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The Relations Connecting the Angle-Sums and Volume of a 

Polytope in Space of n Dimensions. 

By D. M. Y. SOMMERVILLE, Victoria University College, Wellington, N.Z. 

(Communicated by Major P. A. MacMahon, F.R.S.-Received November 29, 1926.) 

? 1. Introduction. 

1.1. In two-dimensional spherical or elliptic geometry we have the familiar 
relation between the area of a triangle and its angle-sum, 

A = ( - ), (1.ll) 

27c being the measure of the whole angle at a point, and k the space-constant, 
or, in spherical geometry, the radius of the sphere. It is well known that in 
three-dimensional spherical or elliptic geometry there is no corresponding 
relation involving the volume of a tetrahedron.* For elliptic or hyperbolic 

space of four dimensions it was proved by Dehnt that the volume of a simplex 
can be expressed linearly in terms of the sums of the dihedral angles (angles at 
a face), angles at an edge, and angles at a vertex, but for space of five dimensions 
the linear relations do not involve the volume. He indicates also, in a general 
way, the extensions of these results for spaces of any odd or even dimensions. 
He shows further that these results are connected with the form of the Euler: 

polyhedral theorem, which is expressed by a linear relation connecting the 
numbers of boundaries of different dimensions, and which for space of odd 
dimensions is not homogeneous, e.g., N2 - N1 + No = 2 in three dimen- 

sions, but for space of even dimensions is homogeneous, e.g., N1 - N0 = 0 
in two dimensions, N3 - N2 + N1 - N0 = 0 in four. The connection, as Dehn 

points out, was made use of by Legendre in a proof which he gave for the Euler 
formula in three dimensions.? 

* H. W. Richmond has investigated an expression for the volume of a tetrahedron in 

elliptic space in terms of an integral, ' Q. J. Math.,' vol. 34, p. 175 (1903). Lobachevsky 
himself investigated similarly the volume of a tetrahedron in hyperbolic space, " Founda- 
tions of geometry," 1829, and " Application of imaginary geometry to some integrals," 
1836. 

t M. Dehn, 
" Die Eulersche Formel im Zusammenhang mit dem Inhalt in der nicht- 

euklidischen Geometri," ' Math. Ann.,' vol. 61, p. 561 (1905). 
$ L. Euler, ' Mm. PWtersb.,' 1758. 

? A. M. Legendre, " Elements de geometrie," Liv. vii, Prop. xxv. (1794). The proof is 

reproduced in Todhunter's " Spherical Trigonometry," Chap. xii, or Todhunter and Leathem, 
Chap. xvi. 



D. M. Y. Sommerville. 

1.2. Dehn extends this connection in detail for four and five dimensions, 
and states the following general results in space of n dimensions RE for simplexes 
and for polytopes bounded entirely by simplexes : 

(1) In R, there are In + 1 or I- (n + 1) relations (according as n is even or 

odd) between the numbers of boundaries of a polytope bounded by 
simplexes. 

(2) There is a linear relation between the various angle-sums of a simplex 

(a Zerlegungsinvariante) which does or does not involve the volume 

according as n is even or odd. 

In the present paper these relations are actually obtained, and it is found 
for any polytope bounded by simplexes that the two kinds of relations, those 
which connect the numbers of boundaries, and those which connect the angle- 
sums, are of precisely the same form. 

? 2. Measure of angles. 
2.1. We must first consider the different types of angles and their measure. 
In two dimensions there is just one type of angle to be considered, the angle 

between two directed straight lines or rays. Let 0 be the vertex; draw a 
circle with centre 0, and let the two rays cut the circle in P, Q. The ratios of 
the arc PQ to the circumference, and the sector POQ to the area of the circle, 
are equal, and either may be taken as a measure of the angle. The whole angle 
at a point would then have the measure unity. In the radian measure, 2r is 
taken as the measure of the complete angle at a point; this is equivalent, in 
euclidean geometry, to taking as the measure of any angle the ratio of the arc 
to the radius. 

2.2. In non-euclidean geometry the latter ratio is not constant for a given 
angle, but we may still take as the radian measure of the angle 2n times the 
ratio of the arc to the circumference, or 2x times the ratio of the sector to the 
area of the circle. In spherical geometry, if the radius is increased until the 
circle reduces to the point antipodal to 0, the radian measure of the angle 
becomes 27r times the ratio of the whole area enclosed by the two rays to the 
whole area of the plane. In elliptic geometry, if the radius is increased until 
the circle becomes a straight line (the polar of 0), the radian measure of the angle 
becomes 2= times the ratio of the whole area enclosed by the two rays to double 
the area of the plane. But if k is the space-constant the area of the whole 
plane is: in spherical geometry 47kc2, and in elliptic geometry 27rk2. In both 

spherical and elliptic geometry therefore the radian measure of an angle is the 
ratio of the area enclosed by the two rays to 2/c2. (In spherical geometry the 
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rays begin at O and end a-t the antipodal point O'; in elliptic geometry they 
begin and end at 0.) 

2.3. In three dimensions it is usual to distinguish two types of angles: the 

angle between two planes (dihedral angle), and the angle between three or more 

planes (solid angle). These, however, are to be considered as of the same type. 
Let O be the vertex, or, in the case of the dihedral angle, any point, on the edge, 
and draw a sphere with centre 0. Then we may take as a measure of the 

angle the ratio of the area which the planes cut out on the surface of the sphere 
to the whole surface of the sphere, or the corresponding ratio of volumes. The 
measure of the whole angle at a point or an edge would then be unity. In 
euclidean geometry it is customary to take as the measure of a solid angle the 
ratio of the area cut out on the surface of the sphere to the square of the radius. 
We may call this the radian measure; the measure of the complete solid angle 
at a point would then be 4it. We may therefore define the radian measure of 
a solid or dihedral angle as 4in times the ratio of the area cut out by the bound- 

ing planes on the surface of the sphere to the whole surface of the sphere, or 4-; 
times the corresponding ratio of volumes. In spherical geometry the ratio of 
the volume enclosed between the planes and the sphere to the whole volume of 
the sphere becomes in the extreme case the ratio of the whole volume enclosed 
between the planes (on a specified side of each of them) to the whole volume of 

space. As the whole volume of spherical space of space-constant k is equal 
to the hypersurface of a hypersphere of radius k, - 2T72k3, we have: the radian 
measure of a solid or dihedral angle in spherical or elliptic geometry is the ratio 
of the volume enclosed between the planes to r;ik3. 

2.4. Generally, in n dimensions there are angles bounded by 2, 3, ..., n - 1, 
or more than n - 1, hyperplanes. In euclidean geometry we define the radian 
measure of an angle as the ratio of the hypersurface cut out of a hypersphere 
whose centre is on the axis (vertex, edge, etc.) to the (n - 1)th power of the 
radius. The hypersurface of a hypersphere of radius k in n dimensions is 

Pk-inl/P {-} (n + 2)}. Hence the radian measure of the complete angle at a 

point is nr-/r1 {2 (n + 2)}. In spherical or elliptic geometry similarly the 
radian measure of an angle is the ratio of the hypervolume enclosed by the 

bounding hyperplanes to 

f(n+ 1) 11+1) r ( 2)} , n + I (n +)} (2.41) 
a r {ia (n + 3)} f tnh ' en g + (n+3)} 

and the radian measure of the complete angle is 

rF { (+2)} (2.42) 
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The total volume of spherical space is 

kn(n 4- + ) )-(n+1) 

r {f ( 3)n (2.43) 

2.5. In hyperbolic space also we may lay down corresponding measures of 

angles, although the total volurmes are not now available. Thus we may 
define the radian measure of an angle as proportional to the volume or the 
surface cut out of the surrounding hypersphere, the numerical factor being so 

adjusted that the measure of the complete angle has the same value as in 

elliptic or euclidean space. 

? 3. The relations connecting the angle-sums of a simplex in spherical space of 
n dimensions. 

3.1. A simplex in space of n dimensions is bounded by n + 1 hyperplanes, 
and, generally, ,+IrC,l - -dimensional boundaries. 

A single hyperplane divides space into two regions, which may be regarded 
as the positive and the negative side of the hyperplane, and denoted by + and 
-. Two hyperplanes divide space into four regions, which may be distin- 

guished by the signs + +,- + --, - and fall into two pairs of opposite 
or antipodal regions. Three hyperplanes give eight regions, and finally the 
n + 1 hyperplanes divide space into 2n+1 regions, which may be distinguished 
by the n +- 1 signs + and - taken in a definite order. Each of these regions 
is the interior of a simplex, and we shall take the (n + 1) + signs as denoting 
the interior of the particular simplex with which we are dealing. 

Every set of n hyperplanes determines a pair of antipodal points. We shall 
denote the n + 1 vertices of the simplex by 0, 1, 2, ..., n, the antipodal points 
being denoted by 0', 1', 2', ... , n'. The vertices of the 2**+1 simplexes are repre- 
sented by the n +- 1 digits 0, 1, 2, ..., n with or without accents. But we 
shall find it convenient to suppress the accented figures. Thus the antipodal 
regions (interiors of simplexes) (0'12...n) and (01'2'...n') will be denoted by 

(12...n) and (0) respectively, showing their relation to the given simplex as 

standing on an (n - 1)-dimensional boundary and a vertex respectively. 

(012...n) is the interior of the given simplex, and ( ) is the interior of the anti- 

podal simplex. 
The number of regions of the type (012...r) is +AC,+Q, and there are the 

same number of antipodal regions (r -4 1, r + 2, ..., n). When n is even, 

antipodal regions are always of different type, but when n is odd the antipodal 
regions {01... (n - 1)} and {1 (n + 1), ..., n}, which both involve ?( n + 1) 
figures, are of the same type. Thus, in three dimensions, there are 4 regions 
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on the faces of a tetrahedron, and the antipodal regions are the 4 regions on 
the vertices, while the 6 regions on the edges form three pairs of antipodal 
regions. We shall denote any region of the same type as (01...r) by [r + 1]. 

3.2. We shall now consider the angular regions contained by any number of 
the bounding hyperplanes. The positive side of a hyperplane has already 
been implicitly defined as that region which contains the interior of the simplex, 
the region (012...n). The interior of any angular region is that which contains 
the interior of the simplex, or the region on the positive side of each of the 

bounding hyperplanes, and the antipodal region is that on the negative side 
of each of the bounding hyperplanes; we shall call the latter the co-interior of 
the angular space. We shall denote the content or volume of the interior 
of the angular space bounded by the two hyperplanes 123...n and 023...n 

by aC23..., and that of the co-interior by a'2,3. ,; thus the number of suffixes 
is equal to the dimensions of the axis of the angular region. ,C23.., contains 
all those regions whose symbols include both 0 and 1, ca'2..., all those whose 

symbols exclude both 0 and 1. Similarly 0C34... denotes the content of the 
interior of the angular space bounded by the three hyperplanes 123...n, 023...n, 
013...n, and contains all those regions whose symbols include 0, 1 and 2; and 
so on. a12...,, will be taken to mean the whole region on the positive side of 
the hyperplane 12...n, a'12,,.n the negative side; i.e., cc12 ., is equal to the half 

of space - -S = c12n ... ...0n can be taken to mean the whole of space 
S. o will be taken to denote the volume V of the interior of the simplex, 

ac' that of the antipodal simplex. 
3.3. The number of angular spaces of the type a ,.+.... is n.-liCri- == n-lC-r. 

This angle contains the following regions: 

1 region (012...n), 
n_,-1 regions whose symbols are formed with n of the digits 

0, 1, ..., n always including 0, 1, 2, ..., r, 

,-_.C2 regions with n - 1 digits, and so on, 
1 region (012...r). 

3.4. We next consider the sums of the angular regions of the same type. 
Let > [r] be denoted by A,, so that A+1 denotes the volume of the simplex 
V, and Ao the (equal) volume of the antipodal simplex. Let A', denote the 
sum of the regions antipodal to those which compose A,. Then A',+ = A,_, 
both in total volume and in separate parts, and A,.+1 = A,_r in volume. 

Let Eocl..., the summation extending to all angular regions with r + 1 

suffixes, be denoted by S,, ac'o..., by .'r. Za (== ac) may be denoted by 
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_-1 so that _1 - - V. 0 0ao... . = ,. --2 the whole volutnme of space S. 

1.. - S- = 
a (n + 1) S - (n -+ 1) ES. 

Now a given region [s] (s > n - r) is contained in each of the angular regions 
of type aoc...r whose suffixes contain all the n -F- 1 - s numbers which are not 

included in the symbol of [s], and the num mber of these angular regions is squ,-r; 

hence in the sum S;aol... each region [s] occurs C__-r times. Hence 

Er j +lUn-r - i n- r vC n . * * +* - nn-CCr, -r A,n-, 

= 1,+ilCr+ V --I- nC, A-. I-- Co A --rOA l-i. (3.41) 

Thus, putting r = 0, 1, ..., n, we have the following n -|- I equati(ons i:l 

A1, ..., .A. 

S n .lCi V +- Al. 

Y1 = -1-1.C2 V -IC-1 I. A1 ---- A2, 

E i -- = +lC V +I- C_1 Al -1- ,,-_ lC + A2 - + - -A-,,, 

n- V + A1 - A -- .. - A, --1- V. 

Also the relations 

Ar+, -= A,_,.r = 0, 1, ..,i-n - 1 or (n -1)} (3.42) 

supply ?-n or ?(n + 1) further equations, according as n is even or odd. Hence 

by eliminating the A's we get, connecting the volume V and the angle-sums 

,., n +- 1 or (n + 1) relations,, i.e. [.-n] d- 1, where [in] denotes as usual the 

integral part of In. 
3.5. We may form the eliminants by solving the equations (3.41.) for the 

A's and substituting in (3.42). 
From (3.41) we have 

A1 = So - +1Ci V, 

A2 = 1 - ,,Cl o -- +12Cz V, 

A3 = S2 -- ,-,1C1 4I + n,2(o2 --1-1(3 V. 

By induction we may show that 

A,. = - n-r,_ 2C1r- 2 4 ... + (-)_S__-SC-S + 
. 

' 
. 

+ o (_+---1- (-)"c.nv, (3.51.) 
for assuming this true up to r, we have by (3.41) 

Ar+i = -- 
- +CrI V - 

-1C A2 - n-!iC-i A2 -.. - --r+lC Ar, 
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Substituting the values of A1, ..., A, in the right-hand side, the coefficient of 

s, is 

n-,-sCr-s + n-sCr-s * n-sCl --... + (-)+fl n-s-p2Cr-s- . ,-sC + 

+ (--)r-s-_.-l- l n-sC. --1 
But 

n-s-p_C-s-p * . -sp I -sCr-s * r-sCp. 

Hence the coefficient of Es is 

n-sr-s {I 2-s'' r-SC l --s _I n-sC r-s- 

which establishes (3.51). 
Hence, finally, equating A, and A_r+l we have 

r-1, - _-r+2C1,r-2 + *.. + (-)s- ln-sCr-s-l1 s -+ 

+ (-)r-1i n 2Cr 1O (- )rn+lCr V 

= Z--r - .+ 1C1_n-r-1 + ... + (--) n~ sCn-r-s Es + . 

+ ( -)-zo+(- ))-+ n-rEO ()- c+1 1r+l V, (3.52) 

as the linear relations connecting the volume and angle-sums of a simplex. We 
notice that if n is odd, V disappears firom all thze equations. 

The functions on the two sides of this equation occur frequently. We shall 
define the notation 

n/4 (E) n-sCO Es- - 
n_-s-+1C _s--2 + ... + (-)nCs E-. (3.53) 

Then the equations (3.52) can be written 

,l+,T (+ ) = ) n+In-r+l (E). (3.54) 
For r n - I or 0, 

En - Ein- + ... + (-)fo + (-)nF+V -V V. (3.55) 

We have also the simple relation, already noted in 3.4, 

En-_ == - ( + 1) E,,, (3.56) 

which can also be derived by elimination. In fact, since A1 A,,- A, A-:n i, 
etc., the last two equations of (3.41) give 

2En,_I 2 (n - 1) V + (nA + Aj) - {(n - 1) A2 -+ 2A,1} - ... 

= ( )- 1) (2V + A1 + A2 + ...) = (n+ 1) ,. 

3.6. The foregoing investigation applies to spherical geometry. In elliptic 
geometry antipodal points coincide, the regions (Ol...r) and (r + 1, ..., n) are 
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continuously connected and form one region, and the sums A,.+, and A,,_, are 

coincident instead of being merely of equal volume. But instead of E2 we 

have 22,. The final equations are therefore the same except for this modi- 

fication.. 
3.7. Now let S, denote the sumn of all the angles at r-dimensional edges 

expressed in radian measure, so that 

-I- I V-xP{f /-- (n -+ 2) } 
, = S n d 

1 
' { n 2} (,r -=- 0, 1, .^. z - 2) (3.71) 

n r{?2(n + 3)} 
and 

(n -+ 1ni-) 
"- ' r{i (nt ( 3)} ' (3.72) 

,,_ - -+ (2-1 1)+ E,,. (3.73) 

Equation (3.55) then becomes 

{ + (-1)}V 

k= f12 .S' / + -3))}- S --$_ (---o-)} (3.74) r { (n 3 + ){- (n + 2) 

and the other equations of (3.52) can be transformed similarly. The equations 
thus expressed in radian measure are the same in spherical and elliptic geometry. 

Excluding the equation , - (n -1 1) I we have therefore [n] linear 

equations connecting the volume V and the n - 1 angle-sums, and in these V 

disappears when n is odd. 

The following are the equations up to n =- 4:- 

nt =_ 2 V = 7k2(8o -- ), 

==3 So - +1 +- 4- = 0, 

n-4 () = ---4 (2 -2 81 S + So - 3.T2) 

-V = q7-4 (2S -- 3S3 - 5So - 5C;2), 

F From these equations we derive 

- 3V/k'4 -= S -- 2So - 47r2, 
and 

0 9 . 
2-- -S--J. . 

The expressions on the right are, with differeint notation, Dehn's " 
Zerlogulngsinvariamten" 

(loc. cit., p. 572). With. a disregard for homogeneity he takes different units for the angles 
at a face and the angles at a vertex or an edge, viz., for the complete dihedral agle at a 

face the value 2fr and for the complete angle at at v ertex or an edge the value unity. In our 

formule the complete angle in each case las the vailue 2T2, the surface content of a hyper- 

sphere of radius unity in. eclidean space of four dimexnions, i.e., the total volume of spherical 

space of three dimensions and space-constant unity. 
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3.8. In euclidean geometry the space-constant k --> oo ; the resulting equa- 
tions are equivalent to putting V = O, givinginall dimensions only linear identities 

involving the angle-sums. For hyperbolic geometry k is a pure imaginary; 
when n is odd V and k disappear, and the relations between the angle-sums are 
the same in all three geometries; when n is even k occurs to an even power; 
e.g., for n = 2 in hyperbolic geometry, putting ik instead of k, we have 

V - k2 (c - So), 

while for n = 4 the equations are the same as in elliptic geometry. 

? 4. The relations connecting the numbers of boundaries of different dimensions of 
a polytope in space of n dimensions. 

4.1. Let the number of r-dimensional boundaries be denoted by N,, and let 
the number of p-dimensional boundaries which are incident with (pass through 
or lie in) a particular q-dimensional boundary be denoted by Nq. If we sum 
the numbers N,q for all the q-dimensional boundaries the sum is equal to the 
number of p-dimensional boundaries each counted as often as there are 

q-dimensional boundaries incident with it, and this is the same as the number 
of q-dimensional boundaries each counted as often as there are p-dimensional 
boundaries incident with it. Hence 

N,pq =- Nqp. (4.11) 

For a particular p-dimensional boundary Euler's formula for p dimensions 

gives 
N,i,P - N_,p + ... + (-- N, + (-- )p = 1. 

Summing for all the p-dimensional boundaries 

ENV_j. - N,_ 2. + ... + (-)P-INo,, + (--) N = N,. (4.12) 

4.2. Take any vertex and draw a small hypersphere round it. This is 
cut by the boundaries at the vertex in a hyperspherical polytope with 

N,o (r - l)-dimensional boundaries. Hence by Euler's formula 

N,_l.o- Nn_2.0 + ...+ ()-3 N20 + (-)r-2 No + (- 1)+-1 1, 

and summing for all the vertices 

Nn-_ o - N2, o + ... -1- (--)-2 EN1o + (--)l No - No. 

Take next an edge and any point 0 on the edge. Draw a hyperplane through 
O perpendicular to the edge, and a hypersphere of n - 1 dimensions with 
centre O and lying in the hyperplane. This hypersphere is cut by the 

1-1 
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boundaries at the edge in a hyperspherical polytope of n - 2 dimensions with 

Nrl (r - 2)-dimensional boundaries. Hence by Euler's formula 

N-1.1 
- 

Nn2,1 . + . (- 3 + (- 3 N21 + ( )-2 
- 1. 

Summing for all the edges 

n-l,l- ENn2,1 ? A- s (_)fl-S3EN21 +(_)-2N IN1. 

Proceeding similarly with the p-dimensional boundaries we have 

N - SN + ... + (- )-rs-2 N + p (-)-PN -N N,. (4.21) 

These relations are not all independent, and when n is even it can be shown 
that Euler's formula for the whole polytope is derived from them algebraically; 
for taking the term in N, to the right, multiplying all the equations (4.12) 

by 4- 1 and equations (4.21) by -1 and adding, we have on the right 

2 (N,_1 -N- 2 + ... - N1 - No), 

and on the left we have the terms 

(-_) -ia SEN~ - (_- )'--- z-1 N(, - o. 

Thus Euler's theoren for even values of n follows from its truth for all smaller 
values of n and the equations (4.11). 

For odd values of n the equations do not involve the numbers N2. at all 
as these disappear both from equations (4.12) and from equations (4.21). This 
is noted by Dehn for n = 5, and he establishes Euler's formula for n = 5 by 
dividing the polytope into simplexes. 

4.3. Polytope bounded entirely by simplexes.--When the boundaries of the 

polytope are all simplexes we can derive relations connecting the numbers Nr 

alone, without the individual numbers N.. In this case we have 

Npq =- q+l+ (p <q) (4.31) 
and 

N,, - S Nq,) - ,I-C -N (p, < ). (4.32) 

Eqaations (4.12) become identities, while equations (4.21) becotme 

- 
f,lN,~ l ,~__K),+lNflq,_ 

A- ... -1- (_)~-,,-s 22(rNp tC.+1 Nn n-x- n plNl 2 + . * * T n - 
/ 4 +2W41-N 4 1 

+I (-)'- - I 
N? = N, (p 0, 1, ..., n -- 1), (4.33) 

For p = n - 1, however, we get merely the identity N,i_ -= N_1, and the 

equations for p = n - 2 and p = n - 3 both reduce to 

1nNn_1 == 2Nn-2 (4.34) 
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If we assume also Euler's formula for the whole polytope, it may be considered 
as included in (4.33) for p = - 1, with the understanding that N_1 = 1, thus 

N,_1 - N_2 + ... + (-)- No + (- 1) = 1. (4.35) 

4.4. The equations (4.33) are in fact not all independent. They may be 

expressed in another form, which is sometimes more useful, by first eliminating 
N,,_ between the first two (Euler's equation (4.35) being counted as the first 

one), then N._- and Nf_2 between the first three, and so on. Thus, multi- 

plying the first two equations respectively by -n and 1, and adding, we get 

N,-2- 2N,_3 + 3N,_4 - ... + (-)t-2(n - l)No -+ (-)-ln - No - n. 

Multiplying the first three equations by UC2, -- nlC, and 1 and adding, we get 

Ni-3 
- 3C2Nn4 + 4C2N_5 - ... + (--)n- 1C2No + (--)nC2 

-N1 -.n-_C No + A2; 

and, generally, multiplying the first r - 1 equations by C_n-, - _-lQ-_,, 

n-C,_n-, ..., (-l1) respectively, and adding, we get 
N,_,._l - +rlC Nnr-2 + ... + (-)fn-r--l _C_._l No +- (-)n-rnCn-r 

= N-l - -r+fC1N.-2 + ... +-- (-)"_1iC--.r_-No + (-)'nCr, (4.41) 

that is, nfr (N) -n-in (N). (4.42) 

Thus the equations which connect the number of boundaries of a polytope bounded 

entirely by simplexes are precisely the same as those which connect the volume and 

angular regions of a simplex, but in one dimension less. The number of these 

equations is [- (n + 1)]. 
4.5. Relations between the number of boundaries of a pyramid.-We may inter- 

polate here the special relations for a pyramid. 
Consider a pyramid whose base is a polytope of (n - 1) dimensions with 

N'r r-dimensional boundaries, and let N, be the number of r-dimensional 
boundaries of the pyramid. 

Then 
No - N'o + 1, .., = N' + N'_1, ..., N,n- 1- + N'2. 

Therefore 

N'o No - 1, 

N' -- N1 -N'o = N1 - No - 1, 

N',2 = N,. - N, + N..2 - ... + ()rNo -- (-- 1), 

N n2 - Nn.2 - Nn3 + ... + ()-2 No + (- 1)-1, 
1 Nn_ - Nn-_2 t- ... + (-)-1 No + (- 1). (4.51) 
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The last relation. is the first Euler relation for the pyramid, viz., ,b (N) = 1. 
This direct proof is of interest as it holds for odd or even dimensions and. does 
not involve induction from lower dimensions or other extraneous assumptions. 

We have also for the base of the pyramid 

I N'n-2- n-3 +... + (-)-2 N'0 + (- i)~' 

N N -2 2Nn3 .. + (n-) (n 1) N 5 ( ) ?17 
i.e., 

n,n-_I (N) = 1 (4.52) 

If the base is itself a pyraid of (n -- 1) dimensions it follows t;hat 

i--lin-2 (N') 1, 

i.e., N'_3 - 2n-'4 - -- (-- )3 (n -- 2) N' - (),- 2 (n - 1) 1. 

Hence 

I N3 - N 4- N +... + ( -)-0 No -- (---)-2 

- 2N,___ --..-- -3 2N0 + 2( ( -i-- -2 . 

Nn3 - 3Nn4 + 6N_5 - ... 4- (-)- , No + (- ) ?n-2" 

z.e., 

n1 , -2 (N)= 1. (4.53) 

We may call the pyramid in this case a pyramid of the second order. A pyramid 
of order r is one whose base is a pyramid of order -- 1. In two dimensions a 

pyramid of first order is a triangle, in three dimensions a pyramid of second 
order is a tetrahedron, and generally in n dimensions a pyramid of order (n - 1) 
is a simplex. 

It can be shown generally by induction that for a pyramid of order r we have 
the r -- 1 relations 

n,s (N) = I, (s =- , n - , ..., n - r). (4.54) 

? 5. Relations between the volume and the angle-sums of a polytope bounded entirely 
by simplexes. 

5.1. Take any point in the interior of the polytope, and join it to all the 

vertices, thus dividing it centrally into simplexes. Let Z, denote the sum of 
the angular regions at the r-dimensional edges for the polytope, and ]'r the 

corresponding sum for a constituent simplex; V the whole volune anid V' 
that of a constituent simplex. 
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Then 

SE ni 1 nl i + Nn-2En 

Z'-_2 = En_2 + N,_3 ,, 

EZ'j. =1 + No E,, 

3/'o E= +o + ,, 
V'- V. 

5.2. For each simplex we have the relations 

n1+19Pr (E) = n-l(.1n-.l-l1 (2). 

Summing these equations and substituting for Sl',. we have fo r = 1, 2,... 

[R (n - 1)] 

n+1 )r (Z) + (N2- -r+2ClNr-3 + .- ()-1 Cr-) zn 

n+l 1n--r+1 (E) + (Nn _ - r+11CiNn-r-2 + .. (-) f-r C- -r) SE 
that is, 

n,.l, (]) -- -..-l--r-+l (E) {nn--r (N) - nkr-l (N)} En 

= {nr (N) -- .-1 (N)} ,E by (4.42) 

= ---Ir (N) . Z, - n+ln-+i (N) . z, (5.21) 
since nC, + -,Cr_ = ,,+jrC. 
But for r 0 

n+i-Fo (E)- n--ltn+l (Z) = {(Nn- - 1) - N,_2-t ...-(-)n- Nod -(1) 

0, (5.22) 

i.e., the first relation, viz., 
- 

En--. + z-_2 - ... -+ (-)2Zo + ( )n- V = V, 

is the same for all polytopes bounded entirely by simplexes. 
We have also the relation, 

2En,_ - N,_i . E,. (5.23) 

The relations between the volume and the angle-sums in radian measure for 
n -= 2, 3, 4 are 

n = 2: v - 2{So- (N1- 2)n}, (5.24) 

n = 3: 0 = So- S + (N2- 2) 2C, (5.25) 
n _- 4: V = -k4 {S 2- Si + So + (2 - N3) 2}, (5.26) 

V= -k4 {2S2 - 3S + 5So - (2No + N3 - 10) :2}. 

? 6. Relations between the volume and the angle-sums for any Eulerian polytope. 
6,1. Take any r-dimensional boundary and divide it centrally. Then if aC 

i 2 
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is the volume of the angular region. at that boundary as edge, we have, if Es 
is the sum of the angular regions at an s-dimensional edge for the given poly- 
tope, and 's, that for the transformed polytope, 

E', = ES (s = n n - 1, ... + 1) 

'= + (N_t1,. - 1) oc., 

l, = -Es+ N_s-.,oc (s = r- 1, r - 2, ..., 1) 

E o -= E + Cr, 

V' V. 
Then 

E' ~ - - E - E .. -- + (-)1 E + (--)2' +0 (-)+ V' 

-q- +... -1+ El ()1-)n ()l+o v 

+ (-) 
r 

{(Ni.,..r- 1) - Nr.2, + ... + (- -1 No. - (1)"} or 
=- i -1 ... + (-)n _o + (-)"+I 

v 

z.e., 
n+lin+1. (E') = n+14nrl. (E)* 

Thus the function n.+ lnl (E) is not altered if all the boundaries are divided 

centrally. If all the boundaries of all dimensions are divided centrally the 

polytope is transformed into one bounded entirely by simplexes, hence the 
relation 

n - ,-1 + ,-2 
- ...+ (--) o + (--)+ V V (6.11) 

is true for all Eulerian polytopes. 
6.2. For the other relations it is found that the angles at the individual 

boundaries are involved. We shall work out as an example the case of n = 4. 
Consider a polytope in space of 4 dimensions. Let Nr be the number of its 

r-dimensional boundaries, N,, the number of p-dimensional boundaries of, or 
incident with, a particular q-dimensional boundary. 

First choose any 2-dimensional boundary and divide it centrally. Let IS 

be the sum of the angular regions for the polytope, E'l those for the trans- 

formed polytope. 
Then 4 4, 

Z2 2 +- (N12 - 1) o2, 

I '= E1 + N02oa2 
E o = So 0- 2) 

v- = V 

where a2 is the angle at the 2-dimensional boundary. Also Nos = N12. 
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Let the function 

514 (S) - 501 (E) = 3 - 2S2 + 31 - 5Zo + V = 0 (S). 
Then 

4 (2') =-= 23 - 2'2 + 32'1 - 5Z'o +- 1OV' 
= 4 () + (- 2N12 + 2 + 3No2 - 5) C2 
= 4 (E) + (N12 - 3) i.2. 

Hence if all the 2-dimensional boundaries are divided centrally 

+ (Z') = 4 (z) + z (N12 - 3) 2. (6.21) 

Next choose any 3-dimensional boundary and divide it centrally. Let 

N'p3 be the number of its boundaries of p dimensions, 2",, the sum of the angular 

regions at an r-dimensional edge for the polytope thus further transformed. 

Then 
Y"4 

' 
4, 

2 3 = '3 + (N'23 - 1) a3, 

E"2 = 2 + N'13a3, 
" = 2'l q-+ N'oa3, 

"o = Z'O ?- O3, 
V" - V', 

where G3 is the angle at the 3-dimensional boundary, -= -4. 
Then 4 (>(") = 4) (') + (N'23 - 1 - 2N'13 - 3N'o3 - 5) SZ4, and when all 

the 3-dimensional boundaries are divided centrally 

4 (2") = + (>') + S (N'23 -2N'13 + 3N'3 - 6) (6.22) 

But N'033 No + N23, 

N'13 N13 + EN12 (the summation extending over the faces of the 

boundary) 
= N13 + 2N13 = 3N13, 

N'23 =N12 = 2N13. 

Hence 

N'23 -2N'13 + 3N'3 - 6 3N23 - 4N13 + 3No3 - 6 
- N13 

and, since the polytope is now bounded entirely by simplexes, by (5.21) 

504 (E2/) - 501 (E") = - 51 (N") . S4, 

i.e., 
+ (>") = (5 - N"o) >4. 
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But 
N"o = N'o + N'3, 

N'o 0 No + N2 'N'3 N3. 
Therefore 

N" o + N2 + N. 
IHence finally 

(5 -- N"o) E4 + -E4. N3N~ 3-- (N2 - 3) , 

_ (5 -- N+ - E (N1,, - 3) . (6.2 3) 
6.3. For the regular polytopes, or Iore generally the homogeneous poly- 

topes, these relations become simplified since N12 and N13 are the same for all 

the boundaries. 
We have NT = N23 + N3 - 2, 

N2 -SN3 NN, -- 2N2, 
ENo3 ZN`30- NoN30 

hence SN13 = 2N2 -+ N3 No - 2N. 

Also ~S(N1 --3) g2 - (N12 -- 3) 2, and 3 == --- N .. 

Hence we have 

{ + N3(1 ) No - 5)N } + (NI2 - 5) -2 + 3 - 5}o - 10VI 0, (6.31) 

or in terms of the radian measures 

2k4 {[5N3 +(2--N3) No - 0] 2 (N12 -- 5)S~+3Sl- 5So} + 15V = 0. (6.32) 

e have also by (6.11) 

24 {(2 - N3) 7 s2 - + So} 3V. (6.33) 

Eliminating V we get 
Ni282 - 2S1 (N3o --2) N0o^.2 (6.34) 

6.4. In particular for the regular polytSopes, if c2, oc , are the traian measures 

of the angles at a face, an edge, and a vertexS, S= N2a, 1 S= Njc, So --= NO o. 

Equation (6.34) then becomes 

No2N2o - 2N1V -- (N30- 2) No-2; 

but NN2 oNo ad = N20No Na 2N = NN N NO , 
hence 

N20oca - N1a - (N30 --2) C2. (6.41) 

This result is easily verified directly by drawing a hypersphere round a vertex 
and applying equation (5.25), which gives 

S' S' + (N30 - 2) 7 = 0, 

I). A. Y[. Som:iXlervill]e. 
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S'1 and S'2 being the sums of the angles at the edges and faces at that vertex, 
and -T2 (for 4 dimensions) replacing 27 (for 3 dimensions), half the complete 
angle at a point. Then S' =- Nloal and S'2 = N20o2. 

Since N30- N20 + N1- = 2, equation (6.41) may also be written 

N20 (C2 - 2) = No1 (oc - 2). (6.42) 

If .NV,( denotes the number of p-dimensional boundaries through a q-dimen- 
sional boundary and lying in an r-dimensional boundary 

N32N20 = 3N20N30 = 3N10N30 -- 31N10 

and N32 = 2, hence 2N2o = N31Nlo, and (6.42) may be further simplified to 

N31 (a2 - ) = 2(1 - 2). (6.43) 

For the 5-, 8-, 24- and 120-cells N3L= 3, for the 16-cell N31 = 4, and for the 

600-cell N31 = 5. 
The numbers No =-- N1 = k7, 3No --= 3N2 =0 k2, and N21 == N31 = k3 are 

the fundamental numbers of the regular polytopes,* in terms of which all the 
numbers Nvq and the ratios of the numbers N, can be expressed. 

* See the author's paper " The regular divisions of space of n dimensions and their 
metrical constants," Palermo, ' Rend. Circ. mat.,' vol. 48, pp. 1-14 (1924). 
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