

treats each value of the input vector with equal importance.

There is currently no weighting, signifying which factors

are more influential than others. For example, Table V

shows various attacks belonging to s0, including left/right

body shots and uppercut, largely because these moves were

performed at the same distance as the intended long range

moves. These moves were not executed during they human

vs. CPU bout as the Euclidean distance was shorter to the

jab and cross moves, however they should not belong to s0.

There is potential to rectify this by assigning weights to

each value of the vectors.

Further research may involve using a classifier to learn

the likely transition functions, rather than the variance. This

may lead to a more robust architecture, and one that is less

prone to anomaly contamination.

REFERENCES

[1] S. Ortiz B, K. Moriyama, K. Fukui, S. Kurihara and M. Numao,

"Three-Subagent Adapting Architecture for Fighting Videogames,"

PRICAI 2010: Trends in Artificial Intelligence, vol. 6230, B. Zhang

and M. Orgun, Eds. Springer Berlin / Heidelberg, 2010, pp. 649-654.

[2] B. Cho, S. H. Jung, Y. R. Seong and H. R. Oh, “Exploiting

intelligence in fighting action games using neural networks,” IEICE

Trans. on Information and Systems, vol. E89-D, no. 3,, 2006, pp.

1249–1256.

[3] S. Saini, P. W. H. Chung and C. W. Dawson, “Mimicking Human

Strategies in Fighting Games using a Data Driven Finite State

Machine,” 2011 6th IEEE Joint International Information Technology

and Artificial Intelligence Conference, vol 2, P. Yan and B. Xu, Eds.

Chongqing: IEEE Press, 2011, pp. 389-393.

[4] A. Fernández and S. Gómez, “Solving Non-uniqueness in

Agglomerative Hierarchical Clustering Using Multidendrograms,,”

Journal of Classification, vol. 25, pp. 43-65, 2008.

47

