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Abstract 
The analysis of multidimensional functions is important in 
many engineering disciplines, and poses a major problem 
as the number of dimensions increases. Previous 
visualization approaches focus on representing three or 
fewer dimensions at a time. This paper presents a new 
focus+context visualization that provides an integrated 
overview of an entire multidimensional function space, 
with uniform treatment of all dimensions.  The overview is 
displayed with respect to a user-controlled polar focal point 
in the function’s parameter space. Function value patterns 
are viewed along rays that emanate from the focal point in 
all directions in the parameter space, and represented 
radially around the focal point in the visualization.  Data 
near the focal point receives proportionally more screen 
space than distant data.  This approach scales smoothly 
from two dimensions to 10-20, with a 1000 pixel range on 
each dimension. 
CR Categories:  H.5.2 [Information Interfaces and 
Presentation]: User Interfaces – Graphical user interfaces; 
I.3.6 [Computer Graphics]: Methodology and Techniques – 
Interaction Techniques. 
Keywords:  Visualization, multidimensional functions. 
 

1 INTRODUCTION 
Multi-dimensional functions are commonplace in many 
disciplines. Insight into their nature and behavior is critical 
for success. For example, in engineering design, system 
output performance is affected by several input parameters. 
Such a system can be viewed as a multidimensional 
function mapping the input parameters to the output 
performance of the system. Designers need to analyze and 
discover patterns among inputs that affect system 
performance to formulate design decisions. The multi-
dimensional nature of such complex functions makes them 
difficult to understand and analyze. A visual overview of 
the entire data space would help designers to analyze the 
trends in system performance and study design tradeoffs.  
Focusing on more details of a localized region can then 
enable fine-tuning performance. 

Multidimensional functions map values of multiple 
independent variables (dimensions) to values of dependent 
variables.  A d-dimensional function has d independent 
variables.  This paper focuses on single-valued functions 
with one dependent variable, that are defined within a 
multidimensional box bounded by minimum and maximum 
values on each dimension.  Mathematically, 

y = f(x1, x2, …, xd),  where xi ∈ [mini …maxi].  
Multidimensional functions are typically expressed in one 
of two forms: 
• Mathematical formulas:  The relationship between the 

independent and dependant variables is well defined as 
a mathematical expression. The value of the dependent 
variable can be directly calculated from the values of 
the independent variables.  This form is often used in 
mathematical modeling applications. For example, 
network communication functions model throughput 
as a function of several factors such as delay, jitter and 
bandwidth of the communication channel. 

• Multidimensional arrays of sampled values:  The 
bounded multidimensional space defined by the 
independent variables is discretely sampled on a 
uniform grid.  Dependent variable values are sampled 
on these grid points, and stored in a multidimensional 
array.  Values between grid points can be 
approximated with interpolation.  This format is used 
when formulas are unknown or not easily specified.  
For example, such data is often collected from 
scientific experiments, complex simulations, or 
advanced models such as neural networks. 

For one- or two-dimensional functions, visualization is 
straightforward [CMS99].  One-dimensional functions can 
be viewed with simple line graphs (maps independent 
variable to x, dependent variable to y).  Two-dimensional 
functions can be viewed with height fields (maps 
independent variables to x and y, dependent variable to z) 
or colored heat maps (maps dependent variable to color).  
Three-dimensional functions require non-trivial approaches 
such as volume rendering or transparent 3D isosurfaces. 
Beyond three- or four-dimensional functions, visualization 
becomes very difficult because such spaces are beyond the 
physical world and therefore difficult to depict and 
conceptualize.  Typically, slicing or projection is used to 
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visualize only three or fewer of the dimensions at a time.  
Slicing selects constant values for the remaining non-
visualized dimensions.  Projection with aggregation 
accumulates (e.g. averages) function values in the 
subspaces defined by the remaining dimensions.   
However, showing a limited number of dimensions or 
limited regions of the space prevents the user from gaining 
an overview or holistic picture of the functional behavior 
throughout the space.  Users must mentally integrate 
multiple views or navigation sequences, and entire regions 
of the space can be missed.  This makes it difficult, for 
example, for system engineering designers to decide how to 
adjust system parameters to improve output performance or 
find stable regions of performance. 
This paper presents PolarEyez, a new focus+context 
visualization for multidimensional functions with uniform 
treatment of all dimensions.  Its polar radial layout provides 
an integrated contextual overview of the entire function 
space from the perspective of a focus point within the 
space.  Data is revealed in more detail near the focus.   The 
overview helps guides users to interesting regions in the 
space, and users can navigate the focus to examine regions 
in more detail. 

2 RELATED WORK 
It is important to distinguish between visualizations 
intended for two different, but related, classes of data:  
multidimensional functions and multidimensional relations.  
Relational data generally contains a relatively small 
number of defined tuples scattered throughout its 
multidimensional space, and does not necessarily 
distinguish between independent and dependent variables.  
Functional data is significantly denser, because every point 
in the multidimensional space defined by its independent 
variables has a dependent variable value.  Functional data 
in the form of fully sampled arrays gets large quickly.  A d-
dimensional function with a range of r samples per 
dimension results in rd values (e.g. 10 samples on 10 
dimensions is 10 billion data points).  Continuous functions 
have infinite data.  Differences between functional and 
relational data lead to different types of users tasks, and 
different approaches for visualization. 
When visualizing multidimensional functions, the goal is 
typically to view patterns of the dependent variable across 
the multidimensional space of the independent variables.  
Hence, independent variables should be mapped to spatial 
attributes in the visualization (spatial substrate [CMS99]). 
This requires arranging the multidimensional space on the 
2D screen space in some fashion.  Three primary 
approaches have emerged, each of which recomposes slices 
of the data in different arrangements.  HyperSlice [VV93] 
is similar to the scatterplot matrix, showing a 2D heat-map 
slice for all pairs of independent variables.  Each slice can 
be navigated through the other dimensions.  Mihalisin 
[MTS91] uses similar 2D slices, but attempts to display all 

possible slices eliminating the need to navigate the slices.  
Slices are organized in a hierarchical 2D grid.  Worlds-
within-Worlds [FB90] nests slices (typically 2D height 
fields) within outer 3D coordinate frames.  The location of 
the inner slice origin within the outer frame determines the 
constant values for the outer dimensions in the slice. 
While these approaches have been a significant advance, 
serious problems remain.  First, these slicing and projection 
approaches do not provide an integrated overview of the 
space and treat dimensions non-uniformly.  Users can only 
view the function with respect to a few dimensions at a 
time, and must navigate to view other portions of the space.  
Second, scalability in number of dimensions d and range 
per dimension r is limited because d and r both compete for 
horizontal screen space in these approaches.  For example, 
in Mihalisin’s approach, rd/2 < screenWidth. This severely 
limits d (to approximately 4 or 6), and additional 
dimensions cannot be shown or must be projected. 
Visualizations for multidimensional relations, such as 
Parallel Coordinates [Ins97], Star Coordinates [Kan00], 
TableLens [RC94], Spotfire [AW95], and Attribute 
Explorer [TSD96], have more freedom to explore alternate 
mappings.  However, these approaches are typically not 
well suited for multidimensional functions.  The dense 
nature of functional data overwhelms these mappings, or 
creates serious occlusion.  For example, Figure 1 shows a 
TableLens visualization of a 5-dimensional function with 9 
samples per dimension.  Most of the screen space is spent 
encoding all possible combinations of values for the 
independent variables (columns 1-5).  Vertical space in the 
dependent variable column (column 6) is overcrowded, 
because d and r compete for vertical space, attempting to 
squeeze 95 values into the column.   
 

 
Figure 1:  TableLens visualization of a 5-dimensional 
function with 9 samples per dimension.  Columns 1-5 
represent independent variables, column 6 represents 

the dependent variable. 
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For visualizing functions, it is more efficient to map 
independent variables to spatial attributes, without separate 
visual marks for each independent variable value.  Our 
approach looks similar to the Star Coordinates radial 
arrangement of axes, but does not use the vector 
summation concept.   

3 POLAREYEZ VISUALIZATION 
PolarEyez is a new focus+context visualization for 
multidimensional functions that uniformly integrates all 
dimensions into a single view.  The visualization arranges 
the dimensions in radial fashion around a polar focus point 
(Figure 2), and maps function value to a color scale at 
every point in the space.  For 2-dimensional functions, it is 
identical to a heat map.  However, instead of adding views 
of 2D slices, additional dimensions are added directly into 
the radial arrangement.  This provides an integrated 
overview of the space from the perspective of a navigable 
focus point within the space. 
The PolarEyez approach conceptually supports any number 
of dimensions and arbitrary range bounds on each 
dimension. For simplicity, the following mappings will be 
described for 3D functions defined within a bounding cube.  
The concepts scale up naturally, and examples with greater 
dimensionality will be shown later. 
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Figure 2:  Basic spatial arrangement in PolarEyez with 

increasing number of dimensions. 
 

3.1 Conceptual Mapping 
Focal point:  First, a focal point is chosen within the 
multidimensional function space.  Initially, the focal point 
is selected as the center of the bounding cube.  The 
function value is sampled at this point, mapped to a color 
scale, and displayed as the focal point in the center of the 
visualization.  Our current color scale (Figure 3) ranges 
from bright red for the most negative value, to black for 
zero value, to bright green for greatest positive value.  
White is used for undefined values and regions outside the 
bounding cube. 
Rays:  Then, many rays that emanate from the focal point 
in all directions and extend to the cube boundary are 
chosen in the function space.  These rays are then arranged 
radially around the focal point in the visualization (Figure 
4).  Essentially, rays in the multidimensional space are 
rotated around the focal point onto a 2D plane of the 
visualization.  Function values are sampled along the rays 
in multidimensional space, mapped to the color scale, and 
displayed along the rays in the visualization.  A uniform 

distribution of rays is chosen, such that their destination 
points on the bounding cube forms a grid-like pattern.  
Enough rays are chosen such that the visualization is 
completely filled with colored rays.  Hence, each pixel on 
the perimeter of the visualization is the destination point of 
some ray emanating from the focal point. 

 0 + - 
 

Figure 3:  Approximate color scale for mapping 
function values. 

 
Figure 4:  Focal point with rays in all directions map 

from function space to visualization space. 
 

A major challenge of this approach is to organize and order 
the rays around the focal point in the visualization.  Two 
heuristics are used. 
Faces:  The first heuristic groups rays according to the face 
of the bounding cube that they intersect.  Hence, rays are 
grouped with their rotationally nearest primary axis.  Each 
group of rays defines a pyramid whose base is a face of the 
cube, and whose pinnacle point is the focal point.  Each 
group is represented in the visualization as a triangular pie 
slice (Figure 5a).  The exterior edge of the pie slice is flat 
to represent the corresponding face of the cube.  In the 
visualization, this forms a hexagon (for 3D functions).  
Each face of the hexagon represents a face of the cube.  
The pie slices and their faces are identified by the primary 
dimension that they bound.  The two pie slices representing 
the positive and negative directions of a single dimension 
(e.g. +x, and –x) are displayed on opposite sides of the 
focal point in the visualization.  Hence, lines formed by 
opposite rays in multidimensional space are preserved in 
visualization space.  
Paths:  The second heuristic orders rays within each pie 
slice according to their destination points on the cube face.  
A path is defined on the cube face that linearly orders the 
ray destination points along the hexagon face.  There are 
many possible alternatives for this path.  Our current 
approach uses a straightforward scan-line path across the 
cube face (Figure 5b).  The ray at the center of the cube 
face, and parallel to the primary dimension of the face, is 
located in the center of the pie slice. A spiral path, a 
potential alternative, orders rays according to increasing 
angle from the primary dimension of the face.  Note that in 
the general case a face of a d-dimensional hyper-cube is 
itself a (d-1)-dimensional hyper-cube. 
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Figure 5:  Rays are (a) grouped by face, and (b) ordered 

within a face by a scan-line path. 
 

Figure 6 shows an example visualization of a 3D function.  
The cyclical nature of the function and the high and low 
spots can be seen.   The most prominent cycles are on the 
diagonals where all parameters have near equal absolute 
values.  The radius is approximately one cycle.  
To generalize beyond 3D functions, the mappings from 
multidimensional function space to 2D screen space are 
summarized as (with colored reference to Figure 5): 

• Focal point maps to focal point (in Figure 5, red). 
• Ray maps to ray (green). 
• Hyper-cube maps to a polygon with equal sides 

and angles (black). 
• Hyper-cube face maps to polygon face (black). 
• Hyper-pyramid maps to pie slice (blue). 
• Function value maps to color. 

 

 
Figure 6:  Visualization of cos(x2) + cos(y2) + cos(z2) with 

focal point at the origin. 

3.2 Aggregation and Focus+Context 
Since function data may exist between the rays in the 
functional space, it is necessary to aggregate this data onto 
the nearest ray so that all data is represented in the 
visualization.  That is, each ray aggregates (e.g. averages) 
data around it.  Hence, each ray in function space is 
actually a narrow pyramid.  Together, these narrow 
pyramids completely fill the entire cube.  In visualization 
space, each ray is actually a narrow triangular pie slice. 
This aggregation, combined with the radial layout, creates 
the smooth focus+context [Spe01] effect. This enables 
users to view details of a localized region without losing 
the context of the overall functional space.  Less 
aggregation (more detail) occurs near the focal point, and 
more aggregation (less detail) occurs distant from the focal 
point.  Furthermore, aggregation increases smoothly with 
increase in distance from the focus, creating a smooth 
transition between detail and context. 
Proof of this concept is helpful.  Intuitively, the surface of a 
cube of width w in function space is visually encoded on 
the perimeter of a hexagon of width w in 2D visualization 
space (technically, a linear mapping on the width occurs to 
map distance in function space to distance in screen space).  
As width w increases, the surface area of the cube increases 
more rapidly than the perimeter length of the hexagon.  
Hence, as width w increases (and therefore distance from 
the center focal point increases), more area in the function 
space must be aggregated and encoded into relatively less 
perimeter in visualization space (Figure 7). 
Mathematically, the surface area of a cube of width w is 
6w2.  In general, the hyper-surface area of a d-dimensional 
hyper-cube is the total volume of its 2*d (d-1)-dimensional 
hyper-faces, or 2dwd-1.  The perimeter length of a polygon 
of width w can be approximated by the circumference of a 
circle of diameter w, which is πw.  Hence, the aggregation 
factor, which measures the amount of data encoded per unit 
screen space, is a function of w: 
 aggregation = 2dwd-1/ πw ≈ dwd-2 
Therefore, for greater than 2 dimensions, aggregation 
increases as a function of the distance from the focal point.  
With many dimensions, aggregation increases rapidly with 
w.  Note that for d=2, aggregation is constant (e.g. a heat 
map). 

Figure 7:  Surfaces of concentric cubes map to 
perimeters of concentric polygons.  Outer cubes require 

more aggregation. 
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3.3 Interactive Exploration 
As users move the mouse over the visualization, a tooltip 
shows the coordinates of the point in multidimensional 
space and the function value.   
Users can navigate the visualization’s focal point within the 
multidimensional function space by either directly selecting 
a point in the visualization or by entering the desired 
coordinates.  The visualization places the new focal point at 
the center, and reorients the polar overview from the 
perspective of the new focal point.  This enables users to 
view more details of a desired region using the 
focus+context technique.  Navigating the focal point nearer 
to the edge of the bounding cube will cause some rays to be 
shorter than others.  Rays emanating toward a nearer face 
will naturally intersect the bounding cube sooner, and 
causes portions of some pie slices to appear truncated.  This 
helps users recognize nearness to the boundaries, and orient 
themselves within the space. 
Users can also filter out uninteresting pie slices from the 
overview.  This provides more detail to pie slices of interest 
by evenly distributing extra angular screen space to these 
slices.  This enables users to focus on interesting regions, 
or eliminate independent variables that have little effect on 
function behavior.  This feature could be extended to 
enable users to independently control the angular space 
devoted to each pie slice by directly resizing them. 
Users can issue simple queries to highlight points that meet 
a desired criterion in bright yellow.  Users can specify 
ranges for dependent and independent variables to 
highlight.  For example, this helps users to analyze whether 
desired functional values occur in clusters or are spread 
throughout the space. 
 

4 EXAMPLES 

4.1 Mathematical Functions 
Figure 8 shows the visualization of a function used in 
Mihalisin [MTS91], x2 + u2 + y2 + 2v.  The integrated 
approach used by PolarEyez demonstrates the pattern in a 
simpler fashion than slicing. 
Figure 9 shows the visualization of  the function: 

y = ∑ cos(xi
2) 

with 4 and 12 dimensions, and focal point at the origin.  
The function is clearly cyclical and symmetric.  The bright 
green region in the center indicates strong spike in the 
function where all variables are near 0.  Smaller regions of 
high and low values are distributed.  The bounds of the 
space is approximately 15 cycles wide.  The spoke pattern 
indicates the prominence of the cyclical pattern near the 
primary axes.  The decreasing period of the ripple pattern 
proceeding outward indicates the effect of the exponent 
within the cosine term.  Figure 9c shows the change in the 
pattern when navigating to x1=2.5. 
 

4.2 Engineering Data 
To study potential engineering designs for an aircraft 
control subsystem, researchers developed a mathematical 
model of the phenomenon.  The design had 5 primary 
parameters (labeled x1 through x5) that affected system 
performance.  A complex neural network simulation was 
implemented and trained.  Sampled performance data was 
derived throughout the 5-dimensional space.  Visualization 
of the simulation output helps in several design tasks.  In 
general, target regions of high performance are desired.  
However, system stability is a priority due to potential error 
in simulation and system operation.  Furthermore, to guide 
continued experimentation and aid in model verification, 
general understanding of simulation output is needed. 
Figure 10a shows the initial visualization of the simulation 
output.  Parameter x5 is critical to system performance, and 
negative values of this parameter results in almost certain 
poor performance (red).  Parameters x3 and x5 both have 
unusual regions of uniformly poor performance in their 
negative sides.  This might indicate a problem in the 
simulation for further study.  x1 and x2 are fairly symmetric.  
Small hot regions of good or poor performance are 
scattered throughout the other dimensions.  The current 
focus region is a candidate for fairly stable good 
performance, with green surroundings for a reasonable 
margin.  However, the green area near the extreme negative 
region of x3 also appears stable, and mousing over the 
region indicates higher performance values. 
To verify this potential stability, the query highlight feature 
is used.  The user queries a narrow range for performance 
value that straddles an observed value in that area.  All 
points meeting that criteria are automatically highlighted in 
bright yellow (Figure 10b).  The solid yellow region is 
quite stable, with the exception of some holes near the x3 
axis itself.  The existence of these holes is strengthened by 
the fact that the yellow on the other dimensions is away 
from the origin, and hence not near the x3 axis.  Negative 
values for x1, x2, x4 appear best.  Navigating to that region 
does reveal a stable high performance area (Figure 10c). 
 

 
Figure 8:  Visualization of  x2 + u2 + y2 + 2v. 
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Figure 9:  Visualizing  y = ∑ cos(xi

2).   
(a) 4D, (b) 12D, (c) 4D navigating to x1

2=2π. 

 
 

 
 

 
Figure 10:  Visualizing 5 dimensional engineering data. 
(a) initial overview, (b) query highlight, (c) navigation. 
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5 ALGORITHM 
The algorithm to implement the PolarEyez conceptual 
layout is complex.  This is because it is difficult to display 
polar concepts on Cartesian rectangular pixels.  Two 
different algorithms were implemented: 
• Map function to screen:  This approach computes the 

rays in multidimensional function space, and then 
draws each ray on the screen.  The challenge of this 
approach is handling the anti-aliasing and overlapping 
of the rays on the screen. 

• Map screen to function:  This approach reverses the 
process.  For each pixel, it computes the multi-
dimensional space represented by that pixel, and colors 
the pixel accordingly.  The challenge of this approach 
is calculating the space represented by each pixel. 

 
The Screen-to-Function Algorithm 

 
For each pixel p(x,y): 
1. Map pixel p to region r in function space: 

a. Map pixel p to point pt in function space: 
i. Determine pie slice s containing pixel p using 

angles w.r.t. focal point 
ii. Determine concentric polygon face containing 

p using radius w.r.t. focal point 
iii. Determine concentric cube face represented 

by polygon face using radius and slice s 
iv. Calculate point pt of pixel p on cube face 

using scan-line path: 
• Calculate fraction of distance of p along  

polygon face, using angles 
• Map to distance along path on cube face 
• Follow distance on cube face to locate pt 

b. Approximate region r around point pt: 
i. Map pixel width to fraction of path length 

using approximate number of pixels on 
polygon face 

ii. Include that fraction of path around pt in r 
iii. Map pixel width to radial depth of cube face 

using approximate number of pixels on pie 
radius and dimension range. 

iv. Include that depth in r 
2. Compute aggregate function value v for region r: 

a. If sampled array data:  average the samples 
contained in region or interpolate samples around 
region r 

b. If math formula:  sample and average the center 
and corners of region r 

3. Map value v to color c using color scale 
4. Plot color c in pixel p 
5. Repeat for mirror pixel p2 on opposite side of focal 

point, reusing pt and r calculations from step (1) 
where possible 

Figure 11:  The algorithm for generating PolarEyez 
visualizations using the screen-to-function variation. 

We currently prefer the latter approach because it handles 
each pixel only once.  The algorithm is presented in Figure 
11.  When the function is specified using the mathematical 
formula method, aggregation is difficult and requires 
mathematical integration.  The algorithm approximates this 
with some sub-sampling.  However, in many dimensions, 
significant portions of the space are missed which causes 
the visualization to appear noisy or choppy.  A better 
algorithm is needed for aggregating functional spaces. 
 

5.1 Implementation 
The visualization is implemented in Java. Users can 
provide data in either form, mathematical formula or 
sampled data array, and specify range bounds for each 
dimension. Inputting approximate minimum and maximum 
function values enables color mapping without requiring a 
second pass in the algorithm to calculate these values, and 
enables some customization of color map bounds. 
On a <1 GHz Pentium PC, the visualization takes a few 
seconds to generate.  A mirroring technique is used to 
reduce redundant calculations and speed up the 
visualization. Specifically, computations for a pixel such as 
angle and radius are reused for the symmetric pixel in the 
diametrically opposite pie slice. 
 

6 DISCUSSION 
A major advantage of this visualization approach is that it 
presents an integrated overview of the entire functional 
space on all dimensions simultaneously.  The overview 
helps users identify regions of high or low function values, 
frequency of particular values, clusters, etc.  This relieves 
users from mentally integrating separate 2D slices in short-
term memory as required by previous approaches.  The 
polar nature of the overview enables users to view patterns 
in function value proceeding away from the focal point in 
all directions, and estimate distances to interesting 
phenomena.  Representing the overview from the 
perspective of a point in the space is somewhat egocentric 
and natural for users to grasp, as confirmed by informal 
feedback from test users.  Interestingly, the flat edges of the 
polygon pie slices are helpful for orienting users, and 
provide a natural analogy to the squares and cubes of heat 
maps.  We had previously explored a completely circular 
layout, but caused confusion for users. 
Another advantage is scalability.  This approach scales up 
smoothly.  Each additional dimension simply adds two 
more slices to the pie, gradually narrowing all slices.  It 
scales to approximately 10 to 20 dimensions (20 to 40 pie 
slices).  Beyond that, very narrow pie slices can still 
provide some useful information.   For 2D functions, this 
approach reduces cleanly to a simple heat map.  
Furthermore, the number of dimensions d scales 
independently of the bounding range r of the dimensions.  
This is because dimensions and range are mapped to 
separable dimensions in the visualization.  Dimensions are 
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represented circumferentially, and dimension range is 
represented radially.  The range for each dimension 
receives a screen-width (e.g. 1000 pixels) of space 
regardless of number of dimensions. 
 

7 FUTURE WORK 
While the focus+context approach provides a detail view 
within the overview, a more detailed view is needed.  We 
have explored a radical variation of the visualization in 
which the focal point is stretched out into a horizontal line, 
and the rays are organized along the line pointing vertically 
(Figure 12).  This significantly expanded the detail of the 
focus region, at the expense of the extremities.  However, 
users were too confused by this mapping, and could not 
overcome the belief that it was depicting 2D slices.  A 
more natural approach might be to radially expand the 
focus in a fisheye-like manner [Kea98].  Hence, the radius 
could have a non-linear mapping from function to 
visualization.  Alternatively, 2D slices are excellent detail 
views for examining specific correlations.  It would be 
interesting to explore the use of PolarEyez as an overview 
for controlling separate 2D slices in an overview+detail 
fashion [CMS99]. 
Additional work is needed to explore improved aggregation 
algorithms, alternate ray arrangement heuristics, more 
efficient algorithms for real-time navigation, and support 
for multi-valued functions.  Finally, while informal user 
feedback has been positive and has guided the design, 
formal user studies are needed to rigorously evaluate this 
approach. 
 

8 CONCLUSIONS 
This paper contributes a novel layout and navigation 
strategy for visualizing multidimensional functions.  A 
polar focal point with rays emanating in all directions 
compresses the multidimensional space into a circular 
layout.  This approach has several key characteristics: 
• Provides an integrated overview of the entire bounded 

function space, from the natural perspective of a point 
within the space. 

• Treats all dimensions uniformly, without employing 
conventional slicing schemes, enabling visualization of 
variation in all dimensions simultaneously. 

• Provides focus+context, with smooth seamless 
transition from detail to overview. 

• Smoothly scales up to 10-20 dimensions, with 
approximately 1000 pixel range on each dimension. 
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Figure 12:  Stretching the focal point into a horizontal 
line, with rays extending vertically, to exaggerate the 

focus+context effect. 
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