
A Radial Focus+Context Visualization for Multi-Dimensional Functions

Sanjini Jayaraman, Chris North
Center for Human Computer Interaction

Department of Computer Science
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061, USA
 sjayaram@vt.edu, north@cs.vt.edu

http://infovis.cs.vt.edu/

Abstract
The analysis of multidimensional functions is important in
many engineering disciplines, and poses a major problem
as the number of dimensions increases. Previous
visualization approaches focus on representing three or
fewer dimensions at a time. This paper presents a new
focus+context visualization that provides an integrated
overview of an entire multidimensional function space,
with uniform treatment of all dimensions. The overview is
displayed with respect to a user-controlled polar focal point
in the function’s parameter space. Function value patterns
are viewed along rays that emanate from the focal point in
all directions in the parameter space, and represented
radially around the focal point in the visualization. Data
near the focal point receives proportionally more screen
space than distant data. This approach scales smoothly
from two dimensions to 10-20, with a 1000 pixel range on
each dimension.
CR Categories: H.5.2 [Information Interfaces and
Presentation]: User Interfaces – Graphical user interfaces;
I.3.6 [Computer Graphics]: Methodology and Techniques –
Interaction Techniques.
Keywords: Visualization, multidimensional functions.

1 INTRODUCTION
Multi-dimensional functions are commonplace in many
disciplines. Insight into their nature and behavior is critical
for success. For example, in engineering design, system
output performance is affected by several input parameters.
Such a system can be viewed as a multidimensional
function mapping the input parameters to the output
performance of the system. Designers need to analyze and
discover patterns among inputs that affect system
performance to formulate design decisions. The multi-
dimensional nature of such complex functions makes them
difficult to understand and analyze. A visual overview of
the entire data space would help designers to analyze the
trends in system performance and study design tradeoffs.
Focusing on more details of a localized region can then
enable fine-tuning performance.

Multidimensional functions map values of multiple
independent variables (dimensions) to values of dependent
variables. A d-dimensional function has d independent
variables. This paper focuses on single-valued functions
with one dependent variable, that are defined within a
multidimensional box bounded by minimum and maximum
values on each dimension. Mathematically,

y = f(x1, x2, …, xd), where xi ∈ [mini …maxi].
Multidimensional functions are typically expressed in one
of two forms:
• Mathematical formulas: The relationship between the

independent and dependant variables is well defined as
a mathematical expression. The value of the dependent
variable can be directly calculated from the values of
the independent variables. This form is often used in
mathematical modeling applications. For example,
network communication functions model throughput
as a function of several factors such as delay, jitter and
bandwidth of the communication channel.

• Multidimensional arrays of sampled values: The
bounded multidimensional space defined by the
independent variables is discretely sampled on a
uniform grid. Dependent variable values are sampled
on these grid points, and stored in a multidimensional
array. Values between grid points can be
approximated with interpolation. This format is used
when formulas are unknown or not easily specified.
For example, such data is often collected from
scientific experiments, complex simulations, or
advanced models such as neural networks.

For one- or two-dimensional functions, visualization is
straightforward [CMS99]. One-dimensional functions can
be viewed with simple line graphs (maps independent
variable to x, dependent variable to y). Two-dimensional
functions can be viewed with height fields (maps
independent variables to x and y, dependent variable to z)
or colored heat maps (maps dependent variable to color).
Three-dimensional functions require non-trivial approaches
such as volume rendering or transparent 3D isosurfaces.
Beyond three- or four-dimensional functions, visualization
becomes very difficult because such spaces are beyond the
physical world and therefore difficult to depict and
conceptualize. Typically, slicing or projection is used to

Melanie K Tory

Melanie Tory
443

visualize only three or fewer of the dimensions at a time.
Slicing selects constant values for the remaining non-
visualized dimensions. Projection with aggregation
accumulates (e.g. averages) function values in the
subspaces defined by the remaining dimensions.
However, showing a limited number of dimensions or
limited regions of the space prevents the user from gaining
an overview or holistic picture of the functional behavior
throughout the space. Users must mentally integrate
multiple views or navigation sequences, and entire regions
of the space can be missed. This makes it difficult, for
example, for system engineering designers to decide how to
adjust system parameters to improve output performance or
find stable regions of performance.
This paper presents PolarEyez, a new focus+context
visualization for multidimensional functions with uniform
treatment of all dimensions. Its polar radial layout provides
an integrated contextual overview of the entire function
space from the perspective of a focus point within the
space. Data is revealed in more detail near the focus. The
overview helps guides users to interesting regions in the
space, and users can navigate the focus to examine regions
in more detail.

2 RELATED WORK
It is important to distinguish between visualizations
intended for two different, but related, classes of data:
multidimensional functions and multidimensional relations.
Relational data generally contains a relatively small
number of defined tuples scattered throughout its
multidimensional space, and does not necessarily
distinguish between independent and dependent variables.
Functional data is significantly denser, because every point
in the multidimensional space defined by its independent
variables has a dependent variable value. Functional data
in the form of fully sampled arrays gets large quickly. A d-
dimensional function with a range of r samples per
dimension results in rd values (e.g. 10 samples on 10
dimensions is 10 billion data points). Continuous functions
have infinite data. Differences between functional and
relational data lead to different types of users tasks, and
different approaches for visualization.
When visualizing multidimensional functions, the goal is
typically to view patterns of the dependent variable across
the multidimensional space of the independent variables.
Hence, independent variables should be mapped to spatial
attributes in the visualization (spatial substrate [CMS99]).
This requires arranging the multidimensional space on the
2D screen space in some fashion. Three primary
approaches have emerged, each of which recomposes slices
of the data in different arrangements. HyperSlice [VV93]
is similar to the scatterplot matrix, showing a 2D heat-map
slice for all pairs of independent variables. Each slice can
be navigated through the other dimensions. Mihalisin
[MTS91] uses similar 2D slices, but attempts to display all

possible slices eliminating the need to navigate the slices.
Slices are organized in a hierarchical 2D grid. Worlds-
within-Worlds [FB90] nests slices (typically 2D height
fields) within outer 3D coordinate frames. The location of
the inner slice origin within the outer frame determines the
constant values for the outer dimensions in the slice.
While these approaches have been a significant advance,
serious problems remain. First, these slicing and projection
approaches do not provide an integrated overview of the
space and treat dimensions non-uniformly. Users can only
view the function with respect to a few dimensions at a
time, and must navigate to view other portions of the space.
Second, scalability in number of dimensions d and range
per dimension r is limited because d and r both compete for
horizontal screen space in these approaches. For example,
in Mihalisin’s approach, rd/2 < screenWidth. This severely
limits d (to approximately 4 or 6), and additional
dimensions cannot be shown or must be projected.
Visualizations for multidimensional relations, such as
Parallel Coordinates [Ins97], Star Coordinates [Kan00],
TableLens [RC94], Spotfire [AW95], and Attribute
Explorer [TSD96], have more freedom to explore alternate
mappings. However, these approaches are typically not
well suited for multidimensional functions. The dense
nature of functional data overwhelms these mappings, or
creates serious occlusion. For example, Figure 1 shows a
TableLens visualization of a 5-dimensional function with 9
samples per dimension. Most of the screen space is spent
encoding all possible combinations of values for the
independent variables (columns 1-5). Vertical space in the
dependent variable column (column 6) is overcrowded,
because d and r compete for vertical space, attempting to
squeeze 95 values into the column.

Figure 1: TableLens visualization of a 5-dimensional
function with 9 samples per dimension. Columns 1-5
represent independent variables, column 6 represents

the dependent variable.

Melanie Tory
444

For visualizing functions, it is more efficient to map
independent variables to spatial attributes, without separate
visual marks for each independent variable value. Our
approach looks similar to the Star Coordinates radial
arrangement of axes, but does not use the vector
summation concept.

3 POLAREYEZ VISUALIZATION
PolarEyez is a new focus+context visualization for
multidimensional functions that uniformly integrates all
dimensions into a single view. The visualization arranges
the dimensions in radial fashion around a polar focus point
(Figure 2), and maps function value to a color scale at
every point in the space. For 2-dimensional functions, it is
identical to a heat map. However, instead of adding views
of 2D slices, additional dimensions are added directly into
the radial arrangement. This provides an integrated
overview of the space from the perspective of a navigable
focus point within the space.
The PolarEyez approach conceptually supports any number
of dimensions and arbitrary range bounds on each
dimension. For simplicity, the following mappings will be
described for 3D functions defined within a bounding cube.
The concepts scale up naturally, and examples with greater
dimensionality will be shown later.

x

y

-x

-y

x z
y

-x
-y

-z
x

y
z

-z

-x

-y

w

-w

2D 3D 4D
Figure 2: Basic spatial arrangement in PolarEyez with

increasing number of dimensions.

3.1 Conceptual Mapping
Focal point: First, a focal point is chosen within the
multidimensional function space. Initially, the focal point
is selected as the center of the bounding cube. The
function value is sampled at this point, mapped to a color
scale, and displayed as the focal point in the center of the
visualization. Our current color scale (Figure 3) ranges
from bright red for the most negative value, to black for
zero value, to bright green for greatest positive value.
White is used for undefined values and regions outside the
bounding cube.
Rays: Then, many rays that emanate from the focal point
in all directions and extend to the cube boundary are
chosen in the function space. These rays are then arranged
radially around the focal point in the visualization (Figure
4). Essentially, rays in the multidimensional space are
rotated around the focal point onto a 2D plane of the
visualization. Function values are sampled along the rays
in multidimensional space, mapped to the color scale, and
displayed along the rays in the visualization. A uniform

distribution of rays is chosen, such that their destination
points on the bounding cube forms a grid-like pattern.
Enough rays are chosen such that the visualization is
completely filled with colored rays. Hence, each pixel on
the perimeter of the visualization is the destination point of
some ray emanating from the focal point.

 0 + -

Figure 3: Approximate color scale for mapping
function values.

Figure 4: Focal point with rays in all directions map

from function space to visualization space.

A major challenge of this approach is to organize and order
the rays around the focal point in the visualization. Two
heuristics are used.
Faces: The first heuristic groups rays according to the face
of the bounding cube that they intersect. Hence, rays are
grouped with their rotationally nearest primary axis. Each
group of rays defines a pyramid whose base is a face of the
cube, and whose pinnacle point is the focal point. Each
group is represented in the visualization as a triangular pie
slice (Figure 5a). The exterior edge of the pie slice is flat
to represent the corresponding face of the cube. In the
visualization, this forms a hexagon (for 3D functions).
Each face of the hexagon represents a face of the cube.
The pie slices and their faces are identified by the primary
dimension that they bound. The two pie slices representing
the positive and negative directions of a single dimension
(e.g. +x, and –x) are displayed on opposite sides of the
focal point in the visualization. Hence, lines formed by
opposite rays in multidimensional space are preserved in
visualization space.
Paths: The second heuristic orders rays within each pie
slice according to their destination points on the cube face.
A path is defined on the cube face that linearly orders the
ray destination points along the hexagon face. There are
many possible alternatives for this path. Our current
approach uses a straightforward scan-line path across the
cube face (Figure 5b). The ray at the center of the cube
face, and parallel to the primary dimension of the face, is
located in the center of the pie slice. A spiral path, a
potential alternative, orders rays according to increasing
angle from the primary dimension of the face. Note that in
the general case a face of a d-dimensional hyper-cube is
itself a (d-1)-dimensional hyper-cube.

Melanie Tory
445

x

x

-x

Figure 5: Rays are (a) grouped by face, and (b) ordered

within a face by a scan-line path.

Figure 6 shows an example visualization of a 3D function.
The cyclical nature of the function and the high and low
spots can be seen. The most prominent cycles are on the
diagonals where all parameters have near equal absolute
values. The radius is approximately one cycle.
To generalize beyond 3D functions, the mappings from
multidimensional function space to 2D screen space are
summarized as (with colored reference to Figure 5):

• Focal point maps to focal point (in Figure 5, red).
• Ray maps to ray (green).
• Hyper-cube maps to a polygon with equal sides

and angles (black).
• Hyper-cube face maps to polygon face (black).
• Hyper-pyramid maps to pie slice (blue).
• Function value maps to color.

Figure 6: Visualization of cos(x2) + cos(y2) + cos(z2) with

focal point at the origin.

3.2 Aggregation and Focus+Context
Since function data may exist between the rays in the
functional space, it is necessary to aggregate this data onto
the nearest ray so that all data is represented in the
visualization. That is, each ray aggregates (e.g. averages)
data around it. Hence, each ray in function space is
actually a narrow pyramid. Together, these narrow
pyramids completely fill the entire cube. In visualization
space, each ray is actually a narrow triangular pie slice.
This aggregation, combined with the radial layout, creates
the smooth focus+context [Spe01] effect. This enables
users to view details of a localized region without losing
the context of the overall functional space. Less
aggregation (more detail) occurs near the focal point, and
more aggregation (less detail) occurs distant from the focal
point. Furthermore, aggregation increases smoothly with
increase in distance from the focus, creating a smooth
transition between detail and context.
Proof of this concept is helpful. Intuitively, the surface of a
cube of width w in function space is visually encoded on
the perimeter of a hexagon of width w in 2D visualization
space (technically, a linear mapping on the width occurs to
map distance in function space to distance in screen space).
As width w increases, the surface area of the cube increases
more rapidly than the perimeter length of the hexagon.
Hence, as width w increases (and therefore distance from
the center focal point increases), more area in the function
space must be aggregated and encoded into relatively less
perimeter in visualization space (Figure 7).
Mathematically, the surface area of a cube of width w is
6w2. In general, the hyper-surface area of a d-dimensional
hyper-cube is the total volume of its 2*d (d-1)-dimensional
hyper-faces, or 2dwd-1. The perimeter length of a polygon
of width w can be approximated by the circumference of a
circle of diameter w, which is πw. Hence, the aggregation
factor, which measures the amount of data encoded per unit
screen space, is a function of w:
 aggregation = 2dwd-1/ πw ≈ dwd-2
Therefore, for greater than 2 dimensions, aggregation
increases as a function of the distance from the focal point.
With many dimensions, aggregation increases rapidly with
w. Note that for d=2, aggregation is constant (e.g. a heat
map).

Figure 7: Surfaces of concentric cubes map to
perimeters of concentric polygons. Outer cubes require

more aggregation.

Melanie Tory
446

3.3 Interactive Exploration
As users move the mouse over the visualization, a tooltip
shows the coordinates of the point in multidimensional
space and the function value.
Users can navigate the visualization’s focal point within the
multidimensional function space by either directly selecting
a point in the visualization or by entering the desired
coordinates. The visualization places the new focal point at
the center, and reorients the polar overview from the
perspective of the new focal point. This enables users to
view more details of a desired region using the
focus+context technique. Navigating the focal point nearer
to the edge of the bounding cube will cause some rays to be
shorter than others. Rays emanating toward a nearer face
will naturally intersect the bounding cube sooner, and
causes portions of some pie slices to appear truncated. This
helps users recognize nearness to the boundaries, and orient
themselves within the space.
Users can also filter out uninteresting pie slices from the
overview. This provides more detail to pie slices of interest
by evenly distributing extra angular screen space to these
slices. This enables users to focus on interesting regions,
or eliminate independent variables that have little effect on
function behavior. This feature could be extended to
enable users to independently control the angular space
devoted to each pie slice by directly resizing them.
Users can issue simple queries to highlight points that meet
a desired criterion in bright yellow. Users can specify
ranges for dependent and independent variables to
highlight. For example, this helps users to analyze whether
desired functional values occur in clusters or are spread
throughout the space.

4 EXAMPLES

4.1 Mathematical Functions
Figure 8 shows the visualization of a function used in
Mihalisin [MTS91], x2 + u2 + y2 + 2v. The integrated
approach used by PolarEyez demonstrates the pattern in a
simpler fashion than slicing.
Figure 9 shows the visualization of the function:

y = ∑ cos(xi
2)

with 4 and 12 dimensions, and focal point at the origin.
The function is clearly cyclical and symmetric. The bright
green region in the center indicates strong spike in the
function where all variables are near 0. Smaller regions of
high and low values are distributed. The bounds of the
space is approximately 15 cycles wide. The spoke pattern
indicates the prominence of the cyclical pattern near the
primary axes. The decreasing period of the ripple pattern
proceeding outward indicates the effect of the exponent
within the cosine term. Figure 9c shows the change in the
pattern when navigating to x1=2.5.

4.2 Engineering Data
To study potential engineering designs for an aircraft
control subsystem, researchers developed a mathematical
model of the phenomenon. The design had 5 primary
parameters (labeled x1 through x5) that affected system
performance. A complex neural network simulation was
implemented and trained. Sampled performance data was
derived throughout the 5-dimensional space. Visualization
of the simulation output helps in several design tasks. In
general, target regions of high performance are desired.
However, system stability is a priority due to potential error
in simulation and system operation. Furthermore, to guide
continued experimentation and aid in model verification,
general understanding of simulation output is needed.
Figure 10a shows the initial visualization of the simulation
output. Parameter x5 is critical to system performance, and
negative values of this parameter results in almost certain
poor performance (red). Parameters x3 and x5 both have
unusual regions of uniformly poor performance in their
negative sides. This might indicate a problem in the
simulation for further study. x1 and x2 are fairly symmetric.
Small hot regions of good or poor performance are
scattered throughout the other dimensions. The current
focus region is a candidate for fairly stable good
performance, with green surroundings for a reasonable
margin. However, the green area near the extreme negative
region of x3 also appears stable, and mousing over the
region indicates higher performance values.
To verify this potential stability, the query highlight feature
is used. The user queries a narrow range for performance
value that straddles an observed value in that area. All
points meeting that criteria are automatically highlighted in
bright yellow (Figure 10b). The solid yellow region is
quite stable, with the exception of some holes near the x3
axis itself. The existence of these holes is strengthened by
the fact that the yellow on the other dimensions is away
from the origin, and hence not near the x3 axis. Negative
values for x1, x2, x4 appear best. Navigating to that region
does reveal a stable high performance area (Figure 10c).

Figure 8: Visualization of x2 + u2 + y2 + 2v.

Melanie Tory
447

Figure 9: Visualizing y = ∑ cos(xi

2).
(a) 4D, (b) 12D, (c) 4D navigating to x1

2=2π.

Figure 10: Visualizing 5 dimensional engineering data.
(a) initial overview, (b) query highlight, (c) navigation.

x5

x4x2

x1

-x1

-x2-x4

-x5

Melanie Tory
448

5 ALGORITHM
The algorithm to implement the PolarEyez conceptual
layout is complex. This is because it is difficult to display
polar concepts on Cartesian rectangular pixels. Two
different algorithms were implemented:
• Map function to screen: This approach computes the

rays in multidimensional function space, and then
draws each ray on the screen. The challenge of this
approach is handling the anti-aliasing and overlapping
of the rays on the screen.

• Map screen to function: This approach reverses the
process. For each pixel, it computes the multi-
dimensional space represented by that pixel, and colors
the pixel accordingly. The challenge of this approach
is calculating the space represented by each pixel.

The Screen-to-Function Algorithm

For each pixel p(x,y):
1. Map pixel p to region r in function space:

a. Map pixel p to point pt in function space:
i. Determine pie slice s containing pixel p using

angles w.r.t. focal point
ii. Determine concentric polygon face containing

p using radius w.r.t. focal point
iii. Determine concentric cube face represented

by polygon face using radius and slice s
iv. Calculate point pt of pixel p on cube face

using scan-line path:
• Calculate fraction of distance of p along

polygon face, using angles
• Map to distance along path on cube face
• Follow distance on cube face to locate pt

b. Approximate region r around point pt:
i. Map pixel width to fraction of path length

using approximate number of pixels on
polygon face

ii. Include that fraction of path around pt in r
iii. Map pixel width to radial depth of cube face

using approximate number of pixels on pie
radius and dimension range.

iv. Include that depth in r
2. Compute aggregate function value v for region r:

a. If sampled array data: average the samples
contained in region or interpolate samples around
region r

b. If math formula: sample and average the center
and corners of region r

3. Map value v to color c using color scale
4. Plot color c in pixel p
5. Repeat for mirror pixel p2 on opposite side of focal

point, reusing pt and r calculations from step (1)
where possible

Figure 11: The algorithm for generating PolarEyez
visualizations using the screen-to-function variation.

We currently prefer the latter approach because it handles
each pixel only once. The algorithm is presented in Figure
11. When the function is specified using the mathematical
formula method, aggregation is difficult and requires
mathematical integration. The algorithm approximates this
with some sub-sampling. However, in many dimensions,
significant portions of the space are missed which causes
the visualization to appear noisy or choppy. A better
algorithm is needed for aggregating functional spaces.

5.1 Implementation
The visualization is implemented in Java. Users can
provide data in either form, mathematical formula or
sampled data array, and specify range bounds for each
dimension. Inputting approximate minimum and maximum
function values enables color mapping without requiring a
second pass in the algorithm to calculate these values, and
enables some customization of color map bounds.
On a <1 GHz Pentium PC, the visualization takes a few
seconds to generate. A mirroring technique is used to
reduce redundant calculations and speed up the
visualization. Specifically, computations for a pixel such as
angle and radius are reused for the symmetric pixel in the
diametrically opposite pie slice.

6 DISCUSSION
A major advantage of this visualization approach is that it
presents an integrated overview of the entire functional
space on all dimensions simultaneously. The overview
helps users identify regions of high or low function values,
frequency of particular values, clusters, etc. This relieves
users from mentally integrating separate 2D slices in short-
term memory as required by previous approaches. The
polar nature of the overview enables users to view patterns
in function value proceeding away from the focal point in
all directions, and estimate distances to interesting
phenomena. Representing the overview from the
perspective of a point in the space is somewhat egocentric
and natural for users to grasp, as confirmed by informal
feedback from test users. Interestingly, the flat edges of the
polygon pie slices are helpful for orienting users, and
provide a natural analogy to the squares and cubes of heat
maps. We had previously explored a completely circular
layout, but caused confusion for users.
Another advantage is scalability. This approach scales up
smoothly. Each additional dimension simply adds two
more slices to the pie, gradually narrowing all slices. It
scales to approximately 10 to 20 dimensions (20 to 40 pie
slices). Beyond that, very narrow pie slices can still
provide some useful information. For 2D functions, this
approach reduces cleanly to a simple heat map.
Furthermore, the number of dimensions d scales
independently of the bounding range r of the dimensions.
This is because dimensions and range are mapped to
separable dimensions in the visualization. Dimensions are

Melanie Tory
449

represented circumferentially, and dimension range is
represented radially. The range for each dimension
receives a screen-width (e.g. 1000 pixels) of space
regardless of number of dimensions.

7 FUTURE WORK
While the focus+context approach provides a detail view
within the overview, a more detailed view is needed. We
have explored a radical variation of the visualization in
which the focal point is stretched out into a horizontal line,
and the rays are organized along the line pointing vertically
(Figure 12). This significantly expanded the detail of the
focus region, at the expense of the extremities. However,
users were too confused by this mapping, and could not
overcome the belief that it was depicting 2D slices. A
more natural approach might be to radially expand the
focus in a fisheye-like manner [Kea98]. Hence, the radius
could have a non-linear mapping from function to
visualization. Alternatively, 2D slices are excellent detail
views for examining specific correlations. It would be
interesting to explore the use of PolarEyez as an overview
for controlling separate 2D slices in an overview+detail
fashion [CMS99].
Additional work is needed to explore improved aggregation
algorithms, alternate ray arrangement heuristics, more
efficient algorithms for real-time navigation, and support
for multi-valued functions. Finally, while informal user
feedback has been positive and has guided the design,
formal user studies are needed to rigorously evaluate this
approach.

8 CONCLUSIONS
This paper contributes a novel layout and navigation
strategy for visualizing multidimensional functions. A
polar focal point with rays emanating in all directions
compresses the multidimensional space into a circular
layout. This approach has several key characteristics:
• Provides an integrated overview of the entire bounded

function space, from the natural perspective of a point
within the space.

• Treats all dimensions uniformly, without employing
conventional slicing schemes, enabling visualization of
variation in all dimensions simultaneously.

• Provides focus+context, with smooth seamless
transition from detail to overview.

• Smoothly scales up to 10-20 dimensions, with
approximately 1000 pixel range on each dimension.

9 ACKNOWLEDGEMENTS
Thanks to B.F. Goodrich Inc., Black&Decker Inc., Vijay
Varadarajan, and Srinivasan Vasudevan for data and
valuable feedback.

Figure 12: Stretching the focal point into a horizontal
line, with rays extending vertically, to exaggerate the

focus+context effect.

10 REFERENCES
[AW95] Ahlberg, C., Wistrand, E., “IVEE: An Information

Visualization and Exploration Environment”, Proc. IEEE
Information Visualization Symposium ’95, pp. 66-73, (1995).

[CMS99] Card, S., Mackinlay, J., Shneiderman, B.,
Information Visualization: Using Vision to Think,
Morgan Kaufmann, (1999).

[FB90] Feiner, S., Beshers, C., “Worlds within Worlds:
Metaphors for Exploring n-Dimensional Virtual Worlds”,
Proc. ACM UIST ’90, pp. 76-93, (1990)

[Ins97] Inselberg, A., “Multidimensional Detective”, Proc.
IEEE Information Visualization Symposium’97, pp. 100-107,
(1997).

[Kan00] Kandogan, E., “Star Coordinates: a Multi-dimensional
Visualization Technique with Uniform Treatment of
Dimensions”, LBHT Proc. IEEE Information Visualization
Symposium 2000, pp. 9-12, (2000).

[Kea98] Keahey, A., “The generalized detail-in-context
problem”, Proc. IEEE Symposium on Information
Visualization, IEEE, (October 1998).

[MTS91] Mihalisin, T. Timlin, J., and Schegeler, J., “Visualizing
multivariate Functions, Data, and Distributions”, IEEE
Computer Graphics and Applications, 11(13), pp. 28-35,
(1991).

[RC94] Rao, R., Card, S., “Table Lens: Merging Graphical and
Symbolic Representations in an Interactive Focus+Context
Visualization for Tabular Information” Proc. ACM CHI’94,
pp. 318-322, (1994).

[Spe01] Spence, R., Information Visualization, Addison-
Wesley, (2001).

[TSD96] Tweedie, L., Spence, R., Dawkes, H., Su. H.,
“Externalizing Abstract Mathematical Models”, Proc ACM
CHI’96, pp. 406-402, (1996).

[VV93] Van Wijk, J., Van Liere, R., “HyperSlice:
Visualization of Scalar Functions of Many Variables”, Proc.
IEEE Visualization ’93, pp. 119-125, (1993).

Melanie Tory
450

