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Chapter 1

Introduction

1.1 Fermi theory of 3-decay

The weak interactions were discovered by Bequerel, back in 1896, when he found
accidentally that a nucleus (A, Z), where A is the atomic weight and Z the atomic
number, may decay into a different nucleus plus a [ ray (that is plus an electron)

(A7) = (A, Z+ 1)+ e (1.1)

It is important to notice that in a two-body decay of the type A — B + e, the
energy, E, of the final electron is fixed. In fact, from the conservation of the four-
momentum, pg = p4 — p, where p is the electron momentum, and going in the rest
frame of the decaying nucleus, we have

my =m’% +m: —2msE (1.2)

from which ) ) )
[ miy —mp+m;

o (1.3)

This means that if one looks at the energy distribution of the emitted electrons, the
spectrum should consist of a single line located at the energy (1.3). The experimental
situation was quite confused up to the beginning of the thirties, when it was definitely
shown that the spectrum was a continuous one. This was rather disturbing. In fact
the only known particles, at that time, were the electron and the proton. Niels Bohr
was ready to abandon the law of conservation of energy. But Pauli was much less
radical and suggested that another particle was emitted along the electron [1]. Of
course it had to be electrically neutral. As it is well known, the name proposed
by Pauli for the new particle was neutron, but later Fermi suggested rather to
use neutrino. In fact, in the mean time, the neutron was discovered by Chadwick
(1932), and it was clear from the experiments that the neutrino had a very small
mass. By then, the 8 decay of a nucleus was interpreted as the decay of a neutron,
n, inside the nucleus, into a proton, p, plus a electron-neutrino pair

n—pte +7u (1.4)



In this equation, we have anticipated two later ideas, that is the conservation of
the lepton number, and the existence of various types of neutrinos. Also, one has
to assign a spin 1/2 to the neutrino. After this, the real beginning of the weak
interaction theory starts in 1934 with Fermi description of the 3-decay in terms of
quantum field theory [2]. Fermi assumed that the emission of a electron-neutrino
pair was analogous to the electromagnetic emission of a photon. The relevance of the
Fermi theory was that, apart describing successfully the 3-decay, it was the first field
theory in which the processes were described in terms of creation and annihilation
of particles. Also, the work of Fermi made clear that it was not necessary to assume
that the electron was inside the nucleus before the decay process. The electron
neutrino pair is created by the weak interaction. As we said, the Fermi theory
tried to copy the main features of the electromagnetism, just by substituting to
the photon the electron neutrino pair. Since the electromagnetic interaction of a
charged particle is given by

Hiy = [ &7 Ay (1.5)

where 1) is the field describing the charged particle, and A, the electromagnetic
field, the Fermi ansatz for n — p 4+ e~ + 1, was

Hy = Gr [ d'F (5300) (87" 0n) (16)

Of course this was not the most general choice one could do, because in principle
one could substitute [3]

() (@) > T (GT3) (O ) (1.7)

where ['; is a generic 4 x4 matrix. These matrices can be expressed in terms of the 16
independent Dirac matrices. These are given in Table 1.1 together with the related
Dirac bilinear, their tensor character, and the non-relativistic limit, expressed in
terms of two-component spinors, ¢.

I YT tensor character non-relativistic limit
1 ) S (scalar) o'
o i V (vector) o'
O = £V W] Yo T (antisymmetric tensor) ot
yHovs Yy ys) A (axial-vector) p'G e
s = 1y0yly2y3 Prys1) P (pseudoscalar) 0




Table 1.1 -The Dirac covariant bilinear and their non-relativistic limit.

Therefore the most general interaction hamiltonian (parity-conserving) describ-
ing the nuclear $-decay A — B + e~ + 1, can be written as

Hy =G / ¢r Y c(pliva)(@Lity) (1.8)

i=S,V,T,A,P

where 14 and ¢ are the nucleon (proton and/or neutron) fields within the nucleus.
One can get a rough estimate for the nuclear $-decay, by neglecting the Coulomb
interaction of the electron. This means that the outgoing leptons can be described
by plane waves

Vo(F) = —=e'P " Tu(p) (1.9)

with the spinor u(p) solution of the Dirac equation. Since the nucleon wave functions
vanish outside the nuclear volume, we can re-write the weak hamiltonian in the form

Hy~G S am@la@) [, 07D F@roa@ dr - (110)

i=S,V,T,A,P

where p’ and ¢ are the momenta of the electron and of the neutrino respectively,
and Vy is approximately the nuclear volume. The maximum energies available for
the neutrino and/or for the electron are of the order of the mass difference between
the two nuclei, which means a few MeV (for instance, for a free neutron the mass
difference is about 1.29 MeV'), or an equivalent length, A, of order of 107'° cm. The
typical nuclear radius, Ry, is of the order 107'2 = 107" cm., therefore the argument
of the exponential in the previous integral is roughly of the order

R
(P—q) 7= TN ~ 1072+ 1073 (1.11)

We see that it is possible to make two important simplifications:
e Treat the nucleon spinors in the non-relativistic approximation.
e Replace the exponent coming from the lepton fields by 1.

Then, the relevant matrix element for the transition is

(flHwli) = (Np,e™,ve|Hw|Na) = G/d3f Z Ci<NB|1/_)BFﬂ/)A|NA>ﬂeFiUV
i=S,V,T,A,P

(1.12)
If the matrix element of the current 15I';104 between the nucleus states is different
from zero, we speak about allowed transitions. Otherwise one has to expand the
exponential to the next order, and one speaks of forbidden transitions. From
our previous estimate we deduce that the the typical rate for a first order forbidden
transition is reduced by a factor of about 10~% + 107% with respect to the rate
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of an allowed one. Then, for an allowed transition the matrix element becomes
independent of the lepton momenta and the transition rate is proportional to

wpi~ [ FLT(E — E — E,)|(f| Hivli) (1.13)

where Ey = my — mp, E the electron energy, and we have neglected the recoil of
the nucleus. By using d*¢ = |¢|E,dE,dS2,, we get

wpi & [ PPdpEAEZ — mi |(f|Hiwli) (1.14)

Then, if we consider the Kurie plot of the energy spectrum, that is

%vﬁgg;%(ﬁb—.E)O.—(E:?EJZ>U4 (1.15)

we see that it is a linear function of the electron energy, when m, = 0. The deviation
of the Kurie plot from linearity represents a powerful method to investigate the
possibility of massive neutrinos (see Fig. 1.1).

m nu=0

<M NU—> E

Fig. 1.1 -Kurie plot showing the distribution (1/p)\/dwyi/dp as a function of the

electron enerqy E.

We can perform a different type of expansion of the exponential, that is an
expansion in spherical harmonics. Each term in the expansion corresponds to a given
orbital momentum /¢ of the electron neutrino pair with respect to the final nucleus.
But for allowed transitions / = 0. Then, the angular momentum conservation
requires

Ji=Jr+S (1.16)

with J the nuclear spin, and S the spin. The possible values of S are S = 0,1,
giving the possibilities outlined in Table 1.2. Nuclear transitions are denoted Fermi
or Gamow-Teller according to the lepton pair being in a singlet or in a triplet
state. Both kind of transitions have been observed. Examples are



e pure Fermi transition

Ot - Nyt +et +v,  (Ji=J;=0) (1.17)

e pure Gamow-Teller transition

Hey - Liy+e +v. (=0, Jp=1;, AJ=1) (1.18)

e mixture of Fermi and Gamow-Teller

H} - Hei+e +v, (Ji=Jr=1/2; AJ=0) (1.19)
Transition S AJ Couplings
Fermi 0 0 S,V
Gamow-Teller 1 0,1 T, A
(0 — 0 forbidden)

Table 1.2 -The possible allowed transitions.

It is also possible to show that if all the coefficients ¢; are present in the weak
hamiltonian, then the interference terms cgcy and cacp give rise to contributions
with a behaviour 1/E which destroys the linear behaviour of the Kurie plot. There-
fore, according to the type of transition we have the following possibilities

e Fermi
cscy =0= SorV (1.20)

e Gamow-Teller
cacr=0=Tor A (1.21)

In principle one could discriminate among the various cases, but the experiments
are very difficult (one should look at the angular correlation between the electron
and the neutrino). In practice only in 1957 the couplings were definitely determined
to be V and A.

Another important process to mention in relation to the g-decay is the muon-
decay. The muon (p) was discovered in the late thirties by Anderson in cosmic
rays [4]. At first it was thought as the quantum of nuclear interactions (the Yukawa
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m-meson), but later it was shown that p’s interact weakly with matter. The muon
decay is into electron and neutrinos

po e+ v+, (1.22)

where we have already introduced the distinction between electron and muon neu-
trinos. This decay is very similar to the neutron decay with the pair (n,p) replaced
by the pair (¢~,v,), and in fact it can be described by a very similar hamiltonian
interaction. It turns out that the global effective coupling constant G has practically
the same value that was found for the nuclear -decay, and for the p-capture process
p~ +p — v, +n. This lead to the hypothesis of a universal Fermi interaction.

The value of G obtained from the p-decay is today one of the input parameters in
the Standard Model (SM) (G = 1.166389(22) - 107° GeV 72).

1.2 Parity non-conservation in weak interactions

Since 1956 it was a common belief that parity was conserved in any interaction. But
at that time particle physicists had to deal with the famous 6 — 7 puzzle [5]. This
had to do with existence of two mesons identified by the decays

0 - rtn’, ot st a4 (1.23)

From the point of view of mass, spin and life-time the two particles looked as the
same particle (see Table 1.3)

o+ +

M(MeV) 966.7 + 2.0 | 966.3 + 2.1

Life-timex 108 sec. | 1.21 +0.02 | 1.19 + 0.05

JP 0t 0~

Table 1.3 -The elements of the 8 — T puzzle.

However, the two different ways of decay were pointing at a different parity
property of the two particles. In 1956 Lee and Yang [6] made a review of the
experimental proofs of parity conservation and drew the conclusion that there was
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no evidence of parity conservation in weak interactions. They also proposed new
experiments in order to check the parity conservation law. These were based on the
fact that only the measure of pseudoscalar quantities could give informations
about the conservation of parity. For instance, in the 3-decay of a polarized nucleus,
one could look for the pseudoscalar quantity J- p, with J the spin of the nucleus
and p the momentum of the outgoing electron. The dependence of the transition
rate from such a quantity would signal a violation of parity. This suggestion was
taken up immediately, the same year, by Wu and collaborators who analyzed the
decay [7]

COBO(JP — 5+) N Ni*BO(JP — 4+) +e +17, (1.24)
This is a pure Gamow-Teller transition (AJ = S = 1). The C0% nuclei are polar-
ized by a magnetic field, and the polarization of the Ni*®* was determined by the
anysotropy of the two 7’s in the decay Ni* — Ni(JP = 0%) + 2. The experiment
showed a big asymmetry in the momentum distribution of the outgoing electrons.
This asymmetry changed sign inverting the magnetic field. This was a very clear
evidence of parity violation. The effect was that the electrons were emitted prefer-
entially in the opposite direction to the nuclear spin. In a very schematic way this
can be represented as follows

Coft (J=5) —Ni t(J=4)+e I+

Here {} denotes the spin, whereas 1 denotes the momentum direction. Neglecting the
nucleus recoil, the momentum of the electron and of the neutrino must be opposite.
Then, the outgoing electron must be mostly left-handed, and, as a consequence, the
antineutrino must be right-handed. An independent confirmation came the same
year by Garwin, Lederman and Weinrich [8] from the analysis of 77 — p* + v,
followed by pu* — et + v, + 1,. It is interesting from an historical point of view
to know that Cox and coworkers, in 1928, observed polarized electrons in Radium
decay [9]!

To take into account parity violation, one has to modify the weak hamiltonian of
eq. (1.8), inserting, for each scalar term, a corresponding pseudoscalar contribution.
For instance, in the case of the nuclear 3-decay one writes

He=E S [@RG @) G+ ) (12)

i=S,V,T,A,P

The /2 is introduced in order to have the same normalization as in the case of the
Fermi interaction, and we have introduced the standard notation, G, for the Fermi
constant. The experiments show that there is a maximal violation of parity, that is
le;s| = |ct|, therefore

_ . 32 (0 T. T
He=75 3 o [ 7 @) (@Li(1 £ 95)05,) (1.26)



For a massless neutrino, the matrices 1 £ 75 project out definite helicity states.
In fact, the helicity projectors are

1, P-=
Ei_2 (1i 7 ) (1.27)

where S
= o
5 ( ’ 5) (1.28)
where & are the Pauli matrices. The Dirac equation for a massless particle is
pulp) =0 — (B7° — - F)u(p) =0 (1.29)
or
Eu(p)=p-du(p) =0 (1.30)

where @ = 7%7. In the case of a particle, E = |p], and therefore

—

pa
WU(p)— (p) (1.31)

In the basis we have chosen for the Dirac matrices we have
. (0 ¢ o (1 0 (0 1

d =% (1.33)

It follows

Then, on the spinors describing a particle, we get

—

p;- a =u(p) — p;- Eu =Y U
7 u(p) = u(p) 7 (p) = 75 u(p) (1.34)
7S

We see that the chirality, 75, and the helicity operators coincide for massless parti-
cles. In the case of antiparticles we get

7Y
V5= T o
B

The same result applies to any high energy particle (that is with £ > m).
Coming back to our problem, since we know already that in weak interactions
only the left-handed electron plays a role, and noticing that

(1.36)

I = (n) = ot (%) %:1;1275 (1.37)
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we can argue that the neutrino component taking part in weak interactions must be
left-handed or right-handed, according to the interaction being of type V', A, or S,
T, P. This follows from

Li(l+vy)=0x)y, (i=S, T, P) (1.38)
and
Fi(l£y)=0F), @@=V, 4) (1.39)
and the use of these equations in the expression
beli(1 % 75), (1.40)

In conclusion, the interaction is dictated by the neutrino helicity. An analysis
made on the Fermi-type (A.J = 0) reaction

AP® — CPP° + et + v, (1.41)

did show that the positron and the neutrino were emitted preferentially along the
same direction, implying that the neutrino is left-handed (the electron being left-
handed in weak interactions, the positron is right-handed). In this way we get rid
of three of the coefficients ¢; appearing in Hyy, obtaining

Hi = 25 [ @3 er + o) Gopl=0i)  (142)

The coefficient ¢y, can be absorbed into G, that is we will take
oy =1 (1.43)

By looking at the interference between Fermi and Gamow-Teller amplitudes, which
gives rise to some anysotropy in the angular distribution of p, with respect to the
neutron polarization in n — p + e~ + 7., one gets

ca = —1.2540.009 (1.44)

It should be also noted that the absence of a right-handed neutrino (or a left-
handed antineutrino) implies that also the charge conjugation C' is violated. In fact,
under C' a left-handed neutrino goes into a left-handed antineutrino which does not
exist. However the C'P operation is a symmetry, since the C'P-conjugated of a
left-handed neutrino is a right-handed antineutrino.

1.3 Current-current interaction

The form V' — A of the weak interactions was generalized by Feynman and Gell-
Mann and independently by Sudarshan and Marshak in 1958 through the current-
current hypothesis [10]. This consists in writing the weak hamiltonian in the
form

Gr 3% JH(x x
HWZ% &’z J*(x) ] (x) (1.45)
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where the weak current J# (called the charged current) is the sum of two pieces, one
coming from the leptons, and the other coming from the hadrons. That is

Jh=Jk 4 JE (1.46)
where
I =" (1 = vs)ve + i (1 = 5) v + (1.47)
and
Tp = py*(ev +cavs)n + - (1.48)

In the leptonic part we have assumed the two neutrinos hypothesis. That is the
existence of two different type of neutrinos [11]. Our expression implies also the
conservation of two different leptonic numbers, the electron number

Ne = Ne- +ny, — N+ — 1 (1.49)

€

and the muon number

N, =ny +n,, —nue —ng, (1.50)

In fact, the leptonic current, and consequently Hyy, are invariant under the phase
transformations generated by the previous operators. This hypothesis has further
support by the non observation of processes as

pt—ef+v, (BR<4.9x107')
pt— et +ef+e”, (BR<1.0x1071%)
pt— et +2y, (BR<T7.2x1071) (1.51)

The dots in the leptonic current stands for a further contribution coming from the
discovery (1975) of a third charged lepton, the 7 [12]. It is natural, and consistent
with the experiments to associate a third neutrino to it, v, and a third conserved
leptonic number. The dots in the hadronic current stand for contributions from
strange mesons as

Ay (ey + cays)p (1.52)

as well as from mesons.
On the basis of the current-current interaction, we can divide up the weak pro-
cesses in three categories:

e Leptonic processes originating from JﬁJ;T, as, for example, the pu-decay
B e e+, et 0+, (1.53)
or the v (7) elastic scattering

Ve+e —Ve+e, Ug+et s, +et (1.54)
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e Semi-leptonic processes, originating form Jé‘JZ}T + h.c.. These processes
can be further classified according to the variation of strangeness induced by
the hadronic current:

AS = 0 transitions

B —nuclear decay n —p+e” + 7,
e — capture e +p—>n+r,
u — capture o +p—n+t+uy,
neutrino reactions v, +p — v, +p
m—decay 7wt —=put+uy,
strange particle decay Xt — AV et 41, (1.55)

AS =1 transitions
hyperon decay A’ —wp+e +1,
K —decay K" —put+u,
neutrino reactions 7, +p — pt + A°(X°) (1.56)

e Non-leptonic processes, originating from J[LLJ,‘L”. Again, we may classify
these processes according to the strangeness variation.

AS =0 transitions
parity violation in nuclei n+p—n+p (1.57)

AS =1 transitions
K — (decay) K —2nr, K — 37 (1.58)
Although isospin is violated in weak interactions, it is possible to establish selection

rules by using the conservation of the electric charge, (), and of the baryonic number,
B, together with the relation

Q=I3+%(B+S) (1.59)

where I3 is the third component of isospin. From this relation we get
1
AQ = Al + §AS (1.60)

In the case of semi-leptonic reactions the selection rule applies directly to the
hadronic current. Then for AS = 0 one gets AQ = Al3. Since |AQ| = 1, it
follows |Al3| = 1, implying Al = 1,2 --. In practice, transitions with A7 > 1 have
not been observed, therefore one has the selection rule AI = 1, Al; = +1. In the
case |[AS| =1, since |AS| = |AQ| = 1, one has two possibilities:
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e AS=AQ — |ALj =+ —ar=13 ..
2 2'3
e AS=-AQ — [AL| =5 —AT=27

We shall see, that at the quark level, the |AS| = 1 transitions are induced by the
quark process s — u, implying AS = AQ =1, Al; = 1/2, AT = 1/2. In practice,
the AS = AQ or the stronger AI = 1/2 rules were advocated on the basis of the
experimental facts. In the case of non-leptonic decays, since AQ = 0 (we have only
the Hy, invariance to exploit), one gets Al = 1/2 and AI = 1/2,3/2,---, in the
case |[AS| = 1. Also in this circumstance, in order to explain the smallness of some
rate, the rule AI = 1/2 was advocated, but one needs a dynamical hypothesis in
order to justify it.

We have assumed that the hadronic current is made up by pieces with AS =0
(as py*(cy + cays)n) and AS =1 (as Ay*(ey + ca75)p) having the same strength.
But the rates of the processes with AS = 0 turn out to be bigger of about a factor
20 with respect to the AS = 1 transitions. Cabibbo proposed to maintain the
universality by assuming J}' as a normalized combination of the previous two pieces
[13], that is

J = Jhg_gcos + Jig_,sinf (1.61)

with sinf = 0.21 £+ 0.03. In particular, this implies a small difference between
the Fermi constant measured in a leptonic (as p-decay) or in a semi-leptonic (as
[-nuclear decay) process

G = GYcost (1.62)
This explains a small difference that was in the data. In conclusion we write
G
Hy = —% [ d*T J"J} (1.63)

V2

with
JH=J) + Jhg_gcos + Jxg_,sinf (1.64)

We will be more explicit about the strangeness violating current when we will for-
mulate the SM for quarks.

1.4 Problems of the Fermi theory

We will consider here only the leptonic part of the weak hamiltonian

Grp - T
H, = 7 /d3x T (1.65)
with i
Jﬁ = >l —y5)we (1.66)
i=e,u,T
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The main problem of this theory is its non-renormalizability due to the four-fermi
interaction. We will recall here some elementary facts about renormalization in field
theory. First of all we will review the idea of renormalization in a theory like QED.
In general, when evaluating Feynman diagrams beyond the tree level, one encounters
divergences due to the bad ultraviolet behaviour of the theory. For instance, in 1-
loop perturbative QED the diagrams in Fig. 1.2 are divergent ones. However, one

&F@}yw

Fig. 1.2 - Feynman diagrams in QED.

can show that these divergences can be absorbed into the definition of the coupling
constant of the theory, that is the electron mass, m, and the electric charge, e, and
into a renormalization of the fields. The idea is that these parameters are arbitrary
and one has to fix them by evaluating some observable quantity. Therefore what we
are going to measure are not the original parameters appearing in the lagrangian,
called the bare ones, §;. But rather an expression of the form

Gi +0g; = g; (1.67)

where dg; is the contribution from the divergent diagrams. This means that the
bare parameters are not measurable quantities, and we have to require that only the
previous combinations (renormalized parameters) are finite. Of course, the theory
must satisfy special conditions in order that all the divergences can be absorbed into
a redefinition of the couplings. When these conditions are satisfied we say that our
field theory is renormalizable. One can show that a field theory is renormalizable
if the coupling constants g; (at this level we can avoid the distinction between bare
and renormalized couplings) have positive dimension in mass, that is

lgi] >0,  for any i (1.68)

How do we count the dimension of a coupling constant? In our system of units,
/i = ¢ = 1, all the physical quantities have dimension of a mass (or energy, or

14



length™') to some power. Let us start analyzing the dimension of a field operator.
Noticing that an action is dimensionless (in our units), the lagrangian density

S = /d“xﬁ (1.69)

has mass dimension 4
L] =4 (1.70)
Then, looking at the kinetic term for the various fields
EDirac - 1/3231/) + -
Lxa = %@d)@“(ﬁ +-e

'Cphoton = _iijFlW (171)
where
F.=0,A,—0,A, (1.72)
we see that 3
=5 [l=[A]=1 (1.73)

Knowing the field dimension it is an easy matter to evaluate the dimension of a
coupling constant. For instance, in the lagrangian density of the Fermi theory, the
coupling constant G'r multiplies an operator of the structure (¢%))%. Since this
operator has dimension 6, it follows

[Gr] = —2 (1.74)

Therefore the Fermi theory is not renormalizable. On the contrary, QE D lagrangian
density is

o 1 ,
and we see that

[m]=1. [ =0 (1.76)

implying that theory is renormalizable. The reason why the Fermi theory is not
renormalizable in the sense we have explained before is the following. The diagrams
in Fig. 1.3 are all divergent. The divergence coming from the first diagram can be
absorbed into the coefficient of (¢1))%, but to compensate the divergences coming
from the other two diagrams terms of the type (¢1))® and (1¢)* should be required
inside the lagrangian. In general, an infinite number of terms would be necessary
in order to absorb all the divergences. This is why one generally does not take
into consideration non-renormalizable theories, they lack predictivity. However one
could ask if it would be possible to use a non-renormalizable theory as an effective
theory. This means that one would regard the theory as a model in which all the
corrections to the couplings are already included in the form one starts with, but
restricting to a finite number the, a priori infinite, number of terms in the lagrangian.
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Fig. 1.3 -Feynman diagrams for the Fermi theory.

This can be generally done, but only up to some characteristic energy, which, for
instance, can be determined by looking at the unitarity property of the theory. The
unitarity requires that the scattering amplitudes are limited. However the bad high-
energy behaviour of the non-renormalizable theory leads to increasing amplitudes,
and therefore to a violation of unitarity. Consider, for instance, the amplitude for a
given process in a theory characterized by a single coupling constant g. Necessarily
the invariant amplitude coming from that particular lagrangian term will behave,
for high energies where we can neglect all the mass scales, as

A~ gE" (1.77)
where E is the characteristic energy of the process. If [¢g] = d, it follows
n=—d (1.78)

since the probability amplitude is dimensionless. However from unitarity A must be
bounded, and therefore the theory satisfies unitarity only if

n<0 (1.79)

or

d>0 (1.80)

We see that renormalizabilty and unitarity of a field theory are strictly related. In the
case of the Fermi theory, this argument can be made more quantitative, considering,
for instance, v, + e — v, + p. One finds that the differential cross-section is given
by

do  G% o

T =ZEE = ) (181)
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where f(#) is the scattering amplitude. This can be expanded in partial waves

1 & 1
[0 ==% (e + —> M, Py(cos 6) (1.82)
E= 2
Unitarity requires
|My| <1  for any ¢ (1.83)

Since in this case, ¢ = 0, it follows

1
f(0) = 57 Mo (1.84)
and y . >
g
M2 = ZEE? 1.
dQ ~ 4E? o 2 (1.85)
from which LB
<1 (1.86)

We see that we can use the Fermi theory as an effective theory (and it does work
very well) up to energies not exceeding the threshold Ej given by

m
By=|— ~ 1.
0= \[5g % 367 GeV (1.87)
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Chapter 2

Toward the construction of the
Standard Model

2.1 Intermediate vector bosons

The analogy between (QE'D and the current-current interaction can be pushed fur-
ther if one assumes that weak interactions are mediated by a spin 1 field W,. In
QFED, since the photon is massless, a four-fermi amplitude goes like a/¢?, giving rise
to a long range force. But weak interactions are short range, so we would rather need
to exchange a massive particle. Assuming that the charged weak current couples to
such a field

=17 S (W + hc) (2.1)

T 22

a process like the neutron decay (see Fig. 2.1) has an amplitude given by (see later

V

Fig. 2.1 - The neutron decay mediated by the W wvector boson.
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in this section)

M=l Lt (g LY - o) (2.2)
“UT8 ¢ — M, M3 ’

In the limit ¢> < M3, this reproduces the Fermi expression after the identification

2
R s 23)
8ME V2

The idea of intermediate vector bosons is due to Schwinger [14] and extended to
a neutral vector boson by Bludman [15] and Glashow [16]. In fact, the analogy
with the Yang-Mills theory strongly suggests the existence of a neutral current. In
fact, the Yang-Mills theory (see later) implies that the vector boson fields couple
to conserved currents with associated charges generating the Lie algebra of the
gauge group. Let us consider the v, — e contribution to the charged currents. The
corresponding charges are

Q) = / Pr Jy, QW) = / &Pz T (2.4)
with Jo = 9], (1 — 75)tb.. The commutator of these two charges gives
Q™, Q7] =20’ (2.5)
with
Q' = [dx i = [ da Wi =i w1 = 1)) (26)

The Yang-Mills theory says that there should be a further vector boson coupled to
the current .J;

JZ) = ’J)ef)/u(l - 75)’¢}e - 'J}uf)’u(l - 75)1/)1/ (27)
This current has vanishing electric charge, and the corresponding vector boson
should be neutral as well. Let us notice that this neutral vector boson cannot be
identified with the photon, since the electromagnetic current is given by (considering
again only the electron-neutrino system)

T = PeYuthe (2.8)

In particular the new vector boson, call it Z, should couple to a neutrino pair.
The existence of neutral weak currents was established at CERN in 1973, by the
discovery of the elastic scattering v, + e~ — v, +e~. Since then, neutral-current
interactions have been studied in many experiments. A distinctive feature is that
the strangeness-changing processes are strongly suppressed

['(ET — pete)
['(X~ — ne o)

LK —ptp”)
K+ — ptvgu)

<1.3x 107 <1.3x107? (2.9)
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A bonus of the introduction in the theory of the intermediate vector bosons is
the improvement in the high-energy behaviour of the amplitudes. For instance, from
eq. (2.2) it is not difficult to show that the differential cross-section for the process
v, +e — p + 1, is given by

2 174 2
do _ Gy (s (2.10)
dQ 425 \s — M3,

To get this result one has to notice that the term proportional to ¢“¢” gives a
contribution proportional to the lepton masses (and therefore negligible). We see
from the previous expression how we get different behaviours for different energies

do G?s
M2 P F
A
do G2 M4
M?2 — W 2.11
s> M = dQ) 472s ( )

For high energies the cross-section decreases avoiding the unitarity problem. How-
ever, this theory is not a renormalizable one. In fact the W-propagator goes to a con-
stant at large energies. This bad behaviour comes from the term ¢*¢", which is harm-
less for the four-fermi interaction, but it is effective in reactions as vv — WHW
or ete” — WHW . The effect is to make the cross-section increase as E?.

Summarizing what we have learned so far, we see that the necessary ingredients
we need in order to build up a sensible theory of electroweak interactions are:

e Intermediate massive vector bosons, W=, Z, and a massless photon, .
e Conservation of the various leptonic numbers.

e The W= field should couple only to left-handed doublets of fermions

(), (), o

(we shall see later how things generalize to quarks).

e The Z field couples only diagonally in strangeness and in the other quantum
numbers associated to new quarks. In general one says that Z should have
only flavour-diagonal couplings.

e Renormalizability.

As we shall see, in order to satisfy all these requirements new ideas in particle physics
have been necessary, namely

e gauge theories,
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e spontaneous symmetry breaking,
e Higgs mechanism.

At the end of this section we collect some features about the field-theoretical
description of a massive vector boson.

Massive vector bosons are described by a vector field V), which satisfies an equa-
tion of motion generalizing the Maxwell equation

(0 +m*)V, = 8,(8"V,) = 0 (2.13)

The lagrangian giving rise to this equation of motion is

1 1
L=—JFul" + §m2V2 (2.14)
where
F;w = a,uvu - auv,u (215)

If we take the four-divergence of the equation of motion we get
m?0,V* =0 (2.16)

Therefore V), has zero four-divergence as a consequence of the equation of motion.
Let us now count the number of degrees of freedom of the field V,,. To this end let
us consider the Fourier transform of V,(z)

Vi (z) = / d*keR TV (k) (2.17)

Let us introduce four independent four-vectors,

, . 1 (- Ek
k= (B k), ¢9=(0,7), i=1,2, 6 =—/[k — (2.18)
m K|
with k - 77; = 0, and |f;|> = 1. Then we can write V, (k) as
Vi(k) = eMay(k) + k,b(k) (2.19)
By inserting this expression inside the equation of motion we get
(k% — m*)(eNax(k) + kub(k)) — k,k*b(k) =0 (2.20)
that is
(k* —m?)ay =0, m?b =0 (2.21)

Therefore the field has three degrees of freedom corresponding to two transverse and
to one longitudinal polarization. All these degrees of freedom satisfy a Klein-Gordon

21



equation for a mass m. It is important to stress that the massive vector field has
one extra-degree of freedom (the longitudinal), with respect to the massless case.
By introducing a fourth normalized four-vector

) = £ (2.22)

we get a basis in the four-dimensional Minkowski space, satisfying the completeness
relation

3
Z 6;(;\)61(//\ )g)\/\’ = 9w (223)
AN =0
Therefore the sum over the physical polarizations is given by
kuk,

3
Z 61(;\)61(/)‘ )g/\)\/ = —Gu —+ 2 (224)
AN=1

The propagator for the field V,(z) is defined in the usual way

[(82 + m2)guu - auau] GV)\ = _9264(37) (2'25)
Its Fourier transform
Gle) = [ ek, (b (2.20
w(T) = (2w)4e v .
satisfies
(=K + m?) gy + kyuky) G (k) = —g) (2.27)
and we get easily
U T 1 kuky
) =— — | =g, + 2 2.2
G () / (27T)46 P_m2rie | T T (2.28)

The expression in parenthesis is nothing but the projector over the physical states
of polarization.

2.2 QED as a gauge theory

Many field theories possess global symmetries. These are transformations leaving
invariant the action of the system and are characterized by a certain number of
parameters which are independent on the space-time point. As a prototype we can
consider the free Dirac lagrangian

Lo = ()i — mly(x) (2.29)
which is invariant under the global phase transformation
Y(@) = ¥'(2) = () (2.30)
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If one has more than one field, () is a diagonal matrix having as eigenvalues the
charges of the different fields measured in unit e. For instance, a term as st ¢,
with ¢ a scalar field, is invariant by choosing Q(v;) = Q(¢) = 1, and Q(v¢) = 2.
This is a so called abelian symmetry since

ci0QiBQ _ jila+ B)Q _ ,iBQiaQ (2.31)

It is also referred to as a U(1) symmetry. The physical meaning of this invariance
lies in the possibility of assigning the phase to the fields in an arbitrary way, without
changing the observable quantities. This way of thinking is in some sort of contradic-
tion with causality, since it requires to assign the phase of the fields simultaneously
at all space-time points. It looks more physical to require the possibility of assigning
the phase in an arbitrary way at each space-time point. This invariance, formulated
by Weyl in 1929 [17], was called gauge invariance. The free lagrangian (2.29) cannot
be gauge invariant due to the derivative coming from the kinetic term. The idea is
simply to generalize the derivative 0, to a so called covariant derivative D, having
the property that D, transforms as ¢, that is

D,b(x) = [Dup()] = Q@) Dy (a) (2.32)

In this case the term B
PDy (2.33)

will be invariant as the mass term under the local phase transformation. To con-
struct the covariant derivative, we need to enlarge the field content of the theory,
by introducing a vector field, the gauge field A, in the following way

D, =0, —1eQA, (2.34)
The transformation law of A, is obtained from eq. (2.32)
(O —ieQA)Y] = (O, —ieQAL)Y ()
= (9 —ieQA)e @)y
= Q) |9, —ieQ(A!, - %aua) " (2.35)
from which ]
A=A+ gaua (2.36)
The lagrangian
Ly =9[iD —mlp = P[iv" (0, — ieQA,) — m)y = Lo+ epQy" A, (2.37)

is then invariant under gauge transformations, or under the local group U(1). In
order to determine the kinetic term for the vector field A, we notice that eq. (2.32)
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implies that under a gauge transformation, the covariant derivative undergoes a
unitary transformation

D, - D, = Qo) p ~iQa(z) (2.38)
Then, also the commutator of two covariant derivatives
[D,,D,] = [0, —ieQA,, 0, —ieQA,] = —ieQF,, (2.39)

with
F.=0,A,—0,A, (2.40)

transforms in the same way
F, — Q@) p ~iQa(2) — p (2.41)

The last equality follows from the commutativity of F),, with the phase factor. The
complete lagrangian is then

_ 1
L= Ly+ La=Pliv" (9, +ied,) = ml — 7 F P (2.42)

The gauge principle has automatically generated an interaction between the gauge
field and the charged field. We notice also that gauge invariance prevents any mass
term, %MZA”AM. Therefore, the photon field is massless.

2.3 Non-abelian gauge theories

The approach of the previous section can be easily extended to local non-abelian
symmetries [18]. We will consider the case of N Dirac fields. The free lagrangian

Lo = Z wa(lﬁ — M), (2.43)

is invariant under the global transformation
U(x) — U'(z) = AV(x) (2.44)

where A is a unitary N x N matrix, and we have denoted by ¥ the column vector
with components 1),. In a more general situation the actual symmetry could be a
subgroup of U(N). For instance, when the masses are not all equal. So we will
consider here the gauging of a subgroup G of U(N). The fields v, (z) will belong, in
general, to some reducible representation of G. Denoting by U the generic element
of G, we will write the corresponding matrix Uy, acting upon the fields ¢, as

A
U=¢l"  pyeq (2.45)
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where T4 denote the generators of the Lie algebra associated to G, Lie(G), in the
fermion representation. The generators T4 satisfy the algebra

(T4, T8 = ifaP1¢ (2.46)

where f4P are the structure constants of Lie(G). For instance, if G = SU(2), and
we take the fermions in the fundamental representation,

wl]
U= { 2.47
¥, (247
we have
oA
T = - A=1,2,3 (2.48)
where o4 are the Pauli matrices In the general case the T%’s are N x N hermitian

matrices that we will choose normalized in such a way that
1
Tr(T'T?) = §5AB (2.49)

To make local the transformation (2.45), means to promote the parameters a4 to
space-time functions
ay — aq(r) (2.50)

Notice, that now the group does not need to be abelian, and therefore, in general
67:OZATA67:ﬁATA 7£ eiﬁATAeiOzATA (2.51)

Let us recall that for each global symmetry (and consequently the following will
be valid also for the local case) there is a an associated four current with vanishing
divergence

oL

0%,
where d¢' are the infinitesimal transformations undergone by the fields, and a con-
served charge given by

JH 5¢' (2.52)

o
=05

Q:/ &Pz J° :/ Pz o6, T, (2.53)

The charge, multiplied by —i generate the infinitesimal transformation on the fields
[qu(fa t)a _ZQ] = / d?’y[qﬁj(f, t)a _ZHz(?ja t)&(]ﬁ%gj, t)] = 5¢] (fa t) (254)

where we have used the canonical commutation relations for the fields, and we have
assumed that the transformation is linear, implying

[6°(2,1), 60 (7,1)] = 0 (2.55)
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For the transformation in eq. (2.45) we have

60" = icua(T™): (2.56)
and the current
TP =ioy oL (TH): g/ (2.57)
0y

Since the parameters a4 are arbitrary we can extract a number of currents equal to
the number of the generators of the group

oL

A .

7, = —1 -
g 0P,

(T)i? (258)
with the corresponding conserved charges
0* = _7;/ B (T (2.59)

Since the charges generate the infinitesimal transformations of the fields it is obvious
that they give a representation of the Lie algebra of the symmetry group. Explicitly
we have

QLQ7 = — [ dx dYILE T (@ 1), (T, (T, 6" (7.1)]
- —z/ & Hi[TA,TB]ﬁngbm — i fABQC (2.60)
In particular, in the Dirac case, we have
= T4y, U (2.61)

Let us now proceed to the case of the local symmetry by defining again the concept
of covariant derivative

D, (z) = [Dy¥(2)]" = U(x)[Dyib(x)] (2.62)

We will put again
D, =0, —1ig9B, (2.63)

where B, is a N x N matrix acting upon ¥(z). In components
ng = 6ab8“ - ig(BM)ab (264)
The eq. (2.62) implies

D9 — (0, —igB,)U(x)¥
= U(x)d, ‘I’+U($)[ H(2)igBU (2)]¥ + (9,U () ¥
= U@)[0, — U™ (2)igB,U(z) + U™ (2)0,U (2)]¥ (2.65)
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therefore

—U N (2)igB,U(x) + U~ (z)0,U(z) = —igB, (2.66)
and
B, (z) = U(z)B,(2)U ' (z) - é(auU(fv))Ul(x) (2.67)
For an infinitesimal transformation
U(z) m 1 +iaa(z)T4 (2.68)
we get
0B, (7) = ia(x)[T*, B,(2)] + é(a“aA(a;))TA (2.69)

Since B, () acquires a term proportional to LieG, the transformation law is consis-
tent with B, linear in T4, that is

(B")ap = AL (T™) b (2.70)

The transformation law for A, becomes
1
(SAlér = — é‘BCYAA% — —G“ac (271)
g

The difference with respect to the abelian case is that the field undergoes also a
homogeneous transformation.
The kinetic term for the gauge fields is constructed as in the abelian case. In
fact the quantity
(D, D,|¥ = —igF,, ¥ (2.72)

in virtue of the eq. (2.62), transforms as ¥ under gauge transformations, that is
([Du, D) = —igF, V' = —igh,, U(x)¥
= U@)([Dy, DJ¥) = U(x) (—igFu) ¥ (2.73)

This time the tensor F),, is not invariant but transforms homogeneously, since it
does not commute with the gauge transformation as in the abelian case

F,=U(z)F,U"(z) (2.74)
The invariant kinetic term will be assumed as
1
‘CA = —§T’F[FMVF“V] (275)
Let us now evaluate F),,
—igF,, = [D,, D, =1[0,—19B,,0,—igB,]
= —ig(0,B, — 0,B,) — ¢°[By,, B.] (2.76)
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or

FIU’ = (aMBV - al/Bu) - ig[Bua Bll] (277)
in components
F" = F£'T¢ (2.78)
with
FE" = 0" A — 0V A + g fEP AL A (2.79)

The main feature of the non-abelian gauge theories is the bilinear term in the pre-
vious expression. Such a term comes because f4? # 0, expressing the fact that
Lie(G), and G are not abelian. The kinetic term for the gauge field, expressed in
components, is given by

1 v
La=—7 > FuaF) (2.80)
A

Therefore, whereas in the abelian case L, is a free lagrangian (it contains only
quadratic terms), now it contains interaction terms cubic and quartic in the fields.
The physical motivation lies in the fact that the gauge fields couple to everything
which transforms in a non trivial way under the gauge group. Therefore they couple
also to themselves (remember the homogeneous piece of transformation). From the
point of view of renormalizability we can notice that both the covariant derivative
term and the kinetic lagrangian for the gauge fields have mass dimension equal to
4.

2.4 The Standard Model for the electroweak in-
teractions

We have now the elements to start to formulate the Weinberg Salam model for the
electroweak interactions [19]. As usual we will consider here only the leptonic sector
restricted to the electron and to its neutrino (here v = v,)

— - -i- —
IO = b=, IO =IO =G0 (281)

To understand the symmetry hidden in this couplings it is convenient to introduce
the following spinors with 2 X 4 components

e= () == () (252

where we have introduced left-handed fields. The right-handed spinors, projected
out with (1 + 75)/2, don’t feel the weak interaction. This is, in fact, the physical
meaning of the V' — A interaction. By using

L= ((1/_),,)L, (&e)L) = (QEV’T/_)e) 1 —;75

(2.83)
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we can write the weak currents in the following way

2
= 2 ((%)L, (1/36)L) o ((1) 8) (Eﬁ”?i) =2Ly,7 L (2.84)
where we have defined w
=1 (2.85)

the 7;’s being the Pauli matrices. Analogously

J$) = 2Ly, L (2.86)

The interaction between these currents and the intermediate vector bosons is then
given by

9

2V2

Introducing real fields in place of W,

_ _ g = _
Ling = === [JOW 4 g W] = LW F WL (2.87)

et = M F iy (2.88)
V2
we get
L = gmu(ﬁwlﬂ WL (2.89)

Let us now try to write the electromagnetic interaction within the same formalism

Lom = e0eQube A" = e,Q <1 —;75%1 —275 n 1 —275%1 —;%) o Al
= e[(Ve) QY (Vo)L + (V) RQVL(Ye) R] A (2.90)
where Lt ) 1
(We)p = —F—=te;  (Ye)r =1 (2.91)
where () = —1 is the electric charge of the electron, in unit of the electric charge of

the proton, e. It is also convenient to denote the right-handed components of the
electron as

R = (te)r (2.92)
We can write 0 0 .
(Ve) L7u(te) . = L (0 1) L= LWTT?’L (2.93)
and ) i
(Ye) RYu(Ve)r = Ry, R (2.94)
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from which, using () = —1,
1- _ _
Lom = <—§L7ML ~RyR+ L%%L> AP = gjem A (2.95)

From this equation we can write

a1
i =gn+ 5]5 (2.96)
with -
. T 3
gy = L7”§L (2.97)
and B B
j¥ = —Ly,L —2Ry,R (2.98)

These equations show that the electromagnetic current is a mixture of jf:, which is
a partner of the charged weak currents, and of j}f, which is another neutral current.
The following notations unify the charged currents and jz

- 7 T
gy = L7u§L (2.99)

These currents are of the form (2.61), and their associated charges span the Lie
algebra of SU(2),

Q" Q'] = iejQ" (2.100)
The charge Q" associated to the current j) commutes with @', as it can be easily

verified noticing that the right-handed and left-handed fields commute with each
other. Therefore the algebra of the charges is

@, Q] =ieinQ*,  [QQ"]=0 (2.101)

This is the Lie algebra of SU(2) ® U(1), since the Qs generate a group SU(2),
whereas QY generates a group U(1), with the two groups commuting among them-
selves. To build up a gauge theory from these elements we have to start with an
initial lagrangian possessing an SU(2) ® U(1) global invariance. This will produce
4 gauge vector bosons, which is the number we just need, see Section 2.1. By eval-
uating the commutators of the charges with the fields we can read immediately the
quantum numbers of the various particles. We have

L0Q)= [ daiLori(5) Li=(3) L (2.102)

and
[R,Q"1=0 (2.103)
[Le,Q"]=—L., [R.Q"]=—-2R (2.104)
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These relations show that L transforms as an SU(2) spinor, or, as the representation
2, where we have identified the representation with its dimensionality. R belongs to
the trivial representation of dimension 1. Putting everything together we have the
following behaviour under the representations of SU(2) ® U(1)

Le(2-1), Re(l,-2) (2.105)

The relation (2.96) gives the following relation among the different charges

Qem = Q° + %QY (2.106)

As we have argued, if SU(2) ® U(1) has to be the fundamental symmetry of
electroweak interactions, we have to start with a lagrangian exhibiting this global
symmetry. This is the free Dirac lagrangian for a massless electron and a left-handed
neutrino

Lo = LidL + RidR (2.107)
Mass terms, mixing left- and right-handed fields, would destroy the global symmetry.
For instance, a typical mass term gives

- 14+ 1—=7v 1—7% 1+
mww:mw’f{ Dy

] ¥ =m(Prr + Prr)  (2.108)

We shall see later that the same mechanism giving mass to the vector bosons can be
used to generate fermion masses. A lagrangian invariant under the local symmetry
SU(2) ® U(1) is obtained through the use of covariant derivatives

F. . Titrri g = . .
L = Li* <8u — zg§WM + Z§YM> L+ Rin* (0, +igY")R (2.109)
The interaction term is
7 T ju 97 i 1D ju
Lint = gL, 3 WHI L — §L7”LY — ¢ Ry, RY (2.110)

In this expression we recognize the charged interaction with W*. We have also, as
expected, two neutral vector bosons W3 and Y. The photon must couple to the
electromagnetic current which is a linear combination of j and j¥. The neutral
vector bosons are coupled to these two currents, so we expect the photon field,
A,, to be a linear combination of Wlf’ and Y),. It is convenient to introduce two
orthogonal combination of these two fields, Z,, and A,. The mixing angle can be
identified through the requirement that the current coupled to A, is exactly the
electromagnetic current with coupling constant e. Let us consider the part of L;,
involving the neutral couplings

!
Lyo = gis Wi + %j}jw (2.111)
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By putting (@ is called the Weinberg angle)

W3 =2 cosf + A sinf
Y =—-Z sinf+ A cosf (2.112)

we get

. N
AF + [gcos@ Jp—g'sin 9535 ZH (2.113)

. . 1.
Lyc = |gsind j, + ¢ cos 95]5
The electromagnetic coupling is reproduced by requiring the two conditions
gsinf = g'cosf =e (2.114)

These two relations allow us to express both the Weinberg angle and the electric
charge e in terms of ¢ and ¢'.

In the low-energy experiments performed before the LEP era (< 1990) the fun-
damental parameters used in the theory were e (or rather the fine structure constant
«) and sin®f. We shall see in the following how the Weinberg angle can be elim-
inated in favor of the mass of the Z, which is now very well known. By using eq.
(2.114), and j&™ = j3 + 17, we can write

Lyc = eji A" + [gcos0j) — ¢'sin0(j;™ — j2)] 2" (2.115)

Expressing ¢’ through ¢’ = gtan @, the coefficient of Z, can be put in the form

. . . cem g . g . -em
[gcos + ¢'sin 9]]2 —¢'sinf j;" = o 9]3 ~sd sin 6 g (2.116)
from which
__.em q .3 .9 .em _ .em q .7
Lyc =ej, A" + COSH[J” —sin® 0 j"| 2" = e m AY + osp'h z" (2.117)

where we have introduced the neutral current coupled to the Z

ji=jp —sin*@ jom (2.118)
The value of sin? § was evaluated initially from processes induced by neutral currents
(as the scattering v — e) at low energy. The approximate value is

sin? § ~ 0.23 (2.119)

This shows that both ¢ and ¢’ are of the same order of the electric charge. Notice
that the eq. (2.114) gives the following relation among the electric charge and the
couplings ¢ and ¢’

b (2.120)

1 1 1
2 g

e g
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2.5 Spontaneous symmetry breaking

We have seen that the charged couplings are neatly recovered within the context
of a gauge theory. Also one has a renormalizable scheme. However we know that
three of the four vector bosons we have introduced have to get mass. This requires
that we break in some way the gauge invariance of the theory. However, doing
that, one would destroy the renormalizability property. The only way out appears
to be spontaneous symmetry breaking because, as we shall see this allows to get
non-symmetric result out of an invariant formulation. This leaves us some hope
to preserve renormalizability. The general framework of a spontaneous symmetry
breaking theory is based on the following two points

e The theory is invariant under a symmetry group G.

e The fundamental state of the theory is degenerate and transforms in a non
trivial way under the symmetry group.

Just as an example consider a scalar field described by a lagrangian invariant under
parity
P: ¢— —0¢ (2.121)

The lagrangian will be of the type
1
L= §3u¢>3”¢ — V(¢?) (2.122)
If the vacuum state is non degenerate, barring a phase factor, we must have
P|0) = |0) (2.123)

since P commutes with the hamiltonian. As a consequence P|0) and |0) having the
same energy must coincide. It follows

(0]¢|0) = (0|P~"P¢P~'P|0) = (0| PP ~"|0) = —(0[¢|0) (2.124)
from which
(0]p|0) =0 (2.125)

Things change if the fundamental state is degenerate. This would be the case in the
example (2.122), if
% A
V(¢") = 56" + 79" (2.126)

with 2 < 0. In fact, this potential has two minima located at

¢p==%v, v=\(\—-7 (2.127)
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By denoting with |R) e |L) the two states corresponding to the classical configura-
tions ¢ = +v, we have
PIR) = |L) # |R) (2.128)

Therefore
(R|¢|R) = (R|P 'P¢P 'P|R) = —(L|¢|L) (2.129)

which now does not imply that the expectation value of the field vanishes. From
our point of view we will be rather interested in the case of continuous symmetries.
So let us consider this case with two scalar fields, and a lagrangian with symmetry
0(2)

—

(- 0)° (2.130)

NP

L=206-0"0— 166~

NN

where

¢ 6= ¢t + 93 (2.131)
For 2 > 0 there is a unique fundamental state (minimum of the potential) qg =0,
whereas for y? < 0 there are infinite degenerate states given by

6 = ¢} + 65 = v” (2.132)

with v defined as in (2.127). By denoting with R(f) the operator rotating the fields
in the plane (¢1, ¢2), in the non-degenerate case we have

R(0)]0) = |0) (2.133)
and
(0l¢|0) = (0O|R~'RpR~"R|0) = (0]¢°|0) = 0 (2.134)

since ¢’ # ¢. In the case u? < 0 (degenerate case), we have
R(0)|0) = |0) (2.135)

where |#) is one of the infinitely many degenerate fundamental states lying on the
circle |¢|? = v?. Then

(0l¢:10) = (OIR™"(0) R(0) R~ (0) R(0)[0) = (06710) (2.136)

with

o) = R(0)¢:R " (0) # (2.137)
Again, the expectation value of the field (contrarily to the non-degenerate state)
does not need to vanish. The situation can be described qualitatively saying that the
existence of a degenerate fundamental state forces the system to choose one of these
equivalent states, and consequently to break the symmetry. But the breaking is only
at the level of the solutions, the lagrangian and the equations of motion preserve
the symmetry. One can easily construct classical systems exhibiting spontaneous
symmetry breaking. For instance, a classical particle in a double-well potential.
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This system has parity invariance * — —=z, where x is the particle position. The
equilibrium positions are around the minima positions, +x,. If we put the particle
close to xg, it will perform oscillations around that point and the original symmetry
is lost. A further example is given by a ferromagnet which has an hamiltonian
invariant under rotations, but below the Curie temperature exhibits spontaneous
magnetization, breaking in this way the symmetry. These situations are typical for
the so called second order phase transitions. One can describe them through the
Landau free-energy, which depends on two different kind of parameters:

e Control parameters, as ;2 for the scalar field, and the temperature for the
ferromagnet.

e Order parameters, as the expectation value of the scalar field or as the
magnetization.

The system goes from one phase to another varying the control parameters, and the
phase transition is characterized by the order parameters which assume different
values in different phases. In the previous examples, the order parameters were zero
in the symmetric phase and different from zero in the broken phase.

The situation is slightly more involved at the quantum level, since spontaneous
symmetry breaking cannot happen in finite systems. This follows from the existence
of the tunnel effect. Let us consider again a particle in a double-well potential, and
recall that we have defined the fundamental states through the correspondence with
the classical minima

r=xy— |R)
x=—x9— |L) (2.138)

But the tunnel effect gives rise to a transition between these two states and as a
consequence it removes the degeneracy. In fact, due to the transition the hamiltonian
acquires a non zero matrix element between the states |R) and |L). By denoting
with H the matrix of the hamiltonian between these two states, we get

H= {60 61} (2.139)
€1 €
The eigenvalues of H are
(60 + €1,€ — 61) (2140)
We have no more degeneracy and the eigenstates are
1
|5) = —=(R) +|L)) (2.141)

S

2
with eigenvalue Fg = ¢y + €;, and

1

[4) = —=(1R) = 1)) (2.142)

S

2

35



with eigenvalue F4 = ¢y — €;. One can show that ¢; < 0 and therefore the funda-
mental state is the symmetric one, |S). This situation gives rise to the well known
effect of quantum oscillations (for instance the K°— K° transitions). We can express
the states |R) and |L) in terms of the energy eigenstates

5
L) = 5 (18) — |4)) (2.143)

Let us now prepare a state, at t = 0, by putting the particle in the right minimum.
This is not an energy eigenstate and its time evolution is given by

_ 1 (Bt Bt 1 Bt _itAE
|R,t) = 7 <e 1S) +e |A>> = —\/56 <|S> +e |A>>
(2.144)

with AE = E4 — Eg. Therefore, for t = 7/AFE the state |R) transforms into the
state |L). The state oscillates with a period given by

27

T=""
AE

(2.145)
In nature there are finite systems as sugar molecules, which seem to exhibit sponta-
neous symmetry breaking. In fact one observes right-handed and left-handed sugar
molecules. The explanation is simply that the energy difference AFE is so small that
the oscillation period is of the order of 10* — 10°¢ years.

The splitting of the fundamental states decreases with the height of the potential
between two minima, therefore, for infinite systems, the previous mechanism does
not work, and we may have spontaneous symmetry breaking. In fact, coming back
to the scalar field example, its expectation value on the vacuum must be a constant,
as it follows from the translational invariance of the vacuum

(0]¢(2)[0) = (0" T 3(0)e =T |0) = (0]¢(0)]0) = v (2.146)

and the height of the potential between the two minima becomes infinite in the limit
of infinite volume

4

H(p=0)—H($=uv)= —/V &z l”;v? + %#l - g /V &z = Z—Av (2.147)

2.6 The Goldstone theorem

From our point of view, the most interesting consequence of spontaneous symmetry
breaking is the Goldstone theorem [20]. This theorem says that for any continuous
symmetry spontaneously broken, there exists a massless particle (the Goldstone
boson). The theorem holds rigorously in a local field theory, under the following
hypotheses
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e The spontaneous broken symmetry must be a continuous one.
e The theory must be manifestly covariant.
e The Hilbert space of the theory must have a definite positive norm.

We will analyze the theorem in the case of scalar field theory with symmetry O(3).
Let us consider the lagrangian

—

! % (2.148)

= — OFD— —b - b —
L=20,5-005- 155

R

An infinitesimal rotation along the direction 7 (|7i|> = 1) can be written as
b= b+0pAT (2.149)

In fact a rotation leaves invariant the norm of a vector, therefore for an infinitesimal
rotation we get . . . .
6> = ¢ +60]* = |]* + 26 - 50 (2.150)
from which o
¢ =0 (2.151)

Since for a rotation around the unit vector 7, we must have 5q§ orthogonal to 7, it
follows

5¢ =04 A7t (2.152)
where 6 is the infinitesimal rotation angle. For instance, if 77 = (0,0, 1)
opr = 0
Oy = —0¢
53 = 0 (2.153)

By defining 77 = 07, we can also write

¢l — (5lm + 6almﬁa)(lj)m = (1 + Z.Tana)lm(ﬁm (2-154)

with the infinitesimal generators defined by

(Ta)im = —i€aim (2.155)
The finite transformation will be
& — (eieT ' ﬁ) b (2.156)
Im
The conditions that V' must satisfy in order to have a minimum are
ov -
— =12+ Agy|p|> =0 (2.157)
Oy
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with solutions
$=0, |g>=1" 0= —_;L (2.158)

The character of the stationary points can be studied by evaluating the second
derivatives

0%V
a¢l a¢m

We have two possibilities

= Sim (1” + NDI) + 2\ P16m (2.159)

e 112 > 0, we have only one real solution given by 5 = 0, which is a minimum,
since
0?V
a¢la¢)m
e 112 < 0, there are infinite solutions, among which gz; = 0 is a maximum. The

points of the sphere |§|2 = v? are degenerate minima. In fact, by choosing
¢ = vd;3 as a representative point, we get

= Opmpt® >0 (2.160)

0%V
ad)l ad)m

= 2A0%0130,3 > 0 (2.161)

Expanding the potential around this minimum we get

L1V
minimum 9 a¢la¢m

-

V(p) =V

(61 — v13) (dm — VOm3) (2.162)

minimum

If we are going to make a perturbative expansion, the right fields to be used are
¢ — d;3, and their mass is just given by the coefficient of the quadratic term

Mim = 50 inimo = ~ 21 0303 = | 0 0 0 (2.163)
¢l ¢m 0 0 _2,“2

Therefore the masses of the fields ¢y, ¢o, and x = ¢35 — v, are given by
mj, =m?, =0, m? = —2u° (2.164)

By defining
m? = —2u° (2.165)

we can write the potential as a function of the new fields
m 1 m2\ A 2
V= 1o tam Xt 5ox@ - +x) + L (s + a3+ x°) (2160)

In this form the original symmetry O(3) is broken. However a residual symmetry
O(2) is left. In fact, V depends only from the combination ¢?+ @3, and it is invariant
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under rotations around the axis we have chosen as representative for the fundamen-
tal state, (0,0,v). It must be stressed that this is not the most general potential
invariant under O(2), in fact this would depend on 6 coupling constants, whereas
the one we got depends only on two parameters m and A. Therefore spontaneous
symmetry breaking puts heavy constraints on the dynamics of the system. We have
also seen that we have two massless scalars and two continuous symmetry broken
correspondingly to rotations around the axis 1 and 2. This can be seen also in terms
of generators. The state that we have chosen as representative of the vacuum (the
fundamental state) can be written, in field space, as

0
0)= {0 (2.167)

The expression for the O(3) generators is (see eq. (2.155))

0 0 0 0 0 —1 0 1 0
Ty=—i|0 0 1|, To=-i|0 0 0], T3=—i|—-1 0 0| (2.168)
0 -1 0 1 0 0 0 0 0

and we easily verify that
Ty £0,  Ta0)£0,  Tylo) =0 (2.160)

The first two relations show that the vacuum is not invariant under rotations around
the axis 1 and 2, whereas the third ensure the remaining O(2) symmetry. The
generators of O(3) divide up naturally in the generators of the vacuum symmetry
(here O(2)), and in the so called broken generators, each of them corresponding to
a massless Goldstone boson. In general, if the original symmetry group G of the
theory is spontaneously broken down to a subgroup H (which is the symmetry of
the vacuum), the Goldstone bosons correspond to the generators of G which are left
after subtracting the generators of H. Intuitively one can understand the origin of
the massless particles noticing that the broken generators allow transitions from a
possible vacuum to another. Since these states are degenerate the operation does
not cost any energy. From the relativistic dispersion relation this implies that we
must have massless particles. One can say that Goldstone bosons correspond to flat
directions in the potential.

2.7 The Higgs mechanism

At first sight the spontaneous symmetry breaking mechanism does not seem to fulfill
our hopes to solve the mass problem. On the contrary we get more massless particles,
the Goldstone bosons. However, once one couples spontaneous symmetry breaking
to a gauge symmetry, things change. In fact, if we look back at the hypothesis
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underlying a gauge theory, it turns out that Goldstone theorem does not hold in
this context. The reason is that it is impossible to quantize a gauge theory in a way
which is at the same time manifestly covariant and has a Hilbert space with positive
definite metric. This is well known already for the electromagnetic field, where one
has to choose the gauge before quantization. What happens is that, if one chooses
a physical gauge, as the Coulomb gauge, in order to have a Hilbert space spanned
by only the physical states, than the theory looses the manifest covariance. If one
goes to a covariant gauge, as the Lorentz one, the theory is covariant but one has
to work with a big Hilbert space, with non-definite positive metric, and where the
physical states are extracted through a supplementary condition. The way in which
the Goldstone theorem is evaded is that the Goldstone bosons disappear, and, at
the same time, the gauge bosons corresponding to the broken symmetries acquire
mass. This is the famous Higgs mechanism [21].
Let us start again with a scalar theory invariant under O(2)

Ly e B o A e s
L=350u0-0'6-16-6-(5-9) (2.170)
and let us analyze the spontaneous symmetry breaking mechanism. If p? < 0 the
symmetry is broken and we can choose the vacuum as the state
—
A

After the translation ¢; = y 4w, with (0]x|0) = 0, we get the potential (m? = —2u?%)

6=@0), v= (2.171)

m* 1 m2\ A
V= oy oI X (95 4 X7 + (05 + ) (2.172)

In this case the group O(2) is completely broken (except for the discrete symmetry
¢ — —¢2). The Goldstone field is ¢ . This has a peculiar way of transforming
under O(2). In fact, the original fields transform as

01 = —apz, 0o = gy (2.173)

from which
dx = —adpo, dpo = ax + au (2.174)

We see that the Goldstone field undergoes a rotation plus a translation, av. This
is the main reason for the Goldstone particle to be massless. In fact one can have
invariance under translations of the field, only if the potential is flat in the corre-
sponding direction. This is what happens when one moves in a way which is tangent
to the surface of the degenerate vacua (in this case a circle). How do things change
if our theory is gauge invariant? In that case we should have invariance under a
transformation of the Goldstone field given by

dpo(z) = afx)x(x) + a(z)v (2.175)
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Since «a(x) is an arbitrary function of the space-time point, it follows that we can
choose it in such a way to make ¢9(x) vanish. In other words it must be possible
to eliminate the Goldstone field from the theory. This is better seen by using polar
coordinates for the fields, that is

o=+ oh  sinf= 2 (2.176)
Vo1 + 93

Under a finite rotation, the new fields transform as

p—p, 0— 0+« (2.177)

It should be also noticed that the two coordinate systems coincide when we are close
to the vacuum, as when we are doing perturbation theory. In fact, in that case we
can perform the following expansion

= 2 219 2 0 ~ P2 %@ 2.178
p=oh+ 2+ 2w+t ru+x, i (2.178)

Again, if we make the theory invariant under a local transformation, we will have
invariance under

6(z) — 0(z) + a(x) (2.179)

By choosing a(x) = —f(x) we can eliminate this last field from the theory. The only
remaining degree of freedom in the scalar sector is p(x).

Let us study the gauging of this model. It is convenient to introduce complex
variables

6= (o +itn), o = (61— it (2.150)
The O(2) transformations become phase transformations on ¢
b — el (2.181)
and the lagrangian (2.170) can be written as
£ = 0,610 — p26'6 — A(9'0)? (2.182)

From Section 2.2 we know that we can promote a global symmetry to a local one
by introducing the covariant derivative

0y — (0, —igA,)d (2.183)

From which

L= (0, +igA)p (0" —igA)p — 1i*dTd — A(pTp)? — iFWFW (2.184)

41



In terms of the polar coordinates (p, §) we have

1 ; 1 .
6= ﬁpel", ot = e i (2.185)

By performing the following gauge transformation on the scalars
6 ¢ = pe W0 (2.186)

and the corresponding transformation on the gauge fields
1
Ay — A=A~ gaue (2.187)

the lagrangian will depend only on the fields p and A, (we will put again A}, = A,)

1 20 A, 1
L= 5(0u —igAu)p(0" +1gAu)p — %pQ =0 = Fw " (2.188)

In this way the Goldstone boson disappears. We have now to translate the field p
p=X+uv, (0[x|0) =0 (2.189)

and we see that this generates a bilinear term in A,, coming from the covariant

derivative, given by

)

1
3 gPvP A, A" (2.190)

Therefore the gauge field acquires a mass
m? = g*v® (2.191)

It is instructive to count the degrees of freedom before and after the gauge trans-
formation. Before we had 4 degrees of freedom, two from the scalar fields and two
from the gauge field. After the gauge transformation we have only one degree of
freedom from the scalar sector, but three degrees of freedom from the gauge vector,
because now it is a massive vector field. The result looks a little bit strange, but
the reason why we may read clearly the number of degrees of freedom only after the
gauge transformation is that before the lagrangian contains a mixing term

A,0"0 (2.192)

between the Goldstone field and the gauge vector which makes complicate to read
the mass of the states. The previous gauge transformation realizes the purpose of
making that term vanish. The gauge in which such a thing happens is called the
unitary gauge.
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We will consider now the further example of a symmetry O(3), already discussed
in the previous Section. The lagrangian invariant under local transformations is

1 2 \
£ = 5 (D)inbn( D" — 0161 = 5 (616)” (2.193)
where
(D#)lm = 6lmau - ig(Ta)lmW; (2194)
and we recall also that (T,);, = —i€um. In the case of broken symmetry (u® < 0),

we choose again the vacuum along the direction 3, with v defined as in (2.171)
d)l == U(Slg (2195)

The mass term for the gauge field is given by
1
—59202(Ta)z3(Tb)z3W;W“a (2.196)

and using
(To)i3(Th)13 = —€azenis = —(dap — 0a30p3) (2.197)

we get

10
(Mw )2, = g*0*(ap — Gasdes) = g°0* | 0 1 (2.198)
0 0

o O O

Therefore, the two fields W; e Wi, associated to the broken directions 77 e T,
acquire mass, whereas W37 associated to the unbroken symmetry O(2), remains
massless.

In general, if G is the global symmetry group of the lagrangian, H the subgroup
of G leaving invariant the vacuum, and Gy the group of local (gauge) symmetries,
Gw € G, one can divide up the broken generators in two categories. In the first
category fall the broken generators lying in Gy ; they have associated massive vector
bosons. In the second category fall the other broken generators; they have associated
massless Goldstone bosons. The situation is represented in Fig. 2.2.

By using the O(3) example we can show how to eliminate in general the Gold-
stone bosons. In fact we can define new fields £ and x as

¢ = (eiTO‘fC“)B (x +v) (2.199)

where the index « takes the values 1 e 2, that is the sum is restricted to the broken
directions. The other degree of freedom is in the other factor. The correspondence
among the fields ¢ and (&3, &, x) can be seen easily by expanding around the vacuum

<€iTa§a>l3 ~ O3+ i(Th)i3&1 + i(T2)13€2 = O3 + e1zén + eazéa = (=2, &1, 1) (2.200)
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Fig. 2.2 -This figure shows the various groups, G, the global symmetry of the
lagrangian, H € G, the symmetry of the vacuum, and Gy, the group of local sym-
metries. The broken generators in Gy correspond to massive vector bosons. The
broken generators do not belonging to Gy, correspond to massless Goldstone bosons.

from which
dr = (=&, &1, (X +v) = (—vé2, v€1, X + ) (2.201)

showing that &, are really the Goldstone fields. The unitary gauge is defined through
the transformation

o (7 To8e) gy = Gslx+0) (2.202)
Im
W, — e_iTagaWueiTaga — é <3ue_iT0‘€“> etilata (2.203)

This transformation eliminates the Goldstone degrees of freedom and the resulting
lagrangian depends on the field y, on the two massive vector fields W; and Wi, and
on the massless field W7

2.8 The Higgs sector in the Standard Model

According to the discussion made in the previous Section, we need three broken
symmetries in order to give mass to W* and Z. Since SU(2) ® U(1) has four
generators, we will be left with one unbroken symmetry, that we should identify
with the group U(1) of the electromagnetism (U(1)em), in such a way to have the
corresponding gauge particle (the photon) massless. As we see from Fig. 2.2 the
group U(1)em must be a symmetry of the vacuum (saying that the vacuum should
be electrically neutral). To realize this aim we have to introduce a set of scalar fields
transforming in a convenient way under SU(2) ® U(1). The simplest choice turns
out to be a complex representation of SU(2) of dimension 2 (Higgs doublet). As we
already noticed the vacuum should be electrically neutral, so one of the components
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of the doublet must also be neutral. Assume that this component is the lower one,
than we will write

B — ¢+} (2.204)

¢0

To determine the weak hypercharge, QY, of ®, we use the relation

Qem = Q° + %QY (2.205)

for the lower component of ®. We get

QY (¢°) = 2 x [0 _ (_%)} —1 (2.206)

Since QY and Q' commute, both the components of the doublet must have the same
value of Q" and using again eq. (2.205), we get

=1 (2.207)

DN =

1
Qem(¢)+) = 5 +

which justifies the notation ¢* for the upper component of the doublet.

The most general lagrangian for ® with the global symmetry SU(2) ® U(1) and
containing terms of dimension lower or equal to four (in order to have a renormal-
izable theory) is

Litiggs = 0,104 ® — 1*®T® — \(0TD)? (2.208)

where A > 0 and p? < 0. The potential has infinitely many minima on the surface
2 2
I v

DL ium = — o = — 2.209

| |m1n1mum 2)\ 2 ( )

with )
2 M

_ " 2.210

=k (2.210)

Let us choose the vacuum as the state

(0|0 = L}/Oﬂ} (2.211)

By putting
@—[ 0 ]+[ ¢ }:q) + @' (2.212)
~le/v2l T L) fv2] T '
with
(0]@’[0) = 0 (2.213)
we get
1 1
O = S0+ vh+ |61 + (0% + ) (2.214)
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from which

1t 1 1 2
Vitggs = =35+ A0%h? + 200k (167 4+ S (02 + 7)) + A (167 + 5 (02 + 7))
(2.215)
From this expression we read immediately the particle masses (¢~ = (¢™)1)
my =mj, =mj- =0 (2.216)
and
mi = 2% = —2u° (2.217)

It is also convenient to express the parameters appearing in the original form of the
potential in terms of m? e v (u? = —2m2, A = 2m} /v?). In this way we get

m; m; 1 m2 1 2
is:_22 _hh2 —hh< +12 _h2 2) _h< +12 —h2 2>
Vitggs = —2m + 02 + L1 (16 P o S (02 7)) + 2 (167 P 4 (0 + )
(2.218)
Summarizing we have three massless Goldstone bosons ¢* and 7, and a massive
scalar h. This is called the Higgs field.

As usual, by now, we promote the global symmetry to a local one by introducing
the covariant derivative. Recalling that ® € (2,1) of SU(2) ® U(1), we have

-g — T -g
D) =9, - inT W =iV, (2.219)
and
Litiggs = (D) @)’ D"'® — 1?00 — \(970)? (2.220)

To study the mass generation it is convenient to write ® in a way analogous to the
one used in eq. (2.199)

(I):eZgF/U

0
o+ h,)/\/i] (2.221)

According to our rules the exponential should contain the broken generators. In fact
there are 7, and 7, which are broken. Furthermore it should contain the combination
of 1 and 73 which is broken (remember that (1 + 73)/2 is the electric charge of the
doublet @, and it is conserved). But, at any rate, 73 is a broken generator, so the
previous expression gives a good representation of ® around the vacuum. In fact,
expanding around this state

i) = e e Loyl

o L[ i& - i)
~ ﬂ[(wh—z’gg)} (2.222)
and introducing real components for ® (¢+ = (¢1 — i) /V/2)
_ L[ hr—iey
= u+h+m} (2.223)
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we get the relation among the two sets of coordinates

(¢17¢27777 h) ~ (627 —51,—53,h) (2224)

By performing the gauge transformation
o e 6 T/Vg (2.225)
i, 5 = I T, DS T L (g€ T E TS o)

Y, =Y, (2.227)

the Higgs lagrangian remains invariant in form, except for the substitution of ® with
(0, (v+h)/+/2). We will also denote old and new gauge fields with the same symbol.
Defining

@d:[(l’ , @u:m (2.228)

the mass terms for the scalar fields can be read by substituting, in the kinetic term,
® with its expectation value

v
d— —0 2.229
\/5 d ( )
We get
i v (9 - w9 s d v
—i =T W+=Y | —=b; = —i|—=(W +7.W")+=pW’+=Y | —=>o
(57 5v) Ggme = = (Gt maw Gt ) o,
.U g + ]- 3 !
= —1— |—=WT"0, — =(¢gW°—¢gY)d 2.230
\/5 |A/§ 2(9 g ) d] ( )
Since &, and ¥, are orthogonals, the mass term is
2 2 1
% l%|w+|2 + (g~ g'Y)Ql (2.231)

From eq. (2.114) we have tanf = g'/g, and therefore

!/

S - (2.232)
Vo' +g” Vo' +g”

allowing us to write the mass term in the form

sinf =

1)2

2 2 2
_|_
v [95|W+|2+u

4

5 (W3 cosf — Y sin 9)2] (2.233)

From eq. (2.112) we see that the neutral fields combination is just the Z field,
orthogonal to the photon. In this way we get

2,2 1 g2 12
%|W*|Q+§g Zg V272 (2.234)
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Finally the mass of the vector bosons is given by

1 1
Miy = g%, Mj= (4" + g%y (2.235)

Notice that the masses of the W* and of the Z are not independent, since their
ratio is determined by the Weinberg angle, or from the gauge coupling constants
M2 2
W9~ cos?0 (2.236)
M; ¢ +¢

Let us now discuss the parameters that we have so far in the theory. The gauge
interaction introduces the two gauge couplings g and ¢’, which can also be expressed
in terms of the electric charge (or the fine structure constant), and of the Weinberg
angle. The Higgs sector brings in two additional parameters, the mass of the Higgs,
my,, and the expectation value of the field ®, v. The Higgs particle has not been yet
discovered, and at the moment we have only an experimental lower bound on my,
from LEP, which is given by m;, > 60 GeV. The parameter v can be expressed in
terms of the Fermi coupling constant G. In fact, from eq. (2.3)

Gr g9’
- = 2.237
V2 8ME ( )
using the expression for M3, we get
1
v? ~ (246 GeV)? (2.238)

~ V2Gr

Therefore, the three parameters g, ¢’ and v can be traded for e, sin?6# and Gp.
Another possibility is to use the mass of the Z

1 1 e? T
M2 ="C = 2.239
72 4\2Gpsin?0cos?f T \/2Gp sin 0 cos? 0 ( )
to eliminate sin® 6
1 4oy
sin==-1—-,|1— — 2.240
2 V2G M2 ( )

The first alternative has been the one used before LEP. However, after LEP1, the
mass of the Z is very well known

My = (91.1863 £ 0.0020) GeV (2.241)

Therefore, the parameters that are now used as input in the SM are a, G and M.

The last problem we have to solve is how to give mass to the electron, since it is
impossible to construct bilinear terms in the electron field which are invariant under
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the gauge group. The solution is that we can build up trilinear invariant terms in
the electron field and in ®. Once the field ® acquires a non vanishing expectation
value, due to the breaking of the symmetry, the trilinear term generates the electron
mass. Recalling the behaviour of the fields under SU(2) ® U(1)

L e (2-1), R e (1,-2), P e (2,+1) (2.242)

we see that the following coupling (Yukawian coupling) is invariant

Ly = gef,CIDR +h.c. = ge [(&V)La (&e)L]

¢)+
d)O (¢8)R +h.c. (2.243)

In the unitary gauge, which is obtained by using the transformation (2.225) both
for ® and for the lepton field L, we get

= = 0
Ly = 0. (@), ()] [(H ) /3| Wor+he (2.244)
from which o B
Ly = S5 Wn+ T5 @) (bmh + he. (2.245)
Since
- -1 1 - 1— -
(G elrl! = Be2200)1 = vl Loy = Fo——"20e = ()l
(2.246)
we get g g
Ly = Ewewe + ﬁweweh (2247)
Therefore the symmetry breaking generates an electron mass given by
me = — 22 (2.248)

V2

In summary, we have been able to reproduce all the phenomenological features
of the V' — A theory and its extension to neutral currents. This has been done with a
theory that, before spontaneous symmetry breaking is renormalizable. In fact, also
the Yukawian coupling has only dimension 3. The proof that the renormalizability
of the theory holds also in the case of spontaneous symmetry breaking (u? < 0)
is absolutely non trivial. In fact the proof was given only at the beginning of the
seventies by 't Hooft [22].
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2.9 The electroweak interactions of quarks and
the Cabibbo-Kobayashi-Maskawa matrix

So far we have formulated the SM for an electron-neutrino pair, but it can be
extended in a trivial way to other lepton pairs. The extension to the quarks is a
little bit less obvious and we will follow the necessary steps in this Section. First
of all we recall that in the quark model the nucleon is made up of three quarks,
with composition, p =~ uud, n = udd. Then, the weak transition n — p+e~ + 7, is
obtained through

d—u+e +, (2.249)

and the assumption is made that quarks are point-like particles as leptons. There-
fore, it is natural to write the AS = 0 hadronic current (see Section 1.3) in a form
analogous to the leptonic current (see eqgs. (2.84) and (2.86))

JHD =20 i U, (2.250)

0 () =152 con

Remember that for the nucleon we wrote

with

TXs=0 = Py (ev + cavs)n (2.252)

This is interpreted saying that the axial-current coupling is renormalized due to the
bound state effects, and therefore ¢4, ~ —1.25. On the other hand the vector current
does not get renormalized due to its conservation, implying ¢y, = 1. This is the same
as for the electric charge, which is +2/3 for the u quark, -1/3 for the d quark, and
+1 for the proton. In a similar way we can write down the AS = 1 part of the
hadronic current

JAE = 20 i (2.253)
with ,
r_furL _ 1 =% (u
Y= <5L> 2 <8> (2.254)

Recalling that the hadronic current (see eq. 1.61) has the form
J'=Jkg_ogcosOc + Jhg_;sinfc (2.255)
where 6¢ is the Cabibbo angle, and collecting together the two currents we get
JHE) = 2Q 4" Qy (2.256)

with

— uL uL
@ = <dL cosbOc + sz, sin90> (d(5> (2.257)
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and
dS = dy, cos ¢ + sp sinf¢ (2.258)

This allows us to assign (), to the representation (2,1/3) of SU(2) @ U(1). In fact,
from

Qun = @+ 30 (2.259)
we get 9 1 1
and (Qem(s) - Qem(d) - _1/3)

As far as the right-handed components are concerned, we assign them to SU(2)

singlets, obtaining
4 2
ug € (1, g) d € (1, —g) (2.262)

Therefore, the hadronic neutral currents contribution from quarks u, d, s are given

by

. — T

= Qi Q1 (2.263)
Y = 1@ i — EJC ds; 2.264
Juy = 3 QL + 3UR’YMUR 3 RVuOR (2.264)

Since the Z is coupled to the combination jz — sin? 9]’5, it is easily seen that the
coupling contains a bilinear term in the field d given by

cos? 6

- 1 -
Zrd%y,dS + 3 sin? 02" d%,dS, (2.265)

This gives rise to terms of the type ds and 5d which produce neutral current tran-
sitions with AS = 1. But we saw in Section 2.1 that these transitions are strongly
suppressed. In a more general way we can get this result from the simple observation
that Wj is coupled to the current jﬁ which has an associated charge Q* which can
be obtained by commuting the charges Q! and Q?

Q.QY = [ EidIQinQr Qin@i) = [ EiQin s
— / POl mQL =i / Br(ubug — dS1dS) (2.266)

The last term is just the charge associated to a Flavour Changing Neutral Current
(FCNC). We can compare the strength of a FCNC transition, which from

d°Td¢ = d'd cos® O + sTssin? o + (dJrs + sTd) sin O cos O¢ (2.267)
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is proportional to sin ¢ cosf, with the strength of a flavour changing charged
current transition as u — s, which is proportional to sin fs. From this comparison
we expect the two transitions to be of the same order of magnitude. But if we
compare K° — p*p~ induced by the neutral current , with K+ — p*v, induced by
the charged current (see Fig. 2.3), using BR(K® — pu*p™), we find

[(K® = ptp”)
(Kt — pty,)

<6x10° (2.268)

0 § +
K Z H K* W H

_—»_ _—»_

Fig. 2.3 - The neutral current flavour changing process K° — u*u~ and he charged
current flavour changing process K™ — ptv,.

This problem was solved in 1970 by the suggestion (Glashow Illiopoulos and
Maiani, GIM) that another quark with charge +2/3 should exist, the charm [23].
Then, one can form two left-handed doublets

u c
=) @=(%) (2.260)
L L
where
s¢ = —dpsinfc + sy cos O (2.270)

is the combination orthogonal to d¥. As a consequence the expression of Q* gets
modified
Q? = / Bz (ulug, + b ep — dSTdS — s6159) (2.271)

But
A8 + s9TsC = dl dp + st sy, (2.272)

since the transformation matrix

<dg> _ ( cos f¢ sin90> (dL> (2.273)

st —sinf- cosfOc Sr,
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is orthogonal. The same considerations apply to QY. This mechanism of cancellation
turns out to be effective also at the second order in the interaction, as it should
be, since we need a cancellation at least at the order GZ% in order to cope with
the experimental bounds. In fact, one can see that the two second order graphs
contributing to K° — p*p~ cancel out except for terms coming from the mass
difference between the quarks u and ¢. One gets

AK® = ptp™) = Gr(m2 —m?2) (2.274)

allowing to get a rough estimate of the mass of the charm quark, m. ~ 1+ 3 GeV.
The charm was discovered in 1974, when it was observed the bound state cc, with
JPC =177 known as J/1. The mass of charm was evaluated to be around 1.5 GeV'.
In 1977 there was the observation of a new vector resonance, the Y, interpreted as
a bound state bb, where b is a new quark, the bottom or beauty, with m, ~ 5 GeV.
Finally in 1995 the partner of the bottom, the top, ¢, was discovered at Fermi Lab.
The mass of the top is around 175 GeV. We see that in association with three

leptonic doublets
(%), (%ﬂ , (%) (2.275)
€ /L Ky T /L

there are three quark doublets

<Z>L’ <§>L’ (Z)L (2.276)

We will show later that experimental evidences for the quark b to belong to a doublet
came out from PEP and PETRA much before the discovery of top. Summarizing
we have three generations of quarks and leptons. Each generation includes two
left-handed doublets

(“), C“) A=1,23 (2.277)
€a/p da/,

and the corresponding right-handed singlets. Inside each generation the total charge
is equal to zero. In fact

2 1
QEOt:ZQfZO_l_F?)X(___):O (2278)
fean 3 3

where we have also taken into account that each quark comes in three colors. This
is very important because it guarantees the renormalizability of the SM. In fact, in
general there are quantum corrections to the divergences of the currents destroying
their conservation. However, the conservation of the currents coupled to the Yang-
Mills fields is crucial for the renormalization properties. In the case of the SM for
the electroweak interactions one can show that the condition for the absence of these
corrections (Adler, Bell, Jackiw anomalies [24]) is that the total electric charge of
the fields is zero.
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We will complete now the formulation of the SM for the quark sector, showing
that the mixing of different quarks arises naturally from the fact that the quark
mass eigenstates are not necessarily the same fields which couple to the gauge fields.
We will denote the last ones by

/ V,Iq / qu
AL — (6’ > ) dar, = (dl > ) A= 17 27 3 (2279)
A/ L A/ L

and the right-handed singlets by
€iry  UWap, UR (2.280)

We assume that the neutrinos are massless and that they do not have any right-
handed partner. The gauge interaction is then

L = > far <i8u+gg.Wu+g,QY§fL)

fr
/QY(fR)

+ Y far (i@u +g T) Y far (2.281)
Ir

Yu) Y far

where far, = 0y;, ¢4r, and far = €45, Wyg, d'yp. We recall also the weak hyper-
charge assignments

1
QY(EIAL) = -1, QY(‘JIAL) = g
4
QY(‘fIAR) = -2, QY(UIAR) = 3
Q" (dap) = —; (2.282)

Let us now see how to give mass to quarks. We start with up and down quarks, and
a Yukawian coupling given by

where ® is the Higgs doublet. When this takes its expectation value, () =
(0,v/+/2), a mass term for the down quark is generated

9ga¥ 5 7 gal 3

— (dpdr + dgdy ) = —=dd 2.284

\/§ ( LYR R L) \/§ ( )
corresponding to a mass mg = —g4v/v/2. In order to give mass to the up quark we

need to introduce the conjugated Higgs doublet defined as

d = iny®* = (ff;}}) (2.285)
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Observing that QY (®) = —1, another invariant Yukawian coupling is given by
udr Pug + h.c. (2.286)

giving mass to the up quark, m, = —g,v/ V2. The most general Yukawian coupling
among quarks and Higgs field is then given by

Ly = Z (gilBg;lL(I)elBR + gng(j;lL&)ulBR + gg\BqlALq)dlBR) (2.287)
AB

where g5, with i = e, u, d, are arbitrary 3 x 3 matrices. When we shift ® by its
vacuum expectation value we get a mass term for the fermions given by

v —_ B _
Lermion mass = 7 > (948larn + 9ipTarting + 94pdardsr) (2.288)
AB

Therefore we obtain three 3 x 3 mass matrices

MAB = _LgilB7 L= €, u, d (2289)

V2

These matrices give mass respectively to the charged leptons and to the up and
down of quarks. They can be diagonalized by a biunitary transformation

M= STM'T (2.290)

where S and T are unitary matrices (depending on i) and M} are three diagonal
matrices. Furthermore one can take the eigenvalues to be positive. This follows
from the polar decomposition of an arbitrary matrix

M = HU (2.291)

where HY = H = VMM is a hermitian definite positive matrix and Uf = U~ is a
unitary matrix. Therefore, if the unitary matrix S diagonalizes H we have

H;=S"HS =STMU'S = StMT (2.292)

with 7" = U~'S is a unitary matrix. Each of the mass terms has the structure
Py M. Then we get

My = PLS(STMT)T Wy = Y Mayr (2.293)
where we have defined the mass eigenstates

vy =S¢r, Vg =Tyr (2.294)

We can now express the charged current in terms of the mass eigenstates. We have
J:(h) = 204 VuT=Gar, = 2 Vudar = 2ﬂAL7u((Su)_ISd)ABdBL (2.295)
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Defining

V=(s's! vi=y~! (2.296)
we get
JEH) = 2,17,dY) (2.297)
with
dV) = Vigdpr, (2.298)

The matrix V' is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix [25], and it
describes the mixing among the down type of quarks (this is conventional we could
have chosen to mix the up quarks as well). We see that its physical origin is that,
in general, there are no relations between the mass matrix of the up quarks, M",
and the mass matrix of the down quarks, M¢. The neutral currents are expressions
which are diagonal in the ”primed” states, therefore their expression is the same also
in the basis of the mass eigenstates, due to the unitarity of the various S matrices.
In fact

i~ — dydy = ag(S*) 1S ug — dp (8% 'Sy, = ugug —drdy,  (2.299)
For the charged leptonic current, since we have assumed massless neutrinos we get

Jﬁ(ﬂ = 20417u(S%) anenr, = 203 Vuear (2.300)

where v/, = (S°)tyy, is again a massless eigenstate. Therefore, there is no mixing
in the leptonic sector, among different generations. However this is tied to our
assumption of massless neutrinos. By relaxing this assumption we may generate a
mixing in the leptonic sector producing a violation of the different leptonic numbers.

It is interesting to discuss in a more detailed way the structure of the CKM
matrix. In the case we have n generations of quarks and leptons, the matrix V,
being unitary, depends on n? parameters. However one is free to choose in an
arbitrary way the phase for the 2n up and down quark fields. But an overall phase
does not change V. Therefore the CKM matrix depends only on

n*—(2n—1)=(n—1)? (2.301)

parameters. We can see that, in general, it is impossible to choose the phases in such
a way to make V real. In fact a real unitary matrix is nothing but an orthogonal
matrix which depends on
n(n —1)
2
real parameters. This means that V' will depend on a number of phases given by
nn—1) (n—1)(n—2)

number of phases = (n —1)% — 5 = 5 (2.303)

(2.302)

Then, in the case of two generations V' depends only on one real parameter (the
Cabibbo angle). For three generations V' depends on three real parameters and
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one phase. Since the invariance under the discrete symmetry C'P implies that all
the couplings in the lagrangian must be real, it follows that the SM, in the case
of three generations, implies a C'P violation. A violation of C'P has been observed
experimentally by Christensen et al. in 1964 [26]. These authors discovered that
the eigenstate of C' P, with CP = —1

1
V2

decays into a two pion state with CP = +1 with a BR
BR(K) —» ntn ) ~2x107? (2.305)

K3) = —= (IK°) - |K")) (2.304)

It is not clear yet, if the SM is able to explain the observed C'P violation in quanti-
tative terms.

To complete this Section we give the experimental values for some of the matrix
elements of V. The elements V,; and V,,; are determined through nuclear (-, K—
and hyperon-decays, using the muon decay as normalization. One gets

|Via) = 0.9736 £ 0.0010 (2.306)

and
|Vius| = 0.2205 + 0.0018 (2.307)

The elements V., and V., are determined from charm production in deep inelastic
scattering v, + N — p+ ¢+ X. The result is

V.a| = 0.224 4 0.016 (2.308)

and
|Ves| = 1.01 £0.18 (2.309)

The elements V,;, and V., are determined from the b — u and b — ¢ semi-leptonic
decays as evaluated in the spectator model, and from the B semi-leptonic exclusive
decay B — D*{v,;. One gets

Vi
M = 0.08 £0.02 (2.310)
|Ves|
and
|Vip| = 0.041 £ 0.003 (2.311)
More recently from the branching ratio ¢ — Wb, CDF (1996) has measured |Vj|
Vis| = 0.97 £ 0.15 + 0.07 (2.312)

A more recent comprehensive analysis made by the Particle Data Group [27] gives
the following 90 % C.L. range for the various elements of the CKM matrix

0.9745 — 0.9757  0.219 — 0.224 0.002 — 0.005
V=1 0218-0.224 0.9736 — 0.9750  0.036 — 0.046 (2.313)
0.004 — 0.014 0.034 — 0.046  0.9989 — 0.9993
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2.10 The parameters of the SM

It is now the moment to count the parameters of the SM. We start with the gauge
sector, where we have the two gauge coupling constants g and ¢'. Then, the Higgs
sector is specified by the parameters p and the self-coupling A. We will rather use
v = /—p2/X and mi = —2p®. Then we have the Yukawian sector, that is that
part of the interaction between fermions and Higgs field giving rise to the quark and
lepton masses. If we assume three generations and that the neutrinos are all massless
we have three mass parameters for the charged leptons, six mass parameters for the
quarks (assuming the color symmetry) and four mixing angles (see Section 2.9). In
order to test the structure of the SM the important parameters are those relative to
the gauge and to the Higgs sectors. As a consequence one assumes that the mass
matrix for the fermions is known. This was not the case till two years ago, before the
top discovery, and its mass was unknown. The masses of the vector bosons can be
expressed in terms of the previous parameters. However, the question arises about
the better choice of the input parameters. Before LEP1, the better choice was to
use quantities known with great precision related to the parameters (g, ¢’,v). The
choice was to use the fine structure constant

1
@ 137.0359895(61)

(2.314)

and the Fermi constant
Gr = 1.166389(22) x 107> GeV ™2 (2.315)

as measured from the 3-decay of the muon. Then, most of the experimental research
of the seventies and eighties was centered about the determination of sin?#. The
other parameters as (my, my,) affect only radiative corrections, which, in this type of
experiments can be safely neglected due to the relatively large experimental errors.
Therefore, in order to relate the set of parameters (o, Gp,sin?6) to (g, ¢’,v) we can
use the tree level relations. The situation has changed a lot after the beginning of
running of LEP1. In fact, the mass of the Z has been measured with great precision,
dMz/Myz =~ 2 x 107°. In this case the most convenient set is (o, G, Mz), with

My = (91.1863 £+ 0.0020) GeV (2.316)

Also the great accuracy of the experimental measurements requires to take into
account the radiative corrections. We will discuss this point in more detail at the end
of these lectures. However we notice that one gets informations about parameters
as (my, my) just because they affect the radiative corrections. In particular, the
radiative corrections are particularly sensitive to the top mass. In fact, LEP1 was
able to determine the top mass, in this indirect way, before the top discovery.
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Chapter 3

The phenomenology of the SM in
the low-energy limit

3.1 The low energy limit of the SM

Let us recall from Section 2.4 that the interaction of the fermions with the gauge
fields is given by

Lo = g2+ L0y (31)

or, in terms of the vector boson mass eigenstates

Lt = Q(JNW1 +]2W“) + —9 ZZ“ + ejemA“ (3.2)
where
j7 = —sin2 0o (3.3)
and )
G = dut Sin (3.4)

In the formal limit My, M; — oo, corresponding to processes with typical en-
ergies much below the mass of the massive vector bosons, one gets an effective
current X current interaction at the second order in the gauge couplings g and ¢’

1
~ 5 /‘Cint ® Eint (35)

In the limit one can substitute to the vector boson propagator a J-function (see eq.
(2.28)) with the result

2

7 zu g Y ARYAT emAu 3.6
2M3V ;‘7 2(:0329M§]“‘7 e (36)
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(notice that we have not eliminated, or integrated out, the photon field). The iden-
tification of the Fermi constant can be made by noticing that the charged currents
defined in eqs. (2.84) and (2.86), are related to the currents j;iu i=1,2, by

1) opel — o2
Jfb ) = 2(]u $1]u) (3.7)

We get, for the charged effective interaction

2
chareed — _I__ y(+) j(ou (3.8)
i 8Mz, "
from which G )
F 9
D 3.9
V2 8ME (39)
The expression for L is generally written in the form
G
Lo = 42 (G750 4 pjZ i7" + ejemAr (3.10)

V2

where, in the case of the SM one has

My

= 3.11
M2 cos? 0 (3:11)

p
This relation follows from the choice of the Higgs field as an SU(2) doublet. if the

Higgs field is assigned to a representation of spin ¢ of SU(2) (T2 = (¢ + 1)), then
one has

2
ME = %[t(t+1)—t§]v2
My = (¢ +g")3 (3.12)

This result can be easily extended to the case of several Higgs multiplets. In any
case, if all the Higgs fields are chosen to be doublets, then the relation p = 1
follows. Therefore the low-energy study of the neutral couplings allows us to test
the representation to which the Higgs field belongs to, as well as to measure the
value of sin?#, as it follows from the expression of jf. On the other hand, the
charged interaction gives us only the measure of the Fermi constant Gp.

In the case of the SM, from eq. 3.3 we get

Gr
V2

showing, for # — 0, a symmetry SU(2). This symmetry is called the custodial
SU(2).

Log =4=2 ((p)* + (G2? + (G — sin® 055™)?) + ejimA¥ (3.13)
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From the expression of jf we can write

= (fL9£7qu + ng{ﬂufR) (3.14)
f
where
gl = 1/ —sin?0Q/,
gh = —sin?0Q7 (3.15)

Another parameterization is in terms of Dirac spinors. Recalling that

1F
frr = 275f (3.16)
we get
, le s
Ji =5 22 F (el = vunsgh) 1 (3.17)
7
where

g = gl +gh=T{ —2sin0Q!
gh = gl —gh=T{ (3.18)

3.2 Electron-neutrino scattering

The electron-neutrino scattering is an ideal process to test the structure of the
neutral currents due to the fact that it involves only point-like objects (as far as we
know, that is up to LEP energies). However it is a very difficult experiment because
the cross-sections are very tiny. Since we will consider this process at low energy,
it can be described as a currentxcurrent interaction. Therefore the cross-section
should be proportional to G%, and taking into account the dimensionality and the
Lorentz invariance of the cross-section we expect

o~ sG (3.19)

where s = (p; + p2)? is the usual Mandelstam invariant. In the laboratory frame,
if pp = (E,,p,) is the neutrino four-momentum, and p, = (mT,ﬁ) is the target
four-momentum, we get

o~ 2mrE,G5 (3.20)

Therefore, the typical ve cross-section, for neutrinos with energy of 1 GeV, is of the
order of

Ei ~meG2 = 2.7 x 10 Lem2GeV ! = 2.7 x 10 *nbarnGeV ! (3.21)

v
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For comparison, remember that the typical electromagnetic cross-section, as for
ete” — ptp, is of the order of

o 78(;€7V2)nbarn (3.22)
We see that the difficulty of the experiment is in its very low statistics. In the
case of neutrino-nucleon scattering, one gains a factor of about 2000 in the cross-
section, but the theoretical interpretation is much more complex (see later). The
cleanest processes are v, +e~ — v, +e”, or ¥, +e~ — U, + e, because they
are pure neutral current processes. In fact they are generated by the Z exchange.
For the experiment one needs beams of neutrinos. These are produced by letting
decay the pions and the kaons produced from high-energy proton scattering on a
fixed target. The typical decays are 7 — pu+v,, K = p+v,, K — 7°uv,, ete.
After their production, pions and kaons are focused and let decay inside a vacuum
tunnel. After that the muons are absorbed. For the experiment one does not need to
know the energy of the incoming neutrino, if one measures energy and momentum
of the outgoing electron. In fact the unknown quantities of the problem are the
energy of the incoming neutrino (the direction is known), and the momentum of the
outgoing neutrino. Since the scattering happens on a plane we need three relations
to determine these variables. The relations are the energy conservation and the
conservation of the spatial momentum on the scattering plane. In principle there is
a problem with the background due to the neutrino nucleon interactions. However
this can be eliminated by noticing that the outgoing electrons are strongly peaked
in the forward direction. In fact, one can simply show that the electron scattering

angle is given by ’ 5

.. 92 me

sin® 5 = — (1 - E) (3.23)
where F is the energy of the outgoing electron. Since m, < FE, one has ¢ < 1. By
the same argument the neutrino nucleon scattering has a flat distribution and the
background can be easily subtracted. In 1973 in the bubble chamber Gargamelle,
at CERN, the first event v, + e~ — 7, + e~ was observed. This was the discovery
of the neutral currents. In a period of two-years a total of three such events were
observed in 1.4 million pictures (with ~ 10° antineutrinos per pulse). After 7 years
of observations in six experiments, only about 100 events were found.

By a standard calculation one gets the relevant cross-sections

o) = 0, (1) + Lo (321
and )
7(i6) = 0 B, [105)7 + (55 (3.25)
or, in terms of g{, and ¢%
o(vue) = 2”;;% E, [90* + 9795 + 95°] (3.26)

62



JA

-1.00 -.50 .00 .50 1.00
1.00 I I 1.00
50 - .60
.00 .00

0.0 0
-50 ' : -.50
\anze
\Tll Vu
-1.00 : : -1.00
-1.00 -.50 .00 .50 1.00
Ov

Fig. 3.1 - 68% C.L. contours in the plane (gy,ga) from the elestic scattering
processes v,e and Uye.

and o (2
me e e e e

= TFE,; [9\/2 —9vga Tt 9,42] (3.27)

In this calculation we have assumed that the coupling of the neutrino to the Z is

the one of the SM, that is

o(7,e)

14 14 1
o == (3.25)
If we do the further assumption that the couplings of the electron are the ones of

the SM, that is

1 1
g5 = 5+ 2sin*0, ¢4 = -5 (3.29)
we can fit the value of sin?@. For instance, in [28] the result was
sin?# = 0.231 £ 0.023 (3.30)

If one leaves the parameter p arbitrary (see the Section 3.1), one can fit both p and
sin? 6
sin?f = 0.231 £0.024,  p = 0.989 & 0.052 (3.31)
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If one leaves the couplings of the electrons arbitrary, the measure of the two cross-
sections gives a four-fold ambiguity, see Fig. 3.1. This can be partially removed by
using the reaction v, +e — v, +e. This was studied by Reines in 1976 by antineutri-
nos produced in a reactor. The process involves also the charged current. However
one still remains with a two-fold ambiguity. The situation was completely settled
down at SLAC in 1978 using the scattering eD — eD with polarized electrons.
Notice that by using the SM one has the relation

o(vye = vue) 1 —4sin® 0+ Lsin® g
o(v,e — ve) 1 —4sin?f+ 16sin* 0

(3.32)

The advantage is that the systematic errors (as those coming from the neutrino flux)

cancel in the ratio. Furthermore, the error in sin? is strongly reduced
10R

§sin? ~ = — 3.33

sin SR (3.33)

One of the last evaluations of sin® 6 by these methods was done by CHARM-II at

CERN in 1991. Using about 1300 events from v,e and about 1500 from 7,e they

got
sin?# = 0.237 £ 0.009 (stat.) & 0.007 (syst.) (3.34)

3.3 Neutrino-nucleon scattering

We have already said that the cross-section in the neutrino reactions depend on the
mass of the target. In particular, the cross-section of vN processes is about 2000
times bigger than the cross-section of the ve reactions. However, the elementary
process takes place at the level of quarks, so one has to describe the nucleon as
a bound state of point-like objects. Due to the non-perturbative nature of the
problem its theoretical description is much less clear than the one we have in pure
leptonic processes. We recall here very briefly how one deals with this problem in
the context of the parton model. The nucleon is thought of as a composite object
made of quarks and gluons (the partons). The typical reaction one considers is the
so-called deep-inelastic scattering, where an ingoing lepton (electron or neutrino)
exchange a vector boson (v, W or Z) of high momentum with the nucleon. The
main idea is that the interaction time of the vector boson with a single parton is
much bigger than the typical interaction time of the hadronic interaction, or that the
momentum of the vector boson is much higher than the typical scale of the strong
interactions (Agep &~ 200 MeV). In this approximation we can treat the partons
as free objects. In the phenomenological description of these processes there are
various problems. For instance, the momentum and the energy of the target (the
parton inside the nucleon) are not known. Then one introduces the momentum
distribution of the parton ¢ inside the nucleon, N

¢ (x)dx (3.35)
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the probability that the parton ¢ has a fraction of the momentum of the nucleon, NV,
between z and = + dz. Also the flavour of the target is not known. In fact, when
including QC D corrections, one has to take into account the possibility that a quark
inside the nucleon emits a gluon producing a quark-antiquark pair. In this case the
vector boson may interact with the antiquark. This can be taken into account by
introducing also a density of antiquarks inside the nucleon. For simplicity we will
neglect the presence of antiquarks in our discussion. In this hypothesis the charged
current, in a process like vN — puX, will interact necessarily with quarks of type
d. However, the neutral current, in processes like vN — vX, will interact with
quarks of type d and u. It is then convenient to consider isoscalar targets, that is
targets having the same number of protons and neutrons. From isospin invariance
it is easily found that

0(x) = qi(z) =u(z),  qu(2) = ¢, (x) = d(z) (3.36)

Therefore for isoscalar targets the average structure function observed both from
charged and neutral currents is

Flz) = % (u(z) + d(z)) (3.37)

Using this description one can evaluate the double differential cross-sections for
charged and neutral currents

do®“(v,N = un=X) 2G%ME,
= T
dxdy T

F(z) (3.38)

and

doNC(w,N = v,X) 2G%(ME,
= x
dxdy T

F(z) [(91* + 98" + (g8* + ) (1 — »)?] (3.39)

where M is the nucleon mass and y is the ratio of the energy of the final lepton
over the energy of the initial one. Integrating over x and y and taking the ratio the
dependence on F(x) cancels out and we get

O'NC(V)

-~ 7 = u2 d? 1 u 2 u2
= 5000~ (1" +91) + 309" +91°) (3.40)

3
In analogous way, by considering the reactions by antineutrinos one gets

oVC (D)
O'CC(D)

u 2 u u
R, = = (91> +97") +3(gk> + g} (3.41)

Of course these equations do not allow us to determine the various couplings, but

within the SM we get

1 2
R, = 5~ sin® 6 + 2—2 sin® ¢ (3.42)
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and

1 20
R, = 5 sin? @ + n sin* 0 (3.43)

These two measures are not completely equivalent, in fact R, is more sensitive to
sin? @ than R;. In fact, for sin®f ~ 1/4, one gets

17 . 1.,

6R, ~ ——8sin’0, OR, ~ ~§sin’f (3.44)

27 9
Also experiments had a better statistics for the neutrino reactions, since the available
flux of neutrinos was about 5 times higher then the one of antineutrinos. A very
clean theoretical observable is the Paschos-Wolfenstein ratio [29]

SRR "

The reason is that in the differences the antiquarks structure functions contribution
cancels out. Unfortunately a good experimental determination would require a flux
of antineutrinos comparable to the one of neutrinos. In any case the combined
results of these measures gave (see, for instance, [30])

sin? § = 0.233 4 0.006 (3.46)

with an error which is about half of the one obtained in the ve scattering (see eq.
(3.34)). These measures were mostly performed at CERN and FNAL by various
collaborations.

3.4 ete  scattering

Before the experimentation in e*e~ at the Z-peak, as done at LEP and SLC, the
neutral current has been studied in this process by using the interference between
the electromagnetic and the weak amplitudes (the one due to the Z exchange)
which contribute to ete™ — ff, as illustrated in Fig. 3.2 [32]. This interference
was studied at various laboratories as SLAC (Stanford), with a total energy of F ~
30 GeV, DESY (Hamburg) with E ~ 47 GeV, and KEK (Japan) with E ~ 55 GeV'.
Here we will consider only processes with final fermions different from electrons, in
order to avoid the complications due to two more diagrams corresponding to the y
and the Z exchange in the crossed channel (t-channel). At energies £ < My, and
recalling that e = gsin#, we have roughly that the electromagnetic and the weak
amplitudes behave as

e? e?

~ — ~ — 3.47
Moep S Mwpak M% ( )

66



Fig. 3.2 -The electromagnetic and the weak contributions to the scattering et e~ —

TI(f#e).

Therefore the comparison of the interference contribution to the cross-section to the
pure electromagnetic one gives

MoepMwrak o~ 95

~ (3.48)
Mbep M
whereas for the pure weak contribution we get
2
Mivpax ( i ) (3.49)
Mbep M3

Therefore, at the energies we have listed above, the interference can vary between
10 + 35%. On the other hand the pure weak contribution is practically observable
only at the Z resonance.

It is convenient to consider the cross-section for polarized fermions. Since we
have conservation of helicity at high energies (where we can neglect the fermion
masses) it turns out that there are only 4 independent cross-sections. For instance,
if we specify the initial electron to be left-handed, the cross-section is different from
zero only if the initial positron is right-handed, and so on. One has, in the center
of mass reference frame

dO'i]' . 1
dQ) lem 6472

M, i,j=LR (3.50)

where the indices i, refer to the helicity of the initial electron and of the final
fermion respectively, and

u

2
|MLL|2 = 4€4|6LL|2 (;)
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u 2
Maprl? = 4e|epn) (—)

S
t 2
|MLR|2 = 464|6LR|2 (;)

t 2
Mp? = delens|? (g) (3.51)

where s, ¢t and u are the usual Mandelstam invariant variables. The ¢;; are defined
as follows

Gz’j(s) = Qr — 8g; gff(s) (3.52)
with )
s
s) =
1(s) 8sin?fcos?s — Mz +iMzl'y,
We have assumed here a Breit-Wigner form for the Z-propagator (see later on). No-
tice that the factors u and ¢ in the invariant amplitudes M;; reflect the conservation
of helicity as can be seen using

(3.53)

t 1 — cos U 1+ cose
L = 7 3.54
s 2 s 2 (3:54)

The unpolarized cross-section for the production of a single fermion f is given by

j_g = Z‘—z[cs(l + cos? ) 4 2C 4 cos 1)) (3.55)
where
Cs = JUess()P + lenn(s) P + leza(s)? + lers (5)P)
Cx = e +lern(s) = s ~ lens(s)P) (3.56)

The unpolarized cross-section is parity invariant, but it brings track of the axial-
couplings present in the neutral current. These produce a forward-backward asym-
metry due to the term proportional to cos in the cross-section. This can be seen
explicitly by writing the coefficients C's and C'4 in terms of the vector and axial
couplings gy and g4

Cs = Q% — 4Qugirgl Re(f(5)) +4(95° + ¢4 2) (ol + g8 (5P (3.57)

and
Ca = —4Q;g59) Re(f(s)) + 1695 g5 g f ()| (3.58)

where Re(f(s) is the real part of f(s). We see that C'y goes to zero when we turn
off the axial couplings of the fermions to the Z. This effect is better quantified
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by defining a forward-backward asymmetry, which is obtained by comparing the
forward and the backward cross-sections. That is, we define

2

2w 1 d
UF:/ dgp/ dcosv,/)—a = < C’5+CA> (3.59)
0 0 25
and
—/%d /Ud plo| e (0—0> (3.60)
By )Y T T2 S A )

and the forward-backward asymmetry
App= ——— = —— (3.61)

By using these results, combining the data from ete™ — p*p~ and ete™ — 777
one can determine ¢g¢, and ¢%. In particular, in this way, one is able to eliminate
the ambiguity on the couplings that was left from the ve scattering. Also, using the
full expression for Ref(s) one can try a simultaneous fit to sin?§ and M, with the
result (see, for instance, [30])

sinf = 0.195 4+ 0.017, My =89.24+ 2.7 GeV (3.62)

One can get also informations about the p parameter defined in eq. (3.11). In fact,
from there one can express M, in terms of p and the other known parameters, and
perform a simultaneous fit to sin?# and p obtaining

sin?# = 0.209 + 0.031, p = 1.003 £ 0.053 (3.63)

An important piece of physics was also obtained by measuring Arp for the process
ete™ — bb. Up to energies of about 50 GeV we can roughly estimate the factor f(s)

1 S 1 1 GFS

/() 8sin® 0 cos? ) M2 8 M2, sin? g’ 2¢2 sin® fv2 ° V2 4ra (3:64)

This turns out to be less than ~ —0.22. Furthermore, from sin®f ~ 1/4 we can
approximate C'y and Cyg to

Cs~Q},  Cam —4QsgighRef(s) (3.65)
Then we get from eqs. (3.61) and (3.65)

Arp = —3gAgAR f(s) (3.66)
Qb
This allows to measure g% [30] (assuming ¢4 = —1/2)
g% = —.50£0.14 (3.67)

Recalling that gfl = T:);f, we see that Ty = —1/2. This has been the first indirect
evidence that the bottom quark has an isospin partner, the top.
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Chapter 4

The physics of the massive vector
bosons

4.1 Properties of the massive vector bosons

The massive vector bosons, W* and Z were discovered at CERN in 1983 at the
collider pp. The charged bosons were discovered by looking at the decay W — (i,
and in particular to the case ¢ = 7, using the jet produced in the decay 7 —
v; + hadrons. The two experiments (UA1 and UA2) gave the following average

result
My =81.3+ 1.4 GeV I'w < 6.5 GeV (90%C.L.) (4.1)

The neutral vector boson was discovered through the decay Z — ete™. The result
was

Mz;=921+1.7GeV Tz <4.6 GeV (90%C.L.) (4.2)
A detailed study of the processes used for the identification

mw— W —=ty)+X, pp—>(Z—ete)+X

would require a detailed parton model analysis and it will not pursued here. In this
Section we will study only the decay properties of W* and Z at tree level. As we
have already pointed out in Section 2.10, our input parameters will be (o, G, Mz).
Then using

g*v? e? 1 1 1 TQ

i sinQGZﬁGF - sin? 0 \/2G -

(4.3)

and
M}, = M2 cos® 0 (4.4)

we can eliminate M2, obtaining sin® @ in terms of the input parameters

1 Ao
inf=-|(1—-,]1—- —— 4.5
o=} ( J ﬁGFM%) (45
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and therefore

My, 4o
My =% |1+ |1- —— 4.6
v ﬂJ J V3G o
Numerically we find
sin”§ = 0.2126, My = 80.94 GeV (4.7)

The value of My, is in a very good agreement with the value measured at the
TEVATRON [31]

My, = 80.356 + 0.125 GeV (4.8)
The widths of W* and Z are easily evaluated. One gets
GrM;
T(W =0 iy) = LW (4.9)
672
- Gr My 2
(W™ = uadp) = Vag|“N, 4.10
( uadp) P [Vas|"Ne (4.10)
— GFM% < f2 f2
NZ — = + > N 4.11
(Z—=fhH=— 75 \9v o ) Ny (4.11)

where Ny = 1 and N, = N¢ = 3. Gluonic corrections to the decay Z — ¢g and
W~ — tiadp can be readily included in these equations by defining an effective
number of colors

(M2
Ne=3 (1 + M) ~ 3.115 (4.12)
T

where the running coupling constant of the strong interactions evaluated at the Z-
mass has been taken ay(M2) = 0.12. The total width of the W= is then given
by

where we have used m; > My, and the unitarity of the CKM matrix. From the
value found for My, eq. (4.7), we get

D(W~ — (i) = 232 MeV (4.14)

and
Ty =2.09 GeV  (T9°"7 =2.14 GeV) (4.15)

where we have also given the QC'D corrected value for I'yy. These values can be
compared with the experimental result [27]

'y =2.07+0.06 GeV (4.16)
At the same time we get
BR(W~™ — () = 11.1%, (BROCP(W™ — l) = 10.8%) (4.17)
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to be compared with [27]

BR®*®(W ™~ — () = (10.8 £ 0.4)% (4.18)
In the case of the Z we have
GrM; 1
I(Z — vi) = L2 =165.9 MeV (4.19)
612 2
and oo )
. M 1 1
[(Z — ) = =2 (—— 2'29> ~| =84.84 MeV 4.20
(Z — ) - [ 5 + 2sin + 1 e (4.20)
to be compared with [27]
[P(Z — () = 83.93+0.14 MeV (4.21)
We get also
_ GFM% (1 4 .9 )2 ]_
(7 — uu) = ———sin“f) + —| Nec =295.8 MeV
( ) 6rv2 [\2 3 417¢
(TQCP(Z — ua) = 307.1 MeV) (4.22)
and

©6mV/2 2 '3 4
(TQCP(Z — dd) = 391.2 MeV) (4.23)

_ Mi[/ 1 2 2
F(Z—>dd)—GF 4 [(——+—sin29> +—] N¢ = 376.8 MeV

From which

Ty =3(0(Z = vi) + T(Z = U0) + T(Z — dd)) + 2T(Z — uii) = 2474.2 MeV
(99" = 2540.0) (4.24)

to be compared with [31]
7P =2494.6 + 2.7 MeV (4.25)
Summing over the quark contribution we get
T, =T(Z — hadrons) = 1722.0 MeV (TP = 1787.8 MeV) (4.26)
and defining I';,, as the total width in neutrinos we have
Diny = 497.7 MeV (4.27)
The experimental data give [27]

TP = 1744.8 + 3.0 MeV (4.28)
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TP = 499.9 + 2.5 MeV (4.29)

mv

where this last quantity is defined experimentally as the total width minus the total
width in charged leptons and hadrons.

We see that the biggest deviations from our SM predictions are in the hadronic
quantities. As we shall see this is due mainly to the electromagnetic corrections
which can be embodied in the running of a. As a result we get a different result
for My, and sin® ) see eq. (4.7). This has more influence on the hadronic quantities
since the dependence on sin?# is in gZ, and

5gr = —4Qgy S sin® 0 (4.30)

In the lepton case we have g, =~ 0 for the charged leptons, and @) = 0 for the
neutrinos.

4.2 Production of 7 at LEP

In this Section we will study the production of the neutral vector boson, the Z,
at LEP. This machine started its running in 1990 allowing a high precision test of
the SM. In the same period also SLC at SLAC became operational. This machine
has not a copious production of Z as LEP, but it has the advantage of producing
polarized electrons allowing also precision measurements at the same level of the ones
realized at LEP. For the moment we will give the general features of the production
of the Z particle without worrying about radiative corrections. We will deal with
this subject in the next Section.
From eqs. (3.59) and (3.60) we get the total cross-section for ete™ — ff

2

N;Cs (4.31)

Opf =0F +0p = S
where Ny is the same factor introduced in eq. (4.11), taking into account the color
multiplicity for quarks and the QC D corrections. We want now evaluate this cross-
section around the mass of the Z. First of all we have the relation

1 L My ¢ 4 ,»_ V2Gk

Z:

= = M?2 4.32
sinf@cos20  sin?0 M3, €2 g%v? Ta 7 (432)

Also, around the mass of the Z the ¢;; are dominated by the Z propagator (see eq.
(3.52))

€ ~ —8y; gff(s) (4.33)
Therefore

2

1 1 (V2Gp M2 2
Cs = 72 leu()l = 7 z TR12 (4.34
57y - l€ij(s)] 4 ( T ) (S—MZ)2+M%F2Z%:|gz| |g]| ( )
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But the term )
Z 19 Plg I = 71(97)* + (92)°)(97)* + (92)°] (4.35)

can be expressed in terms of the partial widths

2
_ bm 1
}: S S 4.36

and substituting in o7 we find

s T(Z = ete)\(Z — ff)
MZ (s —M32)?+ MZT%

opfF =127 (4.37)

This expression is rather general and it is also very intuitive. In fact, around the Z-
pole the cross-section will be proportional to the probability for an electron-positron
pair to create a Z (that is I'(Z — e*e™)) times the probability for the Z to decay in
the pair ff (that is I'(Z — ff)). The only model-dependent pieces in the previous
expression are just the widths. This formula can be used to study the properties
of the Z in a model independent way. Let us define the cross-section at the peak

energy ~
oeak _ 127 T(Z — ete)I(Z — ff)

Opp = M2 2 (4.38)
The total cross-section at the peak is then given by
120 T(Z — ete”
peak _ Q ( ee ) (439)

dror = M2 T,
Using the values of the widths we have calculated in the previous Section we get
o2 x5 6 x 107%2 cm? (4.40)
Since the nominal luminosity of LEP is
L =10 cm 2 sec”! (4.41)

we get that the total number of events (that is the number of Z) that we have for
second is given by
LoPEK ~ 0.6 (4.42)

with a daily production of Z given by
0.60 x 60 x 60 x 24 ~ 5.2 x 10* (4.43)

We shall see that electromagnetic corrections reduce the peak cross-section of about
70%. Therefore the daily production of Z at LEP running at its nominal luminosity
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is rather 3.6x10%. In terms of the peak cross-section we can write in a different way
the cross-section around the peak

sI'2
qf:(s_kgyﬁﬁwy%aﬁ* (4.44)
From the measure of o7 around the Z peak it is possible to extract the widths and
the Z mass. What it is done is the following. First one considers a given channel, say
pt . Measuring o,+,- at various energies around the Z mass one can perform a 3
parameter fit determining M, I'; and aﬁiak_. This is done for the various channels.

Then one can extract I'(Z — eTe™) from the corresponding peak cross-section

127 T(Z — ete)? oPek
peak __ + .-\ ete
= — I'(Z — = M,I' 4.45
ete M% F2Z ( e e ) VA 197 ( )
Finally one can get ['(Z — ff) from the peak cross-section
7 M2 1 My, o
N(Z— ff)=obg —22 =2z i (4.46)

gl — =
PR 12n T(Z — eter) V127 [oPeak
With this procedure one gets all the decay widths in the charged channels. Defining,
as in the previous Section, the invisible width as

charged fermions

within the SM, one can use the experimental results for getting a value for the
number of neutrinos with mass less than My /2
1—‘inv

N, = (4.48)

V' ™" T theor
Fu

From the values given in the previous Section we get
N, =3.0134+0.015 (4.49)

this number changes a little when radiative corrections to the SM are taken into
account (from 1995 data one gets N, = 2.991 + 0.016).

Let us now consider other observable quantities that have been measured at
LEP and SLC. First of all we recall the forward-backward asymmetry that has been
defined in Section 3.4. We recall the result
_3Ca
~ 4Cy
where the coefficients C'y and C's were defined in eqgs. (3.57) and (3.58). Therefore
using the same approximation as in eq. (4.33), we get

App (4.50)

949591 9%

A{?BZS 2 e2\( f2 f2
(95" +95°) (9 + 921 )

(4.51)
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Assuming to know g% /g this quantity allows to determine gf,/g%. The first ratio
could be determined (assuming lepton universality) from the process ete™ — utu~
(or ete” — 7F77), but since App for leptons depend quadratically on gi., the
errors in determining sin?#@ are rather big. One can do much better playing with
polarized fermions. At LEP it is possible to measure the polarization of the final
7’s in ete™ — 7777, Defining the polarization asymmetry as

_ o(fr) —o(f1)
b= i+ o)

with o(fr r) the total cross-section for the production of left, right fermions, one
gets easily, using the results of Section 3.4

(4.52)

ghal

Pp=-2—5"0
9 +h

(4.53)

The measure of P; gives directly g‘f//gf1 allowing a measure of sin?f. At SLD it is
possible to produce beams of polarized electrons. Then one can define a left-right
asymmetry

oler) — o(er)

Arp = 4.54
LR o(er) +o(er) (4:54)
In the ideal case of 100% polarized beams one gets
gagv
Arr =2—5"— 4.55
M g+ gy (459)

Otherwise the result is the average polarization times the previous expression. In
both last cases the errors in determining sin?# are much smaller than those coming
from App. We will present the experimental results only after having discussed the
radiative corrections.

4.3 QED corrections at the Z-peak

The experimental precision reached at LEP is of the order of a few per mill for
observables as the various Z widths, or a few per cent in the case of the asymme-
tries. This requires that the theoretical calculations should be at the same order of
precision in order to have a meaningful test of the SM. In particular this implies
that the tree level formulas are not adequate. In fact, only the electromagnetic
corrections are of the order of about 6%, but also the pure weak corrections can be
of the order of several per mill. We will not give a complete review of the radiative
corrections to the SM, but we will limit ourselves to present the so called improved
Born approximation, which maintains the same structure of the formulas for the
various observables as in the tree approximation, but with couplings embodying ra-
diative corrections. This approximation works with a precision better than 1% (in
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comparison to the exact loop results). In practice one has to work with the total
loop corrections, but the previous approximation is quite simple and very useful in
order to illustrate the main effects. In this Section we will start with an analysis of
the electromagnetic corrections.

Fig. 4.1 -QFED corrections to the initial electron-positron vertez.

First of all we have to take into account the initial-photon radiation and the
initial vertex photon correction, see Fig. 4.1. In particular the first two diagrams
correspond to soft photon emission from the initial lines. The detectors cannot detect
photons with energy below a certain cut depending on the apparatus itself. Therefore
all these corrections are, at large extent, depending on the experimental details.
The physical effect is that if the initial electron, or positron, emits a bremsstrahlung
photon its energy will be degraded. In general one can express the real cross-section
as a convolution of a radiator function G(z,s) times the theoretical cross-section.
Here z represents the fraction of energy available. In equations

o (s) = | L 42 Gz, 5)o(2s) (4.56)

The first two diagrams contribute to G(z, s) as the product of the probability for
the initial fermions to emit a photon. The total effect, near the resonance, can be
parameterized as [33]

0" x o(s) exp(Blnr) = o(s)r’ (4.57)
Both  and r depend on s, but at the resonance one has
7P| res A2 0.67 (4.58)

Also the peak of the cross-section is shifted to

(V8)max = Mz + %BFZ (4.59)
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Since S(M32) ~ 0.11, the shift is about 100 MeV. Given this situation, what
happens is that the experimentalists use dedicated programs as Zfitter [34] to take
into account these effects and to deconvolute the theoretical cross-section, from the
measured quantity. A further correction taken into account is an improvement of
the Breit-Wigner expression for the Z-propagator that we used in eq. (3.53). We
will ignore here, for simplicity, the four vector indices. So the Z propagator is given
by

1 1) L 1
B VT VR ey VP @ — MZ - T(g?)

Az(¢%) (4.60)

where M, is the mass parameter appearing in the lagrangian and I1(¢?) represents
the self-energy diagrams, that is the one-particle irreducilble graphs with respect to
the Z-lines. If we expand the self-energy around M, we obtain

I1(¢*) = Re(IL(Mg)) + Re(IT' (M) (¢* — M) + iIm(IL(Mg)) (4.61)
from which
¢’ — My —T(¢°) = (1 + Re(IT'(Mg)))(q* — M* — iMT) (4.62)
where we have introduced the renormalized mass (the position of the pole)
M?* = Mg +T1(M?) + - (4.63)

and the width of the Z
MT = Im(I1(M?)) (4.64)

In this way one gets the classical form for the Breit-Wigner form of the propagator

1 1

Alg?) =
(@) = T Re(m) 2 = 32 —imiT

(4.65)

A more precise description is obtained by expanding also I'm(I1(¢?)) around the pole
[35]. Is then possible to show that, neglecting the fermion masses, one must have

Im(I1(¢*)) ~ ¢* (4.66)
Therefore the cross-section around the peak is given by

s T'(Z —=ete )\IN(Z — ff)

olete” = ff) = 127TM% 7 (4.67)
(s — M%)2+ —T
7 M% A
As a consequence, the maximum of the cross-section is given by
172
Vs=M; ———% ~ My —17 MeV (4.68)
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One should also notice that the factor 1/(1 + Re(Il')) contributes in this equation
to reconstruct the 1-loop corrected widths in the numerator of the cross-section
around the peak. The other big electromagnetic correction is in the running of the
fine structure constant. If we repeat the same argument that we have used for the
Z- propagator, one has that the photon propagator is modified by

1 1 1

s 51+ Re(I(s))

(4.69)

Consider for instance the process ete™ — v — ff. The amplitude is then modified

« 1 o _als)
s 51+ Re(ll(s)) s (4.70)

Therefore one can take into account this kind of QED corrections introducing the
concept of running coupling. In the same way, in the previous argument about the
Z-propagator, one could introduce running couplings

: P
gl(s) = HRgez—(H’(s)) (4.71)

This effect is not big for the Z-couplings [36], but is very important in the case of
«. In fact,

«Q
M2) = ~ 1.064 4.72
a(My) T Aa 064 o (4.72)

since
Aa = 0.0601 4+ 0.0009 (4.73)

As a consequence, the relation (4.3) is modified in

M2
M2, sin? g = TUMZ) (4.74)
V2G
From this and My, = M cos we get
My =79.94 GeV,  sin’f = 0.2314 (4.75)

In order to see the relevance of this electromagnetic correction, we compare in Table
4.1 several observables evaluated at tree-level with the same quantities with QED
and QCD corrections included and with their experimental values. The table shows
quite clearly the relevance of the QED and QCD corrections. The QED corrections
are particularly relevant for the asymmetries, mainly due to the modification in the
value of sin? 6.
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Observable Tree-level | QED+QCD corrections | Experimental value

My (GeV) 80.94 79.95 80.356 £ 0.125
I'w(GeV) 2.09 2.06 2.07 £ 0.06

['7(GeV) 2.4742 2.4860 2.4946 + 0.0027
[(Z — 00)(MeV) 83.93 83.40 83.93 £0.14
['(Z — had)(MeV) 1722.0 1738.2 1744.8 + 3.0
Cinv(MeV) 497.63 497.63 499.9 + 2.5

Al g 0.0657 0.0165 0.0174 £ 0.0010

P, -0.296 -0.148 —0.1401 £ 0.0067
Arr 0.296 0.148 0.1551 £ 0.0040

Table 4.1 -Comparison among the tree-level SM prediction for several observables,
their values corrected by QED and QCD effects, and their experimental values (see

[27] and [31]).

4.4 Radiative Corrections and the improved Born
approximation

We have already discussed the pure QED and QCD corrections. In this Section we
will list the remaining radiative corrections. These come from various sources

e Oblique: These corrections come from the boson self-energies. We have al-
ready seen in the previous Section their relevance. Their main features are
the sensitivity to loop effects from heavy particles, like the top quark. Also
these corrections are independent on the particular process, that is they are

universal.

e Vertex: These are corrections to the various couplings. Obviously they are
not universal and are usually smaller than the oblique corrections. An excep-
tion is the vertex Zbb which has a noticeable correction from the top quark

contribution.
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e Box: These are diagrams with two intermediate gauge bosons. Being not
resonant, these contributions are generally negligible at the Z-peak. The box
contribution at the decay u~ — e 7,1, is not small and it must be considered
in the definition of G .

e Higgs: These corrections come from the exchange of a Higgs particle between
two fermionic lines. Usually they are irrelevant since we have a suppression
factor given by the product of two fermionic masses.

In the context of radiative corrections is useful to define the Weinberg angle in terms
of the input parameters of the theory. At tree level there are various equivalent ways
in which the angle enters in the theory. At this point we have also to distinguish
among the bare parameters (to be denoted by a tilde) of the theory and the renor-
malized ones. At tree level all the relations are among bare parameters, so we have
the following different definitions

1. The electroweak unification condition
¢ =gsinf = § cosf (4.76)

2. The relation between My, and My (that is the symmetry breaking via dou-
blets)

sin?f =1 — ( ~W>2 (4.77)

Mz

3. The relation with the Fermi constant

52

"7 4sin? 0012, (4.78)

4. The definition of the neutral current
j7 = js —sin® 05" (4.79)

One can define a renormalized sin? # by generalizing any of the previous relations.
But each of these different definitions will correspond to a different function of the
input parameters. One possibility is the Sirlin scheme [37] in which the sin?#@ is
related to the renormalized values of the W and Z masses

sjy=1——2 (4.80)

Now the relation in eq. (4.78), which allows to determine sin” § in terms of the input
parameters, becomes

2
1
V2Gr c

= 4.81
48,3 M2 1 — Ar ( )
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Where Ar takes into account the radiative corrections. Here ¢, = 1 — s%.. To see
how this equation comes about, let us remember that the vector boson masses are
defined through the radiatively corrected propagators

AN ) = ¢ = My — Ty () (4.82)

by

ME = MZ + Ty (M) (4.83)
Also remember that the Fermi constant is defined through the p-decay. Then we
have (recall the discussion in Section 3.1)

Gr ¢ < 1 + (vertex, bo ))
—_— = = = Vi X, X
V2 8sin? \ — M2, — Iy (0)
é? (1) >
= ————(1- + (vertex, box 4.84
8sin® 012, ( M, ( ) (459

To evaluate the radiative corrections we expand the bare parameters in terms of the
renormalized ones

5
&2 = ¢ <1+2—6>
€

. o M2
M, = M3 <1+ W)

My
~ ME, + M3 SMZ  6ME
2d — 1 Mw Wo_ 2 2 z oMy 485
sin M2+ M2 Sy + oy 2 R, (4.85)
Notice that we have defined M2 = M2 + §MZ, therefore
SMP = —Ty (M) (4.86)

By keeping only the first order terms in the corrections (we are evaluating the 1-loop
corrections) we get

Gr _ e2 [1 N 2% Ccy (0MZ OME Y\ Hw(0) + M,
V2 8s¥, M3, e s \ Mz M3 M3,
+ (vertex, box)] (4.87)

All the corrections are generally divergent, however the divergences cancel out in
the final result, as it should be in the evaluation of an observable quantity. The
correction Ar can be written as

2

Ar =Aa — CTWAp + small terms (4.88)
Sw
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with
Ap— M2 5M3V

Mz Mg
The small terms mean that they do not contain large logs and/or leading powers
of Gpm?. In particular they include the vertex and the box contribution, and
the quantity Iy (0) + dME, = Iy (0) — II(ME). Although IIy has a quadratic
contribution from the top mass, this cancels out in the difference. At the leading
order in m; one gets

(4.89)

3G
Ap = m; 4.90
p 8\/571'2 t ( )
Therefore, neglecting small terms we can write
M?2 1
52 2 TolMz) (4.91)

V2GEM% 1 4 gﬂiAp
w
Of course, this relation really gives the expression of My, in terms of the input

parameters
M2 wo( M2 1
M3V< ——V2V> _ ma(y) = (4.92)
M V2Gp 14 S Ap
w

In analogous way we can get an expression for the Weinberg angle entering in the
couplings of fermions to the Z. We have
. M?2
sin?f = 1 — =¥ + small terms = s3 + ¢ Ap + small terms (4.93)
M

This allows a definition of an effective Weinberg angle
sin? @ = sy + iy Ap (4.94)

The small terms include also the vertex corrections which are small except for the
case of the coupling Zbb, which we will discuss later. Notice that in terms of this
effective angle we have [38]

_ My
- pM;

cos? 0 = & (1 — Ap) (4.95)

where we have defined )

T 1 Ap
This parameter is analogous to the one defined in eq. (3.11). The origin of Ap is in

the big splitting between the top and the bottom quarks. In fact, the contribution
of an SU(2) doublet of fermions to Ap is given by [38, 33]

p (4.96)

3Gr N N m2m? m?
—2—"-log— 4.97
8\/§7r2 my, + my m% _ mg 0g mz ( )
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This expression goes to zero for my — m,, and gives eq. (4.90) for m, > mgy. As
discussed in Section 3.1, for p = 1 the effective weak lagrangian shows a symmetry
SU(2). This is related to the fact that when the Higgs fields belong to a doublet,
the vacuum of the theory has a global symmetry group SU(2) (broken by the gauge
interactions). This is the symmetry that gives rise to the relation between My,
and M. An explicit breaking of this symmetry, as a non degenerate doublet of
fermions, brings to a parameter p # 1. As a consequence also the size of the neutral
couplings are affected by this correction. The radiative corrections depend also on
the Higgs mass. However due to the previous symmetry the virtual production of
Higgs particles does not generate quadratic corrections in the Higgs mass at one-
loop. This is known as the Veltman screening [39]. The dependence on the Higgs
mass is only logarithmic.

With these considerations we are now in the position to understand practically
all the electroweak effects at the Z peak by means of the so called improved Born
approximation. This gives the amplitude for efe~™ — ff in a form very similar
to the tree one, but taking into account the main radiative corrections we have
discussed above. One has

2 -
Miete = )~ T Q)i () + VG Mp— A]/ eljfs(rfz)/MZ
(4.98)

where 1
gt = 5 (T (1 = 75) = 2Q sin® ) (4.99)

with p and sin? § defined before. This approximation works with a precision better
than 1%, except for the case of the Zbb vertex. In fact, as we have already noticed
there are vertex corrections to Z — bb depending on the top, as illustrated in Fig.
4.2.

Fig. 4.2 -Corrections to the vertex Z — bb depending on m.
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These corrections can be neatly taken into account by the following substitutions
2 oA oA 2
P —>\/ppy =p <1 — 5Ap> , sin“f# — sin“ 0 <1 + 5Ap> (4.100)

It is worth to stress the main modifications in the improved Born approximation.
These are

The replacement of « with its value at the mass of the Z.

The inclusion of the s dependence in the width appearing in the propagator.
e The presence of the factor p in front of the Z-exchange term.
e The use of the effective Weinberg angle sin? § in the Z-couplings.

Finally we mention that the improved Born approximation for the inclusive
widths T'(Z — ff(v,g)), that is including gluon and photons in the final state
(we have mentioned so far only the first correction) is given by

N(Z—= ff(v.9) =N Crply

N [1+ (1 = 4]Q;| sin” 6)’] (4.101)

where
3a o
Ng = 1X<1+EQf>

N, = 3x (1 + i—jQi) (1 + %]\@)) (4.102)

4.5 Comparison with the experimental results

LEP and SLC give a lot of informations, but already from the leptonic width and
the forward-backward asymmetry is possible to extract the quantities p and sin? .
However these quantities depend on various parameters of the SM as the Higgs
mass, the value of the QCD coupling constant at M, etc. which are unknown or
not known with sufficient accuracy.
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Observable Data (Warsaw '96) | Standard Model | Pull
Mz (GeV) 91.1863(20) 91.1861 0.1
Ty (GeV) 2.4946(27) 2.4960 0.5
005 padry (D) 41.508(56) 41.465 0.8
R, = HZAe 20.788(29) 20.757 0.7
Ry = 0.2178(11) 0.2158 1.8
Re = s 0.1715(56) 0.1723 0.1
AL 0.0174(10) 0.0159 1.4

P, -0.1401(67) -0.1458 -0.9

AL 0.1542(37) 0.1458 2.2

sin? § (LEP-combined) 0.23200(27) 0.23167 1.2
My (GeV) 80.356(125) 80.353 0.3
my(GeV) 175(6) 172 0.5

Table 4.2 -Comparison among the experimental values of several observables [41],
and their theoretical values as obtained from a best fit to the SM [31]). The pull is
defined as the difference between the experimental and the theoretical values divided
by the standard deviation.

The most convenient thing to do is to try to combine all the available measures
and make a best fit of the poorly known parameters. Among the data to be included
one should consider also the value of m; as obtained combining the latest data from
40]

my =175+ 6 GeV (4.103)

In Table 4.2 we give the experimental values of some of the quantities measured at
LEP and SLC, compared with the values obtained from a best fit to the SM. From all
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the available data, by fitting m;, m;, and a,(M3%) one finds (with x?/d.o.f.=19/14)
[31]

m; = 17246 GeV
m, = 149758 GeV
as (M%) = 0.1202 + 0.0033 (4.104)

In particular one gets m;, < 392 GeV at 1.640. The values of sin?# and My,
corresponding to the best fit are

sin2@ = 0.23167 + 0.0002
My = 80.352+0.034 GeV (4.105)

It is interesting to notice that the error obtained on My, from the measure of the
radiative corrections at LEP and SLC is quite a challenge for the future experiments.
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