
Abstract--The 2008 ACM/IEEE Curriculum Report section
5.4.2 mentions a "Focus on games or entertainment software" as
one method of organizing a computer science curriculum. But
outside of using games as a methodology for teaching standard
computer science, it is also worth considering whether the
techniques taught actually transition to the games industry. This
paper will explain the IEEE standard for a computer science
curriculum, and then compare those milestones with what the
games industry wants using interviews with game professionals
who are responsible for hiring decisions at top companies.

INTRODUCTION

CS2008, as the 2008 ACM/IEEE Curriculum Standard is
referred to, is the latest document in a series published by
those two professional organizations aimed at helping
structure educational programs for computer science. The
development process is open to all suggestions, and the final
document was created and revised with successively smaller
groups of leaders from both industry and academia.

While studies have shown the benefits of using game topics
as a background for teaching topics straight from the standard
[Sung], this paper concerns discovering if the curriculum
standard itself is of value to game development companies
directly. Questionnaires followed by interviews with hiring
managers at Zynga, Valve, Quicksilver, and Microsoft Games
were used to gauge what was truly valued in a student and
potential new hire. Just as how a student won't graduate
without learning what the standard dictates, they won't get a
job without learning what the game companies want them to
learn.

ACADEMIC STANDARD

The CS2008 document partitions all of computer science
into 14 large categories, and then details 5-10 topics that fall
under each one. In addition, it specifies which topics are
“core”. Core topics should be covered regardless of what other
topics are chosen as electives. Before any analysis can be
done using the standard, it is important to fully understand it.
Any measurement using “hours” in the document will be
converted to the easier to understand unit of “classes” where
30 hours equals one class.

A. Discrete Structures (DS)

This entire discipline is flagged as Core due to how the
concepts learned will be applied in so many of the other
categories. This section includes basic abstract principles such
as sets, graphs, trees, and probability. Classes are likely to
overlap with a math department, and it takes 1.5 classes to
finish all of the Core material.

B. Programming Fundamentals (PF)

Another discipline whose entirety is marked as Core,
programming fundamentals are topics that underlie any
programming language. This category involves describing the
concept of programming before the more advanced
Programming Languages and Software Engineering categories
below. Topics include data structures, recursion, event driven
programming, object oriented concepts, and basic security,
and 1.5 classes are designated for the category.

C. Algorithms and Complexity (AL)

These topics are concerned with the efficiency of software
solutions. Picking the correct algorithm is the plan that starts
the program on the right track, so topics covering the basic
algorithms and strategies for picking them are marked Core,
and should have one class devoted to them. The elective
topics cover the more advanced choices, like automata theory,
cryptography, and NP study. The topic of parallel algorithms
is singled out as one of the topics that hastened the release of
the 2008 review ahead of its planned 2011 publication data
due to how fast it was rising as an important topic.

D. Architecture and Organization (AR)

Understanding the architecture of a computer is the first
step away from the theoretical. These classes teach why
programming works as it does. Memory, I/O, and
multiprocessing are among the Core topics that should be
given one class. Further electives cover performance and
distributed systems.

E. Operating Systems (OS)

One class's worth of Core topics is dedicated to teaching
how concurrency, scheduling, and memory actually work, and
this is the first category to recommend required lab work.
Electives cover the file system, performance evaluation, and
security methods.

Observations on Designing a Computer Science
Curriculum Focusing on Game Programming

Using Testimonials from Industry Leaders

Graham R. Smallwood and Don V. Black
California State University Long Beach

2011 IEEE International Games Innovation Conference (IGIC) 1569470981

978-1-4577-0257-0/11/$26.00©2011 IEEE 126

F. Net-Centric Computing (NC)

Only half a class worth of basic material is marked Core,
but the rising importance of network-capable code is pointed
out. Electives cover web, mobile, and multimedia needs on
today's networks.

G. Programming Languages (PL)

A key takeaway from the study that went in to the standard
is that students should be able to learn more than one
language. This category aims to teach what the definition of a
language truly is so that the best choice of language can be
made for any one task. The one class of core topics covers
abstraction, basic types, and object oriented mechanics. The
electives go on to cover the semantics and design of a
language itself.

H. Human-Computer Interaction (HC)

Only half a class is Core here, and it just covers the basics
of UI. But the electives go on to study how designing an
interface early in a project can help define and improve the
structure of the underlying code. Other topics cover
distributed communities and understanding what makes good
UI different from working UI.

I. Graphics and Visual Computing (GV)

Graphics is the first category to be filled with elective topics
after just one Core week of describing what graphics are.
Four sub-categories are laid out: Graphics, Visualization of
data that has no form, Virtual Reality, and Computer Vision.
Graphics is the only sub-category further split into topics
though, and covers modeling, rendering, and animation.

Of particular note among the topics in GV is the one on
Game Engine Programming, as it is the only topic devoted to
game programming in the document. It only covers using an
existing engine, however, and how to use a system that has
rendering, physics, collision, sound, AI, and terrain already
implemented.

J. Intelligent Systems (IS)

Half a class worth of Core covers basic concepts. But
hidden inside the topic covering search strategies is one
subject of particular interest to games. The topic covers the
idea of an exhaustive search of future possibilities being used
in game AI. This is one kind of AI with a direct connection to
games possessing an AI opponent, such as an abstract game.
The rest of the electives cover more mainstream topics in
robotics, learning, language processing, and perception.

K. Information Management (IM)

This is another category using half a class to cover the Core
ideas of data modeling. This category devotes many topics to
the concepts behind databases. There are almost enough
topics to cover a whole major, and all are very focused.

L. Social and Professional Issues (SP)

This is an interesting category in that the standard
recommends interspersing each topic in to the technical class
to which it is related. The Core topics add up to half a class,

but each topic is only one or two hours long. Security and
privacy, intellectual property, and professional ethics are some
specific topics, while “Social Context” is a Core topic pointed
out to be part of every class.

M. Software Engineering (SE)

This category brings all of the others together in to the
ability to make a final product, and is one full Core class.
From designing the system to writing and using tools to
software processes, the “how” of making a program is
covered. Additionally, topics in requirements, validation, and
management ensure that it is the right program. Electives are
more specific and focus on reliability concerns, security, and
risk assessment.

N. Computational Science (CN)

This is the only topic with no core topics at all, and is far to
the end of the “science” side of computer science. Modeling
and simulation of fluid dynamics, the structural analysis of
materials, and other hard core topics that game programming
does not use are here. One notable exception is the topic of
parallel computing, which was singled out in the industry
responses.

INDUSTRY PROFESSIONAL OPINIONS

To find out what skills were the most useful for students to
learn to get in to the games industry, one must ask the senior
engineers and development directors in the games industry
responsible for the hiring of new graduates. The questionnaire
covered topics from each discipline in the curriculum standard
as well as several areas outside of pure academic learning.

A. Opinions on the CS2008

1) DS – Discrete Structures
All respondents considered this an obvious and automatic

set of topics, as understanding discrete structures is a basic
requirement of computer science.

2) PF – Programming Fundamentals
Like DS, this category is taken as a given and didn't garner

much response.
3) AL – Algorithms and Complexity

Highly valued across responses. In addition to simply
knowing enough algorithms so that intelligent solutions can be
made, the ability to do cost analysis of algorithms was also
called out as important. In a real time environment, doing
something quickly is as important as doing it right.

4) AR – Architecture and Organization
Two of the four interviewed said that knowledge of how the

CPU and memory functioned was important, with one
respondent connecting the subject to the ability to analyze
algorithms.

5) OS – Operating Systems
Not considered relevant by any of the respondents.
6) NC – Net-Centric Computing

Rated highly with the Zynga respondent, who pointed out
that all the growth in the game market is in on-line products.
But even those from more balanced companies pointed out its
importance as a specialty, not as something that all computer

127

science students need to know.
7) PL – Programming Languages

All respondents agreed that more important than knowing
any one language is the ability to learn a new language
quickly. Even within a company that is primarily C++, a
situation might arise that requires another language

8) HC – Human Computer Interaction
Responses on this were split, with some saying it was a

specialization and some saying that everything needs to be
written with usability in mind.

9) GV – Graphics and Visual Computing
All respondents agreed that everyone needs some level of

graphics experience. Writing shaders and creating new special
effects are in the realm of a specialization. But every piece of
code for a visible object needs to be written with the
understanding of 3D transforms, models, and animations.

10) IS – Intelligent Systems
High level AI was soundly panned as a subject. At a simple

level, it is important for tasks like pathfinding and making
state machines. But the higher level thoughts and plans in a
game are not driven by AI. They are driven by scripts written
by the game designer. The AI is not supposed to be smart or
good at the game; it needs only to be fun. "I want them to
understand path-finding options. All the rest of it is useless,”
stated the Zynga interviewee.

11) IM – Information Management
Only one respondent mentioned databases even in passing.

They are used in social and massively multiplayer games.
12) SP – Social and Professional Issues

 Not mentioned.
13) SE – Software Engineering

Parts of this category were deemed essential. The software
design topic is a game programmer's entire job. Two
responses mentioned the source control part of the Tools topic
specifically, and one singled out the making of requirements
documents.

14) CN – Computational Science
Only one topic from here was mentioned as desirable, but it

was stressed highly. Parallel computing is a very difficult
topic and is becoming more and more common as hardware
improves. It is rarely to be found on current incoming
resumes as a skill. This sentiment was echoed in the
standard's AL section above. Additionally, not finding the
subject in the listed curriculums points to schools being behind
on this subject.

Another topic from this category was stressed, but in the
negative. Knowledge of physics simulations was deemed
entirely unnecessary. The reasons given range from either
because the engine is already made, physics can be done in
purchased middleware, or the game just doesn't need anything
complex. The respondent from Valve stated, "Physics engines
are a commodity. Being able to write one or innovate in this
area is a very specific skill that’s not of that much use,
frankly.”

B. Opinions on General Topics

1) Game Design
Many university programs across the country have classes

outside of computer science entirely and cover gaming in
general but are seldom about programming. A detailed
analysis of these programs are outside the scope of this paper,
but, in short, while these non-programming game classes
clearly don't fit in to the IEEE standard, the industry responses
held them in high regard. A strong passion for gaming outside
of the school setting is the preferred choice, but these game-
centric classes are accepted as an alternative. To be able to
implement a system common to a particular genre of games, it
is extremely helpful for the programmer to be familiar with
that kind of system already. For example, trying to explain
concepts like “attack-move” or “item sockets” to a lay person
can be difficult, but a game aficionado would take those terms
as a given.
2) Group Projects

All respondents made the importance of this subject
perfectly clear. "I wish curriculums would focus on more
large scale projects,” mentioned the Valve respondent. All of
those interviewed wanted graduates who had experience in
group projects, as co-operation and communication are
essential qualities on a production team. This ranked even
higher than having completed and shipped a game project on
one’s own. One respondent responsible for performing
engineering interviews even admitted that once satisfied that
the basic engineering skills were present in a candidate, the in-
person interview is primarily a personality and compatibility
test to ensure that the new hire would work well with the team.

This makes the classes that appear to just be narrowly
covering the SE category much more important than just a
one-category class may seem. However, a semester-long class
with a single project as its goal can't be run in too open-ended
a fashion or it can encounter some difficulties.

On a game programming team, the person managing the
team is most often the most senior. A Lead Programmer or
Development Director will assign and monitor all tasks. But
in an undergraduate college class everyone on the team will
likely have the same level of limited experience. As a
solution, a fledgling local game programming class had
everyone write up a game idea and submit it. The most well
thought out plans were picked as the projects the groups of
students would develop, and the owner of that idea was made
Lead based on the reasoning that they were the most
passionate about completing the project. This worked out well
in more than half of the groups, but two of the teams had
leadership problems which resulted in disorganized groups
with no direction.

This observation has been studied before [Cliburn]. When
offered the choice between a very dry but structured
programming assignment and the chance to make an open-
ended game, over three quarters of students choose the task
with the details chosen for them. This agrees with the
observations of that game class as there all the students were
forced to choose the open-ended project and most of them
could not handle it.

128

Better results were achieved by another semester-long
project that used a more structured approach at Penn State.
[Ryoo] Even though it was only a 200 level class and was
teaching simpler topics, its method of keeping structure on an
open creative process is very interesting. The projects were
kept in discrete phases that gave complete freedom but
enforced regular checkpoints.
3) Specialist vs Generalist

All industry respondents came down on the side of
generalists here. Only one even mentioned having a concept
of specialists, as they hired network specialists and 3D
graphics specialists with experience. "Focused specialty is
somewhat useful for specialized areas like graphics
engineering and network programming, but even then it is
career limiting if a person only knows one area,” noted the
respondent from Microsoft. As pertains to college students,
this point is very important to note as it doesn't always match
up with academic opinion. The author of UCI's program, for
example, made a point of saying how broad their program was
when asked. But at USC their author states of their program,
"The industry demands an increasing supply of graduates
trained not as generic programmers, artists, or producers, but
as specialists in the particular technologies and techniques that
drive the latest best sellers." [Zyda] This is a dramatic
disconnect in educational philosophies between schools and
the core of what this paper is examining.
4) Miscellaneous

There are some other interesting differences in opinion
between the industry respondents and academia to point out.
Teaching the math behind 3D transformations is one topic that
varied greatly, with academia valuing it highly and the
industry finding it irrelevant. Understanding the
transformations behind everything is essential, such as
knowing how to get the hand's position from the shoulder and
where to put a camera. Matrix math itself however was rated
near the bottom, as every company had full math libraries to
handle it.

Parallel processing was one highly desired skill that gets
barely a mention in the standard, but was considered of great
value by the respondents. Valve was particularly specific;
"[knowledge of] threading, job systems and joblets, co-routine
systems, and general best practices in implementation of
engines capable of properly utilizing multi processor
systems.". Fortunately, in the release notes for CS2008 it is
noted that the rise of parallel computing is one of the driving
forces that pushed the document to be released in 2008 instead
of later, so this discrepancy will be closing.

Finally, some ancillary skills bear mentioning because of
their frequent inclusion. Source Control may seem like a
production skill not worth mentioning, but as every student
will be working on existing code on the first day of any job, it
is on the wish list of the respondents. But the respondents felt
that Debugging is the one topic that is most underrepresented.
If any school could teach the type of debugging that is not the
documented, organized, test-case kind, that would be well
received by all questioned.

CONCLUSIONS

Schools do not necessarily need classes in applied game
programming techniques to make their students viable
potential hires at game companies, but important game topics
could be worked in to existing classes so that students can gain
the necessary and desired skills.

But more important than improving the teaching of any one
topic is extending the overarching requirement for group
project experience. Many high-level classes are pure theory
and involve no programming at all. Classes like Networking
and Security would benefit from hands on work not because it
would be practicing for a job, but for the act of working in a
team itself.

As discovered in this paper, the extra burden placed upon a
team leader can damage the success of the project for an entire
team if not handled well however. For this reason the task
assignments in the group should be done with the involvement
of the professor. This would remove the pressure of planning
a project on top of implementing a project off of one student
as well as provide a much clearer measure of individual
performance for grading purposes.

With the games industry being as large as many other more
traditional industries, there is a constant need for good
programmers. Hopefully school programs can concentrate on
the broad knowledge and group project aspects of what
companies want to see, and everyone will benefit.

Cliburn, D.C.; Miller, S.M.; Bowring, E.; , "Student
preferences between open-ended and structured game
assignments in CS1," Frontiers in Education Conference
(FIE), 2010 IEEE , vol., no., pp.F2H-1-F2H-5, 27-30 Oct.
2010

Ryoo, J.; Fonseca, F.; Janzen, D.S.; , "Teaching Object-
Oriented Software Engineering through Problem-Based
Learning in the Context of Game Design," Software
Engineering Education and Training, 2008. CSEET '08. IEEE
21st Conference on , vol., no., pp.137-144, 14-17 April 2008

Sung, K.; Hillyard, C.; Angotti, R. L.; Panitz, M. W.;
Goldstein, D. S.; Nordlinger, J.; , "Game-Themed
Programming Assignment Modules: A Pathway for Gradual
Integration of Gaming Context Into Existing Introductory
Programming Courses," Education, IEEE Transactions on ,
vol.54, no.3, pp.416-427, Aug. 2011

Zyda, M.; , "Educating the next generation of game
developers," Computer , vol.39, no.6, pp.30-34, June 2006

The industry respondents from Microsoft Games,
Quicksilver, Valve, and Zynga declined to be directly quoted
by name.

129

