
 

Abstract-- The paper presented here provides an account of the 

research carried out in the field of Game Artificial Intelligence 

(AI) related to mimicking human player strategies in fighting 

games. The problem is introduced followed by a description of 

the Proof of Concept game that is used as a test bed for the 

implementation of a novel AI system. An overview of the system 

is also provided with the detailed results of a demonstration that 

alludes to the effectiveness of the system. 

I. INTRODUCTION 

The increasing popularity of online multiplayer games has 

given rise to a new forum for the use of Artificial Intelligence 

(AI) to mimic human players. Many fighting games are now 

available for playing online against other human players, 

allowing for fresh play styles and challenges. Fighting games 

can typically be played as either a single player experience, or 

against another human player, whether it is via a network or a 

traditional multiplayer experience. However, there are two 

issues with these approaches. First, the single player offering 

in many fighting games is regarded as being simplistic in 

design, often relying upon Finite State Machines, making the 

moves predictable [1]. Secondly, while new challenges and 

unique fighting strategies can be provided by having human 

players play one another, this may not always be achievable 

due to the logistics involved in setting up such a bout and the 

availability of both players. Game AI could provide a solution 

to both of these issues, allowing a human player’s strategy to 

be learned and then mimicked by the CPU fighter. 

While much research within the field of Game AI focuses 

on improving the AI and providing more of a challenge to the 

player [2], research on mimicking human player strategies is 

limited. The research conducted here focuses on the latter. 

In related research, machine learning was used to classify 

tactics to pre-defined states in a data driven finite state 

machine which was referred to in real time to mimic the 

overall strategy of a human player [3]. However, the pre-

defined states made for a rigid framework that could only 

cater for a small subset of strategies. This restriction 

drastically limits the usage of the aforementioned architecture. 

Furthermore, only the health parameter is used to trigger state 

transitions, as opposed to mult-parameters used in many 

modern fighting games. 

 The novel architecture proposed in this paper addresses 

these issues by combining data driven finite state machines, 

unsupervised learning and classification within a multi-

parameter fighting game. Strategies and the corresponding 

tactical moves are mimicked such that the CPU player is able 

to play against another human player by utilizing the strategy 

learned from another human opponent. A proof of concept 

fighting game based on this approach has been designed and 

created as a test bed that lends itself to strategic gameplay.  

II. PROOF OF CONCEPT 

The proof of concept game is a basic one-on-one, hand-to-

hand fighting game. Players’ moves are restricted to a 

multitude of attack techniques that vary in range, damage and 

speed. A growing trend in fighting games since the mid 1990s 

is the use of multiple parameters to add a strategic element to 

the gameplay. Capcom’s Street Fighter Alpha 3 makes use of 

three separate parameters per fighter; health, the block gauge 

(which caps the amount of blocking done consecutively), and 

the super combo meter (which builds up throughout gameplay, 

allowing for powerful attacks to be performed). The proof of 

concept game is in the same vein with three parameters in use 

per player; health, morale and stamina. This makes for a total 

of six game parameters. Health depletes as players endure 

damage; stamina depletes as players perform moves, blocks 

and attacks; and morale is increased with successful evasions. 

As morale increases beyond certain thresholds, so does the 

proportion of damage dealt to the opponent. Each player’s 

health and stamina is initiated at 100, while morale is initiated 

at 50. 

Further to attacking, players can perform low or high blocks 

and a variety of evasions. Certain attacks are blocked by using 

the high block, while others can only be blocked using the low 

block. The various moves and their effects within the game are 

presented in Table I.  

 

 
Figure 1 – Screenshot of Proof of Concept game. 
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TABLE I 

GAME MOVES 

Move 

Distance 

From Distance To 

Health 

Depleted 

Stamina 

 Depleted 

Morale Gained  

for Evasion Blocked Evasion Notes 

Jab 4.1 5 1 1  Stam - 1 Back   

Cross 4.1 5.5 2 2  Stam – 1 Left   

Right Hook 4 4.7 3 2  Stam – 1 Back   

Left Hook 4 4.7 3 2  Stam – 1 Back   

Uppercut 0 4 4 2  Stam – 1 Right   

Haymaker 4 4.5 10 5    Unblockable  

Right Body Shot 0 4 2 1  Stam – 1    

Left Body Shot 0 4 2 1  Stam – 1    

Short Jab 0 4 2 1  Stam – 1  Back   

Short Cross 0 4 3 2  Stam – 2 Left   

Evade Back        2     Evasion 

Evade Left        2     Evasion 

Evade Right        2     Evasion 

Push 0 4 2 1  Stam – 1  Pushes opponent 5 back 

Block            Blocks high attacks 

Low Block            Blocks low attacks 

Low Kick 0 4 2 1  Stam – 1    

Sidekick 4.1 5.5 4 2  Stam – 2    

F Lunge       5      Moves player 6 Forward 

B Lunge       5      Moves player 6 Back 

 

 

TABLE II 

VECTOR CALCULATION 

Move 

x0  

(No. of 

Moves) 

x1 

(Total 

Damage) 

x2 

(Damage 

Ratio) 

x3  

(No. of 

Blocks) 

x4 

(No. of Evasions) 

x5 

(No. of Front 

Lunges) 

x6 

(No. of Back 

Lunges) 

x7  

(Distance between 

 players) 

Jab +1 +1 x1 / x0     Execution distance 

Cross +1 +2 x1 / x0     Execution distance 

Right Hook +1 +3 x1 / x0     Execution distance 

Left Hook +1 +3 x1 / x0     Execution distance 

Uppercut +1 +4 x1 / x0     Execution distance 

Haymaker +1 +10 x1 / x0     Execution distance 

Right Body Shot +1 +2 x1 / x0     Execution distance 

Left Body Shot +1 +2 x1 / x0     Execution distance 

Short Jab +1 +2 x1 / x0     Execution distance 

Short Cross +1 +3 x1 / x0     Execution distance 

Evade Back +1   x1 / x0  +1   Execution distance 

Evade Left +1   x1 / x0  +1   Execution distance 

Evade Right +1   x1 / x0  +1   Execution distance 

Push +1 +2 x1 / x0     Execution distance 

Block +1   x1 / x0 +1    Execution distance 

Low Block +1   x1 / x0 +!    Execution distance 

Low Kick +1 +2 x1 / x0     Execution distance 

Sidekick +1 +4 x1 / x0     Execution distance 

F Lunge +1   x1 / x0   +1  Execution distance 

B Lunge +1   x1 / x0    +1 Execution distance 

 

TABLE III 

LIKE STATE TRANSITIONS 

Prev Curr Next P1H P1S P1M P2H P2S P2M 

S0 S1 S2 63 31 51 88 47 86 

S0 S1 S2 61 30 40 15 34 65 

S0 S1 S2 62 29 23 78 54 73 

Variance 0.7 0.7 132.7 1044.3 68.7 75.0 

  

III.   SYSTEM DESIGN 

The AI design uses a variety of existing techniques to 

mimic the human player. The game is initially played by 

two human players fighting one another, one of whom is to 

be mimicked. This is repeated numerous times, during 
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which, data including each of the six parameters of the 

game, as well as the moves that are carried out, are spooled 

to a text file. There is an underlying assumption that the 

player being mimicked uses the same strategy each time.  

The design addresses each of the layers of decision 

making with a different technique; an all-encompassing 

data driven finite state machine is used at the strategic level, 

hierarchical clustering is used at the tactical level, and 

Nearest Neighbour classification is used at the operational 

level. Fig 2 shows the flow of data as well as the stages at 

which various techniques are used within the system 

architecture. 

 
Figure 2 – AI data flow 

 

Data are collated during the initial bouts where the two 

human players play against one another. These data contain 

various statistics based on the game parameters and moves 

performed. Before the moves within the collated data can 

be used to form the states for data driven finite state 

machine (DDFSM), they must be assigned some 

meaningful values such that like-instances can be grouped. 

In order to achieve this, each of the moves and 

combinations of moves performed are quantified to a vector 

X, such that X = (x0, x1, x2, x3, x4, x5, x6, x7), where 

x0…x7 represent the parameters listed in Table II. These 

vectors are then clustered using complete linkage 

hierarchical clustering : 

                           (1) 

   This is where the distance between two clusters is defined 

as being the distance between the two furthest elements [4]. 

For the purposes of the research conducted here, a distance 

criterion of 2 has been set, beyond which clusters are not 

merged. The clustered datasets, s0, s1, s2,….,sn, act as 

states for a DDFSM, with moves and combinations of 

moves residing within each state. 

Having established the states, the raw data from the 

human vs. human bouts are re-analysed and state transitions 

determined. As this is a multi-parameter game, the game 

must be played several times between the same humans 

using the same strategies. Upon re-analysing the data, 

similar state transitions are identified. This is where the 

previous, current and next states for one bout are the same 

as those for subsequent bouts. For example, all transitions 

across the multiple bouts where the previous state was s0, 

the current state is s1 and the next state is s2, would be 

collated. The values of each of the six game parameters for 

each of the similar transitions are assessed, and the 

variances between the parameter values in one transition 

and those of similar transitions are calculated. If the 

variance between two of the same parameters is below a 

threshold of 10, the parameter and its mean value is 

considered a transition function for that particular state 

transition. For example, the data shown in Table III could 

be considered. 

Table III shows three similar transitions and the values of 

each of the parameters when the transition occurred during 

the human vs. human bouts. The variance is calculated for 

each of the six game parameters. Player 1 health and player 

2 stamina have a variance below the threshold, therefore, it 

is assumed that these parameters trigger the state transition. 

The mean value across the three bouts for these parameters 

is calculated and is used as the threshold for this particular 

transition function. It is deduced that when player 1 health 

falls below 61, and player 1 stamina falls below 30, the  

CPU can move from state s1 to state s2, provided the 

previous state was s0. 

 Having previously clustered the moves to states, once 

the variances have been calculated, the DDFSM can be 

generated. During gameplay against the CPU fighter, once a 

state within the DDFSM has been entered, an operation is 

selected. This is achieved by calculating the Euclidean 

distance between the query vector r, which represents real 

time parameters of the game, and each vector in the set V, 

which represents the set of vectors containing game 

parameters collated during the human vs. human bout. 

Each state has a corresponding file containing the moves 

that are to be performed as well as the values of the 

parameters under which they had been performed during 

the human vs. human bouts. The values of the parameters 

represent the vectors belonging to V, whereas the 

corresponding moves for each vector form the set of 

outputs, O. The Euclidian distance between r and every 

element within V is calculated using the following equation: 

                                           (2) 

The vector in V with the shortest distance to r is 

determined and the corresponding output from O  is 

performed. The calculation of the Euclidean distance and 

selection of the output is performed during gameplay.  

IV. IMPLEMENTATION 

To demonstrate the effectiveness of this approach, a 

strategy has been formulated and played out three times in 

human vs. human bouts. The strategy and it’s associated 

tactics are highlighted in Table IV. 

After collating the data from the three human vs. human 

bouts, the clustering is performed using the complete 

linkage hierarchical clustering capability found in 

MultiDendrograms [4]. The clustering gives rise to states, 

each containing tactics as outlined in Table V. 

Once the states have been established, like state 

transitions are identified and variances between the 
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parameters amongst the like-counterparts are calculated (as 

described above). The DDFSM shown in Table VI is 

created and used during the human vs. CPU bout. 

 
TABLE IV 

STRATEGY FOR HUMAN VS HUMAN BOUT 

Description Moves Performed 

Begin by performing long range 

moves/combinations at a distance.  

[Jab, Cross] 

[Jab, Jab, Cross] 

[Jab] 

[Cross] 

If health depletes below 68, block 

opponents attacks 

[Block] 

[Low Block] 

If stamina depletes below 55, begin 

evading the opponent’s attacks. 

[Evade Back] 

[Evade Left] 

If player’s morale exceeds 75, begin 

performing close range attacks. 

[Uppercut, Right Body] 

[Uppercut] 

[Right Body, Left Body] 

[Low Kick, Left Body] 

 
TABLE V 

GENERATED STATES 

State Tactics 

s0 [Jab, Cross] [Jab, Jab, Cross] [Jab] [Cross] 

[Right Body, Left Body] [Uppercut] 

s1 [Block] [Low Block] 

s2 [Evade Back] [Evade Left] 

s3 [Uppercut, Right Body] [Uppercut] 

[Right Body, Left Body] [Low Kick, Left Body] 

s4  [Uppercut] 

 
TABLE VI 

DATA DRIVEN FINITE  STATE MACHINE 

Previous Current Next Transition Function 

null s0 s1 CPU Health < 67 

s0 s1 s2 CPU Stamina < 52 

s1 s2 s3 CPU Morale > 76 

 
TABLE VII 

REALTIME DATA SNAPSHOTS 

P1  

Health 

P1  

Morale 

P1  

Stam 

CPU  

Health 

CPU  

Morale 

CPU  

Stam Moves 

100 50 100 100 50 99 Jab, Jab 

90 50 78 81 50 89 Cross 

89 50 78 81 50 88 Cross 

88 50 76 78 50 87 

Jab, 

Cross 

87 50 65 66 50 84 Block 

87 50 59 66 50 78 Block 

87 50 52 66 50 73 Block 

87 50 46 66 50 68 

L 

Block 

87 50 37 66 50 59 Block 

87 50 31 66 52 53 Back 

87 50 23 66 68 53 Back 

87 50 20 66 74 53 Back 

83 50 19 66 76 50 Upper 

75 50 19 66 76 49 Upper 

55 50 19 66 76 44 Upper 

51 50 19 66 76 42 

R.Body

L.Body 

31 50 19 66 76 38 R.Body 

23 50 19 66 76 36 L.Body 

The FSM shown in Table VI is in accordance to the 

strategy outlined in Table IV. When the FSM is actioned 

during gameplay, once within a state, the appropriate moves 

are selected. The Table VII contains snapshots of data at 

certain intervals, outlining the moves that were performed 

under various circumstances. Table VII shows that the 

moves selected at the operational level from the pool of 

moves within each state fall in line with the strategy 

outlined in Table IV, therefore demonstrating the usefulness 

of this technique.  

V. CONCLUSION 

The results of the demonstration presented in Table V, 

Table VI and Table VII indicate that both the tactics and the 

overall strategy have been successfully mimicked. There 

are no restrictions on the number of states that can be 

implemented. Furthermore, this proposed architecture can 

cater for multi-parameter transitions. However, there is 

currently no noise reduction implemented. Anomalies in the 

data caused by human error during the human vs. human 

bouts have the potential to prevent the successful 

application of this approach.  

If a human player does not play out there strategy exactly 

in a number of bouts, the variance between like transitions 

may exceed the threshold, thus invalidating the DDFSM. 

Further to this, the vector calculation presented in Table II 

treats each value of the input vector with equal importance. 

There is currently no weighting, signifying which factors 

are more influential than others. For example, Table V 

shows various attacks belonging to s0, including left/right 

body shots and uppercut, largely because these moves were 

performed at the same distance as the intended long range 

moves. These moves were not executed during they human 

vs. CPU bout as the Euclidean distance was shorter to the 

jab and cross moves, however they should not belong to s0. 

There is potential to rectify this by assigning weights to 

each value of the vectors. 

Further research may involve using a classifier to learn 

the likely transition functions, rather than the variance. This 

may lead to a more robust architecture, and one that is less 

prone to anomaly contamination. 
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