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Superluminal subway: The Krasnikov tube

Allen E. Everett* and Thomas A. Roman†

Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155
~Received 21 February 1997!

The ‘‘warp drive’’ metric recently presented by Alcubierre has the problem that an observer at the center of
the warp bubble is causally separated from the outer edge of the bubble wall. Hence such an observer can
neither create a warp bubble on demand nor control one once it has been created. In addition, such a bubble
requires negative energy densities. One might hope that elimination of the first problem might ameliorate the
second as well. We analyze and generalize a metric, originally proposed by Krasnikov for two spacetime
dimensions, which does not suffer from the first difficulty. As a consequence, the Krasnikov metric has the
interesting property that, although the time for a one-way trip to a distant star cannot be shortened, the time for
a round trip, as measured by clocks on Earth, can be made arbitrarily short. In our four-dimensional extension
of this metric, a ‘‘tube’’ is constructed along the path of an outbound spaceship, which connects the Earth and
the star. Inside the tube spacetime is flat, but the light cones are opened out so as to allow superluminal travel
in one direction. We show that, although a single Krasnikov tube does not involve closed timelike curves, a
time machine can be constructed with a system of two nonoverlapping tubes. Furthermore, it is demonstrated
that Krasnikov tubes, like warp bubbles and traversable wormholes, also involve unphysically thin layers of
negative energy density, as well as large total negative energies, and, therefore, probably cannot be realized in
practice.@S0556-2821~97!03914-3#

PACS number~s!: 04.20.Gz, 04.62.1v
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I. INTRODUCTION

Alcubierre @1# showed recently, with a specific exampl
that it is possible within the framework of general relativi
to warp spacetime in a small ‘‘bubblelike’’ region in such
way that a spaceship within the bubble may move with a
trarily large speed relative to nearby observers in flat spa
time outside the bubble. His model involves a spaceti
with metric given by~in units whereG5c51)

ds252dt2@12v2f 2~r 0!#22v f ~r 0!dx dt

1dx21dy21dz2, ~1!

where

r 05$@x2x0~ t !#21y21z2%1/2 ~2!

and

v5
dx0

dt
. ~3!

The function f satisfiesf '0 for r 0.R1dR and f '1 for
r 0,R2dR, whereR is the bubble radius anddR is the half
thickness of the bubble wall. A suitable form forf is given in
Ref. @1#. In the limit dR→0, f becomes a step function
Spacetime is then flat outside a spherical bubble of rad
R centered on the pointrW05„x0(t),0,0… moving with speed
v along thex axis, as measured by observers at rest outs
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the bubble. Herev is an arbitrary function of time which
need not satisfyv,1, so that the bubble may attain arb
trarily large superluminal speeds as seen by external obs
ers. Space is also flat in the region within the bubble wh
f 51, since it follows from Eqs.~1! and~3! that, for f 51, a
locally inertial coordinate system is obtained by the sim
transformationx85x2x0(t). Hence an object moving alon
with the center of the bubble, whose trajectory is given
x850, is in free fall.

As pointed out in Ref.@1#, there are questions as t
whether the metric~1! is physically realizable, since the co
responding energy-momentum tensor, related to it by
Einstein equation, involves regions of negative energy d
sity, i.e., violates the weak energy condition~WEC! @2#. This
is not surprising since it has been shown@3# that a straight-
forward extension of the metric of Ref.@1# leads to a space
time with closed timelike curves~CTC’s!. It is well known
that negative energy densities are required for the existe
of stable Lorentzian wormholes@4#, where CTC’s may also
occur, and Hawking@5# has shown that the occurrence
CTC’s requires violations of the WEC under rather gene
circumstances. The occurrence of regions with negative
ergy density is allowed in quantum field theory@6,7#. How-
ever, Ford and Roman@8–10# have proved inequalities
which limit the magnitude and duration of negative ener
density. These ‘‘quantum inequalities’’~QI’s! strongly sug-
gest@9# that it is unlikely that stable macroscopic Lorentzia
wormholes can exist, and similar conclusions have b
drawn by Pfenning and Ford@11# with regard to the ‘‘warp
drive’’ spacetime of Ref.@1#.

It is the goal of this paper to analyze a spacetime rece
proposed by Krasnikov@12# which, although differing from
that of Ref. @1# in several key respects, shares with it t
property of allowing superluminal travel. We first review th
spacetime, in the two-dimensional form as originally giv

es,
-
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56 2101SUPERLUMINAL SUBWAY: THE KRASNIKOV TUBE
by Krasnikov, and give a more extended discussion of
properties than that provided in Ref.@12#. Then we carry out
the straightforward task of generalizing the Krasnikov me
to the realistic case of four dimensions. We establish t
despite their differences, the Krasnikov and Alcubierre m
rics share a number of important properties. In particular,
show that, like the metric of Ref.@1#, the Krasnikov metric
implies the existence of CTC’s, and also show explicitly th
the associated energy-momentum tensor violates the W
Finally, we apply a QI to the Krasnikov spacetime and arg
that, as in the cases of wormholes and Alcubierre bubb
the QI strongly suggests that the Krasnikov spacetime is
physically realizable.

II. KRASNIKOV METRIC IN TWO DIMENSIONS
AND SUPERLUMINAL TRAVEL

Krasnikov @12# raised an interesting problem with met
ods of superluminal travel similar to the Alcubierre mech
nism. The basic point is that in a universe described by
Minkowski metric att50, an observer at the origin, e.g., th
captain of a spaceship, can do nothing to alter the metri
points outside the usual future light coneurWu<t, where
r 5(x21y21z2)1/2. In particular, this means that those o
the spaceship can never create, on demand, an Alcub
bubble with v.c around the ship. This follows explicitly
from the following simple argument. Points on the outsi
front edge of the bubble are always spacelike separated
the center of the bubble. One can easily show this by c
sidering the trajectory of a photon emitted in the positivex
direction from the spaceship. If the spaceship is at rest at
center of the bubble, then initially the photon h
dx/dt5v11 or dx8/dt51. This of course must be tru
since at the center of the bubble the primed coordinates
fine a locally inertial reference frame. However, at so
point with x85xc8 , for which 0, f ,1 so thatxc8,R and the
point is within the bubble wall, one finds thatdx8/dt50 or
dx/dt5v. ~It is clear by continuity thatdx/dt5v at some
point for photons moving in the1x direction inside the
bubble, sincedx/dt5v11 at the center of the bubble an
dx/dt51 in flat space outside the bubble wall.! Thus once
photons reachxc8 , they remain at rest relative to the bubb
and are simply carried along with it. Photons emitted in
forward direction by the spaceship never reach the out
edge of the bubble wall, which therefore lies outside
forward light cone of the spaceship. The bubble thus can
be created~or controlled! by any action of the spaceshi
crew, excluding the use of tachyonic signals@13#.

The foregoing discussion does not mean that Alcubie
bubbles, if it were possible to create them, could not be u
as a means of superluminal travel. It only means that
actions required to change the metric and create the bu
must be taken beforehand by some observer whose forw
light cone contains the entire trajectory of the bubble. S
pose space has been warped to create a bubble traveling
the Earth to some distant star, e.g., Deneb, at superlum
speed. A spaceship appropriately located with respect to
bubble trajectory could then choose to enter the bub
rather like a passenger catching a passing trolley car,
thus make the superluminal journey. However, a space
captain hoping to make use of a region of spacetime wit
s
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suitably warped metric to reach a star at a distanceD in a
time intervalDt,D must, like the potential trolley car pas
senger, hope that others have previously taken action to
vide a passing mode of transportation when desired.

In contrast, as Krasnikov points out, causality consid
ations do not prevent the crew of a spaceship from arrang
by their own actions, to complete around trip from the Earth
to a distant star and back in an arbitrarily short time,
measured by clocks on the Earth, by altering the metric al
the path of their outbound trip. As an example, consider
metric in the two-dimensionalt,x subspace, introduced b
Krasnikov in Ref.@12#, given by

ds252~dt2dx!@dt1k~x,t !dx# ~4!

52dt21@12k~x,t !#dx dt1k~x,t !dx2,
~5!

where

k~x,t ![12~22d!ue~ t2x!@ue~x!2ue~x1e2D !#, ~6!

ue is a smooth monotonic function satisfying

ue~j!5H 1 at j.e

0 at j,0
~7!

andd ande are arbitrary small positive parameters. We w
give a specific form forue in Sec. VI. Fork51, the metric
~5! reduces to the two-dimensional Minkowski metric. Th
two time-independentue functions between the brackets
Eq. ~6! vanish for x,0 and cancel forx.D, ensuring
k51 for all t except betweenx50 and x5D. When this
behavior is combined with the effect of the factorue(t2x),
one sees that the metric~5! describes Minkowski space ev
erywhere for t,0 and, at all times, outside the rang
0,x,D. For t.x and e,x,D2e, the first twoue func-
tions in Eq.~6! both equal 1, whileue(x1e2D)50, giving
k5d21 everywhere within this region. There are two sp
tial boundaries between these two regions of constantk, one
betweenx50 and x5e for t.0 and a second betwee
x5D2e andx5D for t.D. We can think of this metric as
being produced by the crew of a spaceship which dep
from Earth (x50) at t50 and travels along thex axis to
Deneb (x5D) at a speed which for simplicity we take to b
only infinitesimally less than the speed of light, so that
arrives att'D. The crew modify the metric by changingk
from 1 to d21 along thex axis in the region between
x50 and x5D, leaving a transition region of widthe at
each end to ensure continuity. Similarly, continuity in tim
implies that the modification ofk requires a finite time inter-
val whose duration we assume, again for simplicity, to
e. However, since the boundary of the forward light cone
the spaceship att50 is given byuxu5t, the spaceship canno
modify the metric atx before t5x, which accounts for the
factor ue(t2x) in the metric. Thus there is a transition re
gion in time between the two values ofk, of duratione, lying
along the world line of the spaceship,x't. The resulting
geometry in thex-t plane is shown in Fig. 1, where th
shaded regions represent the two spatial transition reg
0,x,e andD2e,x,D and the temporal transition regio
x,t,x1e. In the internal region of the diagram, enclos



h

sio
e

r
th
; i

h

ce

nal
y

ote

ht

e
r
the
f

the

e
ain
as

nd

e of
turn

n
arth
su-
f
ture.
ea-
rily

in-
ne

ts
t
w-

ic
ible,

n,
et-
n

the

ec

2102 56ALLEN E. EVERETT AND THOMAS A. ROMAN
by the three shaded areas,k has the constant valued21,
while k51 everywhere outside the shaded regions. T
world line of the spaceship is represented by the lineAB.

The properties of the modified metric withd21<k<1
can be easily seen from the factored form of the expres
for ds2 in Eq. ~4! where, puttingds250, one sees that th
two branches of the forward light cone in thet,x plane are
given by dt/dx51 anddt/dx52k. As k becomes smalle
and then negative, the slope of the left-hand branch of
light cone becomes less negative and then changes sign
the light cone along the negativex axis ‘‘opens out.’’ This is
illustrated in Fig. 2 where we depict the behavior of the lig
cone ~in two spatial dimensions! for k51, k50, and
k5d21 for small d. For k'21, the boundary of the for-
ward light cone is almost the straight linex5t, and the for-
ward and backward light cones include almost all of spa
time.

In the internal region of Fig. 1, wherek5d215const,
space is flat, since the metric of Eq.~5! can be reduced to
Minkowski form by the coordinate transformation

dt85dt1S d

2
21Ddx, ~8!

FIG. 1. The Krasnikov spacetime in thex-t plane. The vertical
lines E andD are the world lines of the Earth and Deneb, resp
tively. The world line of the spaceship is~approximately! repre-
sented by the lineAB.

FIG. 2. Forward light cones in the Krasnikov spacetime~illus-
trated with two space dimensions! for k51, k50, andk5d21.
e

n

e
.e.,

t

-

dx85S d

2Ddx. ~9!

Note that the left-hand branch of the light cone in the inter
region is given in the Minkowski coordinates b
dt8/dx8521, which, from Eqs.~8! and ~9!, reduces to our
previous expressiondt/dx52k512d on the left-hand
branch of the light cone as illustrated in Fig. 2. We also n
that the transformation becomes singular atd50, i.e., at
k521.

From Eqs.~8! and ~9!, we obtain

dt

dt8
511S 22d

d D dx8

dt8
. ~10!

For an object propagating causally, i.e., into its forward lig
cone, we haveudx8/dt8u,1 anddt8.0. Since 0,d<2, one
sees that for such an object moving in the positivex8 ~and
x) direction,dt.0 for anyd. However, ford,1, an object
moving sufficiently close to the left branch of the light con
given bydx8/dt8521 will havedt/dt8,0 and thus appea
to propagate backward in time as seen by observers in
external (d52 ,k51) region of Fig. 1. These properties o
motion in the Krasnikov metric withd,1 can be seen from
the shape of the light cone as shown in Fig. 2.

Now suppose our spaceship, having traveled from
Earth to Deneb and arriving at timet'D, has modified the
metric so thatk'21 ~i.e., d'0) along its path. Suppos
further that it now returns almost immediately to Earth, ag
traveling at a speed arbitrarily close to the speed of light
seen in its local inertial system, i.e., along the left-ha
branch of the light cone withdx8/dt8'21. It will then have
v r[dx/dt'21/k51/(12d)'1 anddt,0 ~sincedx,0),
and thus move down and to the left along the upper edg
the diagonal shaded region in Fig. 1. The spaceship’s re
to Earth requires a time intervalDt r52D/v r5D(d21),
and the ship returns to Earth at a timetE as measured by
clocks on the Earth given bytE5D1Dt r5Dd. ~For sim-
plicity, here we treat the wall thickness,e, as negligible.!

Sinced.0, uDt r u,D, and the spacetime interval betwee
the spaceship’s departure from Deneb and its return to E
is spacelike. Therefore the return journey must involve
perluminal travel. Note thattE.0, meaning that the return o
the spaceship to Earth necessarily occurs after its depar
However, the interval between departure and return, as m
sured by observers on the Earth, can be made arbitra
small by appropriate choice of the parameterd. The time of
return, tE , must necessarily be positive, since causality
sures that the metric is modified, opening out the light co
to allow causal propagation in the negativet direction, only
for t.0. SincetE.0, the spaceship cannot travel into i
own past; i.e., the metric of Ref.@12#, as it stands, does no
lead to CTC’s and the existence of a time machine. Ho
ever, when the metric~5! is generalized to the more realist
case of three space dimensions, CTC’s do become poss
as we shall see below.

Before turning to the three-dimensional generalizatio
we note one other interesting property of the Krasnikov m
ric. In the cased,1, it is always possible to choose a
allowed value ofdx8/dt8 for which dt/dt850, meaning that
the return trip is instantaneous as seen by observers in

-
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56 2103SUPERLUMINAL SUBWAY: THE KRASNIKOV TUBE
external region of Fig. 1. This can be seen from the th
diagram in Fig. 2. It also follows easily from Eq.~10!, which
implies thatdt/dt850 whendx8/dt8 satisfies

dx8

dt8
52

d

~22d!
, ~11!

which lies between 0 and21 for 0,d,1.

III. GENERALIZATION TO FOUR DIMENSIONS

In four dimensions the modification of the metric begi
along the path of the spaceship, i.e., thex axis, occurring at
positionx at timet'x, the time of passage of the spacesh
We assume that the disturbance in the metric propagate
dially outward from thex axis, so that causality guarante
that at timet the region in which the metric has been mod
fied cannot extend beyondr5t2x, wherer5(y21z2)1/2. It
also seems natural to take the modification in the metric
to extend beyond some maximum radial distancermax!D
from thex axis. Thus in four-dimensional spacetime we r
place Eq.~6! by

k~ t,x,r![12~22d!ue~rmax2r!ue~ t2x2r!

3@ue~x!2ue~x1e2D !#, ~12!

and our metric, now written in cylindrical coordinates,
given by

ds252dt21@12k~ t,x,r!#dx dt1k~ t,x,r!dx2

1dr21r2df2. ~13!

~Again we assume for simplicity that thee parameters in all
of the ue functions which appear in the expression fork are
equal.! For t@D1rmax one now has a tube of radiusrmax
centered on thex axis within which the metric has bee
modified; we refer to this structure as a ‘‘Krasnikov tube
In contrast with the metric of Ref.@1#, the metric of a Kras-
nikov tube is static once it has been initially created. If w
make the assumption thatrmax@e, such a tube will consist o
a relatively large central core, of radiusrmax2e, along the
x axis with e,x,D2e; within this central core, space i
flat and k5d215const. This central core will be sur
rounded by thin walls and end caps of thicknesse, within
which there is curved space withk varying between
k5d21 and k51. The situation is illustrated in Fig. 3
which shows cross sections through the tube in the reg
e,x,D2e and also in one of the end caps.

IV. SUPERLUMINAL SUBWAY AND CLOSED
TIMELIKE CURVES

As we have seen, in two dimensions a single Krasnik
tube allows superluminal travel backward int in one direc-
tion along thex axis, and does not lead to CTC’s. Howeve
in three space dimensions the situation is different. Assu
ing that Krasnikov tubes can be established, imagine th
spaceship has traveled from the Earth to Deneb along thx
axis during the time interval fromt50 to t5D, and estab-
lished the Krasnikov tube running from the Earth to Den
which we have discussed. It would then be possible for
d

.
ra-

ot

-

n

v

,
-
a

b
e

ship to return from Deneb to the Earth outside the first tu
along a path parallel to thex axis but at a distancer0 from it,
whereD@r0.2rmax. On the return journey the spacesh
crew could again modify the metric along their path, esta
lishing a second Krasnikov tube identical to the first b
running in the opposite direction; that is, the metric with
the second tube would be given by that of Eq.~13! with x
replaced byX[D2x and t replaced byT[t2D. The cru-
cial point is that in three dimensions the two tubes can
made nonoverlapping because of their separation in thr
direction. The spaceship can now, for example, start from
Earth (x50) at t52D, and travel back in time to the Eart
at a time arbitrarily close tot50 by first using the second
Krasnikov tube to travel to Deneb (x5D) at timet5D, and
then using the original tube as before, to travel from Den
at t5D to the Earth att50. ~We are assuming that the sh
travels at essentially light speed, thatd ande are taken to be
negligibly small, and that the small time required to mo
the distancer0!D from one of the Krasnikov tubes to th
other is negligible.! It may be worth noting that the foregoin
argument is closely analogous to that given in Ref.@3# for
the existence of CTC’s in the Alcubierre case. The situat
is also similar to the case of time travel using a tw
wormhole system, as depicted in the spacetime diagram
Fig. 18.5 of Ref.@14#.

It follows from the foregoing discussion that if Krasniko
tubes could be constructed, one could, at least in princi
establish a network of such tubes forming a sort of inters
lar subway system, allowing instantaneous communica
between points connected by the tubes. A necessary co
lary of the existence of such a network is the possibility
backward time travel and the consequent existence of CT
CTC’s could be avoided only if, for some reason, there
isted a preferred axis such that all the Krasnikov tubes w
oriented so that the velocity components along that axis
objects in superluminal motion were always positive, imp
ing that no object could return to the same point in timeand
space. One might be tempted to reject immediately the p
sibility of Krasnikov tubes for interstellar travel because, u
like Alcubierre bubbles, their required length would be en
mous. However, there are interesting situations
astronomy, e.g., jets in active galactic nuclei and poss

FIG. 3. Spatial cross sections of a Krasnikov tube atx5const,
t5const. The left diagram represents a cross section through
middle of the tube between the end caps, while the right diagram
a cross section through an end cap.
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2104 56ALLEN E. EVERETT AND THOMAS A. ROMAN
cosmic strings, which involve~albeit positive! matter distri-
butions of such dimensions. In any event, even if the c
struction of Krasnikov tubes over astronomical distance
impractical, oppositely directed nonoverlapping pairs
tubes of laboratory dimensions could form time machin
forcing one to confront all the associated problems.

V. STRESS-ENERGY TENSOR FOR A KRASNIKOV TUBE

In this section, we show that the WEC is necessarily v
lated in some regions of a Krasnikov tube. The stress-ene
tensorTmn for the matter needed to produce a Krasnik
tube can be calculated from the metric of Eq.~13! and the
Einstein equations, using the programMATHTENSOR @15#.
We first obtain an expression forTmn in terms of derivatives
of k with respect to the spacetime coordinates. The st
tensor elementTtt is given by the expression

Ttt5@32p~11k!2#21F24 ~11k!

r

]k

]r
13S ]k

]r D 2

24~11k!
]2k

]r2G . ~14!

~It will be shown later that this is the energy density seen
a static observer.! Note that this component of the stre
tensor involves only derivatives ofk with respect tor. A
number of general features of thek vs r curve illustrated in
Fig. 4 are generic and follow from Eq.~12! without specify-
ing an explicit form forue . In particular,k increases mono
tonically from its value atr50 to k'1 at r>rmax, so that
]k/]r and (11k) are positive. Furthermore, analyticity o
k at r50 implies that]k/]r vanishes at that point. From th
previous remarks, we have that]k/]r'brm, with m>1,

FIG. 4. Graph ofk vs r at constantx,t. Heree,x,D2e.
-
is
f
,

-
gy

ss

y

b.0, for small r. Hence, sufficiently near the axis of th
Krasnikov tube, the first and third terms on the right-ha
side of Eq.~14! are negative and go asrm21 for r→0; these
terms thus dominate the second term, which is positive, b
factor of r2m21. Therefore there is necessarily a range
r near the axis of the tube where the energy density see
a static observer is negative.

As we have noted previously, for a thin-walled tub
space is nearly flat and soTtt'0 within the core of the tube
Thus in the region nearr50 where we can make a gener
statement about the sign ofTtt on the basis of the precedin
argument, we expectTtt to be extremely small due to th
behavior of the functionue(rmax2r). ~We observe that the
casek521, corresponding tod50, is not allowed, since
that would produce a divergence inTtt .) In the vicinity of
the tube wall, whereTtt is large, we can only obtain its valu
by choosing an explicit form fork, i.e., for ue , and then
evaluatingTtt numerically. In Fig. 5 we show a plot ofTtt in
the region of the tube wall obtained in this way, using t
form of ue given in the next section, and takingx5D/2,
t@rmax1D/2, ande/rmax!1. We see thatTtt is negative on
the inner side of the wall, as one would expect, since
general argument given above shows thatTtt must be nega-
tive for small r. However,Ttt changes sign and develop
appreciable positive values on the outer side of the wall. T
corresponding plot atx5e/2, in the left end cap, is very
similar to Fig. 5. There are two main differences: First, t
magnitudes of the positive and negative energy den
maximum and minimum are essentially equal, and seco
these magnitudes are roughly 4 times smaller than
x5D/2.

VI. QUANTUM INEQUALITY CONSTRAINTS

In Ref. @8#, an inequality was proved which limits th
magnitude and duration of the negative energy density s
by an inertial observer in Minkowski spacetime. Let^Tmn&
be the renormalized expectation value of the stress tenso
a free, massless, minimally coupled scalar field in an a
trary quantum state. Letum be the observer’s four-velocity
so that^Tmnumun& is the expectation value of the local en
ergy density in this observer’s frame of reference. The
equality states that

FIG. 5. Graph of energy density vsr at the middle of the tube,
i.e., at x5D/2, and t5const@D/21rmax. Here we have chosen
d50.01, e510, and rmax51000e. The plot extends from
rmax23e to rmax13e.
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t0

p E
2`

` ^Tmnumun&dt

t21t0
2 >2

3

32p2t0
4 , ~15!

for all t0, wheret is the observer’s proper time. The Loren
zian function which appears in the integrand is a conven
choice for a sampling function, which samples the ene
density in an interval of characteristic durationt0 centered
around an arbitrary point on the observer’s worldline. T
proper time coordinate has been chosen so that this poi
at t50. Physically, Eq.~15! implies that the more negativ
the energy density is in an interval, the shorter must be
duration of the interval. Such a bound is called a ‘‘quantu
inequality’’ ~QI!. @More recently, a much simpler proof o
Eq. ~15! has been given, as well as derivations of simi
bounds for the massive scalar and electromagnetic fi
@10#.#

Although the QI bound was initially derived for a mas
less scalar field in Minkowski spacetime~without bound-
aries!, it was argued in Ref.@9# that in fact the bound should
also hold in a curved spacetime and/or one with boundar
in the limit of short sampling times. More specifically, whe
the sampling timet0 is restricted to be smaller than th
smallest proper radius of curvature or the distance to
boundaries, then the modes of the quantum field may
approximated by plane waves; i.e., spacetime is appr
mately Minkowski. In this region, Eq.~15! should hold. Fur-
ther evidence supporting this conclusion has recently
peared in the form of QI bounds which have been explic
proved in various staticcurvedspacetimes. In all cases, the
bounds reduce to the flat spacetime QI’s in the sh
sampling-time limit@16,17#.

In Ref. @9# the flat spacetime bound was applied, in t
limit of short sampling times, to Morris-Thorne traversab
wormhole spacetimes. The upshot of the analysis was
either the wormhole throat could be no larger than a f
times the Planck length or that there must be large disc
ancies in the length scales which characterize the wormh
In the latter case, this typically implied that the exotic mat
which maintains the wormhole geometry must be conc
trated in anexceedinglythin band around the throat. Thes
results would appear to make the existence of macrosc
static traversable wormholes very unlikely. A similar ana
sis using the flat space QI has been applied to the Alcubi
‘‘warp drive’’ spacetime @11#, which also requires exotic
matter. Here as well, it was found that the wall of the ‘‘wa
bubble’’ surrounding a spaceship must be unphysically t
compared to the bubble radius. In this section, we apply
flat space QI to the Krasnikov spacetime, again in the sh
sampling-time limit, and reach a similar conclusion rega
ing the thickness of the negative energy regions of the K
nikov tube.

Consider a geodesic observer who is initially at rest, i
dx/dt5dr/dt5df/dt50. These initial conditions imply

d2xm

dt2 1G tt
m S dt

dt D 2

50, ~16!

which reduce to

d2t

dt2 2
~12k! k,t

~11k!2 S dt

dt D 2

50, ~17!
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d2x

dt2 2
2 k,t

~11k!2 S dt

dt D 2

50, ~18!

d2r

dt2 5
d2f

dt2 50. ~19!

Therefore we see that initially static geodesic observers
remain static in the region of the spacetime whe
k,t[]k/]t50, i.e., long after the formation of the tube. I
this region, from Eq.~17!, dt/dt5const, which we could
choose to be 1 so thatdt5dt. By suitably adjusting the
zeros of each time coordinate, we can make the coordin
time t equal to the proper timet in this region.

To apply the flat spacetime QI, we must first transform
the orthonormal frame of the static geodesic observer.
metric, Eq.~13!, can be diagonalized by the transformatio

d t̂5dt2S 12k

2 Ddx, ~20!

dx̂5S 11k

2 Ddx, ~21!

dr̂5dr, ~22!

df̂5r df, ~23!

which corresponds to the~noncoordinate! basis@18#

et̂5et , ~24!

ex̂5S 12k

11kDet1S 2

11kDex , ~25!

er̂5er , ~26!

ef̂5S 1

r Def . ~27!

In this basis, using the fact thatea•eb5gab , we have

em̂•en̂5hm̂n̂ . ~28!

It is also easily seen that, in the region wherek51, Eqs.
~24!–~27! reduce to a set of orthonormal basis vectors
ordinary Minkowski spacetime.~Note that this basis is also
well behaved in the case whenk50.!

The stress-tensor and Riemann tensor components in
frame are

Tm̂n̂5Tabem̂
a
en̂

b
~29!

and

Rm̂n̂âb̂5Rabcdem̂
a
en̂

b
eâ

c
eb̂

d , ~30!

respectively. Here the greek indices label the vector of
basis, and the latin indices denote components in the orig
~coordinate! frame. From Eqs.~24! and~29!, we see that the
energy density in the orthonormal frame is the same as in
coordinate frame: i.e.,
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Tt̂ t̂5Ttt . ~31!

We will evaluate the energy density in the middle of t
left end cap at a time long after the formation of the tub
i.e., atx5e/2, t@x1r1e. In this region

ue~x1e2D !50 ~32!

and

ue~ t2x2r!51. ~33!

Therefore, in our chosen region, we have

k512~22d!ue~rmax2r!ue~x!. ~34!

Let us now choose the following specific form forue(j):

ue~j!5
1

2 H tanhF2S 2j

e
21D G11J . ~35!
ht

-

o

po

e

lo

t
r
fi

,

This function has the general desired properties outlined
Sec. III @19#. However, we do not expect our main concl
sion to depend on the detailed form ofk. At x5e/2,
ue(x)50.5, and so

k512S 12
d

2D ue~rmax2r! ~36!

512
1

2 S 12
d

2D H tanhF2S 2~rmax2r!

e
21D G11J .

~37!

Note that from Eq.~14! the energy density depends on
on derivatives ofk with respect tor. Consider a static ob-
server in the middle of the left end cap atr5rmax2e. Let
rmax5ne, where n.1, althoughn is not necessarily as
sumed to be an integer. Substitution of these expressions
Eq. ~14! gives @20#
Tt̂ t̂5S 1

8p D @0.271~3.50424.034n20.008d10.017nd20.872d21nd2!#

e2~n21!~1.01810.491d!2
. ~38!
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Recall that 0&d<2. The valued52 corresponds tok51
~usual Minkowski spacetime with no opening of the lig
cone!, while d'0 corresponds tok'21 in the vacuum in-
side the tube~Minkowski spacetime with maximum ‘‘open
ing out’’ of the light cone!. Therefore, for effective ‘‘warp
travel,’’ we wantd to be as small as possible. Expansion
Eq. ~38! in a power series ind shows that, for smalld and
n large compared to 1,

Tt̂ t̂'2
1

8pe2 . ~39!

Let the magnitude of the maximum curvature tensor com
nent in the static orthonormal frame be denoted byR̂max.
Then a~somewhat tedious! calculation using Eq.~30! shows
that, for our chosen observer, in the same limits,

R̂max'
1

e2 . ~40!

~Note that the curvature tensor components, unlike the
ergy density, will contain derivatives ofk with respect to
x.! Hence the smallest proper radius of curvature at this
cation is

r c'
1

AR̂max

'e. ~41!

Let us now apply the QI bound, Eq.~15!, to the energy
density seen by our static geodesic observer. We assume
Tt̂ t̂ is the expectation value of the stress-tensor operato
some quantum state of the quantized massless scalar
@21#. As argued previously in Ref.@9#, for this flat spacetime
f

-

n-

-

hat
in
eld

bound to be applicable, we must restrict our sampling time
be smaller than the smallest local proper radius of curvat
i.e.,

t05se, ~42!

wheres!1. In this region, spacetime is approximately fla
Note that as long as we consider the region of spacet
corresponding to times long after tube formation, the limit
short sampling times should also eliminate any effects
time dependence of the metric, which occurred during tu
formation, on the modes of the quantum field. Over the ti
scalet0, the energy density is approximately constant, a
so we have

t0

p E
2`

` Tt̂ t̂ dt

t21t0
2 'Tt̂ t̂*2

3

32p2s4e4 , ~43!

which implies

e&
l P

s2 , ~44!

wherel P is the Planck length. For a ‘‘reasonable’’ choice
s, for example,s'0.01, we have that

e&104l P'10231 m. ~45!

For an observer in the middle of the right end cap, i.e.
x5D2e/2, it is easily shown that the expression fork is the
same as that given in Eq.~37!. Since the energy densit
depends only on derivatives ofk with respect tor, its value
will be the same for observers in the middle of each end c
at the samer position. For times long after tube formation
the spacetime is spatially symmetric with respect to refl
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tions of the tube through the planex5D/2. Hence the com-
ponents of the curvature tensor in the static orthonor
frame should be the same atx5e/2 andx5D2e/2. There-
fore our previous argument should apply to both end cap

At the midpoint of the tube, i.e., atx5D/2, ue(x)51 and
ue(x1e2D)50, and so in the static regio
k512(22d)ue(rmax2r). One can again show that for
static observer atr5rmax2e, Tt̂ t̂'21/(8pe2), in the
small-d limit. ~The nonzero energy density in the region ju
inside the inner wall of the tube is a consequence of
‘‘tails’’ of the ue functions.! By symmetry, in this region,
k,x50 at x5D/2. It can be shown that the curvature tens
components contain no second derivatives with respec
x. The components can therefore only depend on derivat
of k with respect tor. Again one can show that the smalle
proper radius of curvature at this location isr c'e. Therefore
our conclusion, Eq.~45!, applies to the walls of the~hollow!
Krasnikov tube as well as to the end caps@22#.

In the preceding discussion, we assumed thatrmax@e,
i.e., thatn was large compared to 1. If we relax this requir
ment and consider thick tubes, withn of order 1, then
rmax'e. In this case, from dimensional arguments, w
should have Tt̂ t̂'21/(8prmax

2 ), R̂max'1/rmax
2 , and

r c'rmax. Application of our QI now yields a bound on th
radius of the tube:

rmax&
l P

s2 . ~46!

This result is similar to that found in the case of traversa
wormholes.

Let us now estimate the total amount of negative ene
required for the maintenance of a Krasnikov tube@23#. Our
task is complicated by the fact that thet5const slices of the
Krasnikov spacetime are not everywhere spacelike. The m
ric on such a slice is given by

ds25k~ t,x,r!dx21dr21r2df2, ~47!

which can be nonspacelike whenk,0. Therefore let us in-
stead estimate the total negative energy in a thin bandr
over whichk'const. In this band, from Eqs.~20! and ~21!,
the metric can be written as

ds252d t̂21dx̂21dr21r2df2. ~48!

Consider a bandDr wherek'const and the energy densi
is most negative. We see from Fig. 5 that such a band has
form

Dr5ae, ~49!

wherea!1. For a small enough choice ofa, we can write
the metric in this region in the simple form, Eq.~48!. The
proper volume of the band is

V'2prmax~Dr!D52paermaxD. ~50!

A rough estimate of the total negative energy contained
this band is
al

.

t
e

r
to
es

-

e

y

t-

he

in

E'Tt̂ t̂V'2
armaxD

e
. ~51!

From our QI bound, Eq.~44!, we also have thate' l P /s2,
where d is assumed to be very small. As an example,
D5rmax51 m51035l P ande5100l P . Then

E'2a1068mPlanck52a1063 g52a1018Mgalaxy,
~52!

where we have takenMgalaxy'1012 solar masses. Thus, eve
if we takea to be very small, say, 0.01, one requires neg
tive energies of the order of 1016 galactic masses just to
make a Krasnikov tube 1 m long and 1 m wide. For a tu
that stretches from here to the nearest star, i.e.,D'431016

m, we needE'21032Mgalaxy. Similar orders of magnitude
were found in the case of the Alcubierre warp bubble@11#.
Note that we do not expect the positive and negative ener
on the outside and inside of the tube to add to zero in g
eral, since the cancellation would have to be exact toex-
traordinarily high accuracy@24#, given the large magnitude
involved.

We have been assuming thatd'0, so as to maximize the
amount by which the light cone is opened out within t
tube. In particular, values ofd,1 are needed to allow trave
backward in time and the possibility of CTC’s. The depe
dence of our results ond can be easily estimated as follow
Defineh522d, so thatk512h within the ~hollow part of
the! tube andk changes byh across the wall of the tube. Fo
k512h, the left-hand branch of the light cone in Fig. 2
given bydx/dt521/(12h). We see that]k/]r;h/e and
]2k/]r2;h/e2 within the tube wall; thus, from Eq.~14!, in
the limit h!1 ande!r, Ttt scales ash/e2, andr c@e. For
small h, the negative energy densities in the walls are th
very small and the QI bound, as well as the requirem
t0!r c , can be satisfied for macroscopic values ofe and
t0. For example, one can satisfy the QI witht05e'1 cm,
but only by takingh' l P

2e2/t0
4'10266. It might therefore

actually be possible to establish a region within which sup
luminal travel is, in principle, allowed. However the chan
in the slope of the left branch of the light cone, illustrated
Fig. 2, is proportional toh for smallh, and hence the spee
of a light ray directed along the negativex axis within the
tube, as seen by observers outside, would exceed 1 by
one part in 1066. The existence of superluminal travel wou
thus appear to be completely unobservable.

VII. CONCLUSIONS

The Alcubierre ‘‘warp drive’’ spacetime suffers from th
drawback that a spaceship at the center of the warp bubb
causally disconnected from the outer wall of the bubble. W
have discussed and generalized a metric, originally desig
by Krasnikov to circumvent this problem, which require
that any modification of the spacetime to allow superlumi
travel necessarily occurs in the causal future of the lau
point of the spaceship. As a result, this metric has the in
esting feature that the time for a one-way trip to a distant s
is limited by all the usual restrictions of special relativity, b
the time for around trip may be made arbitrarily short. In
four dimensions this entails the creation of a ‘‘tube’’ durin
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the outbound flight of the spaceship, which connects
Earth and the star. Inside the tube, the spacetime is flat
with the light cones ‘‘opened out’’ to allow superlumina
travel in one direction, as seen by observers outside the t
Although the creation of a single Krasnikov tube does
entail the formation of closed timelike curves, we show
that two spatially separated tubes could be used to cons
a time machine—a feature shared by two-wormhole or tw
warp bubble systems. This poses a problem for causa
even if tubes of only, say, laboratory dimensions could
realized in practice.

In addition, we have also shown that, with relatively mo
est assumptions, maintenance of a such a tube long
formation will necessarily require regions of negative ene
density which can beno thicker thana few thousand Planck
lengths. Estimates of the total negative energy required
f
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construct Krasnikov tubes of even modest dimensions w
shown to be unphysically large. Similar difficulties hav
been recently shown to plague warp bubbles and wormh
@25#. The Krasnikov tube suffers from some of the sam
drawbacks as these other proposed methods of faster-t
light travel, and is hence also a very unlikely possibility.

ACKNOWLEDGMENTS

We would like to thank Michael Pfenning and Larry Fo
for helpful discussions. T.A.R. would like to thank the mem
bers of the Tufts Institute of Cosmology for their gracio
hospitality while this work was being done. This resear
was supported in part by NSF Grant No. PHY-9507351 a
by a CCSU/AAUP faculty research grant.
f
n
ing

es

ive

on
we
e as

l.

ero

ral

d is
, for

ort a

the
-

@1# M. Alcubierre, Class. Quantum Grav.11, L73 ~1994!.
@2# S.W. Hawking and G.F.R. Ellis,The Large Scale Structure o

Spacetime~Cambridge University Press, London, 1973!, pp.
88–96.

@3# A. Everett, Phys. Rev. D53, 7365~1996!.
@4# M. Morris, K. Thorne, and U. Yurtsever, Phys. Rev. Lett.61,

1446 ~1988!.
@5# S. W. Hawking, Phys. Rev. D46, 603 ~1992!.
@6# H. Epstein, V. Glaser, and A. Jaffe, Nuovo Cimento36, 1016

~1965!.
@7# C. Kuo, ‘‘A Revised Proof of the Existence of Negative E

ergy Density in Quantum Field Theory,’’ Report No. gr-q
961104, in Nuovo Cimento A~to be published!.

@8# L. H. Ford and T. A. Roman, Phys. Rev. D51, 4277~1995!.
@9# L. H. Ford and T. A. Roman, Phys. Rev. D53, 5496~1996!.

@10# L. H. Ford and T. A. Roman, Phys. Rev. D55, 2082~1997!.
@11# M. Pfenning and L. H. Ford, ‘‘The Unphysical Nature o

‘Warp Drive,’ ’’ Report No. gr-qc/9702026, Class. Quantu
Grav. ~to be published!.

@12# S. V. Krasnikov, ‘‘Hyper-Fast Interstellar Travel in Gener
Relativity,’’ Report No. gr-qc/9511068~unpublished!.

@13# A similar argument has been given by M. Pfenning~unpub-
lished!.

@14# M. Visser,Lorentzian Wormholes—from Einstein to Hawkin
~American Institute of Physics Press, New York, 1995!.

@15# L. Parker and S. M. Christensen,Math Tensor~MathSolutions,
Inc., Chapel Hill, NC, 1992!.

@16# M. Pfenning and L. H. Ford, Phys. Rev. D55, 4813~1997!.
@17# M. Pfenning and L. H. Ford~unpublished!.
@18# See, for example, Sec. 5.6 of B. Schutz,A First Course in

General Relativity~Cambridge University Press, Cambridg
England, 1985!.

@19# The specific form ofk chosen here has the minor drawba
that the numerical value of]k/]r does not quite go exactly to
zero atr50 ~as it must by symmetry!, although it does be-
come very small. The resulting apparent ‘‘singularity’’ inTtt

at r50 can be remedied by using a somewhat more cum
 r-

some form ofk with an additional term which has the effect o
forcing ]k/]r50 at r50. Since this added complicatio
changes neither our results nor our conclusion, while tend
to obscure the physical interpretation ofk, we have chosen to
use the simpler form.

@20# The apparent singularity inTt̂ t̂ when n51 is related to the
problem atr50 mentioned in the previous reference. It aris
because forn51, we are evaluatingTt̂ t̂ at r50.

@21# From the results of Ref.@10#, our conclusion will be the same
if we construct the Krasnikov tube out of quantized mass
scalar or electromagnetic fields.

@22# We assumed for simplicity that the values of thee ’s in all of
the ue functions were equal. Relaxation of this assumpti
would make the model more complicated but should not,
believe, change the essential result. That is, in the latter cas
well, we expect that~although we have not proven it! at least
one of thee ’s appearing in the expression fork will be con-
strained by the quantum inequality to be exceedingly smal

@23# Of course thetotal energy~matter plus gravitational! of the
Krasnikov tube, as measured by observers at infinity, is z
since the external metric is Minkowskian.

@24# The authors are grateful to Larry Ford for suggesting seve
key parts of this argument.

@25# The problem of the total amount of negative energy require
not quite as severe in the case of wormholes. For example
an ‘‘absurdly benign’’ wormhole, discussed in Ref.@9#, the
energy density is equal to21/(4pa0r 0), wherea0 is the thick-
ness of the negative energy band andr 0 is the throat radius.
The proper volume is approximately 4pa0r 0

2; hence, the total
negative energy required isE'2r 0. However, this still re-
quires about one Jupiter mass of negative energy to supp
wormhole with a 1 m throat radius~see p. 174 of Ref.@14#!. In
the cases of the Alcubierre bubble and the Krasnikov tube,
negative energy density scales as 1/e2, and so the total nega
tive energy required scales as 1/e, wheree is the thickness of
the wall.


