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Abstract

The Alcubierre warp drive is an exotic solution in general relativity. It allows
for superluminal travel at the cost of enormous amounts of matter with nega-
tive mass density. For this reason, the Alcubierre warp drive has been widely
considered unphysical. In this study, we develop a model of a general warp
drive spacetime in classical relativity that encloses all existing warp drive defi-
nitions and allows for new metrics without the most serious issues present in the
Alcubierre solution. We present the first general model for subliminal positive-
energy, spherically symmetric warp drives; construct superluminal warp-drive
solutions which satisfy quantum inequalities; provide optimizations for the
Alcubierre metric that decrease the negative energy requirements by two orders
of magnitude; and introduce a warp drive spacetime in which space capacity
and the rate of time can be chosen in a controlled manner. Conceptually, we
demonstrate that any warp drive, including the Alcubierre drive, is a shell of
regular or exotic material moving inertially with a certain velocity. Therefore,
any warp drive requires propulsion. We show that a class of subluminal, spheri-
cally symmetric warp drive spacetimes, at least in principle, can be constructed
based on the physical principles known to humanity today

Keywords: causal structure, superluminality, GR solutions

1. Introduction

The classical-relativistic Alcubierre drive solution allows timelike observers to travel superlu-
minally, although at the expense of using material with negative rest-mass energy (Alcubierre
1994); for recent reviews see also (Lobo 2007, Alcubierre and Lobo 2017). This solution is
given by the following asymptotically-flat metric:

ds® = —c?dr® + (dx — f(ro)vsdn)® + dy* + d2%, (1)

*Author to whom any correspondence should be addressed.
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where 7y = \/(x — v5t)> + y2 + z2. The metric describes a spherical warp bubble (a region
deviating from the flat metric) moving along the x-axis with an arbitrary velocity v, which
may be larger or smaller than the speed of light c.

The shape function f(rs), present in the metric, defines the size and profile of the warp
bubble. For large distances rg from the bubble, f(r;) = 0 and the spacetime is flat. For small
distances, rs ~ 0, the shape function f(rs) = 1, and the metric describes the flat internal region
of the bubble. In a coordinate system with x — x" = x — v, this internal region is described
explicitly by the Minkowski flat metric. The intermediate region, for which f(r;) 2 0, corre-
sponds to the spherical boundary of the warp. In the original study, (Alcubierre 1994) chose
function f(rs), somewhat arbitrarily, as:

tanh(o(rs + R)) — tanh(o(rs — R))

fare(rs) = 2 tanh(oR) > )

where parameters R and o' define the radius and the thickness of the transition from the
internal to the external region, correspondingly.

In the case of superluminal motion, the metric possesses a black hole-like event horizon
behind the bubble and a white hole-like event horizon in front of it (Finazzi et al 2009). These
event horizons arise because timelike observers cannot exit the superluminal ship in the direc-
tion ahead of it, and cannot enter it from behind. In both cases, the timelike observers would
have to move superluminally when outside of the ship.

The energy density for the Alcubierre drive, as measured by Eulerian observers
(u, = (1,0,0,0)), is given by:

2.2 2
pvs<ﬂ>, 3)

1
T — — —
8 4r2 \ drg

where p? = y? + 77 is the cylindrical coordinate.

Despite its interesting properties which allow timelike observers to travel at arbitrary veloc-
ities, the Alcubierre drive solution possesses several drawbacks. As noted earlier, it requires
negative energy densities, equation (3), and thus violates the weak energy condition. Although
negative energy densities are a general property of any superluminal drive (Olum 1998, Visser
et al 2000), the energy density is also negative at subluminal speeds for the Alcubierre drive,
even in the weak-field approximation (Lobo and Visser 2004). Additionally, superluminal
motion allows for closed timelike loops, e.g. leading to grandfather paradox, and violates the
null energy condition and causality, e.g. (Everett 1996), although the latter may be recovered
at the expense of Lorentz invariance (Liberati et al 2002). When moving superluminally, the
drive has an additional problem. It leads to quantum instabilities related to pair production near
the horizon behind the warp as well as accumulation of particles at the horizon in the front part
of the warp (Finazzi et al 2009).

The Alcubierre drive is also problematic at sub-relativistic speeds. Firstly, it requires
unphysically large amounts of (negative) energy. For instance, it would require an amount of
negative energy comparable to the mass of the Sun to produce relativistic bubbles of ~ meter
sizes (Alcubierre 1994). Furthermore, such high negative energy densities do not appear even
theoretically feasible. There are no known materials which would allow for gathering large
amounts of negative energy in a controlled way. While zero-point vacuum fluctuations may
produce negative energies in curved spacetimes, for Alcubierre drives this situation is only
possible if the walls of the bubble had thicknesses comparable to Planck scales. Such thin
walls, however, require extreme amounts of energy—comparable to the rest-mass energy of
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the Universe—as may be seen from equation (3). Therefore, there is no physical way to create
an Alcubierre drive (Pfenning and Ford 1997, Ford and Roman 1997).

Finally, there is no proposed way of creating an Alcubierre drive, even if negative energy
were available. In the original study, (Alcubierre 1994) suggested that the velocity may be time-
dependent, vy = v4(?). Indeed, equation (3) retains its form even for time-dependent velocities.
And, since vy = 0 corresponds to flat spacetime, it was assumed that the Alcubierre drive might
be generated through acceleration. However, the metric in equation (1) with time-variable
vs = v(t) corresponds to a time-variable stress—energy tensor which does not satisfy conti-
nuity equations. Alternatively, such solutions may be said to require an implicit dynamical
field to effectively provide propulsion for the object, e.g. (Bassett er al 2000). Generally, there
are no self-consistent warp drive solutions proposed in the literature which can self-accelerate
at all from zero velocities, not to mention gain superluminal speeds.

Despite the rather extensive work on the properties of the Alcubierre drive solution, it
remains unclear which of the above issues are features of the Alcubierre solution specifically or
more fundamental properties of warp drives as such. New warp drive solutions have been intro-
duced only in very few studies. (Van Den Broeck 1999) reduced the energy requirements of the
Alcubierre drive to about the mass of the Sun while satisfying the vacuum energy inequalities.
The reduction was realized by decreasing the externally measured size of the warp bubble down
to 10~'° m while keeping the internal volume constant. This solution satisfies the weak energy
conditions, although it requires that classical gravity remains applicable down to such small
scales, at which it was never tested. However, as we show in appendix A through a coordinate
transformation, this solution is equivalent to the Alcubierre solution.

(Natario 2002) constructed a warp drive solution without space contraction or expansion,
contrary to the earlier assumption that it facilitated the movement of warp drives. (Natario
2006) constructed a new subluminal warp drive solution in the weak-field regime, which
required negative energies. (Loup ef al 2001) had previously introduced a modified version
of the Alcubierre drive intended to alter the rate of time for the observers inside the bub-
ble. However, their modification reduces to the original Alcubierre metric, as we also show
in appendix A. Finally, (Lentz 2020) has recently proposed a warp drive metric claiming to
have purely positive energy everywhere in both subluminal and superluminal regimes, although
without providing means to reproduce the study.

The works above, to our knowledge, summarize all the modifications of the Alcubierre drive
available in the literature. Superluminal travel had also been studied by (Krasnikov 1998) and
(Everett and Roman 1997). In these studies, the authors introduced Krasnikov tubes. Krasnikov
tubes are ‘spacetime tunnels’ which allow for superluminal travel without violating causality,
but only for round trips and with much larger energy requirements than the Alcubierre drive.
Superluminal travel has also been discussed in the context of wormholes, e.g. (Garattini and
Lobo 2007), and time-machine metrics, e.g. (Fermi and Pizzocchero 2018), in all cases requir-
ing negative energies. Finally, modified gravity theories may provide some desirable properties
for the Alcubierre drive. For instance, conformal gravity allows for construction of Alcubierre
solutions with positive energy only (Varieschi and Burstein 2013), while extra-dimensional
theories of gravity may reduce the energy requirements of the drive (White 2013).

In this study, we show that the properties of the Alcubierre metric—in particular, its nega-
tive energy density and the accompanying immense energy requirements—are not a necessary
feature of warp drive spacetimes. In section 2, we discuss that any general warp drive, includ-
ing the Alcubierre metric, may be thought of as a shell of positive- or negative-energy density
material which modifies the state of spacetime in the flat vacuum region inside it. In section 3,
we introduce, for the first time, the most general spherically symmetric warp drives. We show
that the reason for the negative energy requirements of the Alcubierre metric and all the warp
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drives introduced in the literature is, likely, the truncation of the gravitational field outside of
the metric, and the accelerated rate of time compared to the comoving free observer. In turn, the
most general positive-energy (spherical) warp drive solutions must slow down the time com-
pared to the comoving observer and have a gradual (Schwarzschild) fall off of the gravitational
field. In section 4, we introduce a simple method to construct warp drive metrics by choosing
the state of spacetime inside them. Additionally, we show that the Alcubierre metric is only
a particular member of a much more general class of warp drive solutions admitting negative
energy densities. Subsequently, we construct several spacetimes with a range of new proper-
ties. We introduce a macroscopic negative-energy drive which satisfies quantum inequalities,
as well as several metrics with negative-energies which allow one to control the rate of time
and spatial contraction inside the drive. In section 5, we review the interpretation of warp drives
in light of this study.

2. General class of warp drives

2.1. Definition of a general warp drive spacetime

We define a general warp drive spacetime, as shown in figure 1, as an asymptotically-flat vac-
uum region Dy (background) which encloses a compact arbitrarily curved region Dy, with
a spherical topology (the warping region); Dy, in turn, encloses a flat extended' compact
region Dj, with a trivial topology (the ‘passenger’ area). This definition covers both all the
existing warp drive spacetimes, such as the one by (Alcubierre 1994), as well as trivial solu-
tions, such as weak-field perturbations of the Minkowski spacetime. To formalize the difference
between extreme and mild cases like these, we shall consider the warped region Dy, by using
comoving reference frames located inside and outside it, which will allow us to quantify how
strong its gravitational influence is.

‘We shall focus on warp drive spacetimes which, intuitively, are stationary or non-changing
from the ‘passenger’ point of view. More formally, we consider warp drive spacetimes which,
by definition, admit a global Killing vector field, &, which is aligned with the four-velocity of
the boundary of the region 0D, (the inner boundary of the shaded region in figure 1). Such
a field establishes the global frame of rest with respect to the warped region. Subsequently,
whenever we discuss a physical motion of an observer relative to the warp drive, we consider,
locally, the motion relative to the global reference frame defined by the field £. Furthermore,
using this vector field will allow us to apply the well-known techniques suitable for spacetimes
possessing a timelike Killing vector to analyze and classify warp drive spacetimes.

Since the internal region Dj, is flat, vector field £ is constant in that region. Therefore,
in the internal region, this vector field ¢ defines a reference frame (tetrad) for the internal
observer? O;,. Similarly, in the asymptotic infinity, vector field ¢ defines the frame of the remote
comoving observer Ooy, co- This comoving reference frame Oqy, o, as we further argue, is the
most natural frame against which one can compare the frame O;, inside the warped region.
Finally, this remote comoving observer Oy o may be moving with constant three-velocity
v, with respect to a timelike observer Oy, the latter of which we shall consider to be at rest.

I'To avoid effectively including general asymptotically-flat spacetimes in the definition, we require that the extent of
the region D, should be non-vanishing and physically interesting. In other words, the inner region D;, should be large
enough to allow observers to conduct physical experiments of desired scales.

2While, in relativity, physical observers are timelike by definition, we shall occasionally be mentioning timelike
and spacelike observers for convenience. By these, we shall understand physical observers and spacelike frames,
correspondingly.
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Figure 1. A schematic illustration of a warp-drive spacetime. The spacetime consists
of three regions: Asymptotically-flat vacuum background D, (background), general
stationary curved region Dy, with a spherical topology (the warping region) and a flat
inner region Dj, (‘passenger’ space). Any such spacetime, including the Alcubierre drive
metric, is realised through a shell of ordinary or exotic negative energy density material
filling the warping region Dy,y,. Axis x shows the direction of motion, while p is the
cylindrical radius. As we discuss in section 4.1, flattened disk-shaped metrics minimise
energy requirements of the particular Alcubierre, but not necessarily other, warp drive
spacetimes. As we also discuss in section 5, warp drive spacetimes require some form
of propulsion in order to accelerate. For this reason, in physical realisations of such
spacetimes, the front and rear parts are likely asymmetric.

Everywhere in this study, apart from the general discussion in this section, we shall consider
warp drives spacetimes which are axisymmetric along the direction of motion.

The three-velocity of the comoving observer vy, which represents the velocity of the warped
region relative to the remote observer O,,(, may be slower or faster than the speed of light with
respect to the observer. This corresponds to four-velocity of the comoving observer Ogyt, co
being timelike, null or spacelike. Both observers O;, and Oqy, 0, therefore, may in general, at
least formally, be timelike, null, or spacelike. If region Dy, contained vanishing stress—energy
tensor, the whole spacetime would be close to Minkowski spacetime and the two observers Oj,
and Oy, would both be timelike, null, or spacelike at the same time. However, it is also pos-
sible for region Dy, to be sufficiently curved such that, as we show further, the norms of the
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four-velocities of observers Oi, and Ogyt, .o may be different from each other. Therefore, all
stationary warp drive spacetimes may be split into four distinct classes, based on whether the
remote comoving observer Oy, co moves subluminally (subluminal drives) or superluminally
(superluminal drives), and whether the internal observer Oy, has the same norm as the comov-
ing observer Ogy, ¢o (Mild warp drives) or different norm from the comoving observer (extreme
warp drives):

Class

Class

Class

I: mild subluminal warp drives: these spacetimes are defined by the vector field &
being timelike everywhere. Consequently, three-velocities of such drives are sublumi-
nal, i.e. vs < c¢. Spacetimes of this class approach the flat Minkowski spacetime in the
trivial limit, and observers Oy, Oy, co reduce to a pair of co-moving timelike Lorentz
observers. Non-trivial members of this class contain spacetimes with region Dy, suffi-
ciently curved, so that tetrads of observers Oy, and Ooy, o differ significantly from each
other, i.e. the observers read off different rates of clocks and lengths of rulers. At the
same time, such spacetimes also contain weak-field solutions corresponding to classical
shell-like objects moving with subluminal velocities and weakly modifying the state of
the spacetime inside them. Such solutions are possible because the D, region may
be set arbitrarily close to being flat, rendering the whole spacetime arbitrarily close to
Minkowski spacetime.

II: mild superluminal warp drives: these spacetimes are characterized by the vec-
tor field £ being spacelike or null everywhere. Consequently, such warp drives have
luminal or superluminal velocities, i.e. vs > c. These spacetimes also admit a trivial
limit, wherein they reduce to flat Minkowski spacetime, with the tetrads Oj,, Ogut, co
corresponding to a pair of comoving null or spacelike (superluminal) ‘observers’. Weak-
field members of the class correspond to small amounts of ‘superluminal matter’ in the
region Dy, introducing small differences in the measurements of frames Ojn, Oouy, co-
By ‘superluminal matter’ we understand the matter at rest with respect to a space-like
reference frame. In the case of the stress—energy tensor for a perfect fluid, such matter
violates the dominant energy condition. A general spacetime of this class introduces
non-trivial differences between frames Oy, and Oy, 0. Since superluminal matter can-
not be produced from physical matter, and since null or spacelike tetrads cannot be
associated with physical observers, the spacetimes of this class have limited interest.

IIT: extreme superluminal warp drives: these spacetimes are defined by the vector field
¢ being timelike in the inner region Djy,, but null or spacelike in the asymptotic infin-
ity of the outer region D,,. The remote comoving observers in such spacetimes move
luminally or superluminally relative to the resting timelike observer Oy, i.e. vs > c.
This class of spacetimes does not contain trivial solutions and the warped region Dy,
is sufficiently curved to allow timelike observers O;, to be moving superluminally rel-
ative to the timelike observer O, (and as a consequence, the timelike observer O;,
will be traveling back in time from the point of view of yet another remote timelike
observer O/ ). At the same time, the comoving observer Ogy, ¢o is formally superlumi-
nal; in other words, remote timelike observers cannot be comoving with a warp drive
of this class. For such spacetimes, we can define a Killing horizon 0Dk as the mini-
mal boundary surface where the Killing vector field £ becomes null. A necessary, but
not sufficient, condition for warp drives of this class to be physical is that the Killing
horizon 0Dk does not intersect with region Dyrp. If the Killing horizon did intersect
with region Dy, some part of the matter in that region would be at rest with respect to
spacelike tetrads aligned with vector field £. In other words, a fraction of matter in the
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region Dy, would have to be superluminal (in the same sense, as for class II above)
and violate the dominant energy condition.

Class 1V: ‘Extreme’ subluminal warp drives: spacetimes of this class are defined by the vec-
tor field £ being null or spacelike in the inner region Dy,, but timelike at the asymptotic
infinity of the outer region Dyy. Since the comoving observer Oy, oo is timelike, such
spacetimes are subluminal, i.e. vy < c. Since the Killing vector is spacelike in the inner
region Dy,, no timelike internal observers can be at rest relative to the inner boundary of
the drive 0D;,. This property bears similarity to black hole spacetimes, except for that
the inner region Dj, for this class of spacetimes is flat everywhere. A necessary condi-
tion for spacetimes of this class to be physical is that the Killing horizon coincides with
the boundary of the inner region, 0Dj,. Otherwise, some fraction of matter in the region
Dyyarp Will be superluminal, as in the previous class.

In practical terms, as follows from our definition, any warp drive spacetime may be seen as
a shell of ordinary or exotic material which fills region Dy, and moves with some constant
velocity relative to an external timelike observer O,,. The presence of the shell inevitably
modifies the space and time in the inner region Dj,. This modification leads (in addition to
other effects) to a difference in the measurements of times and lengths between an observer in
the inner region Dj, and a comoving remote observer Oy, o- General warp drive spacetimes,
therefore, form a continuous family which includes both trivial (flat or nearly-flat) and non-
trivial (strongly curved) spacetimes.

2.2. How do existing warp drive spacetimes fit in the classification?

The Alcubierre drive is a truncated warp drive spacetime defined by meeting the three require-
ments. First, that the external spacetime D, is Minkowskian. In other words, the matter in
the warped region Dy, does not exhibit gravitational influence outside of it (requirement 1).
Second, observers Oj, and Oy, are always timelike, and the tetrads of these observers are equal
to each other. In other words, the clock rates and the lengths of the rulers of observers O;, and
Oou are synchronized and put equal to each other (requirement 2). Finally, the warped region
Dyarp 1s functionally limited to equations (1) and (2) in section 1 (requirement 3). For sub-
luminal velocities, the Alcubierre drive belongs to class I, mild subluminal warp drives. For
superluminal velocities it belongs to class III, extreme superluminal warp drives.

Compared to general warp drives, this set of constraints may seem artificial. For example,
requiring that the material of the Alcubierre drive does not gravitate in region Dy, which is
non-typical for massive objects, as we discuss further in section 3, unnecessarily puts strong
constraints on the stress—energy tensor in region Dy,y,. Similarly, requiring that the time of
observers Oy, is synchronized with the time of observers O, means that, at least in the sublu-
minal regime, the time of internal observers Oy, is accelerated compared to the time of remote
comoving observers Qg co- In comparison, general warp drive spacetimes do not need to be
truncated and may allow an arbitrary relation between the measurements of observers O;, and
Ooul, co-

A more general class of warp drive metric was proposed by (Natario 2002). However, their
most general warp drive, similarly to the Alcubierre solution, still imposes requirements 1 and
2 from the Alcubierre metric. That is, is also makes region D, strictly flat outside of the drive
and synchronizes the time of the internal and the resting (not comoving) observers. Similarly
to the Alcubierre solution, the (Natdrio 2002) class of spacetimes also belongs to class I in the
subluminal regime and class III in the superluminal regime.
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Further, in sections 4 and 3, we show that general warp drive spacetimes are diverse and can
have a variety of properties that are often more appealing compared to either the Alcubierre
spacetime or to the (Natdrio 2002) class of spacetimes.

2.3. Properties of warp drive spacetimes

In this section, we summarise the standard tools applicable for analyzing general warp drives,
in order to apply them further in sections 4 and 3.

The internal physical volume of a warp drive measured by observer Oy, inside the
warped region, is given by Vi, = fDind3xfn. For truncated warp drive spacetimes, i.e. space-
times where the outside vacuum region D, is flat, the external volume may be defined as

Vour = fDinme d*xi . The integral is calculated over the volume enclosing the warped region

and assuming, during the integration, that the volume’s interior is flat. Such a construction pro-
vides a measure of the size of the warp bubble as observed from outside. It may be formally
done with the help of the Cartesian coordinate grid of the remote observer O, analytically
extended to cover the warped region. The comoving external volume V., may be similarly
defined for the comoving observer. For general asymptotically-flat metrics, we do not consider
external volumes as they are coordinate-dependent.

We calculate the energy density, the momentum flux, and their volume integrals for warp
drive spacetimes, and the mechanical stress distributions, in the coordinate system adapted
to the remote comoving observer Oqu. co- The coordinate system adapted to the comoving
observer is aligned with the Killing vector field &, which allows for a 3 4+ 1 decomposition
of the spacetime and thus provides coordinate-invariant measures for the total energy, mass
and momentum of the drive. We also consider a system of Eulerian observers defined through

four-velocities u,, = ¥(1, 0,0, 0), similar to how it was done in (Alcubierre 1994). These

00
observers are imperat\i/vgy timelike and are normal to the surfaces of constant time, but are
coordinate-dependent.
The energy density w in each of the coordinate systems is given by w = (—g%)~17%,
The momentum flux j' and the pressure P in the same reference system are given by

j = u#T“’" = \/I—TOi and P =T" (0 — uuu,) =T + @77, where T = T"g,,.

gOO

Notably, the total energy and momentum contain the contribution only from the warped region
Doyt E = [, (=" TOV=g Erou I = [ AT =8 e

Warp drive solutions may be compared based on how they satisfy different energy condi-
tions. Among these are the strong and weak energy conditions. Furthermore, we also consider
quantum inequalities, e.g. (Pfenning and Ford 1997). These inequalities, at least in the weak-
field regime, potentially allow the spacetime curvature to modify the quantum vacuum and,
this way, allow for some negative-energy density:

T © (Tyut'u”) 3

T) o T2475 32m2ry’

“)

where 7 is the proper time of the observer and 7 is an arbitrary constant smaller than the local
radius of curvature.
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3. General spherically symmetric warp drives

3.1. General subluminal spherically symmetric drives

One may gain considerable intuition into the nature of warp drive spacetimes by considering
spacetimes which are spherically symmetric in the comoving reference frame. Since spheri-
cally symmetric spacetimes are fully solvable in relativity, we may achieve full characterization
of such warp drive spacetimes. More formally, in this section, we limit ourselves to spacetimes
which contain an SO(3) group whose orbits are orthogonal to the Killing vector field £ intro-
duced in section 2. The Killing vector field ¢ defines the local frame of rest in the comoving
reference frame. As we comment further, the presence of such a group is possible only for
classes I and IV spacetimes, i.e. subluminal warp drives.

Class I of subluminal warp drives—mild subluminal warp drives—contains trivial solu-
tions and may be associated with ordinary objects, such as a thin shell of non-exotic material.
However, the well-known Alcubierre and Natdrio drives, in the subluminal regime, also belong
to the same class. By considering general spherically symmetric subluminal warp drives, we
shall gain considerable intuition about these spacetimes and provide a possible explanation for
their negative energy requirement.

The most general metric for a spherically symmetric stationary spacetime can be written in
Schwarzschild coordinates as:

ds* = —=N(r)c® dr* + A(rdr® + r*(d6” + sin® 6 dg?), 5)

where functions N(r) and A(r) are general. Therefore, energy density of a spherically symmet-
ric warp drive spacetime, in the comoving reference frame, is given by:

1 ro,
w(r) = W (1 —(m)>- (6)

A necessary condition for the spherically symmetric metric in equation (5) (above) to describe
awarp drive spacetime is that the energy density w in both the inner region D, and outer region
Dout be equal to zero. In particular, as follows from equation (6), for any spherically symmetric
warp drive, A(r) = 1 in region D;,. Furthermore, integrating equation (6), we can express the
metric function A(r) directly through the energy density distribution:

1
1-— %for Arw( )2 dr’”

A(r) = (M

Equations (6) and (7) allow us to analyze the energy density distribution of spherically sym-
metric solutions and to construct such spacetimes from any desired energy distribution. Thus,
we may see that for purely positive energy spacetimes, A(r) > 1 in the outside region Doy. This
result is in agreement with the Birkhoff’s theorem, and states that the metric in the region D, is
described by the Schwarzschild solution. In comparison, for truncated warp drive spacetimes,
such as the Alcubierre or Natdrio solutions, the metric in the external region is assumed to be
strictly flat. This assumption necessarily requires that the integral [;** 47w(r)r'>dr’ = 0. Asa
result, any non-trivial truncated spherically symmetric warp drive must contain regions where
the energy density is negative. Therefore, the fact that Alcubierre and Natario solutions are trun-
cated may partly explain why they require negative energy even in subluminal regimes. Finally,
for any spherically symmetric warp drive spacetime, since A(0) = A(r — oo) = 1, coordinate
r describes the same physical length scale both inside the drive and at the asymptotic infinity.

9
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In other words, unlike the drives discussed in (Van Den Broeck 1999), spherically symmet-
ric warp drives cannot contain objects which significantly exceed the sizes of warp drives, as
measured by external observers.

We may further calculate the spatial component of the stress energy tensor. To do so, we
assume that the material in region Dy, is an isotropic fluid, i.e. T, = P(r)A(r). This way, we
obtain the pressure of the material which constitutes the warp drive:

1 —A(r)+ rN'(r)/N(r)

P(NA(r) = 5 (3

7

By requiring that P =0 in the inner vacuum region Dj,, and by remembering that
A(r) = 1 in that region, we can see that N(r) is constant in Dj,. In the external region Dy,
from equation (8), N(r) = (A(r)) ™' = 1 — 2 [ 4w (r)r"* dr'. This result also follows from
Birkhoff’s theorem, according to which spherically symmetric spacetimes must be static
and asymptotically flat. In the vacuum region, such setup, by definition, corresponds to the
Schwarzschild solution (assuming the central object is electrically neutral), which matches by
the form the equation for N(r). In this case, for 4mw(r')r'> dr’ will have the effective meaning
of enclosed mass.

‘We can now obtain N(r) in region Dy, and this way determine N(r) in the inner region Dj,.
We do this by writing down the equation for continuity of the stress—energy tensor, 7%, = 0,
similarly to how it is done for Tolman—Oppenheimer—Volkoff equation. As a result, we obtain:

N'(r) P+p ! ,
N(r)“( 2 ) P ©

Firstly, we make a simplifying assumption that density p is a function of only pressure P, as,
for example, is the case for the polytropic equation of state. Then, by using the condition that
P = 0 at the inner and outer boundary of the warp region Dy, we find that the integral of the
right-hand side over Dy, vanishes. As a result, we conclude that N(rj,) = N(7ou), Where ri,
and r,y are the locations of the inner and outer boundary of the region Dy,p.

From the solution for N(r) in the outside region D,,, we see that the time—time coefficient
of the metric N(r) at the asymptotic infinity can only be larger than inside the warped region.
In other words, for a subluminal warp drive based on non-exotic matter, the time inside the
drive can only pass more slowly than it does for a remote Minkowski observer comoving with
the drive. For scale, an Earth-mass shell of 10 meter radius will slow down the rate of time
by a small fraction of 0.0004. If we require that the time in the inner region goes faster than
in the reference frame of the comoving observer, the material in the warp drive would have
to contain negative energy. This is the case for the Alcubierre and Natdrio drives. In these
drives, the time is passing more quickly in the inside region than it is in the reference frame
of the remote comoving observer (due to the clocks in the inner region being synchronized to
the remote observer at rest). This is another related possible reason why the Alcubierre drive
requires negative energy even in the subluminal mode.

3.2. Impossibility of superluminal spherically symmetric spacetimes

The method from the previous section could potentially have been useful for analysing superlu-
minal warp drives. However, superluminal classes of warp drives (classes II and IIT) cannot be
spherically symmetric. This factis closely related to the impossibility of superluminal spherical
objects in special relativity, e.g. (Fayngold 2002). In section 2, we have introduced a Killing
vector field &, which defines a local frame of rest with respect to the drive. In superluminal
warp drives, vector field £ becomes spacelike whether inside or outside of the drive. In order
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both to maintain spherical symmetry and for the field £ to remain orthogonal to the orbits of
the SO(3) group, the spatial component of the field £ can only be radial with respect to the
drive. Therefore, at asymptotic infinity, comoving observers for such a spacetime would have
to be moving radially toward or away from a spherically symmetric drive. In other words, warp
drives cannot be both spherically symmetric and move superluminally.

Similarly, class IV drives cannot be spherically symmetric. As follows from equation (7), in
order for the radial basis vector inside the drive to be timelike, one would need to have non-zero
energy density present in the vacuum inner region Dj,. Therefore, all spherically symmetric
positive-energy warp drive solutions belong to class I. These solutions are always subluminal,
satisfy the energy conditions, and are devoid of causality paradoxes present in superluminal
metrics. Overall, the subluminal spherically symmetric solution presented in this section is the
first example of manifestly positive energy warp drive spacetimes.

4. Axisymmetric warp drives with a general internal region

In this section, we explore the diversity of axisymmetric warp drive solutions. There are
some limitations on possible axisymmetric solutions. Explicitly expressing a metric through
a desired stress—energy tensor in a closed form is not possible for a general axisymmetric
spacetime. Therefore, we leave generalizing the positive energy spherically symmetric warp
drive solutions to the axisymmetric case to future studies. However, by constructing sufficiently
broad classes of metrics, we show that interesting solutions are possible even within these less
general classes.

4.1. Method for constructing axisymmetric warp drive solutions

Below we introduce a method, by which one can construct new metrics for a warp drive
spacetime. For constructing new solutions, following the discussion in section 3, we focus
on choosing how the spacetime properties of the observers inside the inner region Oj, relate to
those of remote observers O, This choice may put significant constraints on the energy con-
tent of the spacetime, and may potentially be exploited to find spacetimes with lower energy
requirements. Additionally, having an explicit way to define the properties of spacetime inside
the inner region Dj, allows us to explore and demonstrate the diversity of possible warp drive
solutions.

As discussed in section 2, any stationary warp drive spacetime may be associated with a
coordinate system xk,, adapted to the Killing vector ¢ which defines the rest frame of the craft.
We also adopt a global coordinate system x* which asymptotically, at infinity, approaches the
coordinate system of the resting observer Qg in region Dy, Since the two charts x}, and x*
cover the whole spacetime and overlap, it is, in principle, possible to introduce a mapping from
one to another in the regions D;, and Dy,,. The procedure for constructing an axisymmetric
warp drive spacetime from this subclass is as follows:

(a) Choose a one-to-one mapping xk,(x”) between the coordinate system x%, adopted to the
comoving observer inside the inner region Oy, and the coordinate system x” adopted to
the external observer at rest O,y;.

(b) Choose functions fy(xl), fy(x.)), f:(x)), fi(x.)) which are equal to 1 in region Dj, and
are equal to 0 in region D,,;. These functions define the shape and size of the warp region
Dhyarp from the point of view of observer Oj,.

(c) Formulate the metric of the spacetime as:

1
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ds® = —cX(di(1 — f) + fidteo)® + (dx(1 — 1) + fr dxeo)*+,
+ (dy(1 = £3) + fydyeo)* + (dz(1 — £2) + f. dzeo)™. (10)

Express the metric in terms of a common coordinate system x”, by expressing xk, and
x” explicitly through x"".
(d) Analyze the metric with the methods introduced in section 2.3

The procedure above is based on the idea of explicitly comparing the measurements of
observers Oy, and Oyy. Indeed, in region Dy, all the functions f,, = 1, and the metric corre-
sponds to the coordinate system of observer O;, (ds*> = —c? df2, + dx2, + dy?, + dz%,). Sim-
ilarly, asymptotically, in region Doy all the functions f, = 0 and the metric corresponds to
the coordinate system of the remote observer at rest Oy (ds> = —c? df?> + dx? + dy? + d2?).
Several studies in the literature, e.g. (Loup et al 2001), have proposed modifications of
the Alcubierre metric without explicitly considering the measurements of inner and outer
observers. Such modifications may be erroneous and may reduce to coordinate transformations,
as happens in (Loup et al 2001) case. We discuss these studies further in appendix A.

The procedure developed here assumes that the observers Oy, and O, are timelike, and
therefore leads to warp drive spacetimes of class I in the subluminal regime, and of class III
in the superluminal regime. While these classes of spacetimes are arguably most interesting,
the procedure may be easily generalized to cover the spacetimes of classes II and I'V. We also
comment that while the procedure ensures a relationship for the measurements of observers
Oin and O,y, one may also use it to obtain different coordinate representations and, potentially,
different spacetimes satisfying the same relationships between the observers. Subsequently,
one may choose, for example, the most interesting spacetimes of the class.

As a demonstration, we show how the above procedure may be used to construct the
Alcubierre metric given by equation (1).

(a) We choose the one-to-one mapping as follows:

dt,, =dr
dx.,, =dx — v dt’ (11
dyco = dy
dzeo =dz

(b) We select f, = f, where fis given by equation (2), whereas functions f,, f. and f, cancel
out in equation (10) and will not contribute to the metric. '

(c) We arrive at the metric ds?> = —c?df? + (dx — f(ry)vs df)> + dy?> + dz?, as given by
equation (1).

This example once again highlights the fact that the Alcubierre metric is based on a rather
artificial identification of spacetime properties between the two observers Oy, and Ogy, in
particular increasing the rate of the time passing for the observer O;,. In the following sections,
we explore other possible axisymmetric spacetimes and show that they have more appealing
properties than the Alcubierre metric.

4.2. Reducing E by flattening the Alcubierre metrics

We start by considering the flattened Alcubierre metrics. The longitudinal extent is a simple
property of the Alcubierre metric. However, it has not been studied in the literature, despite
having several interesting properties.

12
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The longitudinal extent has several peculiarities for the Alcubierre metric. Indeed, in
equation (1), for sufficiently large distances ry, from the center of the warped region, func-
tion f(rs) vanishes in the Alcubierre solution. Therefore, the external observer O perceives the
boundaries of the warped region Dy, as a sphere of radius r) moving with velocity vy. If the
velocity vy is subluminal due to Lorentz contraction, the boundary of the warped region Dy,
must be elongated for the comoving observers. Moreover, when the Alcubierre warp drive
approaches the speed of light while at the same time preserving its energy content, given by
equation (3), the warped region must appear infinitely elongated. The divergent elongation of
the solution in the comoving frame puts into question the possibility of accelerating Alcubierre
metrics beyond the speed of light.

To analyze the solutions deformed along the axis of motion, we switch to more convenient
cylindrical coordinates (y,z) — (p, #). For the transition regions described by equation (1),
a more general non-spherically symmetric metric may be obtained by replacing f(rs) =
F(/(x — x)? + p?) = f(x — x5, p). Notably?, for the Alcubierre drive, recalculating the
energy density with f = f(x — xs, p) simplifies the expression, compared to equation (2):

L fof :
—w5(3) 2

This form leads to three useful implications. The first implication is that, for a given veloc-
ity of the warp drive v, the most optimal way of reducing the total energy, as measured by
Eulerian observers, is by flattening the shape of the warp drive. Indeed, as /—g = p for the

2
Alcubierre metric, the total energy E = — % S dx [ pdp (g—ﬁ) . And indeed, flattening the

warp drive by a factor of ax (ax > 1)—i.e. by replacing f(x — xs, p) = f(ax(x — xs), p), as
may be shown through variable change ay(x — x5) — x'—Ileads to the energy reduction by
E — E/ax. Similarly, elongating the drive (choosing ax < 1) increases its energy require-
ments. Therefore, putting aside the fundamental issues related to negative energy of Alcubierre
drives, an optimal implementation of such spacetimes would likely be flattened in shape.

The second implication of equation (2) is that the flattening of the warped region may
be adjusted with velocity so that the drive preserves the same total energy. Indeed, setting
ax = 1 +v? leads to E — E/(1 + v?), asymptotically removing the dependency of the total
energy on velocity. As discussed earlier in section 1, the fact that the total energy of the Alcu-
bierre drive depends on velocity is problematic. This is because the energy and momentum
conservation, applicable to asymptotically-flat spacetimes, implies that the Alcubierre drive
must be changing its already very large energy (and mass) as it accelerates. Removing or soft-
ening the dependence of the total energy on velocity may, in principle, lead to more efficient
ways of accelerating the drive to large velocities.

Finally, the third implication of equation (2) is that it allows one to construct superlumi-
nal solutions which satisfy the quantum inequalities given by equation (4). Indeed, selecting
a sufficiently large ay allows one to reduce the thickness of the warp in x-direction down to
nearly-Planck scale size (correspondingly, allowing only for extremely thin physical observers
inside the warp bubble). As a result, the local curvature radius in equation (4) may be arbitrarily
small, thus satisfying the quantum inequalities given by equation (4). At the same time, such
superluminal drives still maintain a macroscopic size in p-direction perpendicular to the direc-
tion of motion and, more importantly, do not increase their densities due to contraction. Such

3 We believe, this form has not been found in the literature so far.
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solutions, may offer an exciting possibility of superluminal physical solutions. Perhaps, they
may help probe the physics of superluminal motion and the problems associated with it, e.g.
the violation of causality (Krasnikov 1998), (Everett and Roman 1997). However, they more
likely probe the limits of applicability of the quantum inequalities (4), which are derived in
semiclassical gravity approximation. Indeed, superluminal motion violates the averaged null
energy condition (Visser et al 2000), and the latter does not have the same dependency on the
dimensions of the bubble as the quantum inequalities, e.g. (Graham and Olum 2007). As a
result, even the extremely flattened version of the Alcubierre drive, as discussed here, does not
satisfy the averaged null energy conditions.

4.3. Lorentz drive

The Alcubierre metric is artificial in the sense that it forces the clocks and rulers of observers
Oin and Ogy to be synchronized. An arguably more natural choice would be to require that
the observer Oy, should experience the same time dilation and space contraction as a Lorentz
observer would experience when moving with velocity vs < c¢. Since Lorentz transformations
are defined for subluminal speeds, in this section, we consider subluminal warp drives of class
I. To construct the spacetime, we choose:

s d
dtoo = (m v 2") , (13)
C

dxeo = y(dx — vy dp),

where +y is the Lorentz gamma-factor. Using these definitions to construct the warp drive metric
with equation (10) leads to a diagonal metric:

ds* = —PF*d + F>dx* + dp? + p* d6?, (14)

where F? = 1 + 2f(1 — f)( — 1). Moreover, any diagonalizable warp drive spacetimes are
described by equation (13) (the diagonal form is retained if  is replaced by any constant).
The energy density for this metric is given by:
1 (pF)),

= _— 15
v 8T pF (15

For this metric, independent of the choice of function f(x — x;, p), the region Dy, contains
areas of both positive and negative energy density. This result is likely related to the fact that
the spacetime is effectively flat beyond a certain radius, rather than asymptotically approaching
the flat spacetime, similarly to the Schwarzschild solution. In the case of spherically symmetric
solutions, as discussed in section 3, such truncation of the gravitational field also requires the
warp region Dy, to contain regions of positive and negative energy.

The Lorentz drive metric may be generalized to produce a continuous limit to flat spacetime.
Indeed, if region Dy, were replaced by Minkowski spacetime, the whole spacetime would be
Minkowski space. Therefore, one may introduce a continuum of solutions parametrized by
a dimensionless parameter A € [0, 1], by using F? = 1 +2\f(1 — f)(v — 1). For A = 0 the
whole spacetime reduces to a flat spacetime, and for A = 1 the Lorentz warp drive solution is
recovered. The intermediate values of \ allow for solutions with smaller energy requirements.
To our knowledge, this is the first example of a family of warp drive solutions containing
near-Minkowski metrics.
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4.4. An improved Van Den Broeck’s drive

The warp drive solution by (Van Den Broeck 1999) is intended to reduce the energy require-
ments of warp drives by significantly expanding the volume of the Alcubierre drive inside
radius r¢ while significantly decreasing the externally measured size of the craft. In this section,
we realize the idea of (Van Den Broeck 1999) in a simpler and, importantly, coordinate-
independent form. We select the relation between clocks of the internal and the external
observers to be the same as in the Alcubierre metric, d., = dt, but choose the internal space-
time to be expanded in x-direction: dx., = A(dx — v, dr), dp,, = dp, dfe, = df, where A > 1.
Substituting these relations into equation (10), we obtain the resulting spacetime:

ds? = —c?df? + (dx + f(A — Ddx — fAv, di)* + dp? + p* d6?, (16)
This spacetime leads to the energy density distribution of:

2 2012
1 [v Afl;

S

R . (pf,),
87 [ 4 (1+(A—D)f)?

A—1)—— L |
A= T u—

(17)

The expression contains a velocity-independent component, which also leads to regions of
positive and negative energy density. We see here that while stretching the space inside the
warp drive does lead to higher energy density, the metric may be optimized to achieve the
highest internal volume per unit energy needed to construct the spacetime.

4.5. Warp drive metric with modified time

In this section, we consider spacetimes, in which the clocks in the region Dj, run at a different
rate compared to the clocks in the region D,y. This is done by letting dz., = A~'dr, where
A > 1 corresponds to the clocks going slower in the region Dj,. Substituting this relation into
equation (10) and otherwise using the same definitions as in the Alcubierre solution, we obtain:

ds> = —*((1 — f)dt + A7 fde)* + (dx — fogde)* + dp* + p* d6>. (18)
The resulting energy density for the Eulerian observers is:

__La—@t - 2 fory 0
S S+ @ TNt 4\op) "

This demonstrates that the rate of clocks used in the original Alcubierre solution (A = 1) in fact
leads to the simplest possible expression for the total energy of the warp drive, other param-
eters being constant. From equation (19) it follows that slowing down the clocks inside the
Alcubierre drive leads to higher amounts of energy density from the point of view of Eulerian
observers.

4.6. Spinning warp drive metric

Finally, our method can be used to construct relatively complex relations between the inner and
outer regions. For example, the following metric corresponds to the two Minkowski regions Dj,
and D, spinning with respect to each other. In other words, the observers at rest in region Dj,
will be rotating with respect to observers in region D, without experiencing any centrifugal or
Coriolis forces typical to rotating systems. Such settings are impossible to realize in the absence
of the transition region Dy.p. The settings may be achieved by relating df., = df — w,dt, in
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addition to the definition used for the Alcubierre drive, where wy is a constant parameter defin-
ing the angular velocity. Substituting these relations into equation (10) leads to the following
metric:

ds? = —c*di? + (dx — vy fdr)? + dp* + (pdf — fpw, dr)>. (20)

The energy density for Eulerian observers then is:

1 2 2 2, .2 2 2
we | (2SN s ((OFN (O _ 21
&r | 4 \ Op 4 op 0x
We see that the energy density is negatively defined independent of the spin or velocity of the
inner region. Additionally, the contributions from the velocity in x-direction and the velocity

of angular rotation have a similar form. The main interest for such spacetimes may be that they
offer a stationary, dissipationless way of storing energy or angular momentum.

5. Discussion

5.1 What is a warp drive?

One of the main conclusions of our study is that warp drives are simpler and much less mys-
terious objects than the broader literature has suggested when citing (Alcubierre 1994). Warp
drives are inertially moving shells of positive or negative energy material which enclose a
‘passenger’ region with a flat metric. The main feature distinguishing warp drives from trivial
inertially moving low-mass shells is that the large amount of energy contained in the warp
shell allows one to modify the state of spacetime inside it. In particular, as shown in sections 3
and 4, the time in the inner region may go faster or slower than it would go without the shell.
Similarly, the spatial volume may be stretched, compressed, or even be rotating compared to
its normal state. Further, more complex, modifications are likewise possible.

Warp drives can move superluminally only in the same sense as any ordinary inertial mass,
test mass, or any other object. Namely, there is no known way of accelerating regular material
beyond the speed of light. However, one may postulate a test particle which moves faster than
light in relativity, in which case it may continue moving inertially. In the same way, as warp
drives are shells of material, there is no known way of accelerating a warp drive beyond the
speed of light. However, one may also postulate the warp drive shell to be in superluminal
motion, just like the hypothetical test particles, and the shell-like object will continue moving in
the same fashion. In this sense, superluminal warp drives are at least as hypothetically possible
as any other superluminal objects.

An interesting feature of warp drives, from the theoretical point of view, is that the modifi-
cations of the spacetime in the internal region may be sufficiently strong so as to allow super-
luminal objects to move subluminally or vice versa. The different possibilities are embodied
in four different classes of warp drives, presented in section 2. In particular, there are solutions
possible (class IV) wherein a shell of subluminal material may contain regions where no sub-
luminal material can remain at rest no matter what velocity it has. In this aspect, the shells of
these hypothetical class IV warp drives would share properties with black holes. Further, such
a spacetime could effectively stop and contain inside a hypothetical superluminal test-mass
object, or make it move slower than the speed of light.

Similarly, one may hypothesize a spherical shell moving faster than the speed of light, but
which contains an inner region where no (hypothetical) superluminal objects can be at rest
relative to the shell (class III). Or, in another interpretation, subluminal normal objects inside
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such shell could be at rest with respect to them, despite their motion being superluminal. This
class of warp drives, which also includes the Alcubierre drive, however, remains entirely hypo-
thetical, just in the same way as no other object can be set to move superluminally. Using the
methods in section 2, one can examine whether any other particular spacetime belongs to this
class of warp drives.

5.2. Constructing warp drives

Warp drives, being inertially moving shells of normal or exotic material, do not have any natural
way of changing their velocities. They are just like any other types of inertially moving objects.
Similarly, just like for any other massive objects, achieving a certain velocity for a warp drive
requires an externally applied force or, more practically, some form of propulsion. Propulsion
may be realized, for example, by an interaction with a bosonic field, or regular gaseous or
plasma material.

Whatever is the acceleration mechanism, it must obey the conservation of four-momentum.
This is because all warp drive spacetimes are asymptotically-flat. An unfortunate error,
introduced in (Alcubierre 1994), was to postulate the velocity in equation (1) to be time-
variable. An Alcubierre spacetime with time-variable velocity also changes its energy and
momentum with time, and, this way, such a construction violates energy conservation. More
technically, the metric given by equation (1) does not satisfy the continuity equations, unless
additional dynamical fields are implicitly introduced to compensate for that. In view of this,
no metric which describes an accelerating warp drive solution has so far been presented in the
literature.

A more subtle point is that the Alcubierre and Natdrio drives, as well as the spacetimes
constructed in section 4, represent classes of different objects parametrized by velocity v rather
than the same object changing its velocity v. In particular, different warp drive solutions with
different values of v have different mass, different energy content, and often different shapes in
their reference frame of rest. Any realistic object should at least conserve its ADM-mass in the
subluminal regime and its analogue in the superluminal regime. A natural way of constructing
such spacetimes is by defining them explicitly in their frame of rest, as discussed in section 2
and implemented for spherically symmetric drives in section 3. Implementing metrics for such
accelerating objects and more general axisymmetric objects which preserve their shape and
mass in the comoving frame as they change their velocity remains a subject for future studies.
As a simple compromise, one may also adjust the shape of the warp drive with velocity so
as to conserve the mass of the drive, as suggested in section 4.1. Finally, among all classes
of subluminal warp drive solutions, the particularly interesting ones in the practical sense are
those classes which contain a continuous set of solutions ranging from trivial to highly curved.

At least in the subluminal case, warp drive spacetimes may be constructed by using purely
positive energy density, as presented in section 3 for the spherically symmetric case. They
can likewise be constructed using purely negative energy density, as is the case for the Alcu-
bierre solution, or constructed using both positive and negative energy density. In section 3 we
showed, for the first time, that the only type of modification to the internal spacetime that is
achievable with purely positive energy for spherically symmetric warp drives is slowing down
the rate of time inside the craft.

In section 4 we demonstrated that, by using both positive and negative energy density, one
may achieve a variety of modifications for the spacetime inside more general axisymmetric sub-
luminal warp drives. The range of all the possible modifications achievable with purely positive
energy in the general axisymmetric case, and whether the class of axisymmetric spacetimes in
section 4 may lead to purely positive energy metrics, remain important open questions in the
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field. Similarly, in section 2 we have provided a new argument why superluminal warp drive
solutions may always violate weak energy conditions resulting in their negative energy density
requirements. While this is an established fact (Olum 1998, Visser ef al 2000), a strict indepen-
dent proof of this based on our argument is another important avenue for future studies. Our
conclusions do not support the recent claim in (Lentz 2020) of superluminal purely positive
energy warp drive solutions, which merits further investigation.

5.3. Optimal members in the class

An interesting question remaining is: assuming that a practical realization of a warp drive
spacetime is possible, what would the optimized versions look like? As we showed in
section 4.2, a more optimal implementation of the Alcubierre warp drives would be flattened
in shape, since such shapes are more efficient in terms of energy requirements. In particular,
flattening the shape by a factor of 10 would lead to proportionally smaller energy requirements.
This conclusion likely holds for the, more physical, purely positive energy subluminal warp
drives as well. Curiously, as we discussed in section 4.1, extreme flattening of Alcubierre drives
may allow for superluminal solutions which satisfy quantum inequalities, without reaching
extreme energy densities.

For the Alcubierre solution, one may similarly optimize the energy requirement by finding
the most suitable shape function f(r;). The originally proposed function given by equation (2),
is not optimized and was originally chosen solely for demonstration. By applying the varia-
tional method to the expression for the total energy of the Alcubierre drive, we find that the
shape function optimizing the energy is given by f(r,) = min(’r'—‘:, 1), where ry is a free param-
eter determining the inner size of the region Dy,p. Using this slower-decreasing shape reduces
the energy requirement for a similarly sized Alcubierre drive by about a factor of three. The
physical reason for it, as we discuss in section 3, is perhaps related to the fact that truncating
the gravitational fields of a warp drive, as done in the Alcubierre solution, may increase the
(absolute) amount of necessary negative energy compared to the more slowly falling off solu-
tions. We provide the details of this derivation in appendix A.3, and also remark that optimizing
the shape or matter distribution in region Dy, can be equally well performed for all the other
warp drive solutions.

Given the wide range of possible states of spacetime achievable inside a warp drive, it is
also possible to imagine more complex and instrumental optimizations. For example, one may
speculate that it is possible, at least in principle, to form a region inside a subluminal warp
drive which is similar to ergospheres of spinning black holes. In this case, such a region would
be used as an efficient energy storage. The energy could then potentially be extracted through
a Penrose process applied to the propellant of the craft, when passing through the ergoregion.
Similarly to the Penrose process for spinning black holes, the extracted energy would likely be
coming from the rotation of some regions of the spacetime.

Finally, since all warp drive objects require propulsion in order to accelerate, any practical
implementation of such objects would have to be asymmetric in shape, since the back part
would have to accommodate a propellant exhaust system. One may further hypothesise on
setups, wherein black hole-like regions of the spacetime may be used to produce accretion
power. Accretion of material onto black holes is known to be a few tens of times more efficient
at extracting rest-mass energy in the form of electromagnetic radiation from the material than
nuclear burning (Frank et al 2002). Such a process could potentially provide both a source of
energy and a source of propulsion.
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5.4. Toward physical warp drives

In section 3, we demonstrated that it is possible to construct non-trivial warp drive solutions
with purely positive energy. In other words, at least in principle, one can construct objects of
progressively larger masses and with progressively more salient modifications to the internal
spacetime. While the mass requirements needed for such modifications are still enormous at
present, our work suggests a method of constructing such objects based on fully understood
laws of physics.

The most promising way of practically probing such spacetimes is through laboratory exper-
iments—most importantly—through analogue gravity experiments, e.g. (Barceld et al 2005).
Another important avenue of exploring such spacetimes, especially the accelerating solutions,
is through numerical relativity. Such experiments may bring a better understanding of purely
positive energy drives, and negative energy solutions, as well as the possibility of accelerating
objects superluminally.

Since the introduction of (Alcubierre 1994), much theoretical effort has been put into unveil-
ing the unphysical nature of the Alcubierre solution. Our work shows that there is a variety
of warp solutions, each with properties often much more physical and interesting than the
originally proposed spacetime. Through this, we suggest there is a need for broader theoretical
and experimental investigation to uncover the full diversity and properties of physical warp
drives.
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Appendix A. Existing warp drive solutions

The previously mentioned Alcubierre and Natdrio metrics are distinct from each other and
satisfy the definition of warp drive metrics. In this section, we list the metrics present in the
literature that claim or intend to describe new warp drive metrics. We further show that these
metrics reduce to the Alcubierre and Natdrio solutions. We also comment that the (Lentz 2020)
study likely forms a new class of warp drive spacetimes, though it does not provide means for
reproducing itself.

A.1. Loup metric

The non-refereed study by (Loup et al 2001), also discussed in the (Alcubierre and Lobo 2017)
review, aims to reduce the energy requirements of the (Alcubierre 1994) drive by introducing
a lapse function, which modifies the time-components of the metric as a function of spatial
coordinates. However, their metric is equivalent to the Alcubierre metric.
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Indeed, their defining equations (7)—(9), expressed in our notation, read:
ds? = —A2(r)? df* + (dx — f(rovs di)* + dy? + d2?, (A1)

where A(rs) > 1 1is the lapse function, defined to be equal to unity at r; = 0 and, asymptotically,
at r¢ — oo. However, by transforming to a new time coordinate A(r)dr — df, and checking
that the coordinate transformation has a finite non-vanishing Jacobian and is, therefore, well-
defined, we arrive at:

ds? = —c2di* + (dx — f(rovdD)> + dy? + dz, (A.2)
where f(r,) = % Therefore, the Loup metric is that of the Alcubierre drive.

The shape function, f(rs), as in the Alcubierre solution, is equal to 1 at r¢ = 0 and asymp-
totically approaches 0 at infinity. Unlike in the Alcubierre solution, the shape function now
decreases non-monotonically, which corresponds to redistributing the energy density, accord-
ing to equation (3). Assuming the volume of the inner flat region is preserved, such a shape
function only increases the total energy required by the solution.

A.2. Van Den Broeck metric

The study by (Van Den Broeck 1999) provided a metric, which intended to significantly reduce
the energy requirements compared to the Alcubierre solution. Such a reduction was made by
reducing the outer surface area of the warped region Dy, and through expanding the volume
in the interior region Dy,.

The (Van Den Broeck 1999) metric is given as:

ds* = —c*di? + BX(ry) ((dx — f(ry)vsd0)* + dy* + d2?) , (A.3)

where B(r) > 1 is a monotonically decreasing function, taking large values B > 1 at ry = 0
and asymptotically decreasing to unity. By applying a coordinate transformation defined by
dx = dxB(r), dy = dyB(r), dz = dzB(rs) and 7 = t and ensuring that the transformation is
well-defined, by checking that the Jacobian of the transformation is finite and non-vanishing,
the metric transforms to:

y DB(r, \?
ds? = —2di + (dx — %(%B(O))dz) + dy* + dz°. (A4)
At the center of the warped region r; = 0 or, equivalently, x = vsz. In the new coordinates this
corresponds to x = B(0)vst. Therefore, in the new coor@inates, the object moves with velocity
05 = B(0)vs. Finally, introducing a new shape function f(75) = f(’)#, we arrive again at the

B
Alcubierre metric:
ds* = —c* d* + (dx — f (70, dD)* + dy* + dz°. (A.5)

The modified shape function f(7) satisfies the condition £(0) = 1 and decreases to zero asymp-
totically at large values of 7. As for the Alcubierre solution, dx — v df, dy, dz, df correspond to
the coordinates adapted to a resting observer inside the inner region Djy,. Therefore, the phys-
ical size of the inner region of the metric, as measured by the inner observer, is given by the
region where function f(?s) is close to unity. In the Van Den Broeck example, function B(r) is
sharp-peaked at the center, B(0) = B(R) ~ 10'7, and B(R + A) = 1, whereR = A = 10> m.
In the coordinates of the internal observer, O;,, the inner region is limited to ry = R, or
7s = B(0)ry = 100 m, which corresponds to the physical size of the inner region. The location,
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where function B(r;) decreases to 1, corresponds to 7 == 200 m, at which point f (75) = 1077,
i.e. is nearly vanishing. In the Van Den Broeck example, function f(7,) should subsequently
decrease further to zero, between distances correspondingtors = Randrg = R + 10%v,Lp, i.e.
in a thin region 100v Planck scales thick. Since, at these distances, B(7s) = 1, the interval of
7, at which the function f(7,) decreases from 10~!7 to 0, is also 100w, Planck scales thick.

Therefore, in summary, the Van Den Broeck solution is equivalent to the Alcubierre solu-
tion. The shape function f(7) in their study is chosen to decrease to nearly zero within a volume
comparable to the inner volume of the drive (region 1). Subsequently, further out, the function
f(¥s) decreases to exactly zero (region 2). Since in the second outer region (region 2), func-
tion f(7s) decreases from a very small initial value to zero, it is expected that region 2 should
correspond to a small total energy and satisfy the quantum inequalities due to its near-zero
thickness. As follows from our derivation, the total energy in the inner region 1, and of the
Van Den Broeck metric as a whole, is comparable to that of the standard Alcubierre solution
of similar dimensions. Our derivation suggests that the total energy should be proportional
to B(0)?, through the 2 term. The absence in the van den Broeck expression for region 1 of
dependence on B(0) or on the velocity at all, potentially explains why the energies they obtain
for that region are small.

A.3. Optimizing the energy requirements of the Alcubierre solution

This section provides details on how one may optimize a warp drive solution in terms of its
energy requirements. As an example, we choose the well-known Alcubierre solution. The total
energy measured by Eulerian observers on a hypersurface of constant ¢ for this spacetime is
given, as follows from section 2.3, by E = [, (= g7, /=g d*x’ . For the Alcubierre
solution (1), one may verify that the contravariant time-time component of the metric tensor

and the metric determinant are equal to minus unity, i.e. g = g = —1. In this case, by using
equation (3) for the value of energy density 7%, the total energy is obtained from a simple
expression:
1L p? (df\?
E=— — == =) dx A.6
/D 8m 4r? (drs> o (A-6)

warp

Function f(r,) in this equation defines the location of the wall of the warp bubble and is given
by equation (2). As we discuss in the main text, the specific form of the function was chosen in
(Alcubierre 1994) rather arbitrarily in order to satisfy the requirement that f(r;) = 1 forrg — 0
and f(rs) = 0 for ry — oco. Therefore, one may search for other functions satisfying the same
constraints and leading to some further desired properties, for example, an optimised energy.

To formulate a variational problem, we switch to spherical coordinates (rs, 6, ¢) centered at
x = x4(1), y = z = 0, with the pole aligned with the direction of motion. In these coordinates,
p = rgsin g, and we get:

V2 [ d df\? V2 [ df\?
E=—2] d dortsin’ o == ) =—-= | dr2| 1) . A7
16 /0 s /0 s S (drs> 12). "\, (A7)

o

The Lagrangian for this system is £ = r2 ,ff, and therefore the Euler—Lagrange equation for
the function f(r;) which optimizes the energy reads:

0 oL

or
ar, of, of

of
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The solution of this equation is f(r;) = C + D The requirement that f(r;) = 0 at r, — oo can
be satisfied by setting C = 0, while the requlrement that f(r;) = 1 for r¢ — 0 may be satisfied
by setting D = ry. Since the variational problem was solved for r > ry, the optimal solution in
the whole space is given by f(r;) = min("2, 1).

One may verify numerically that this choice of f decreases the needed (absolute value of)
negative energy of the Alcubierre solution by about a factor of 3. Intuitively, the decrease may
be understood because a smooth fall-off is more natural for gravitating bodies than a sharp-
exponential cut in the metric introduced by equation (2). Repeating the derivation but assuming
that fis a general axisymmetric function of both p and x — x; shows that in this case the energy
is optimized by an infinitely thin shape, similar to the conclusions we obtained in section 4. We
conclude this section by mentioning that one can apply a similar method to other warp drive
spacetimes (or even classes of warp drive spacetimes) to optimize their properties such as the
total energy.
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