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LETTER TO THE EDITOR

Quantum effects in the Alcubierre warp-drive spacetime
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Abstract. The expectation value of the stress–energy tensor of a free conformally invariant
scalar field is computed in a two-dimensional reduction of the Alcubierre ‘warp-drive’ spacetime.
Unless the spacetime is in the Hartle–Hawking state at an appropriate temperature, the stress–
energy diverges on past and future event horizons which form when the apparent velocity of
the spaceship exceeds the speed of light. The likelihood of the spacetime being in this state,
whether due to natural evolution or the application of technology, is briefly discussed.

PACS number: 0420

Alcubierre [1] has described a spacetime which has several of the properties associated
with the ‘warp drive’ of science fiction. By causing the spacetime to contract in front of a
spaceship, and expand behind, the Alcubierre warp-drive spacetime allows a spaceship to
have an apparent speed relative to distant objects which is much greater than the speed of
light.

The stress–energy needed to have a spacetime of this sort is known to require matter
which violates the weak, strong and dominant energy conditions [1]. While quantized fields
can violate the energy conditions locally, Pfenning and Ford [2] have recently demonstrated
that the configuration of exotic matter needed to generate the warp ‘bubble’ around the
spaceship is quite implausible.

In this letter, a different issue involving quantum effects and the warp-drive spacetime
is examined. The curved spacetime associated with the warp drive will create a nonzero
expectation value for the stress–energy of a quantized field in that spacetime. This field
is assumed to be a spectator in the spacetime, not responsible for the stress–energy which
supports the exotic warp-drive metric. While calculating the expectation value of the stress–
energy of a quantized field in a spacetime is generally an extremely difficult task, the work
involved is greatly reduced if one confines attention to a two-dimensional spacetime. The
warp-drive spacetime admits a natural two-dimensional reduction containing the worldline
of the spaceship. A coordinate transformation then renders the two-dimensional metric into
a static form. For a conformally invariant massless quantized scalar field, the stress–energy
is then completely determined by the trace anomaly, conservation and the values of two
integration constants which are determined by the state of the field [3, 4].

The resulting expressions for〈Tµν〉 are found to be everywhere regular so long as the
ship does not exceed the speed of light,v < 1. However, for apparent ship velocities
exceeding the speed of light, there exist past and future event horizons surrounding the
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spaceship. The stress–energy diverges on these horizons unless the spacetime is in a Hartle–
Hawking-like quantum state at the horizon’s natural temperature. If the Hartle–Hawking
state is not created (either by the acceleration of the ship or by direct engineering) then the
spaceship would presumably be precluded from attaining apparent velocities greater than
light due to metric backreaction effects. These possibilities are briefly discussed in the
conclusion.

The warp-drive metric proposed by Alcubierre may be written as

ds2 = −dt2+ (dx − vf (r) dt)2+ dy2+ dz2, (1)

wherev is the apparent velocity of the spaceship,

v = dxs(t)

dt
, (2)

xs(t) is the trajectory of the spaceship (chosen to be along thex-direction),r is defined by

r = [(x − xs(t))2+ y2+ z2
]1/2

, (3)

and f is an arbitrary function which decreases from unity atr = 0 (the location of the
spaceship) to zero at infinity. Alcubierre gave a particular example of such a function,

fA(r) = tanh(σ (r + R))− tanh(σ (r − R))
2 tanh(σR)

, (4)

whereσ andR are positive arbitrary constants.
In this letter, the functionf will not be constrained to the particular choice made by

Alcubierre;f may be chosen arbitrarily subject only to the boundary conditions atr = 0
and infinity. In order to simplify the analysis of the effects of the spacetime on the quantized
field, the velocity of the spaceship will be taken to be constant,v = v0, which then implies
that

xs(t) = v0t, (5)

and hence

r = [(x − v0t)
2+ y2+ z2

]1/2
. (6)

While the warp-drive spacetime is not spherically symmetric, there is an obvious way
to reduce the spacetime to two dimensions. The spacetime is cylindrically symmetric about
the axisy = z = 0. The two-dimensional spacetime which includes the symmetry axis also
contains the entire worldline of the spaceship. The two-dimensional metric is then

ds2 = −(1− v0
2f 2) dt2− 2v0f dt dx + dx2. (7)

After settingy = z = 0, r reduces to

r =
√
(x − v0t)2. (8)

If attention is restricted to the half of the spacetime to the past of the spaceship (x > v0t),
then the square root in equation (8) may be taken, so that in this domain,r = x − v0t

(results for the other half-space may be obtained by a trivial transformation).
Since the spaceship is travelling with constant velocity, there should exist a Lorentz-

like transformation to a frame in which the ship is at rest. The required transformation is
most easily understood if broken into several steps. First, since the metric components only
depend on the quantityr, it is natural and possible to adopt this as a coordinate, transforming
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from (t, x) coordinates to(t, r) coordinates by making the replacement dx = dr + v0 dt in
the metric of equation (7). This yields

ds2 = −A(r)
(

dt − v0(1− f (r))
A(r)

dr

)2

+ dr2

A(r)
, (9)

where

A(r) = 1− v0
2(1− f (r))2. (10)

Next, the metric is brought into a comoving, diagonal form by defining a new time
coordinate,

dτ = dt − v0(1− f (r))
A(r)

dr, (11)

which gives the metric form

ds2 = −A(r)dτ 2+ 1

A(r)
dr2. (12)

This form of the metric is manifestly static. The coordinates have an obvious interpretation
in terms of the occupants of the spaceship, asτ is the ship’s proper time (sinceA(r)→ 1
as r → 0). On the other hand, the coordinates are not asymptotically normalized in the
usual fashion; for larger, far from the spaceship,A(r) approaches 1− v2

0 rather than unity.
This may be corrected by defining yet another set of coordinates,(T , Y ), such that

T =
√

1− v2
0 τ, Y = r√

1− v2
0

. (13)

The combined coordinate transformations taking(t, x) into (T , Y ) have the asymptotic form
of a Lorentz transformation far from the spaceship, at larger (or, equivalently,Y ). In this
limit,

T = γ (t − v0x), Y = γ (x − v0t), (14)

whereγ is the usual special relativistic factor,γ = 1/
√

1− v0
2. The transformations toT

andY will include a factor i whenv0 > 1. This is an obvious consequence of transforming
to the comoving frame when the apparent velocity exceeds unity. While there are no real
complications associated with this transformation, the worry of even possibly having to deal
with complex quantities will be avoided by using the(τ, r) coordinate system rather than
the (T , Y ) system.

Examining the form of the metric of equation (9), the coordinate system is seen to be
valid for all r > 0 if v0 < 1. If v0 > 1, then there is a coordinate singularity (and event
horizon) at the locationr0 such thatA(r0) = 0, or,

f (r0) = 1− 1

v0
. (15)

In this case (v0 > 1), the spacetime is somewhat like de Sitter space. The spacetime contains
both past and future event horizons such that the static region of the spacetime is inside
the horizons (r < r0), and the horizons first appear at infinity and then move inward as the
metric’s adjustable parameter (v0 or the cosmological constant,3) is increased.

The determination of the stress–energy tensor for a quantized conformally invariant
scalar field in the spacetime of equation (9) is now straightforward [4]. Integration of the
conservation equation and knowledge of the trace anomaly quickly gives

Tτ
r = C1, (16)
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Tα
α = − A′′

24π
, (17)

Tr
r = C2+ [A′(r0)]2

96πA(r)
− (A′)2

96πA(r)
, (18)

where a prime denotes differentiation with respect tor and expectation value brackets have
been suppressed for notational simplicity. The remaining components are trivially related
to those given above,Tτ τ = Tαα − Tr r , andTrτ = −C1/A

2. The integration constantsC1,
C2 andA′(r0) are determined by the choice of quantum state for the field.

If the field is assumed to be in a time independent and asymptotically empty state (the
usual Minkowski vacuum state) at larger, so that

lim
r→∞〈Tµ

ν〉 = 0, (19)

then, sinceA(r)→ 1− v2
0 andA′(r)→ 0 asr →∞, this requires that

C1 = C2+ [A′(r0)]2 = 0. (20)

With this choice of state, only the diagonal components of the stress–energy are nonzero.
They take on the simple forms

Tr
r = − (A′)2

96πA(r)
, (21)

Tτ
τ = − A′′

24π
+ (A′)2

96πA(r)
. (22)

If v0 < 1, then the functionA(r) is everywhere bounded and positive, and hence the
(τ, r) coordinate system is regular. Examination ofTµ

ν as given in equations (21) and (22)
shows that the components are everywhere finite.

If v0 > 1, then there is an event horizon in the spacetime whereA(r0) = 0; the (τ, r)
coordinate system suffers a coordinate singularity there. In order to determine the regularity
of 〈Tµν〉, it is necessary to evaluate the components in a frame regular at the horizon. There
are several different ways this may be accomplished. The original(t, x) coordinate system
is regular across the horizon. Unfortunately, however, the expressions for the components
of 〈Tµν〉 are long, complicated, and not particularly illuminating in this coordinate system.
Alternatively, one may evaluate the stress–energy components in an orthonormal frame
attached to a freely falling observer. The procedure described in [4] may be followed to set
up such a frame in the static metric of equation (9). Near the horizon, the observed energy
density will be proportional to

〈ρ〉 ∼ Tr
r − Tτ τ
A(r)

= −A
′′

24πA
− (A′)2

48πA2
. (23)

Expanding equation (23) near the horizon, and expressing the result in terms of the original
function f , yields

〈ρ〉 ∼ −(f
′)2

48π

[
f −

(
1− 1

v0

)]−2

+ · · · , (24)

where the ellipsis denotes less divergent terms. There is no choice of functionf which will
cause the leading term in equation (24) to be finite asf → 1− 1/v0. This may be shown
as follows. Define a new functionh = f − (1− 1/v0), which will, in accordance with the
boundary conditions onf , decrease from a value of 1/v0 at r = 0 to 1/v0− 1 asr →∞.
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If v0 > 1, then there will be some finite radiusr0 at whichh(r0) = 0. The right-hand side
of equation (24) will be finite atr0 only if h′/h is finite there. Assume this is true, so that

h′

h

∣∣∣∣
r0

= k, (25)

for some finite constantk. Equation (25) may be integrated to find the approximate form
of h in a neighbourhood ofr0, which yieldsh = Bekr , whereB is an integration constant.
However,h(r0) = 0 only if B = 0, which does not satisfy the boundary conditions. We thus
arrive at a contradiction, showing that there can be no functionh (and hence, no function
f ) satisfying the boundary conditions for which the right-hand side of equation (24) will
be finite atr0.

This divergence occurs on both past and future horizons, and has a simple origin.
The event horizons which form when the ship’s velocity exceeds unity have a natural
temperature,

THawking = κ

2π
= A′(r0)

4π
= v0

f ′(r0)
2π

. (26)

If the quantum state is chosen to be asymptotically empty (essentially the Boulware
vacuum state), then the temperature of the surrounding universe does not match the natural
temperature of the black hole. It is then inevitable that the stress–energy of a quantized
field will diverge on the horizon. In a self-consistent solution of the semiclassical Einstein
equations, the backreaction to this divergence could prevent the spaceship from achieving
an apparent velocity which exceeds the speed of light.

It is conceivable that the acceleration of the warp-drive ship up to and through the
apparent speed of light might create particles so that the Boulware (asymptotically empty)
state is inappropriate. The new quantum state with the created particles might have a form
which would prevent the divergence of equation (24), much as a collapsing star forming
a black hole evolves to the Unruh vacuum state, regular on the future horizon. Such
behaviour would appear to be more difficult here, since there are both past and future event
horizons to be rendered regular, requiring a state similar to the Hartle–Hawking state rather
than the Unruh state. Whether the divergence may be averted by such natural evolution
of the quantum field can only be determined by a more complicated calculation, with an
accelerating system. If the divergence is avoided in this fashion, then the ship’s drive must
presumably be the source of the requisite stress–energy of the created particles, and there
would be a ‘warp drag’ force on the ship.

Alternatively, if nature does not provide protection against the divergence, warp-drive
designers might seek to have the spaceship modulate the quantized field in such a manner
that it would locally, near the horizon, appear to be in a state which is regular there. They
might eject particles or otherwise manipulate the field to simulate the Hartle–Hawking state
at the appropriate temperature near the horizons. This appears to be a difficult task, however,
since the region beyond the past horizon is causally disconnected from the ship particles and
information cannot be sent from the ship to the region where the stress–energy needs to be
manipulated. This causal problem has been previously noted in reference to the difficulty
in turning the warp drive off once it is established.

Finally, one might object that the divergence perhaps only occurs along the single
spatial direction in which the ship is travelling, since that is the only direction included
in this two-dimensional calculation. However, calculation of null geodesic paths in the
four-dimensional warp-drive spacetime shows that there exist two spherical ‘cap’ apparent
horizon regions, in front of and behind the ship [5]. The half-angle of the caps grows
from zero atv0 = 1 to approachπ/2 asv0 → ∞. This suggests that the quantum effects
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found here may extend over an area of finite measure in four dimensions, though clearly a
four-dimensional calculation will be necessary to obtain definitive results.
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