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Abstract

In this paper, we present a novel approach to visualize 

time-varying matrices. This approach is based on 

combining multidimensional scaling and the 

reorderable matrix method.  An adapted version of 

multidimensional scaling which allows the 

construction of similarity plots for columns/rows of 

time-varying matrices is proposed. In addition, we 

have extended the reorderable matrix method to allow 

the visual exploration of time-varying matrix data in a 

tabular form for being able to verify the results of 

MDS and possibly discover new patterns in data. The 

benefits of our approach are illustrated by showing 

visualizations of sensitivity matrices generated during 

simulations of metabolic network models. 

Keywords: Visualization, Multidimensional 

Scaling, Reorderable Matrices, Time-Varying 

Matrices. 

1. Introduction 

Time-varying matrices are often encountered as a 

result of simulations or experiments, e.g. to study the 

sensitivity of parameters with respect to the outputs 

over time [22]. The possibly large dimensions of these 

matrices and the fact that they vary over time make 

their understanding difficult. However, one way to 

improve this situation is their visual exploration using 

appropriate visualization techniques.

In this paper, we present a novel hybrid approach 

consisting of multidimensional scaling and the 

reorderable matrix method to visualize time-varying 

matrices. Multidimensional scaling (MDS) [9, 14, 19] 

is a well-known non-linear dimension reduction 

technique. It is concerned with the construction of 

configurations of m points in Euclidean space using 

information about the distances between them. In the 

context of this paper, we consider N-dimensional 

vectors where N>3 and the results of MDS are 2D or 

3D scatter plots representing the similarity between 

these vectors. Reorderable matrices [16, 17] allow the 

visualization of multidimensional data by mapping the 

values to colors, grayscale values or symbols. By 

reordering the rows and columns of matrices, different 

patterns in the data can be made visible. Since both 

methods were originally designed to work for a single 

point of time only, we have adequately extended them 

to enable time-varying matrix visualizations. 

To demonstrate the benefits of our approach, it is 

applied to analyze time-varying sensitivity matrices 

generated during the simulation of metabolic networks 

[2, 22]. It works, however, for any kind of dynamic 

sensitivity matrices generated during other types of 

simulation or other time-varying matrices. The 

sensitivity matrices of our application example 

represent how the changes in the parameters of a 

metabolic network model affect the output of the 

model. These matrices are analyzed in order to find 

redundancies, which are then used to derive a simpler 

model with the same properties. Our approach allows 

to visually find similarities between rows/columns by 

using MDS, whereas the reorderable matrix method 

allows the visual extraction of patterns via interaction 

or with automatic reordering. The two visualization 

methods are synchronized with each other to allow the 

combined interaction with the user.

The paper is organized as follows. Section 2 gives a 

survey of related work in the field. Section 3 describes 

the individual steps of our hybrid approach to visualize 

time-varying matrices. Section 4 presents a case study 

for a set of sensitivity matrices, generated during the 
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simulation of a particular metabolic network model 

and shows how the visualization could be used to 

simplify the model of a metabolic network. Section 5 

concludes the paper and outlines areas for future 

research.

2. Related Work 

The related work relevant to the subject of this paper 

can be grouped into two categories: 

Visualization of time-varying data 

Visualization of static multi-dimensional data. 

The visualization of time-varying data is commonly 

achieved using various approaches for visualizing time 

series, but these usually deal with univariate or 

vectorial data only. A survey of visualization 

techniques for time-dependent data is given in [26]. 

To the best of our knowledge, there are no 

approaches dealing particularly with the visualization 

of time-varying matrices. Several visualization 

methods for static multi-dimensional data have been 

proposed in the literature. Dimension reduction is one 

alternative to visualize multivariate data in 2D or 3D. 

There are two types of dimensionality reduction 

techniques: linear and nonlinear. Principal component 

analysis (PCA) is a linear projection method where the 

projection is formed as a linear combination of the 

input. Multi-dimensional scaling (MDS) and 

Sammon´s mapping are two related nonlinear 

projection methods, with the former method preserving 

large distances and the latter preserving small 

distances. A survey of these techniques can be found 

in [15]. In addition to dimension reduction techniques, 

there are several other approaches for visualizing 

multivariate data. For instance, the reorderable matrix 

method proposed by Bertin [16, 17] is a simple but 

robust approach to visualize tabular data. Specific 

permutations of rows and columns allow the user to 

find clusters in data. Minnotte and Webster [24] use 

reorderable matrices under another name, data image,

to explore high dimensional data. Marchette and Solka 

[4] use the data images for outlier detection in data. 

Corrgrams proposed by Friendly [23] is an approach 

similar to the reorderable matrix method to visually 

explore correlation matrices, which are important in 

multivariate statistics. 

Chernoff faces [11] represent multi-dimensional 

data by means of faces with changing attributes. Thus, 

the problem of finding similar vectors is converted into 

the problem of finding similar faces, which is 

somehow easier for the human eye. Parallel 

coordinates introduced by Inselberg and Dimsdale [1] 

allow visualizing multi-dimensional data in parallel 

axes. Stardinates proposed by Lanzerberger et al. [21] 

provide a similar approach where the axes are not 

parallel anymore, but arranged radially in a circle. Star 

coordinates is a similar approach proposed by 

Kandogan [8] for visualizing clusters and outliers. 

Siirtola in [12] combines parallel coordinates [1] with 

reorderable matrices [13, 16, 17] to visualize multi-

dimensional data. Andrews curves [5] is a visualization 

method similar to parallel coordinates based on a 

transformation similar to a Fourier transformation. 

3. Our Approach 

As Roberts in [18] argues, single representation of 

data can often lead to misinterpretation of information. 

Furthermore, multiple visualization which complement 

each other help the user to see the data in different 

perspectives [3]. Thus, the basic idea of our approach 

to visually explore time-varying matrix data is to 

combine two visualization methods: multidimensional 

scaling and reorderable matrices. At first sight, these 

two methods do not look to be combinable at all. 

However, MDS allows viewing the similarity of 

columns/rows of input matrices and also serves as the 

master view of the visualization, but loses the 

connection to the original data. Reorderable matrices 

mixed with color visualization allow to visually verify 

the results of MDS, allowing at the same time a 

detailed view of the data. In the following, the relevant 

issues of our approach are presented. 

3.1. Input Data 

We assume that our input data are time-varying 

matrices stored in a CSV (Character Separated Value) 

file. The data is assumed to be appropriately 

normalized depending on the problem domain. This is 

the only preprocessing step, which is application 

specific. Assuming that this step has been completed, 

the procedure described below can be used for any 

kind of time-varying matrices. Currently, we use our 

approach to visualize matrices containing double-

precision floating-point numbers, but it can be adapted 

to nominal data presuming that proper distance 

functions are used [10]. 

3.2. Multidimensional Scaling 

Multi-dimensional scaling (MDS) is concerned with 

the construction of a configuration of n points in 

Euclidean space using information about the distances 

between these points. MDS is often used to project 

data nonlinearly from a high dimensional space to a 
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low dimensional one, usually a 2D or 3D space. The 

purpose of MDS is that the distances between points in 

the lower-dimensional space approximate the distances 

between points in the higher-dimensional space best. 

MDS allows the use of similarity/dissimilarity 

measures instead of strict distances and thus enables to 

flexibly view the relationships between data items.

We have implemented a modified version of the 

classical algorithm for metric multi-dimensional 

scaling [9, 14, 19]. This algorithm has the advantage of 

being robust and fast, which ensures good response 

times with time-varying data. The performance of the 

algorithm is strongly dependent on the procedure for 

finding the eigenvalues of the distance matrices 

(calculated in step 3). For the visualized sensitivity 

matrices, the time for calculating the MDS solution for 

one point in time ranges from tens of milliseconds to 

hundreds of milliseconds on a contemporary PC.

The implemented MDS algorithm consists of the 

following steps:

1. Let X(t) for t=1 to Tmax represent the normalized 

time-varying matrices as described in section 3.1 

2. Let the vectors X
1
(t)… X

n
(t) represent the columns 

of the matrix X(t) at time t. 

3. Compute the matrix D(t) for t=1 to Tmax, where 

the elements d
ij
 of this matrix are calculated as 

follows:

3.1. Alternative 1: )()( tXtXd
jiij

 

3.2. Alternative 2: 

jjijiiij
cccd 2 where c

ij
 is the 

cumulative correlation coefficient between 

two vectors (explained below) 

4. Construct the matrix A(t) where 

))(
2

1
()(

2

tdta
ijij

 

5. Construct the matrix B where 

aaaab
jiijij

 where 
i

a is the mean 

of row i, 
j

a is the mean of column j and a is the 

overall mean 

6. Compute the k largest eigenvalues λ
1
(t), λ

2
(t),…, 

λ
k
(t) where k is the dimension (in our case, k=2 or 

k=3).  

7. Get the corresponding k eigenvectors v
1
(t), …, 

v
k
(t) and normalize them by )()()( ttvtv

iii

 

and take the normalized eigenvectors as a solution 

of MDS for time t 

Step 3 is the most important step. Two views of the 

data can be selected: normal view and cumulative 

view, and they define how the distance matrix is 

calculated. Alternative 1 (step 3.1) is normally used to 

visualize the matrices for the first time. However, there 

are cases when consecutive configurations differ 

significantly from each other. In these cases, to reduce 

this effect, the cumulative correlation should be used 

as a similarity measure between column vectors of the 

cumulative information matrix (step 3.2).

The cumulative information matrix of a set of time-

varying matrices X(t) is calculated as 

))()(()(

max

min

kXkXtI

T

Tk
∑ . I(t) is converted 

by normalization to a correlation matrix which is then 

used as a similarity measure that cumulatively 

considers time-varying matrices. The time window 

from Tmin to Tmax allows more flexibility for the 

users so that they can take into consideration a variable 

number of consecutive matrices, e.g. from the 

beginning to time point t, or only time point t, etc. To 

illustrate the step by an example, suppose we have two  

matrices in two consecutive points of time 1 and 2, 

X(1) and X(2): 


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      Then: 
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I(1) contains information about time 1 whereas I(2) 

contains information about time 1 and time 2. It is 

important that we cumulate the sums of X’(t)*X(t), 

otherwise if we directly add the matrices X(1) and 

X(2), the second column would be zero.

3.3. The Reorderable Matrix Method 

The information that is hidden in the input data, such 

as similarities or correlation, is difficult if not 

impossible to extract only by looking at numbers.

��������	�
����
�
���������������������
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Considering that the human user is more sensitive to 

visual stimuli, the substitution of numbers by symbols 

or colors is a good way to eliminate this problem. 

Thus, the basic idea of our approach is to transform a 

matrix of numerical data into a matrix of colors. In 

order for this color matrix visualization to be 

successful, the columns and rows of this matrix must 

be reorganized via manual permutations or by 

algorithms for automatic generation of the optimal 

permutation matrices [8, 16, 17].

We have implemented a color visualization version of 

the reorderable matrix method. The algorithm for 

transforming a matrix X(t) of numbers into a matrix 

C(t) of colors is based on using so-called color maps

which determine the spectrum of colors used in the 

visualization. This color spectrum is defined by three 

colors: two border colors and the transition color, as 

shown in Figure 1. Spectra with more colors are not 

used though in specific problem domains this could be 

useful. The input data is firstly exposed to a row based 

normalization process where the maximum norm 

( L norm for a vector x

r

 is defined as 

i

i

xx max

r

) is used to normalize the data within 

all points in time. After normalization, the values of 

the data matrix lie in the segment [-1, 1]. This segment 

is divided in as many small segments as nuances of 

colors are used (we use 511 colors; 256 for red, 256 

for blue, but white is common to both), and the 

transformation to colors is done according to Formula 

(1).

)1()255(ValueColorMapColor

��������	���
����������������
������ ����
��

���������

For example, in Figure 2 a sensitivity matrix 

generated for a fictitious metabolic network model at a 

certain point in time before normalization with 

the L norm is presented. The parameters of the model 

are shown in the columns whereas the metabolites are 

presented in the rows. The values in the matrix show 

how the change of a certain parameter affects the 

values of the metabolites. For instance, an increase of 

one unit in parameter v10_k1 would bring a decrease 

of 8.002 units in the metabolite AT, and an increase of 

21.219 units in the metabolite S1. The result of the 

color visualization for this matrix can be viewed in 

Figure 3. Each element of the data matrix is 

transformed into a rectangle with an appropriate color; 

in the right of the visualization we see a small graph 

representing the maximum norm, which is calculated 

for all points of time and is used to normalize the 

input. However, the color visualization alone does not 

allow the easy detection of structures in data. Two 

methods are provided to give the user this possibility: 

Interaction with the color visualization 

Automatic calculation of the optimal permutation 

The interaction method is described in the next 

subsection. Concerning the automatic calculation of 

permutation matrices, Mäkinen and Siirtola [7] present 

two heuristics for automatically reordering matrices. 

The first one is a weight-based sorting algorithm. 

Figure 4 shows the reordering of Figure 3 after 

applying the weight-based algorithm proposed in [7]. 

We can see in Figure 4 that similar columns are placed 

near to each other. 

�������!	���
����������������
�����������

��������
�����"��
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The second heuristic is based on the Sugiyama 

algorithm for drawing graphs [20]. Due to space 

reasons, these two algorithms are not discussed further. 

However, bearing in mind that we have time-varying 

matrices, these two heuristics generate one solution 

(i.e. one permutation) for each point in time. 

Considering that these permutations can vary with 

time, the optimal permutation over time should be 

found; otherwise, the user would be distracted by 

swapped columns possibly at each point of time. 

Thus, a new discrete optimization problem is raised: 

we have to find the optimal permutation among all 

permutations over time. In our approach, this problem 

is solved heuristically, considering the fact that the 

search space is large. According to Bertin [16,17], the 

reorderable matrix method can be used for exploring 

matrices where one dimension can go up to 500. Thus, 

the number of possible permutations would be 500!.

Our proposed heuristic for finding the optimal 

permutation over time works as follows: 

1. Let P(t) for t=1,..,n be the permutations of m 

columns of a matrix at all time points n. 

a. Let 
21

,PP

d be a similarity function between two 

permutations, defined as the number of common 

values at the same positions of the two 

permutations. Thus, the permutations 

{1,2,3,4,5,6} and {2,1,3,4,5,6} have a similarity 

degree of 4 (similar to Hamming distance in 

string matching problems). 

b. The goal is to find the permutation P
ˆ

, for 

which ∑
nt

tPP

d

..1

)(,
ˆ

 is minimized.

2. Compute the “average” of all permutations as the 

sum of the individual corresponding elements of all 

permutations each divided by n, which is considered 

as the “barycenter” of these permutations

3. Choose as P
ˆ

the permutation from P(t) for t=1,..,n 

which has the largest similarity value with the 

“barycenter”.

In this algorithm, the distance function and the 

solution P
ˆ

 are computed heuristically, based on the 

observation that in our applications the permutations 

do not vary radically over the time. These choices were 

mainly made to achieve a fast execution of the 

algorithm. If other criteria are desirable in further 

applications, both the distance function and the 

“optimal” permutation could be chosen in a different 

way.

3.4. Interaction 

To help the user during the exploration process, both 

visualization methods, MDS and the reorderable 

matrix method, are interactive. Our MDS visualization 

allows zooming in and out, translation, selection and 

export into a text format. Our implementation of the 

reorderable matrix method allows the user to swap 

columns of matrices in the case when he or she is not 

pleased with the found permutation. To control the 

time, the possibility to view the results of the 

visualization in an animation-like form is provided. 

The MDS view is the master view, and the interaction 

with the reorderable matrix is the subordinate view.

Both views are synchronized with each other such 

that actions in one view also affect the other view, as 

shown in Figures 5 and 6 where two selected points 

(labeled) in MDS in Figure 6 are also highlighted in 

the reorderable matrix view in Figure 5 (with frames in 

the middle). 

4. Case Study: Visualization of Sensitivity 

Matrices Generated During Simulation of 

Metabolic Network Models 

The described approach was developed as a tool to 

support our project partners of the biotechnology 

group at the Research Center Jülich, Germany, during 

their metabolic modeling work.

The generic model of a metabolic network is 

described by equation (2) [2, 22]. Here, X

r

 represents 

the vector of metabolite concentrations, S

r

 represents 

the concentration of input substances, the matrix N 

represents the structure of the metabolic network 

(similar to the adjacency matrix of a graph) and 

r

represents the vector of parameters of the model. The 

vector v

r

 represents the kinetic functions, which show 

how the reactions evolve over the time.

2)0(),,,(
0

XXXSvNX

rrrrrr&r

Considering that a typical model could have tens or 

hundreds of parameters, a reasonable step would be to 

search for a new model with fewer parameters but the 

same properties as the original one. For this purpose, a 

procedure called sensitivity analysis [2, 22] is carried 

out in order to analyze the influence the changes in 

parameters have on the model. Sensitivity analysis is 

one of the important tools to help the modelers in their 

work, as the modeling process is an iterative process
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where quite often the next generation model is a 

simplification of the old one. Sensitivity analysis in the 

context of this paper is concerned with computing the 

expression in formula (3). The results of this 

computation are time-dependent sensitivity matrices.

)3()(t

X

r

r

The visualization helps the modeler to understand 

the results of sensitivity analysis, since a manual 

exploration is impossible. Its main purpose is to 

determine which parameters are important for the 

model, i.e. which parameters are different from the 

others (“outliers”) and which parameters are correlated 

with each other and could possibly be omitted in a new 

model.

Figure 5 shows the reorderable matrix at a 

randomly selected point of time for the sensitivity 

matrices of a certain E.coli model, whereas Figure 6 

shows the corresponding MDS visualization. From the 

MDS visualization, we can directly see which 

parameters are possible outliers (two possible outliers 

which are similar to each other are the parameters 

C5_PPP ->BM Pn and G6P + NADP -> 6PG 

+NADPH PV, as highlighted in both views). From the 

color visualization (Figure 5), we can verify the result 

of MDS and see whether the selected parameters are 

sensitive or not with respect to the corresponding 

metabolites. This procedure helps the modeler to 

simplify the model of the metabolic network. In this 

case, the two highlighted parameters could be possibly 

mixed into a single one in a new model.

5. Conclusions

In this paper, we have presented a new approach to 

visualize time-varying matrices. The proposed 

approach is based on combining multi-dimensional 

scaling and the reorderable matrix method. Since both 

methods were originally designed to work for a single 

point of time only, they had to be adequately extended. 

The benefits of our proposal were shown for a 

biocomputing application concerned with the 

visualization of sensitivity matrices generated during 

the simulation of metabolic network models.

��������	�� ��!������"���
��
���������
���

�
������
#��������������

There are several areas for future work. For 

example, it would be interesting to investigate 

alternatives for the current heuristics used for dealing 

with time-varying reorderable matrices. Furthermore, 

interactive parallel coordinates in 3D or further hybrid 

approaches for visualizing time-varying matrices 

would be interesting to explore. Finally, the current 

MDS algorithm finds solutions for every time point. 

The next step would be to search for a globally 

optimized solution within all points of time, possibly in 

parallel, such that MDS is consistent globally. 
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