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Abstract
The Alcubierre metric describes a spacetime geometry that allows a massive particle inside a space-

time distortion, called warp bubble, to travel with superluminal global velocities. In this work we

advance solutions of the Einstein equations with the cosmological constant for the Alcubierre warp

drive metric having the perfect fluid as source. We also consider the particular dust case with the

cosmological constant, which generalizes our previous dust solution (Santos-Pereira et al. 2020) and

led to vacuum solutions connecting the warp drive with shock waves via the Burgers equation, as

well as our perfect fluid solution without the cosmological constant (Santos-Pereira et al. 2021). All

energy conditions are also analyzed. The results show that the shift vector in the direction of the

warp bubble motion creates a coupling in the Einstein equations that requires off-diagonal terms in

the energy-momentum source. Therefore, it seems that to achieve superluminal speeds by means

of the Alcubierre warp drive spacetime geometry one may require a complex configuration and dis-

tribution of energy, matter and momentum as source in order to produce a warp drive bubble. In

addition, warp speeds seem to require more complex forms of matter than dust for stable solutions

and that negative matter may not be a strict requirement to achieve global superluminal speeds.
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1. INTRODUCTION

The warp drive is a mechanism based on General Relativity which in theory allows for
massive particles to be propelled throughout the spacetime with global superluminal speeds
[1, 2]. The theory describes this possibility by means of a localized spacetime distortion,
called warp bubble, that would contain a local lightcone where the particle would follow
special relativity, that is, move locally with speeds smaller than light. However, the metric
is such that the warp bubble moves along a geodesic that creates an expansion of spacetime
behind it and a contraction in front of it in such a way that an observer outside the warp
bubble sees it moving with superluminal speed.

In the original paper by M. Alcubierre the warp drive metric was established without
solving the Einstein equations [1]. The Einstein tensor components were calculated and it
was noticed that negative energy density would be required to create the warp bubble, thus
violating the weak and dominant energy conditions.

Ford and Roman [3] calculated via quantum inequalities the amount of negative energy
required for the warp drive to be possible, concluding that it would be a massive amount,
impossible to achieve. Pfenning and Ford [4] also concluded that it would be necessary an
enormous amount of energy for the warp drive to be possible. They obtained a quantity ten
orders of magnitude greater than the mass-energy of the entire visible Universe, also with
negative density.

Krasnikov [5] discussed the possibility of a massive particle moving in space faster than a
photon, arguing that this is not possible due to limitations on globally hyperbolic spacetimes
properties with feasible physical assumptions. He is the creator of a specific spacetime
topology with devices that would allow massive particles to travel between two points in
space with superluminal velocities without the need for tachyons. Everet and Roman [6]
coined the name for this spacetime topology as the Krasnikov tube. They generalized the
metric designed by Krasnikov by proposing a tube in the direction of the particle’s path,
connecting the start and end point. Inside this tube, the spacetime is flat and the lightcones
are opened to allow the one direction superluminal travel. The Krasnikov tube also requires
huge amounts of negative energy density. Since the tube is designed to not possess closed
timelike curves, it would be theoretically possible to construct a two way non-overlapping
system that could work as a time machine. The energy-momentum tensor (EMT) for the
Krasnikov metric is positive in some regions. Both the metric and the obtained EMT were
thoroughly analyzed in Refs. [7, 8].

Van de Broeck [9] made a relevant contribution to warp drive theory by demonstrating
that a small modification of the original Alcubierre geometry would reduce, to a few solar
masses, the total negative energy necessary for the creation of the warp bubble distortion of
spacetime. This result have led van de Broeck to suppose that other geometrical modifica-
tions of the Alcubierre’s geometry for the warp drive could also reduce the amount of energy
necessary to create a warp drive bubble in the same way.

Natario [10] stated that the spacetime contraction and expansion of the warp bubble is
a peculiar consequence of the warp drive metric. Hence, he designed a spacetime where no
contraction or expansion occurs for the warp drive bubble. Lobo and Visser [11, 12] discussed
that the center of the warp bubble proposed by Alcubierre needs to be massless [see also
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Refs. 13, 14]. They proposed a linearized model for both Alcubierre and Natario proposals
and demonstrated that for small speeds, the energy stored in the warp fields must be a
significant fraction of the mass of the spaceship inside the warp bubble. Quarra [15] discussed
null geodesics moving faster-than-light according to far away observers when inside a region-
delimited gravitational wave field. Lee and Cleaver [16, 17] analyzed how external radiation
might affect the Alcubierre warp bubble to turn it unsustainable. They also claimed that
a warp field interferometer could not detect spacetime distortions. Mattingly et al. [18, 19]
studied the curvature invariants characteristic of Natario and Alcubierre warp drives, whereas
Mattingly [20] discussed further curvature invariants for warped spacetimes.

Bobrick and Martire [21] claimed that any warp drive spacetime consists of a shell of
regular or exotic material moving inertially with a certain speed, also reaching at a class
of subluminal spherically symmetric warp drives. Lentz [22] and Fell and Heisenberg [23]
advanced superluminal capable soliton solutions with positive energy warp drives. Santiago
et al. [24, 25] argued that only comoving timelike Eulerian observers satisfy the weak energy
condition, whereas this not the case for all timelike observers. Furthermore, they claimed
that all physically reasonable warp drives will violate the null and weak energy conditions,
therefore disputing the claim advanced by Refs. [21–23] that it would be theoretically possible
to set up positive energy warp drives that satisfy the weak energy condition.

Motivated by the fact that neither the original paper by Alcubierre, nor the subsequent
ones cited above, did actually solve the Einstein equations using the warp drive metric, we
proceed to investigate possible solutions for a dust particle energy momentum tensor [26].
Our results showed that solutions of the Einstein equations for the Alcubierre warp drive
metric having dust as source connect them in a particular case the warp drive geometry
to the well-known Burgers equation, which describes the dynamics of the waves moving
through an inviscid fluid. Hence, shock waves appear to be vacuum solutions of the Einstein
equations endowing the warp drive metric [26].

In our second paper [27] we investigated solutions for the warp drive metric having the
perfect fluid and a special case of anisotropic fluid with heat flux, but both with zero cos-
mological constant in the Einstein equations. The resulting solutions indicate that positive
matter densities are possibly capable of generating superluminal speeds. In our third paper
[28] a charged dust was used as source EMT for the Alcubierre metric and the Einstein
equations which included the cosmological constant. We obtained solutions connecting the
electric energy density with the cosmological constant and, again, some solutions were found
having positive matter density and satisfying the energy conditions.

Motivated by the results we obtained in Ref. [28] we have pondered that even though the
Alcubierre warp drive metric is a vacuum geometry, the warp bubble would be created by
geometry alone, or if a vacuum energy would make it possible through other material sources
of energy and momentum. Hence, in this paper we went back to the perfect fluid source but
included the cosmological constant in the Einstein equations as an additional flexibility and
geometrical properties for the solutions.

We calculated the Einstein equations and analyzed the null divergence of the energy mo-
mentum tensor together with the validity requirements for the energy conditions inequalities
to be satisfied. We found that the perfect fluid with the cosmological constant as source for
the Alcubierre warp drive results in four sets of differential equations, two of them are very
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similar and raise the possibility for the shift vector to be a complex function in one case,
depending on the (t, y) coordinates, and in another case depending on the (t, z) coordinates.
The other two sets of solutions are identical to each other and similar to the solution we
found in Ref. [26], except that now there is a cosmological constant coupled with the Burg-
ers equation and, again, the warp drive is connected to shock waves solutions. Considering
that the zero pressure reduces the perfect fluid to the dust EMT, the solution for this case
is identical to the one we found in Ref. [26], namely, the vacuum solution of the Einstein
equations connecting the warp drive to shock waves.

The plan of the paper is as follows. Section 2 presents a brief review of the basic equations
and concepts of the warp drive theory, and in Section 3 we solve the Einstein equations and
calculated the covariant divergence for the EMT. Section 4 discusses the energy conditions
inequalities and their validity for the warp drive with Λ 6= 0 and the perfect fluid as a source.
In section 5 we analyze incoherent matter as a source assuming that this is as a special case
considering the perfect fluid with null pressure. In section 6 we depict our conclusions and
final remarks.

2. WARP DRIVE BASIC CONCEPTS

2.1. Warp drive metric

The warp drive metric is a generic metric in a foliated spacetime given by the following
expression,

ds2 = −
(

α2 − βiβ
i
)

dt2 + 2βi dx
i dt+ γij dx

i dxj , (2.1)

where dτ is the proper time lapse, α is the lapse function that controls the amount of time
elapsed between two hypersurfaces of constant time coordinate, βi is the spacelike shift vector
and γij is the spatial metric for the hypersurfaces. The lapse function α and the shift vector
βi are functions of the spacetime coordinates to be determined, γij is a positive-definite
metric on each one of the spacelike hypersurfaces and these features make this spacetime
globally hyperbolic. Throughout this paper Greek indices will range from 0 to 3, whereas
the Latin ones indicate the spacelike hypersurfaces and will range from 1 to 3.

We have the following choices for Eq. (2.1) [1],

α = 1, (2.2)

β1 = −vs(t)f
[

rs(t)
]

, (2.3)

β2 = β3 = 0, (2.4)

γij = δij. (2.5)

Hence, the warp drive metric is given by,

ds2 = −
[

1− vs(t)
2f(rs)

2
]

dt2 − vs(t)f(rs) dx dt+ dx2 + dy2 + dz2 , (2.6)

where vs(t) is the velocity of the center of the bubble moving along the curve xs(t), given by,

vs(t) =
dxs(t)

dt
. (2.7)
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The function f(rs) is the warp drive regulating form function. It describes the shape of the
warp bubble, which is given by the expression,

f(rs) =
tanh [σ(rs +R)]− tanh [σ(rs −R)]

2 tanh(σR)
, (2.8)

where σ and R are constants to be determined. The function rs(t) defines the distance from
the center of the bubble [xs(t), 0, 0] to a generic point (x, y, z) on the surface of the bubble,
given by the following equation,

rs(t) =

√

[x− xs(t)]
2 + y2 + z2 . (2.9)

From Eq. (2.9) one can see that the warp bubble is perturbed in a one-dimensional manner
because of the term x− xs(t).

2.2. Einstein tensor components

The components of the Einstein tensor with a cosmological constant for the warp drive
metric in Eq. (2.1) are given by the expressions below,

G00 = Λ(1− β2)−
1

4
(1 + 3β2)

[

(

∂β

∂y

)2

+

(

∂β

∂z

)2
]

− β

(

∂2β

∂y2
+

∂2β

∂z2

)

, (2.10)

G01 = Λβ +
3

4
β

[

(

∂β

∂y

)2

+

(

∂β

∂z

)2
]

+
1

2

(

∂2β

∂y2
+

∂2β

∂z2

)

, (2.11)

G02 = −
1

2

∂2β

∂x∂y
−

β

2

(

2
∂β

∂y

∂β

∂x
+ β

∂2β

∂x∂y
+

∂2β

∂t∂y

)

, (2.12)

G03 = −
1

2

∂2β

∂x∂z
−

β

2

(

2
∂β

∂z

∂β

∂x
+ β

∂2β

∂x∂z
+

∂2β

∂t∂z

)

, (2.13)

G11 = Λ−
3

4

[

(

∂β

∂y

)2

+

(

∂β

∂z

)2
]

, (2.14)

G12 =
1

2

(

2
∂β

∂y

∂β

∂x
+ β

∂2β

∂x∂y
+

∂2β

∂t∂y

)

, (2.15)

G13 =
1

2

(

2
∂β

∂z

∂β

∂x
+ β

∂2β

∂x∂z
+

∂2β

∂t∂z

)

, (2.16)

G23 =
1

2

∂β

∂z

∂β

∂y
, (2.17)

G22 = −Λ−
1

4

[

∂2β

∂t∂x
+ β

∂2β

∂x2
+

(

∂β

∂x

)2
]

−
1

4

[

(

∂β

∂y

)2

−

(

∂β

∂z

)2
]

, (2.18)
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G33 = −Λ−
1

4

[

∂2β

∂t∂x
+ β

∂2β

∂x2
+

(

∂β

∂x

)2
]

+
1

4

[

(

∂β

∂y

)2

−

(

∂β

∂z

)2
]

, (2.19)

where β = −β1 = vs(t)f(rs), as in Eq. (2.3). Also noticed that we incorporated the cosmo-
logical constant into the Einstein tensor

Gµν → Gµν − Λgµν (2.20)

2.3. Energy conditions revisited

The components for the Eulerian (normal) observers’ 4-velocities are given by,

uα = (1,−β, 0, 0) , uα = (−1, 0, 0, 0) . (2.21)

Using these results into the Einstein equations,

Tαβu
αuβ =

1

8π
Gαβu

αuβ , (2.22)

results in an expression concerning the energy conditions. From Eqs. (2.21) and considering
that the only non-zero terms of Eq. (2.22) are G00, G01 and G11, we obtain the following
expression,

Tαβ u
αuβ =

1

8π

(

G00 − 2βG01 + β2G11

)

. (2.23)

Substituting Eqs. (2.10), (2.11) and (2.14) into Eq. (2.23) the result may be written as,

Tαβ u
αuβ = Λ−

v2s
32π

[

(

∂f

∂y

)2

+

(

∂f

∂z

)2
]

. (2.24)

The bubble radius is given by using Eq. (2.9). So, Eq. (2.24) is given by,

Tαβu
αuβ = Λ−

v2s
16π

y2 + z2

r2s

(

∂f

∂rs

)2

. (2.25)

This result is similar to the one found by Alcubierre [1], with the difference that Ref. [1]
did not consider the cosmological constant. Considering the results in Ref. [1] we realized
that both the weak and dominant energy conditions would be violated [26] if the bubble was
formed. However, these same energy conditions would be satisfied in the case of a vacuum
solution, which discloses the new result that the warp drive metric is a vacuum solution for
the Einstein equations. Besides, the Burgers equation is connected to this geometry where
shock waves are partial solutions. Here, with the inclusion of the cosmological constant it
may be possible that the weak and dominant energy conditions could be satisfied if Λ is
positive and large enough in Eq. (2.25).
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3. MATTER CONTENT ENERGY-MOMENTUM TENSORS

3.1. Perfect fluid energy momentum tensor

For Eulerian observers 4-velocity uα = (1,−β, 0, 0) and uα = (−1, 0, 0, 0) the perfect fluid
EMT for those observers is given by the expression below,

Tαβ = (µ+ p) uαuβ + pgµν , (3.1)

where µ is a scalar function that represents the matter density, p is the fluid pressure, and
gµν is the metric tensor. It must be noted that the dust EMT is a particular case for the
perfect fluid with null pressure.

From the Einstein tensor components, Eqs. (2.10) to (2.19), and the perfect fluid EMT it
is possible to write all the components of Einstein equations. After some algebraic work we
found the following set of equations,

4

3
Λ = 8π

[

T00 + 2βT01 +

(

β2 −
1

3

)

T11

]

= 8π

(

µ−
1

3
p

)

, (3.2)

(

∂β

∂y

)2

+

(

∂β

∂z

)2

− 4Λ = −32π
(

T00 + 2βT01 + β2T11

)

= −32πµ , (3.3)

∂2β

∂y2
+

∂2β

∂z2
= 16π(T01 + βT11) = 0 , (3.4)

(

∂β

∂y

)2

+

(

∂β

∂z

)2

−
4

3
Λ = −

32

3
πT11 = −

32

3
πp , (3.5)

−
∂

∂x

(

∂β

∂t
+

1

2

∂

∂x
(β2)

)

− 2Λ = 8π(T33 + T22) = 16πp , (3.6)

∂2β

∂x∂y
= −16π(T02 + βT12) = 0 , (3.7)

∂2β

∂x∂z
= −16π(T03 + βT13) = 0 , (3.8)

∂β

∂y

∂β

∂z
= 16πT23 = 0 , (3.9)

3.2. Solving the Einstein equations with Λ for the perfect fluid

From Eq. (3.9) it follows that either ∂β/∂z = 0, or ∂β/∂y = 0, or both vanish. From
Eqs. (3.7) and (3.8) it is easy to see that ∂β/∂x can also be zero. Those cases reveals four
possibilities, which we will discuss in detail as follows.
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Case 1:

[

∂β

∂z
= 0

]

Case 1a:

[

∂β

∂z
= 0 and

∂β

∂x
= 0

]

For this case Eqs. (3.2) to (3.9) simplify to,

Λ = 6π
(

µ−
p

3

)

, (3.10)

(

∂β

∂y

)2

= 4(Λ− 8πµ) , (3.11)

(

∂β

∂y

)2

=
4

3
π(Λ− 8πp) . (3.12)

The set of these last equations implies that the shift vector β is not uniquely defined. It
is a complex valued function that depends only on (t, y) spacetime coordinates. In the
case of the dust EMT as p = 0, the warp drive metric is no longer a vacuum solution
as it was found in [26], because the existence of the cosmological constant as another
parameter originated a solution that does not consider shock waves via the Burgers
equation.

Case 1b:

[

∂β

∂z
= 0 and

∂β

∂y
= 0

]

For this case one has to solve the following equations,

Λ = 8πµ = 8πp = 0 , (3.13)

−
∂

∂x

(

∂β

∂t
+

1

2

∂

∂x
(β2)

)

= 0 . (3.14)

Eq. (3.14) is the Burgers equation that connects the warp drive to shock waves, as
discussed in Ref. [26]. The cosmological constant, fluid pressure and matter density
are all equal to zero and the warp drive metric (2.6) is a vacuum solution for the
Einstein equations.

Case 2:

[

∂β

∂y
= 0

]

Case 2a:

[

∂β

∂y
= 0 and

∂β

∂x
= 0

]

For this configuration, the set of Eqs. (3.2) to (3.9)

simplify to

Λ = 6π
(

µ−
p

3

)

, (3.15)

(

∂β

∂z

)2

= 4(Λ− 8πµ) , (3.16)
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(

∂β

∂z

)2

=
4

3
(Λ− 8πp) . (3.17)

The above set of equations are very similar to Case 1a, where the shift vector is a
complex valued function and it is not uniquely defined, but in this case β depends on
the (t, z) coordinates.

Case 2b:

[

∂β

∂z
= 0 and

∂β

∂y
= 0

]

For this case, one has to solve the following equations

Λ = 8πµ = 8πp = 0 , (3.18)

−
∂

∂x

(

∂β

∂t
+

1

2

∂

∂x
(β2)

)

= 0 , (3.19)

which is the same case as Case 1b.

3.3. Divergence for the perfect fluid EMT

Calculating the divergence for the perfect fluid EMT, one arrives at the following equa-
tions,

T 0ν
;ν = −(µ + p)

∂β

∂x
− β

∂(p + µ)

∂x
−

∂µ

∂t
, (3.20)

T 1ν
;ν =

∂p

∂x
, (3.21)

T 2ν
;ν =

∂p

∂y
, (3.22)

T 3ν
;ν =

∂p

∂z
. (3.23)

Besides, imposing the null divergence condition, Eqs. (3.20) to (3.23) implies that the
pressure p does not depend on the spatial coordinates. Considering cases 1a and 2a there is
another partial differential equation to solve,

β
∂µ

∂x
+

∂µ

∂t
= 0 , (3.24)

and for Cases 1b and 2b Eq. (3.20) is trivially satisfied since µ = p = 0.

9



4. ENERGY CONDITIONS

4.1. Weak Energy Conditions

For this case the EMT at each point of the spacetime must obey the inequality

Tασ u
αuσ ≥ 0 (4.1)

for any timelike vector u (uαu
α < 0) and any null zero vector k (kαk

α = 0). For an observer
with unit tangent vector v at a certain point of the spacetime, the local energy density
measured by any observer is non-negative [29]. For the perfect fluid EMT the expression
Tασ u

αuσ is
Tασ u

αuσ = µ , (4.2)

and the weak energy condition from Eq. (4.1) is satisfied if the matter density µ is positive.
This is also the case for the dust EMT.

4.2. Dominant Energy Conditions

For every timelike vector uα, the following inequality must be satisfied,

T αβ uαuβ ≥ 0, and F αFα ≤ 0 , (4.3)

where F α = T αβuβ is a non-spacelike vector, and the following condition must also be
satisfied

T 00 ≥ |T αβ|, for each α, β . (4.4)

Evaluating the first condition for the perfect fluid EMT we have that,

T αβ uαuβ = µ. (4.5)

The other condition F αFα is given by the result

F αFα = −µ2 ≤ 0 . (4.6)

Hence, the dominant energy condition is satisfied for µ > 0, as can be seen in Eq. (4.5).
Besides, Eq. (4.6) is always satisfied no matter the sign of the matter density. This condition
also holds true if one considers the dust EMT as a particular case for the perfect fluid with
null pressure.

4.3. Strong Energy Conditions

For the strong energy condition the expression

(

Tαβ −
1

2
T gαβ

)

uαuβ ≥ 0 (4.7)

10



is true for any timelike vector u. Computing the strong energy condition in Eq. (4.7) yields,

(

Tαβ −
1

2
T gαβ

)

uαuβ =
1

2
(3p+ µ) , (4.8)

and the strong energy condition stated in Eq. (4.7) is satisfied if 3p + µ ≥ 0. The same is
valid for the dust EMT, considering p = 0 for the perfect fluid, if µ ≥ 0.

4.4. Null Energy Conditions

The null energy conditions are satisfied in the limit of null observers. For the null vector
k the following conditions must be satisfied,

Tασ k
αkσ ≥ 0, for any null vector kα . (4.9)

Assuming that the following null vector kα is given by,

kα = (a, b, 0, 0) , (4.10)

we have that the relation between the components a and b are obtained by solving kαk
α = 0.

The two solutions given by,

a =
b

β + 1
and a =

b

β − 1
. (4.11)

Then, the null energy condition reads,

Tασ k
αkσ =

(

b

β ± 1

)2

(µ+ p) , (4.12)

and the null energy condition may be satisfied if the following conditions are written as

µ+ p ≥ 0 . (4.13)

Eq. (4.13) is also true for the dust EMT if one considers it as a particular case for the
perfect fluid with zero pressure, then the null energy condition is satisfied for the dust if the
matter density is positive.

5. DUST AS A PARTICULAR CASE FROM THE PERFECT FLUID

Table I summarizes the results found for the energy conditions for the perfect fluid with the
cosmological constant that are widely known [29]. Considering the dust EMT as a particular
case for the perfect fluid by imposing the pressure p to be zero, the energy conditions for
the warp drive metric and the dust EMT would be trivially satisfied, since for this case, the
solution of the Einstein equations is a vacuum solution [26].
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TABLE I: Summary results for the perfect fluid energy conditions

Energy condition Results

Weak µ ≥ 0

Strong µ ≥ 0

Dominant µ+ 3p ≥ 0

Null µ+ p ≥ 0

Table II summarizes the solutions of the Einstein equations for the perfect fluid EMT
with the cosmological constant and the warp drive metric. As can be seen there are two
types of solutions and each is divided in two sub cases. Solutions 1b and 2b are identical
and require that Λ = p = µ = 0, where the two solutions are the ones already found in
Ref. [26] for the dust of non interacting particles EMT. This led to a vacuum solution of
the Einstein equations and the connection between shock waves and the warp drive via the
Burgers equation.

Solutions 1a and 2a in table II have structures very similar to the ones of the same type
of equations, but for the solution 1a the shift vector is a function of both the time and the
y-spatial coordinates, i.e., β = β(y, t). For solution 2a it is a function of both the time and
the z-spatial coordinate, i.e., β = β(z, t).

If we consider the dust solution as a particular case of perfect fluid with the imposition
that the pressure is zero, we have that the four sets of partial differential equations in Table
II become a solution for the warp drive metric and the dust EMT with the cosmological
constant. In the case of dust EMT there is no longer a set of equations 1a and 2a to be
solved, only 1b and 2b, that are identical to the ones appearing in Ref. [26]. Even with a
cosmological constant the dust EMT seems to be not a stable source of matter, energy and
momentum for the warp drive.

6. CONCLUSIONS AND FINAL REMARKS

In this work we investigated how the presence of a cosmological constant would affect the
solutions of the Einstein equations endowed with the Alcubierre warp drive metric and the
perfect fluid EMT as the source. Firstly, we solved the Einstein equations and obtained two
solutions, Cases 1b and 2b, that are similar to the solutions we found for the dust particle
without the cosmological constant [26], and two other solutions, Case 1a with β = β(t, y)
and Case 2a with β = β(t, z), having the following equation of state relating the cosmological
constant Λ, the matter density µ and the fluid pressure p: Λ = 2π(3µ− p).

The presence of the cosmological constant allows the shift vector to be a real valued
function as can be seen from Eqs. (3.11) and (3.12) for Case 1a in Table II, and Eqs. (3.16)
and (3.17) for Case 2a, namely, Λ− 8πµ ≥ 0 and Λ− 8πp ≥ 0.

If we do not consider the cosmological constant, then the shift vector would become a
complex valued function for Cases 1a and 2a in Table II. The energy conditions are all
satisfied for the perfect fluid if the conditions in Table I are satisfied. Solutions 1b and 2b
shown in Table II connect the Burgers equation to both the warp drive and the perfect fluid
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Case Condition Results

1)
∂β

∂z
= 0

1a)
∂β

∂x
= 0

Λ = 6π
(

µ− p
3

)

β = β(y, t)

∂β

∂y
= ±

√

4(Λ− 8πµ)

∂β

∂y
= ±

√

4

3
(Λ− 8πp)

β
∂µ

∂x
+

∂µ

∂t
= 0 (null divergence)

1b)
∂β

∂y
= 0

Λ = 8πµ = 8πp = 0

β = β(x, t)

∂β

∂t
+

1

2

∂

∂x
(β2) = h(t)

Null divergence is trivially satisfied

This is the solution found in Ref. [26]

2)
∂β

∂y
= 0

2a)
∂β

∂x
= 0

Λ = 6π
(

µ− p
3

)

β = β(y, t)

∂β

∂z
= ±

√

4(Λ− 8πµ)

∂β

∂z
= ±

√

4

3
(Λ− 8πp)

β
∂µ

∂x
+

∂µ

∂t
= 0 (null divergence)

2b)
∂β

∂z
= 0

Λ = 8πµ = 8πp = 0

β = β(x, t)

∂β

∂t
+

1

2

∂

∂x
(β2) = h(t)

Null divergence is trivially satisfied

This is the solution found in Ref. [26]

TABLE II: Summary of all solutions of the Einstein equation with the cosmological constant and

the Alcubierre warp drive metric having the perfect fluid EMT as mass-energy source. This table

is also valid for the dust particle if considered as a particular case for the perfect fluid with null

pressure.

solution. In Ref. [26] we found this intrinsic relationship between the warp drive and shock
waves by solving Einstein equations for the warp drive metric and the dust particle EMT,
but we concluded that there is an impossibility of coupling the dust as a source in this case.
So, the presence of shock waves would imply that the Alcubierre metric shown in Eq. (2.6)
is a vacuum solution for the warp drive. In Ref. [1] the Einstein equations were not solved,
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since the metric was merely guessed with a form function (see Eq. 2.8) that rules the warp
bubble shape.

The results found here led us to a kind of prescription where the warp drive requires
more complex forms of matter than dust in order to obtain stable solutions. In addition,
considering this work and the previous ones of this series of papers [26–28] it becomes increas-
ingly clear and that negative matter density may not be a strict requirement to obtain warp
speeds. The shift vector in the direction of the warp bubble movement creates a coupling in
the Einstein equations that requires off-diagonal terms in the EMT source. In the light of
these results we may conjecture that the key for engineering a superluminal propelling system
for interstellar travel could be understood as a complex distribution of energy, matter and
momentum sources that could stabilize the warp drive geometry, allowing then superluminal
travel.
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