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Abstract

We propose a new class of four-dimensional theories for natural electroweak symmetry breaking, relying neither on
supersymmetry nor on strong dynamics at the TeV scale. The new TeV physics is perturbative, and radiative corrections to
the Higgs mass are finite. The softening of this mass occurs because the Higgs is an extended object in theory space, resulting
in an accidental symmetry. A novel Higgs potential emerges naturally, requiring a second lightSU(2) doublet scalar. 2001
Published by Elsevier Science B.V.

1. Introduction

Experiments beginning later this decade will probe
the fundamental mystery of the weak interactions, the
origin of electroweak symmetry breaking. The stan-
dard model, a theory with a fundamental scalar field
that implements the Higgs mechanism, is almost cer-
tainly incomplete — quadratically divergent radia-
tive corrections to the Higgs mass suggest that new
physics is required at TeV energies to stabilize the
weak scale. Todate theories for this stabilization can
be grouped into two categories: those which rely on
new strong dynamics or compositeness near a TeV
(such as technicolor, composite Higgs, or theories with
a low fundamental Planck scale), and those which are
perturbative, using low-scale supersymmetry. In this
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Letter we propose a third category: a class of non-
supersymmetric theories with a light Higgs, in which
physics is entirely perturbative at the TeV scale, yet
the Higgs mass radiative corrections are finite.

Aside from supersymmetry there have been few
ideas for ensuring a light boson on purely symme-
try grounds. Two directions are spontaneously bro-
ken accidental global symmetries, [1] that can produce
pseudo-Nambu–Goldstone bosons, and gauge sym-
metries that protect vector boson masses. Neither of
these ideas seem directly relevant: the Higgs doesn’t
look much like a Nambu–Goldstone boson (with non-
derivative quartic, gauge, and Yukawa couplings).3

Neither does it look like a boson with spin. Conse-
quently neither of these avenues has produced a vi-
able theory without the need for fine-tuning. Using the
idea of dimensional deconstruction [3], we will see
that these two ideas are in fact related to each other in
a way which allows us to construct realistic theories.

3 It is possible to make a pseudo-Nambu–Goldstone boson look
like a Higgs by fine tuning its mass term. This is the idea behind
composite Higgs models [2].
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To motivate the connection, we briefly detour into five
dimensions.

Consider anSU(k) gauge theory in five dimen-
sions compactified on a circle of radiusR. At dis-
tances large compared toR, the theory appears four-
dimensional, with anSU(k) gauge symmetry. The zero
mode of the five-dimensional gauge potential decom-
poses into the four-dimensionalSU(k) gauge bosons
and a real scalar fieldφ in the adjoint representa-
tion. φ is associated with the non-trivial Wilson loop
W = P exp(i

∫
dx5A5) around the fifth dimension.

Classically,φ is massless. At 1-loop,φ picks up a
quadratically divergent mass in the low-energy four-
dimensional effective theory. However, at energies
much larger than 1/R, φ is reallyA5, the fifth compo-
nent of the gauge field. So, by the higher-dimensional
gauge invariance, there can’t be any contribution to the
mass ofφ from energies much higher than 1/R, and
therefore the quadratic divergence of the low-energy
theory must be cut off at the scale 1/R. How is any
mass forφ generated? Since the Wilson line is gauge
covariant, gauge invariance does not forbid the opera-
tor | trW |2, that contains a mass for the zero mode of
A5 in its expansion. Since this is a non-local opera-
tor, five-dimensional locality guarantees that it can not
be generated with a UV divergent coefficient. This is
interesting, because the theory is non-supersymmetric
and even perturbative at the scale 1/R, and yet the cor-
rection to theφ scalar mass is completely finite.

In the Section 2 we “deconstruct” this seemingly
higher-dimensional mechanism. As we will see, the
extra dimension is not at all essential, and the physics
can be understood in purely four-dimensional terms.
The light scalar is a pseudo-Nambu–Goldstone boson,
an object very familiar to gauge theory model builders.
Nevertheless, the higher-dimensional picture will be
a very useful guide as we explore how this idea can
be used as a starting point to provide a new way
to stabilize the Higgs mass in the standard model.
There are many apparent obstacles to doing this. If the
Higgs is to be associated with components of a higher-
dimensional gauge field, how can we get it out of
the adjoint representation? How can we get a negative
mass squared and a reasonably large quartic coupling,
so the Higgs gets a vev and the physical Higgs particle
is sufficiently heavy?

We will see that these issues are very naturally
resolved in a six-dimensional theory. Non-adjoint

scalars can be generated by enlarging the gauge
group in the six-dimensional bulk. Having special sites
where the gauge group is not enlarged allows us to
give negative mass squared to the Higgs. Finally, and
perhaps most interesting, the six-dimensional gauge
kinetic energy contains non-derivative interactions
which become a quartic coupling term between our
four-dimensional Higgs and another scalar doublet,
stabilizing the potential.

If our theory were truly six-dimensional, we would
have the usual higher-dimensional problems to con-
tend with. Why is the radius stabilized near the TeV
scale? What happens near the cutoff of the higher-
dimensional gauge theory? But in deconstruction, ex-
tra dimensions are used purely as inspiration, and may
be discarded at the end, together with all the addi-
tional restrictions they imply. This allows us to build
realistic theories of electroweak symmetry breaking in
four dimensions with no higher-dimensional interpre-
tation whatsoever. The new feature of these theories is
that the physics of electroweak symmetry breaking re-
mains perturbative and insensitive to high-energy de-
tails up to a cut-off scale much larger than a TeV with-
out the need for any fine-tuning.

2. Deconstruction

We wish to deconstruct the toy 5D theory we
have just described along the lines of [3]. Since
the radiative stability of the Higgs is a low energy
problem, we may restrict our discussion to the low
energy effective Lagrangian of [3], described by a
“condensed moose” diagram. This corresponds to
putting the fifth dimension on a lattice withN sites
i = 1, . . . ,N with periodic identification of sitei with
site i + N [3–5]. On each site there is anSU(k)
gauge group, and on the link pointing from theith to
the (i + 1)-th site, there is a non-linear sigma model
field Ui = exp(iπai Ta/f ). Under theSU(k)N gauge
symmetry the link fields transform asUi → giUig

−1
i+1.

The effective Lagrangian is

L= − 1

2g2

N∑
i=1

trF 2
i

(2.1)+ f 2
N∑
i=1

tr
[
(DµUi)

†DµUi
]+ · · · ,
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where the covariant derivative isDµUi ≡ ∂µUi −
iAi

µUi + iUiA
i+1
µ and the dots represent higher-

dimension operators that are irrelevant at low ener-
gies.4 If the gauge couplings are turned off, there is
no coupling between theU ’s at different sites and the
theory has a largeSU(k)2N accidental “chiral” global
symmetry

(2.2)Ui →LiUiR
†
i+1,

whereLi,Ri are independentSU(k) matrices. This is
spontaneously broken down toSU(k)N , resulting inN
adjoint Nambu–Goldstone boson multiplets.

The gauge couplings preserve only theSU(k)N sub-
group of the global symmetry (2.2) whereLi = Ri .
Using the gauge freedom we can almost go to a uni-
tary gauge where all theUi are set to one. TheSU(k)N

gauge theory is higgsed to the diagonalSU(k) eating
N − 1 of the adjoint Nambu–Goldstone bosons along
the way. The remaining Nambu–Goldstone boson is
associated with the productU1U2 · · ·UN which trans-
forms homogeneously underg1 gauge transformations
and can not be gauged to unity. This operator is the dis-
cretization of the Wilson line in the continuum case.
The linear combinationφ = (π1 + · · · + πN)/

√
N of

Nambu–Goldstone bosons is classically massless, and
transforms as the adjoint under the surviving diago-
nalSU(k) gauge group.5 This field corresponds to the
zero mode ofA5. Because (2.2) is broken by the gauge
interactions,φ gets a mass from loop effects.

We can characterize the breaking of (2.2) through
the introduction of “spurions”qi . We assign toqi
a transformation law so that the covariant derivative
transforms homogeneously. Taking

(2.3)DµUi = ∂µUi + iAµiUi −UiqiAµ(i+1)q
†
i ,

we can read off the transformation law

(2.4)Ui →LiUiR
†
i+1,

(2.5)Ai → LiAiL
†
i ,

(2.6)qi → Ri+1qiL
†
i+1.

4 Similar models have been considered in other contexts, includ-
ing models of CP violation [6] and quantum field theory final exam-
inations [7].

5 These objects were also noticed by [5].

There is also a separate symmetryU(1)N symmetry
under which

(2.7)qi → eiαi qi .

Note that under a gauge transformationUiqi →
LiUiqiL

†
i+1. After usingqi to determine the symmetry

properties, we setqi = 1.
Now we can discuss the radiative corrections to the

φ mass. The spurious symmetries tightly constrain the
sorts of operators that can be generated. The leading
non-trivial operator involving only theU ’s is

(2.8)O = f 4
∣∣tr(U1q1 · · ·UNqN)

∣∣2.
The expansion of this operator gives a mass forφ.
What do we expect for the coefficient of this operator
from matching to the UV theory? The spurious sym-
metries ensure that the coefficient is at least as small as
(g2/16π2)N which is negligible compared to the low
energy contribution from radiative corrections.

Recall that for the purposes of power-counting [8,
9], the Ui have scaling dimension 1, and soO has
scaling dimension 2N . Therefore, forN > 2, there
is no divergent counterterm required for this operator
— all dependence on the cut-off may be absorbed
in renormalizations of other parameters in the theory
(like f ). For the special casesN = 1,2 a quadratic
and logarithmic divergence appears, respectively. The
φ mass is already finite forN = 3 sites, where the
model bears no resemblance to an extra dimension.

Armed with this power-counting argument, let us
calculate the leading 1-loop order low energy contribu-
tion to theφ potential. The analysis is most efficiently
done with the Coleman–Weinberg formalism. Turning
on a background value forφ corresponds to taking

(2.9)Ui = eiφ/(f
√
N).

The
√
N has been inserted to makeφ a canonically

normalized field.
For simplicity, we consider the case of anSU(k = 2)

theory. Then we can always chooseφ to point in
theσ 3 direction,φ = |φ|σ 3. The Coleman–Weinberg
potential from gauge boson loops is

V (φ)= 3Λ2

32π2
trM2(φ)

(2.10)+ 3

64π2 tr
(
M2(φ)

)2
log

M2(φ)

Λ2 ,
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whereM2(φ) is the mass matrix for theN gauge bo-
son multiplets in the presence of the background (2.9)
andΛ is the UV cut-off. The discrete translation sym-
metry of the theory allows diagonalization of the mass
matrix by discrete Fourier transform. The resulting
eigenvalues for the charged gauge bosons are:

m2
n(φ)= 4g2f 2 sin2

(
nπ

N
+ φ

f
√
N

)
,

(2.11)−N/2< n�N/2.

Note that the sum of these eigenvalues is indepen-
dent ofφ for N > 1, and therefore the quadratic di-
vergence inV is a constant, independent ofφ. The
sum of the squares of these eigenvalues is also inde-
pendent ofφ for N > 2, eliminating even the logarith-
mic divergence. This explicitly confirms our expecta-
tions from power-counting. The (UV-finite) potential
for φ for N > 2 is [6]

V (φ)= − 9

4π2g
4f 4

∞∑
n=1

cos(2n
√
N φ/f )

n(n2N2 − 1)(n2N2 − 4)

(2.12)+ constant.

Here we see the absence of a divergence without
cancellations between particles of different statistics.
Rather than eliminating the potential entirely, as would
happen in supersymmetry, the cancellations here elim-
inate thedependence on φ. That is, the divergent
renormalization is to the cosmological constant, rather
than the operator of (2.8). This cancellation is guar-
anteed by our symmetry discussion; nevertheless it is
amusing that the contribution from any individual vec-
tor boson mass eigenstate is divergent, while the spec-
trum and couplings are just right to ensure a finite total
result.

The spectrum of this theory exhibits an interesting
hierarchy of scales. The highest scale is the UV cut-
off of the non-linear sigma modelΛ= 4πf . We refer
to all the physics below this scale as “low energy”.
Physics above this scale can’t be addressed within the
non-linear sigma model, although we can of course
UV complete this theory in a variety of (conventional)
ways [3]: “technicolor”, linear sigma model, super-
symmetry, etc. Theφ mass is insensitive to the de-
tails of the physics at and aboveΛ. Consequently, we
need not specify exactly what this physics is for our
purposes. BelowΛ we have a tower of massive vec-
tor bosons, extending down in mass from∼ gf to

∼ gf/N . For largeN the states near the bottom re-
produce the spectrum of an extra-dimensional gauge
theory compactified on a circle [3], while for smallN
(say, 3), no extra-dimensional interpretation is pos-
sible. Next, the light scalarφ has a mass squared
m2
φ ∼ g4f 2/(16π2N3). The gauge coupling of the un-

brokenSU(2) is g/
√
N , so this mass squared is a loop

factor smaller than the lightest massive vector boson
mass squared,∼ g2f 2/N2. Finally, we have a mass-
lessSU(2) gauge boson. We refer to physics near or
below theφ mass as “very low energy”. In the very
low energy theory at this point, we have only theφ
and the massless gauge bosons.

Note that theφ mass is what we would expect
from the apparent quadratic divergence in the very low
energy theory but with a cutoff of only∼ gf/N . This
is the scale of new physics: the bottom of the tower
of massive vector bosons. This physics is entirely
perturbative: no strong interactions are required at
this scale to cut off the quadratic divergence. This is
to be contrasted with the expectation from pseudo-
Nambu–Goldstone bosons in QCD or technicolor. For
instance, in the limit where the quark masses vanish in
QCD, there is a quadratically divergent contribution
to the charged pion mass from photon loops in the
low-energy pion effective theory. The pion mass is
then of ordere/4π timesΛ ∼ 4πfπ , the cutoff of
the pion effective theory. On the other hand, in our
effective theory, there areno divergent contributions,
the Higgs mass we compute is insensitive to the
detailed physics at 4πf , and the result is smaller by
an additional factor ofg/(4π

√
N). In the full theory,

this is obvious, as the accidental symmetry prevents
the appearance of a counterterm that could absorb
the quadratic divergence. But in the very low energy
theory, the lightness ofφ looks miraculous. It is this
that makesφ an interesting starting point for a model
of the Higgs.

In our realistic models the scale of new perturbative
physics will be near 1 TeV, while the scale where the
non-linear sigma model description breaks down will
be parametrically larger, numerically between 10 and
100 TeV. This is similar to what happens in composite
Higgs models [2], but the difference here is that we
will not require any fine tuning to maintain this ratio
of scales.
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What was essential for this mechanism to work?
The light scalar descended from a “chain” of non-
linear sigma model fields, a “non-local” object in the
space of gauge theories. Since the gauge interactions
themselvesare local in this space, the only operator
that gives rise to the scalar mass must involve the
whole chain. This operator is then of very high scaling
dimension, and is generated with a finite coefficient.
We refer to naturally light scalars of this kind as “chain
scalars”.

3. Realistic theories

In order to describe the Higgs field in the Standard
Model we need a scalar transforming as a doublet
underSU(2), rather than in the adjoint representation.
Furthermore, we need a potential that breaks the
electroweak symmetry and leaves the physical Higgs
scalar somewhat heavier than theZ. This requires a
negative mass squared and a substantial quartic self-
coupling for the Higgs field. Finally, we need an order
one Yukawa coupling to the top quark. We need to
incorporate all these features without reintroducing a
quadratic divergence for theφ mass squared.

Let us first try to get our “chain” scalars out of the
adjoint representation of the low-energy gauge group.
This can happen if the theory distinguishes different
components of the adjoint. This is only possible if
the low-energy gauge group is reduced. Consider, for
instance, a condensed moose diagram withSU(3)
gauge symmetries on the sitesi = 2, . . . ,N , with
only theSU(2)×U(1) subgroup ofSU(3) leavingT8
invariant ati = 1. All the link variables continue to
be 3× 3 special unitary matrices, but the matrixg1
resides only in theSU(2) × U(1) direction, so that
g1 commutes withT8. In the continuum 5D picture,
this is a five-dimensional theory with anSU(3) gauge
symmetry in the bulk, together with a “brane” where
the gauge symmetry is reduced toSU(2)×U(1).

The fluctuations of theU ’s now higgs the theory
down to SU(2) × U(1). The 8 components of the
chain scalar decompose under thisSU(2) × U(1) as
30 ⊕ 10 ⊕ 21/2 ⊕ 2−1/2. (This normalization of the
U(1) corresponds to the decomposition3 → 21/6 ⊕
1−1/3.) The last two have the quantum numbers
of the standard model Higgs field and its complex
conjugate. Since the gauge symmetry no longer relates

these different components, they can pick up different
masses. More explicitly, the reduced gauge symmetry
on the first site allows additional operators in the
theory. Sinceg1 commutes withT8, the link variable
U1 andT8U1 have identical transformation properties
under all symmetries, as doUN andUNT8.

As emphasized in [2], to build a Higgs, it is
not enough to ensure that it has a small mass. It
must also have quartic self-interactions that are large
compared to its mass squared over the cut-off squared.
The Coleman–Weinberg interactions that produce a
small φ mass also produce quartic interactions, but
these are suppressed by a similar factor. Thus we also
need some other source for a quartic potential for
the Higgs fields. But the additional self-interactions
must not disturb the crucial cancellation of quadratic
divergences. Again we can take inspiration from
higher-dimensional physics, in which theφ is related
to a gauge field. Because gauge boson self-interactions
contain non-derivative terms, we should be able to
build non-derivative interactions for theφ. Suppose,
for example, that we start in 6D with anSU(3) gauge
theory. Then the action contains a piece trF 2

56, that
yields a quartic potential

(3.1)tr
([A5,A6]2

)
for the zero modes ofA5,A6 in the low-energy theory.
Because of the higher-dimensional gauge invariance,
this should not introduce any divergent masses for the
zero modes.

What is the analog of this operator in the condensed
moose language? Consider a condensed moose dia-
gram that is the discretization of a torus withN × N

sites, labeled by integers(i, j). The sitesi andi +N

are identified, as arej andj +N . We also have link
fieldsUi,j between the sites(i, j) and(i, j + 1), and
Vi,j between(i, j) and(i + 1, j). Finally, we add the
“plaquette” operators to the action:

(3.2)−
∑
i,j

λi,j f
4 tr
(
Ui,jVi,j+1U

†
i+1,jV

†
i,j

)+ h.c.

Some of the Nambu–Goldstone bosons are eaten
in higgsing the gauge group down to the diagonal
SU(3). Others become massive through the plaquette
potential. For any values of theλi,j two massless
multiplets remain, the analog of the continuum zero
modes. It is easy to check that these modes correspond
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to

(3.3)Ui,j = eiu/(fN),

(3.4)Vi,j = eiv/(fN),

i.e., uniform link variables in the two directions. With
this normalization,u,v are canonically normalized
fields. For these modes the plaquette action expands
to the quartic potential

constant+ λ

N2
tr
∣∣[u,v]∣∣2 + · · · ,

(3.5)λ≡ 1

N2

∑
i,j

Reλi,j .

As expected from the gauge theory analog, the spuri-
ous symmetries of the theory are enough to guarantee
the absence of divergences for the radiative corrections
to these scalar masses forN > 2, and only logarithmic
divergences forN = 2.

Note that the form of the self-interactions in (3.5) is
the trace of the square of a commutator. This special
form is required to avoid quadratic divergences, and
it is an obvious reminder of the analog, (3.1), in the
six-dimensional gauge theory. In the very low energy
theory additional couplings will be generated through
low-energy renormalization.

In order to get the Higgs out of the adjoint repre-
sentation, we replace the gauge group at one of the
sites, say(1,1), with SU(2)×U(1). It is easy to show
that the classically massless scalar multiplets continue
to be those of the form (3.3). As before, the reduced
gauge symmetry allows additional operators, in this
case involving an insertion ofT8 in the four plaque-
tte terms that touch the(1,1) site. For instance,

(3.6)(α + iβ)f 4 trT8U1,1V1,2U
†
2,1V

†
1,1 + h.c.

For the zero modes (3.3) this becomes a mass term

(3.7)−iβ f
2

N2 trT8[u,v] + · · · .
If this operator is included with a large coefficient,
then there is a large tree-level mass term for the scalars
in the theory. However, note that this operator is odd
under the interchangeUi,j ↔ Vj,i . If we impose the
symmetryUi,j ↔ Vj,i on the theory, then it is techni-
cally natural forβ to be small compared to theλi,j .

We now have all the ingredients to construct a
realistic theory of electroweak symmetry breaking. It

is convenient to groupu,v into the matrix

(3.8)H = u+ iv√
2

=
(
ϕ + η h1
h

†
2 −2η

)
,

whereϕ,η are complex fields in the30,10 representa-
tion of SU(2)×U(1), respectively, andh1, h2 have the
quantum numbers21/2 of the standard model Higgs.
The quartic potential is

λ tr
[
H,H†]2 = λ tr

(
h1h

†
1 − h2h

†
2

)2
+ λ

(
h

†
1h1 − h

†
2h2

)2
(3.9)+ terms involvingϕ,η.

Note the similarity of this quartic potential to the one
in the supersymmetric standard model. Here, it follows
from the special form (3.5).

The Coleman–Weinberg potential generates posi-
tive mass squared for all ofϕ,η,h1, h2. We can also
add other operators, such as tr(U2,1U2,2 · · ·U2,N) +
h.c.+ (Ui,j → Vj,i ), with small coefficients (since
these break the spurious global symmetries it is techni-
cally natural for their coefficients to be small). These
are of dimensionN and therefore do not affect our
power counting analysis for the finiteness of the Higgs
mass forN < 5; and they also preserve theU ↔ V

symmetry. They give rise to the same positive squared
mass for all ofh1, h2, ϕ, η. In any case, in order to
obtain a realistic theory, we need to distinguish be-
tweenh1 andh2. The reason is familiar from similar
considerations in the supersymmetric standard model:
since the quartic potential forh1, h2 has a flat direc-
tion where|h1| = |h2|, we must havem2

h1
+m2

h2
> 0

in order not to run away along this flat direction. If
the symmetry betweenh1, h2 is unbroken, this forces
both m2’s to be positive and there can be no elec-
troweak breaking. Fortunately, the operator in (3.7)
distinguishes betweenh1, h2. In fact,

−iβ f
2

N2
trT8[u,v] = β

f 2

N2
trT8

[
H,H†]

(3.10)= β
f 2

N2

(
h

†
2h2 − h

†
1h1

)
.

This operator can make one of the masses, say
m2
h1

, negative, while keeping all the others positive.
As we have seen, there is also anO(1) quartic
Higgs coupling. To give rise to a small Higgs vev,
the coefficientβ in (3.7) must be chosen so that
this contribution to theh masses is the same order
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of magnitude as the Coleman–Weinberg and other
contributions. Thus the masses ofh2 and the rest of
theH multiplet are expected to be of the same order
of magnitude as the Higgs. But no special fine tuning
is required — all these masses are safe from quadratic
divergences. There is then a wide range of parameters
for which SU(2)× U(1) is broken in the correct way
by the vacuum expectation value ofh1. 6

We have succeeded in triggering electroweak sym-
metry breaking in a natural way. What aspect of the
phenomenologyof this model can be used to check our
mechanism for stabilizing the electroweak hierarchy?
In the very low energy theory, below a TeV, we will
see not only the Higgs, but the other pseudo-Nambu–
Goldstone bosons. The precise spectrum is model de-
pendent, but the existence of a lighth2 and the spe-
cific quartic interaction (3.9) is a robust prediction
of this mechanism. To make the Higgs much lighter
than theh2 multiplet requires a fine-tuning. At TeV
and higher energies, we must see the non-linear sigma
model structure with local couplings in theory space.
This would reveal itself through low-energy theorems
for the scattering of the Nambu–Goldstone bosons, in
this case the Higgs fields,h2 and the longitudinal com-
ponents of the additional vector bosons at multi-TeV
energies.

4. Fermions

For a realistic model, we need fermions with
Yukawa couplings to the Higgs. Like gauge couplings
and quartic Higgs self-couplings, large Yukawa cou-
plings generically induce a quadratically divergent
mass squared for the Higgs boson in the low-energy
theory. But this divergence can also be avoided us-
ing “locality” in theory space. Before constructing
the appropriate local interactions, let us ask what
the analogue of the Higgs–Yukawa coupling looks
like in our language. As a preliminary example, con-
sider the one-dimensional chain withSU(3) gauge
symmetries on the sitesi = 2, . . . ,N and SU(2) ×
U(1) at i = 1. We also introduce the standard model
fermions with their usual quantum numbers under

6 Other terms in (3.6) besides (3.7) have interesting phenomeno-
logical consequences, for example, giving rise to a small vev forϕ

and an (acceptably small) contribution to theT parameter.

SU(3)color × SU(2) × U(1): Q ∼ (3,2)1/6, Uc ∼
(3̄,1)−2/3, Dc ∼ (3̄,1)+1/3, L ∼ (1,2)−1/2, Ec ∼
(1,1)+1. The Yukawa couplings to the chain “Higgs”
field can arise from the gauge invariant operator

(4.1)(Q 0)U1 · · ·UN
( 0

0
Uc

)

for the up Yukawa couplings, and

(0 0 Dc )U1 · · ·UN
(
Q

0

)
,

(4.2)(0 0 Ec )U1 · · ·UN
(
L

0

)
for the down and charged lepton Yukawa couplings.

However, because these operators correspond to
“non-local” interactions, adding them to the theory
would give rise to a quadratic divergence for the
Higgs mass. This may not be a problem for the
Yukawa couplings for the light generations, since
the coefficient of the quadratic divergence is then
easily small enough so that cutting it off at the
non-linear sigma model scale does not disturb the
light Higgs. However, this is not the case for the
top Yukawa coupling. It is technically natural to
eliminate these operators, but then we lose the Yukawa
coupling to the fermions. What we would like to
do instead is obtain these effective operators in the
very low-energy theory, starting with purely local
interactions in theory space. This can be done in
a by now familiar way. For simplicity we consider
only the top Yukawa coupling. We add vector-like
fermionsχi,χci for i = 2, . . . ,N , that transform as
triplets and anti-triplets underSU(3)i , anti-triplets
and triplets underSU(3)color, and haveU(1) charges
∓1/3. Note that these fermions now transform under
gauge interactions other than theSU(3)i at their site.
Together with mass terms, theseχ ’s have nearest-
neighbor couplings through theU ’s:

y1f (Q 0)U1χ2 +
N−1∑
i=2

χci
(
yif χi − y ′

if Uiχi+1
)

(4.3)+ yNf χ
c
NUN

( 0
0
Uc

)
.

Integrating out the massiveχ,χc leaves the massless
fieldsQ,Uc coupled to the Higgs in the low-energy
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theory. However, with these local interactions, our
power-counting analysis guarantees the absence of all
divergences in the Higgs mass forN > 2, and only
logarithmic divergences forN = 2.

Finally, we want to introduce fermions in theN×N

site model of the previous section, where the Higgs
triggers electroweak symmetry breaking. This can be
done in a number of ways. For instance, we can have a
chain of fermions as in the previous paragraph, in both
theU andV directions symmetrically, to preserve the
U ↔ V symmetry.

Note that the operators (4.1), (4.2) may be used
to generate the Yukawa couplings for the 2 light
generations. In this case the only interactions which
break theU(2)5 flavor symmetry are the Yukawa
couplings themselves. This guarantees the absence of
dangerous flavor changing neutral currents via the
GIM mechanism.

5. Conclusions

We have seen that if the Higgs field descends
from a chain of links in theory space, we can trigger
electroweak symmetry breaking in a way that remains
perturbative and insensitive to high-energy details up
to a cut-off scale much larger than a TeV without
the need for any fine-tuning. The radiative corrections
to the Higgs mass are controllably small, without
relying on supersymmetry or strong dynamics at the
TeV scale. Notice, in particular, we have included,
in a natural way, a set of operators with varying
sizes. A fundamental theory above the scale where our
non-linear sigma model description breaks down will
determine which operators appear in the low energy
theory. However, we have seen that it is natural to
allow some “local” operators with large coefficients,
while higher-dimensional “non-local” operators have
small ones.

But where does “locality” come from? Normally,
locality of interactions in position space is simply
taken for granted. However, as we emphasized in [3],
there is an intimate connection between physical space
and theory space, where locality can have a deeper ori-
gin. For instance, in the simple constructions of [3],
higher-dimensional locality is a consequence of the
renormalizability of the 4D gauge theory that dynam-
ically generated the extra dimension. We expect that

similar considerations will provide a deeper explana-
tion of the pattern of local operators in our present
constructions, once our non-linear sigma model is UV
completed in a renormalizable theory at high energies,
above∼ 10 to 100 TeV.

Our models provide a realistic theory of elec-
troweak symmetry breaking, although they are by no
means the unique implementation of our central mech-
anism. For instance, elegant “orbifold” theories can
be constructed where the only light scalars areSU(2)
doublets. But it is crucial that there be a lighth2 part-
ner of the Higgs doublet with the squared commutator
self-interaction of (3.9).

The theories we have constructed have a rich and
novel phenomenology at TeV energies. In addition to
a light Higgs, they have a distinctive spectrum of new
scalar, fermionic and vector particles with perturbative
couplings (for moderateN ). In this decade, experi-
ment will help us determine whether or not extended
objects in theory space are relevant to unraveling the
mystery of electroweak symmetry breaking.
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