Actions and Reality
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A basic constraint on a Minkowski space action is that it be real. An action S, is the integral

of a Lagrangian (density) L., over Minkowski space M:

(1) S = /Lm.

M

Choose a time t on M. Then we (Wick) rotate to Euclidean space E by introducing imaginary

time 7 = 2t. By convention the Euclidean action is % times the rotated Minkowski action:

1
(2) sz:Se:/Le.

E

None that ¢**» = e=°<. Also, §. is not real in general.

We describe the continuation to Fuclidean space more precisely for a o-model. The field is a map
¢ : M — Y into some Riemannian manifold. The complexification of the space of maps M — Y
is the space of holomorphic maps Mc — Y between the complexified spaces (see Deligne’s notes
Real versus complex). The Lagrangian extends to a holomorphic function on this space, and the
Fuclidean action is the restriction of this continuation to maps £ — Y. (Note that F¢ = M¢ so
FE C Mc.) There is a similar picture for other types of fields.

We consider four types of terms which typically occur in an action: kinetic terms for bosons,
potential terms, topological terms, and kinetic terms for fermions. For simplicity we discuss these
terms in mechanics (the one dimensional case) and then indicate the generalization to higher di-
mensions.

Let t,2',...,2""! be coordinate on M. We use the metric
(3) dt* — (da')?* — - = (da™™1)?
on M and the positive definite metric
(4) dr* 4 (da')* + -+ (da™™1)?

on I.



Kinetic Terms for Bosons

Consider a particle of mass m moving in some Riemannian manifold Y. It is described by a map

x : R — Y. Then the kinetic energy density is

2
dt.

m |dz
5 L, =—|—
(%) 2 | dt

The continuation to imaginary time — after dividing by ¢ — is

2

d
v dr.

dr

(6) Le=~

In higher dimensions we might consider a real scalar field on Minkowski space, which is described

by a real function ¢ : M — R. The kinetic lagrangian is

1 2 1 n—1
(7) L, = 3 |do|ay dtda™ -+ -da" ™",
where | - [5s is the norm (3) on M. The continuation to I is

1 2 1 n—1
(8) L.= 3 |dp|3 drda” - -da™ ™",

where | - |g is the Euclidean norm (4).

Potential Terms

For the particle  : R — Y, the potential energy is described by a function V : ¥ — R. The

corresponding term in the Lagrangian is

(9) Ly = — V(x(t))dt.
The continuation to imaginary time is

(10) L. =V(x(7))dr.

The extension to higher dimensions is the same: Potential terms appear with a — sign in Minkowski

actions and with a 4 sign in Fuclidean actions.



Topological Terms

Let A be a real 1-form on Y and consider the Lagrangian (for z: R — V)

(11) L, = —x"A.

The corresponding action is invariant under orientation-preserving diffeomorphisms of R, hence
the appellation ‘topological’. The continuation to imaginary time is innocuous except for the

conventional division by i:

(12) L. =ia"A.

Hence in the Euclidean (imaginary time) Lagrangian the topological term is imaginary.

The topological term (11) appears in the description of a charged particle moving in an electro-
magnetic field. Then A is the “vector potential”. (This explains why we write a — sign in (11):
the term is part of the potential energy.) In a more geometric formulation, we consider the elec-
tromagnetic field to be a connection (on Y = Minkowski space) with gauge group U(1). Relative
to a trivialization this is an imaginary 1-form « on Y. Here is a difference between most physicists
and mathematicians: Physicists write formulas in terms of A = +¢a whereas mathematicians write
formulas in terms of a. In either case the reality condition is clear. The role of the trivialization is
a more interesting story ... for another time.

In higher dimensions there is a wide variety of topological terms which appear. Typically they
are n—forms w(a) constructed from some field(s) a. In Minkowski space w(a) is real, and the

continuation to Euclidean space is exactly as in (11) and (12).

Kinetic Terms for Fermions

By ‘fermions’ here we understand any anticommuting variables, i.e., elements of an odd vector
space. To understand reality we begin with a general discussion of real structures.
Let A be an ungraded algebra over C. Then a real structure on A is a real linear map a — a*

which satisfies

(Aa)* = Aa” (AeC, acA),
(13) (ab)* = b"a” (a,be A),
(") =a (a € A).

A familiar example is the quaternion algebra. The algebra of complex n X n matrices is another
example, where * is the conjugate transpose. Notice that simple conjugation of matrix elements
does not satisfy (ab)* = b*a*. Usually there is only one real structure relevant to a given problem.

For example, the “real” matrices—those that satisfy ¢ = a—have the nice property that their



eigenvalues are real and in quantum mechanics they are the operators which correspond to real
physical quantities. In general, notice that the real elements form a real vector space Ar which
is not a subalgebra, though it is closed under anticommutators. Similarly, the imaginary elements
form a real vector space closed under brackets, i.e., a real Lie algebra. The space of derivations

Der(A) inherits a real structure from that on A by the rule

(14) D*a = (Da*)*.

It satisfies

(15) [D1, Do]* = [D7, D3].

Now suppose A is a super (Z/2-graded) algebra over C. Denote the parity of a homogeneous
element a by p(a). Then a real structure satisfies (13) modified by the sign rule:

(Aa)* = Aa” (AeC, aea),
(ab)* = (—1)P(@PO) =g~ (a,b € A),
(a*)" =a (a €A).

Notice in the commutative case that
(17) (ab)" = a™b~ (A commutative)

The super Lie algebra of derivations Der(A) inherits a real structure defined as before by (14), and
it again satisfies (15).
Many physicists use a convention which omits the sign in (16). This leads to a complication

which is explained in a footnote! (so as not to confuse the main text with inconsistent formulas).
More explicitly, this alternative convention postulates

(A) (ab)* = b*a*,

and this differs from (16) if both a and b are odd. As a consequence (14) must be modified to

(B) D*a= (a*D)",

where B denotes D thought of as acting on the right, which is accomplished via the formula

(©) bD = (—1)IP11E pp,

Taken together, (A) and (C) are an inconsistent use of the sign rule. One strange consequence is that for D odd,
D = D* if and only if D maps real even elements to real odd elements and DD maps real odd elements to imaginary



As an example, let V' be a real odd vector space and A = Sym(V') algebra of complex functions
on V. (Since V is odd the symmetric algebra is finite dimensional.) Let ¢',...,¢" be a basis of
V>, Then any product ¢ - --¢* is real, as is the derivation 0/0¢°.

As another example, consider the superspace R*l4. We usual}y use a complex basis 0a,§d (a =

1,2; & = 1,2) for the odd coordinates. The conjugate of ¢ is 6”. With our conventions, then, the

operator
0 —& 0
1 D, = - 40 .
(18) 00~ Jxoe
has conjugate
(19) Dye 2 g 9
08" gz e

Here 2%% are the complex even coordinates on R** induced from the product of spinors in the
usual way.

After these preliminaries we return to the particle x : R — Y and add an odd field ¢ which
is a section of z*IITY, the parity-reversed pullback of the tangent bundle. The field % should be
thought of as a spinor on R, but of course the spin bundle on R is trivial. In any case 1 is real and

in real time its kinetic term in the Lagrangian is

_m dip

Rotating to imaginary time and dividing by 7, we obtain

.m dip
21 Le=—1— — | dr.
(21) ! 2 (¢ dr) r
In higher dimensions suppose 4 is a complex spinor field on Minkowski space. We use a Clifford
algebra
Minkowski: (%) =1
(22)

(v)? = -1

even elements.
This convention seems to be in force in most texts and papers on (four dimensional) supersymmetry. Compare
(18) and (19) below with the usual definitions in those texts:

) 5 0
Dy = — — 46" ,
a6 Oz od
— E o
Dy =— — +16% -
8004 ax()él)é



where 70 is associated with time and 7* with space. Let

0 0 8
(23) Do =4° at+7 e

be the associated Dirac operator. Then I, is skew-adjoint. Let 1 be the conjugate spinor to 1.
Then the Lagrangian

(24) Ly = Db dtdat -« da"?

is real, where we use a bilinear pairing on the spinor fields. In Euclidean space we use a Clifford

algebra
(25) Euclidean: (I'*)* = —1

and self-adjoint Dirac operator

0 0
_ 10 7
(26) D.=T o + I e

Then the continuation of (24) to Euclidean space is

(27) Le =1 Pep.

One should only take (24) and (27) as general guidelines; the particulars of spinors in each dimension

should be considered.

Summary

For reference we collect the various types of terms in the real and imaginary time mechanics

lagrangians:
m |dz|° m dy N
(28) Ly = {5 =+ (¢, dt) V() bt — 24,
m |dz|* .m dip .
(29) Le_{? o —Z?(Qﬁ, E)—I—V(w)}dr—l—zx A.




