
Steerable, Progressive Multidimensional Scaling

Matt Williams
∗

Tamara Munzner
†

University of British Columbia

ABSTRACT

Current implementations of Multidimensional Scaling (MDS), an
approach that attempts to best represent data point similarity in a
low-dimensional representation, are not suited for many of today’s
large-scale datasets. We propose an extension to the spring model
approach that allows the user to interactively explore datasets that
are far beyond the scale of previous implementations of MDS.

We present MDSteer, a steerable MDS computation engine and
visualization tool that progressively computes an MDS layout and
handles datasets of over one million points. Our technique em-
ploys hierarchical data structures and progressive layouts to allow
the user to steer the computation of the algorithm to the interesting
areas of the dataset. The algorithm iteratively alternates between
a layout stage in which a sub-selection of points are added to the
set of active points affected by the MDS iteration, and a binning
stage which increases the depth of the bin hierarchy and organizes
the currently unplaced points into separate spatial regions. This bin-
ning strategy allows the user to select onscreen regions of the layout
to focus the MDS computation into the areas of the dataset that are
assigned to the selected bins. We show both real and common syn-
thetic benchmark datasets with dimensionalities ranging from 3 to
300 and cardinalities of over one million points.

CR Categories: I.5.3 [Pattern recognition]: Clustering—
Algorithms E.1 [Data Structures]: Graphs and networks I.3.6
[Computer Graphics]: Methodology and Techniques—Interaction
techniques

Keywords: dimensionality reduction, multidimensional scaling

1 INTRODUCTION

Dimensionality reduction techniques allow a dataset of high-
dimensional points to be explored by projection into low-
dimensional spaces such as the 2D plane or 3D space. Multidi-
mensional scaling, or MDS, has been one of the most popular ap-
proaches to reducing dimensionality since its introduction by Torg-
erson into the psychological literature fifty years ago [18] as a way
to represent perceived similarities between a pair of stimuli. MDS
is a technique where the ratio of differences between inter-point dis-
tances in the original high-dimensional space and in the projected
low-dimensional space are minimized.

Dimensionality reduction techniques have been published in
many fields: psychology [9, 18], cartography [7], machine learn-
ing [16, 17], and information visualization [1, 4, 11, 12, 13]. Er-
ror minimization requires many computationally expensive high-
dimensional distance or matrix computations, and the challenge is
reducing the cost and number of these calculations. Torgerson’s
early approach had a cost of O(n3), where n is the number of points
in the dataset [18]. Methods with an O(n2) cost that can handle

∗e-mail: mwill@cs.ubc.ca
†e-mail: tmm@cs.ubc.ca

thousands of points have become common [1, 4, 9, 10]. Recently,
a subquadratic algorithm was proposed by Morrison that could lay
out thousands of points in minutes [11, 12, 13].

Despite the extensive previous work, there is a gap in the litera-
ture: no currently available algorithm or system allows interactive
exploration of high-dimensional datasets with both a large number
of dimensions and a large number of points. Although Morrison
does handle hundreds of thousands of points in minutes [11, 12],
that is only true when the number of dimensions is low. On our
real-world dataset of 120,000 nodes and 294 dimensions, the HIVE
system [15] took over 2 hours to compute the layout.

We present MDSteer, a steerable system that allows the user to
progressively guide the MDS layout process so that exploration of
huge datasets can begin immediately after startup. The user can
interactively select local regions of interest, and then most of the
available computational resources are spent on refining this selected
area of interest. Users can immediately begin exploring datasets of
over 1 million nodes. The overall dataset structure is apparent in a
few seconds, providing an overview that helps users find potentially
interesting areas in the projection. After interactive drill-down to a
small local area, computational resources are steered to that loca-
tion to quickly fill in that area. Again, even for datasets of over
one million points, these small local areas can be fully populated
within minutes. Our system handles datasets with dimensionality
of several hundred and cardinality of over one million.

The ability to immediately explore and steer computational re-
sources to regions of interest allows investigation of datasets an or-
der of magnitude larger than previous work.

2 PREVIOUS WORK

The term MDS has been used to refer to any general approach that
attempts to reproduce similarity data in lower dimensions. The ac-
tual computational techniques vary from eigensolver approaches to
iteratively refining spring models of the type used in force-directed
graph layout [6, 8]. The basic spring model MDS approach [4]
iteratively calculates a low-dimensional displacement vector for
each point to minimize the difference between the low-dimensional
and high-dimensional distance. Since every iteration requires each
point to be compared with all other points in the dataset, the itera-
tion complexity is O(n2). We chose to add steerability and progres-
sive layout to the spring-model algorithm, using a publicly available
software platform that handles high-cardinality datasets [15].

Our steerable technique builds on an algorithm proposed by
Chalmers [4] that has a linear cost for each iteration. Instead of
allowing forces on a point from every other point in the dataset, the
position of a point was determined by interacting with a two small
sets of points that each contained a constant number of items. Each
point p maintained a list of V neighborhood points that persisted
across spring-model iterations, and S randomly sampled points that
were resampled at each iteration. At the beginning, the neighbor-
hood was populated randomly from all points in the dataset. The
neighborhood quality improved over iterations because a new ran-
dom sample would force out the most distant neighborhood point,
if it was closer. Although the per-iteration cost was linear in n, the
total number of iterations required for this approach depended on
the dataset size, so overall cost of this approach was O(n2). The



paper reports good results with V = 10 and S = 5, and the imple-
mentation of this algorithm distributed in the HIVE system [15]
uses V = 6 and S = 3. We use the latter.

In 2002, Morrison improved on this result with an efficient 3-step
approach: a initial base layout, interpolation, and final refinement
layout [12]. The Chalmers [4] algorithm was used to lay out an
initial

√
n sample of points. That initial layout was followed by an

interpolation stage that used the location of the sample points to find
a good initial position for all remaining unplaced points. The final
stage ran several MDS iterations on the entire dataset, refining the
approximate initial placements into better final positions. We take
this idea of breaking the work into discrete stages much further:
we carry out up to n/(

√
n/k) layout steps, where k is a tuneable

parameter, adding a small number of new points at each step.
In Morrison’s 2002 work the interpolation stage was the most

expensive, with a O(n ∗
√

(n)) cost, since it compared each of the
n−

√

(n) unplaced points with the
√

(n) placed points in order to
find the initial layout location for those unplaced points. In 2003
Morrison [11, 13] improved the performance of computing starting
spots for unplaced points by applying an efficient nearest-neighbor
search technique at the interpolation stage. The hierarchical bin-
ning approach we developed to provide steerability also allows us
to find a good starting location for unplaced points efficiently, so
we present an alternate approach.

The work of Basalaj on incremental MDS [2, 3] is perhaps the
most similar to our own. While they ignore local detail to focus on
overall shape, we take the opposite approach, instead encouraging
people to build up local detail in areas of interest. Basalaj has one
of the very few systems that handles large datasets of over 100,000
nodes.

MDS is used in visualization systems both in the straightforward
way of showing points in the plane [1] and in more indirect ways.
For example, using MDS for a projection onto the plane, and then
assigning an additional value for a third coordinate, results in a ter-
rain view of the dataset [5, 19].

3 STEERABLE, PROGRESSIVE MDS

The two techniques we use to introduce steerability into MDS are
progressive layout of points and hierarchical binning. Steering al-
lows computational power to be focused where it is needed to sup-
port exploration in parallel with continuing the layout process.

3.1 Algorithm

The MDSteer algorithm alternates layout with binning computa-
tion. At each layout step, we add

√
n/k new points to the com-

putation, find an initial position for each of these new points, and
run MDS iterations on on the active set of points until the layout
stops improving. Every k layout steps, we rebin all of the points.
Algorithm 1 presents the details in pseudocode.

3.2 Bins

We subdivide the low-dimensional plane into a hierarchical de-
composition of rectangular screen-space regions that we call bins.
Bins are drawn onscreen as wireframe boxes, which are highlighted
when selected by the user. Selecting one or many of these re-
gions causes the available computational resources to be focused
on “filling in” those bins; that is, laying out the higher-dimensional
points that are likely to be projected to that region of the lower-
dimensional plane. The hierarchy of bins guides the MDS layout at
several levels. First, we restrict the amount of work we do at each
MDS iteration by allowing only the selected bins to have active
points that move around. Second, the set of new points to activate
is chosen only from selected bins. Third, bin membership is used

Algorithm 1 MDSteer algorithm
sampleSize =

√
n/k;

while allSelectedBins.hasUnplacedPoints do
for all b ∈ selectedBins do

for [1, sampleSize / allSelectedBins.size] do
p = b.getRandomPoint();
activePointSet.add(p);
p.startLocation=b.nearestPlacedPoint.location;

end for
end for
while stressIsShrinking() do

for [1 ,
√

sampleSize] do
for all p ∈ activePointSet do

for all q ∈ p.comparisonSet do
doMDSAdjustment(p,q);

end for
end for
stressCalculate(activePointSet, placedPointSet);

end for
end while
growBinHierarchyOneLevelDeeper();
rebinAllPoints();

end while

to efficiently find starting positions for those new points that have
just become active.

We start the computation with only a single bin which contains
all the points. That initial bin is both the root of the bin hierar-
chy and the singleton leaf. At every rebinning pass, we increase
the maximum depth of the bin hierarchy by one, subdividing each
current leaf bin into two new child bins, so that the former leaf is
now an interior node and the new children are now the leaves. The
leaf subdivision is subject to a validity constraint that we explain
below. After subdivision, the new bins subtend a smaller region of
the plane.

Steering With Bins Bins serve as a mechanism for the user
to select a subset of the data as the target of the available compu-
tational resources. Every point in the dataset is assigned to some
bin. We categorize points into one of three states: unplaced, active,
and placed. Unplaced points are not drawn, nor do they affect any
MDS iteration, and all points are unplaced at the beginning of the
computation. At each layout step we convert a set of s new points
from unplaced to active, where s =

√
n/k, n is the total number of

points in the dataset and k is a tuneable parameter. We draw our
samples evenly from all active bins.

When we activate unplaced points, we need to find their initial
locations in the plane before placements can be iteratively refined.
We use the positions of the placed points as initial locations in the
plane for the new points. Using these existing placements allows
the new points to benefit from the previous computation. We can
find the initial placement efficiently by using the binning to narrow
down the possibilities: we check the distance from our target point
to all placed or active points in the bin, and pick the closest high-
dimensional neighbor in the bin.

The heart of the layout computation is the inner loop where mul-
tiple iterations of the spring-force MDS algorithm [4] are run, and
only active points are the targets of this computation. Thus, they
are the only points that visibly move around as their projection onto
the plane changes. We check every

√
sampleSize iterations to see

if the layout is still improving, and terminate the layout step when
progress is no longer being made. The inner loop termination crite-
ria are discussed in more detail in Section 3.3.

When a bin is unselected, all the active points are placed; their
positions are fixed and do not move around during successive MDS
iterations. However, these placed points can affect movement of



other active points during the MDS iterations because they are po-
tential candidates for the random sample set. Both placed and active
points are always visible to the user.

Increasing Bin Hierarchy Depth After k layout steps where
a total of

√
n new points have been laid out, we need to increase the

bin hierarchy depth by one, then rebin all points. We first describe
how to grow the hierarchy.

We do not store points at any interior node of the bin tree, only
the leaves. Projected points may move outside the spatial boundary
of their previous leaf bin during layout. We need to reassign these
points so that they belong to the bins in which they lie before sub-
dividing the current set of leaf bins to create the next layer of the
bin hierarchy. We check the active set of points to see if any are out
of bounds. For each such point that we find, we traverse upwards
in the tree to find the first ancestor node that can spatially contain
it. When we perform a top-down traversal of the tree in order to
subdivide bins, then we also push these out-of-bounds points back
down to the correct bin at the leaves.

We do not always subdivide a leaf bin. For subdivision to occur,
a bin must have some minimum number of active points, and it must
contain at least one unplaced point. We use the minimum threshold
of 10, which we found empirically.

We alternate subdividing bins in the vertical and horizontal direc-
tions at each rebinning pass. To subdivide a bin, we find the placed
or active points with minimum and maximum values in whichever
direction we are currently using, and place the new dividing line
halfway between these to create two new child bins. The mini-
mum and maximum points we just found are each attached to the
child bin in which they now fall, and we call these points the rep-
resentative points and use them for the high-dimensional distance
computations described below for rebinning points. These repre-
sentative points can change from pass to pass, which gives rise to
the irregular subdivision we see in Figure 5. The average number
of items per bin decreases over the course of the progressive layout:
after r rebinning passes, the average binsize is (r ∗

√
n)/2r .

When a selected bin is subdivided, both of its new child bins
are selected. When the program starts, the single existing bin is
selected. If the user never makes a steering choice by explicitly
changing the selection state, then the computational resources are
equally divided between all areas of the screen and our algorithm
would simply do a progressive layout.

Rebinning Points Rebinning points is done immediately after
subdividing a parent bin into two child bins, so for each point cur-
rently assigned to the parent bin the only choice to make is which
of the two child bins to pick. The decision is easy for active and
placed points because they already have projected 2D coordinates
in the plane. We need only to check a single one of coordinates,
whichever direction is the current active one, to find on which side
of the dividing line the point currently lies. Assigning the unplaced
points requires more computation. For each unplaced point, we
compute the high-dimensional distances between it and the repre-
sentative point for each child bin. We assign the point to the bin
that has the closer representative. The cost of each rebinning step
is linear: 2 ∗C ∗ n, where C is the high-dimensional distance com-
putation cost and n is the total number of points in the dataset. This
computation takes only a small fraction of the total time budget for
a pass, but it is a cost that increases with the dimensionality of the
dataset.

3.3 Termination Conditions

The inner loop of our system does the actual multi-dimensional
scaling computations where we attempt to minimize the error, or
stress. We use the popular Kruskal Stress-1 stress function [9]:

Stress =
∑i< j(di j − pi j)

2

∑i< j p2
i j

where di j is the Euclidean distance between two points in high-
dimensional space, and pi j is the distance in the low dimensional
projection.

In MDSteer, the termination condition that deems the points to
be well laid-out is based on stress measurements. We only measure
the stress for the active point set, not all placed points. If the number
of active points is greater than 100, then the measure is computed
from a random sample of 100 of those active points.

If s objects are currently active, we measure the stress every
√

s
iterations of the spring model force calculations. When this value
decreases, progress is being made. When this value fails to shrink
for two consecutive calculations, we terminate the inner iteration
loop.

Our current termination criterion is one of many possibilities.
We could simply run the computation for a globally fixed number
of iterations, or use the active point set size to set the number of
iterations. The benefit of the change would be to eliminate the over-
head of stress computation, but then we risk either undershooting
the amount of work and ending up with more total error, or over-
shooting and adding overhead by doing many iterations that do not
improve the layout. We could also use a value that is calculated as
part of the MDS iterations, such as velocity [12].

4 DISCUSSION

Steerability supports exploration of huge datasets. Often users do
not need to see the placement of every point in order to carry out
tasks of interest. Currently, people do not even attempt to carry out
dimensionality reduction on huge datasets because the time it would
take to lay out one million points is a huge barrier to exploration.
By allowing users to immediately begin looking at the data, and to
direct the computational resources to interactively-discovered areas
that look promising, they may be able to answer their questions
about the data long before all points have been placed. The ability
to quickly see that a dataset is not promising would allow a user
to abandon an unproductive direction, and immediately move on to
check another that has the potential to be more informative. With-
out steerability, those judgements might require a turnaround time
of hours or days rather than minutes. Another possible advantage is
that the user spends the time while waiting for the system to finish
layout engaged in productive exploration rather than waiting impa-
tiently to start work.

The standard argument for computational steering is that human
insight can help with many tasks where automatic algorithms are
inadequate to fully solve the problem [14]. Visualization systems
are deployed in those exact circumstances; where humans do need
to have insight into the structure of a complex dataset.

We emphasize again that the critical contribution of our work
is bringing steerability to MDS. Our algorithm does not complete
a full layout using less time or memory than with previous ap-
proaches. In fact, our algorithm is based on, and takes time compa-
rable to, the original Chalmers approach [4] that is notably slower
than the more recent algorithms offered by Morrison [11, 12].
Rather, the benefit of our approach is that it enables the interactive
investigation of datasets with both high cardinality and high dimen-
sionality. We also do not claim to reduce the amount of memory
required to do the computation.

We also distinguish steerability from visible change. Many MDS
systems allow users to see the projected points move around the
plane as the layout is refined, for instance the TreeComp system of



Amenta and Klingner [1]. Although users may both enjoy and ben-
efit from seeing this real-time motion that shows them the progress
of the algorithm, the only control they have is whether to stop or
continue the system. The ability to control the allocation of com-
putational resources through true steering provides far more power
to users.

5 RESULTS

MDSteer was implemented in Java and is based on the open-source
HIVE spring-model MDS software infrastructure distributed by
Ross and Chalmers [15]. We analyze both the running time and
the layout error, known as stress, for our method. All performance
figures are for a dual processor, 3.0GHz Xeon with hyperthreading,
4.0GB of main memory, and an nVidia Quadro4 980 XGL graphics
card. We used the Windows XP Professional operating system and
Java 1.4.2-b28 (HotSpot) with a 1.5GB heap.

We show two datasets of differing cardinality and dimensional-
ity. We use the standard dimensionality 3 S-shaped synthetic bench-
mark sampled at different densities: our benchmarks are performed
on cardinalities of 2,000; 5,000; 50,000; 200,000 and 1,000,000
points. Figure 5 shows the S at cardinality 200,000. The second
dataset, with dimensionality 294 is a real dataset from our collab-
orators. In fact, the work presented here was motivated by the de-
sire to explore this dataset and the lack of tools with which to do
so. In this dataset, each point represents a modelled scenario of a
possible future, where each dimension is a particular measure of
environmental sustainability. For instance, dimensions include wa-
ter quality, air quality as measured by carbion dioxide emissions,
solid waste generated per capita, and so on. We show the 40,000
point cardinality version of this dataset in Figure 5, and benchmark
comparisons for the 5000; 40,000; and 120,000 point versions.

In all cases, MDSteer provided a reasonable overview of what
would become the final layout within a few seconds of startup, so
that users could make informed decisions about how to steer the
system and focus future computation time. The overview can al-
ways be generated quickly because only a small number of points
need to be laid out. In fact, this overview is exactly what would also
be generated by the Morrison algorithm, because our initial layout
step corresponds to its first stage. For all subsequent layout steps,
our system provides unprecedented power to users.

Timing As we discuss in Section 4, the time to place all points
in the input dataset is not the right metric for judging a steerable
system. The steering controls for MDSteer allow users to select
which planar regions to fill in, so a measure of interest is the time
required for it to fully populate one of those regions. Specifically,
these timings show the result of steadily selecting a single new child
bin soon after every subdivision. We show average times over three
runs. Figure 3 shows the benefits of steerability, where we compare
the time required to place the points that fall into a region with the
time required to place all points in the whole dataset.

In a typical interactive exploration session the usage pattern
would be much more dynamic and fluid, with frequent changes of
selected bins. Users would often change selections before place-
ment was complete in a region, and they might also select a larger
number of bins than the single bin we use in this computation. The
timing numbers here are intended to give an impression of how
steerability opens up new possibilities for exploring huge datasets,
and also to show that the overhead of progressive layout and rebin-
ning is completely acceptable compared to the benefits of progres-
sive exploration.

We compare times for MDSteer to complete a partial layout
against running the whole dataset with the nonsteerable approach
most similar to ours that is publicly distributed, namely Morrison’s
2002 subquadratic algorithm [12] as implemented in the HIVE soft-

ware distribution [15]. Also, we built MDSteer on top of HIVE, so
the infrastructure time and memory costs match.

Unsurprisingly, the need for steerability is most apparent as ei-
ther the dimensionality or the cardinality of the datasets increase.
The most important aspect of these timing numbers is that we can
load and immediately begin exploring these huge datasets that over-
whelm conventional nonsteerable systems. The video accompany-
ing this paper also communicates the look and feel of interactive
exploration with steerable, progressive multidimensional scaling.

Stress Our steerable progressive algorithm calculates the final
position of a point doing significantly fewer high-dimensional dis-
tance calculations than required for previous methods. We need
to verify that we are still capturing the important aspects of the
dataset structure in our projection; that is, verifying that the error
between projected locations and the high-dimensional locations is
sufficiently small. We can do so quantitatively by measuring the
stress of the system, as defined in Section 3.3. Figure 4 compares
the stress of MDSteer to the Morrison approach. Again, each re-
sult is the average value over three software runs. We can run the
same test as for timing, where we instrument the software to report
stress measurements. The comparison is somewhat unfair because
completing a region requires layout of far fewer points than does
completing the entire dataset. We thus also show the per-item stress
graphs, which show that the stress is roughly comparable.

Visual Quality Finally, we compare the layout quality of MD-
Steer against the Morrison subquadratic algorithm, to ensure that
the rough match of stress measurements translates into a rough
match with subjective visual inspection.

Figure 1 shows that both methods are able to reproduce the S
shape in the plane. Figure 2 shows that both methods also produce
similar structures for the real environmental dataset.

MDSteer was able to produce a discernable two-dimensional di-
mensional S immediately with the 50,000 node dataset, and within
a few seconds for the 1 million node S dataset. Figure 5 shows that
the layout maintains the global shape of the projection while filling
in the different regions of the place that were selected by the user.

6 FUTURE WORK

Currently when the system places all points in the selected bins, it
falls idle until the user changes the selection. We would like to add
an “auto-run” mode, so that the system would automatically change
the selection to start work on a nearby area if there is no more work
to do in the current bins. If left unattended, such a system would
eventually place the entire dataset. Furthermore, in the current im-
plementation, if during execution the user realizes that she wants to
layout the whole dataset, the speed of the full layout will be compa-
rable to the original Chalmers approach [4]. We would like our sys-
tem to switch to a more efficient approach [11] if the user chooses
to layout the full dataset.

We would like to implement Morrison’s 2003 nearest neighbour
finding technique [11] to improve the efficiency of our starting lo-
cation algorithm. It would be interesting to explore further whether
we could provide faster or more accurate layout by changing the se-
lection criteria for the neighborhood and random sample sets used
in the inner loop of MDS iteration, exploiting the known structure
of our hierarchical bins instead of using purely random selection.

We are also intrigued by the challenge of creating a fully progres-
sive algorithm. In the present implementation, rebinning is a global
pass, which is acceptable because its cost is still overshadowed by
the MDS iteration cost. However, this sort of global computation
will eventually form a limit to scaling datasets of large cardinality
or dimensionality, so progressive binning would be a good match
with the current progressive layout. We would then have an ap-



proach limited only by system memory constraints, and that might
scale far past our current million-node limit.

7 CONCLUSION

We present a system for steerable and progressive multidimensional
scaling that allows users to interactively explore huge datasets.
Steering allows computational power to be focused where it is
needed to support exploration in parallel with continuing the layout
process. We subdivide the low-dimensional plane where our high-
dimensional points are projected into a hierarchical decomposition
of rectangular screen-space regions. The user can interactively se-
lect regions of interest, and then most of the available computational
resources are spent on refining this region. These small local areas
can quickly be fully populated with the dataset points that project to
the selected region of the plane. Our system handles datasets with
dimensionalities of up to several hundred, and cardinalities of over
one million.

8 ACKNOWLEDGEMENTS

We thank our collaborators at the University of British Columbia’s
Sustainable Development Research Initiative, Georgia Basin Fu-
tures Project, and Envision Sustainability Tools for the use of the
environmental dataset. We also thank Luc Girardin of Macrofo-
cus for the multiple-cardinality S dataset. We appreciate many
productive discussions on dimensionality reduction with Kather-
ine St. John, the technical writing contributions of Ciarán Llach-
lan Leavitt, and the video production help from James Slack and
Kristian Hildebrand. This work was funded by the GEOIDE NCE.

REFERENCES

[1] N. Amenta and J. Klingner. Visualizing sets of evolutionary trees. In
Proc. IEEE Symposium on Information Visualization, pages 71–74,
2002.

[2] W. Basalaj. Incremental multidimensional scaling method for
database visualization. In Proc. Visual Data Exploration and Anal-
ysis VI, SPIE, volume 3643, pages 149–158, 1999.

[3] W. Basalaj. Proximity visualization of abstract data. Technical Report
509, University of Cambridge Computer Laboratory, January 2001.

[4] M. Chalmers. A linear iteration time layout algorithm for visualising
high dimensional data. In Proc. IEEE Visualization, pages 127–132,
1996.

[5] G. S. Davidson, B. N. Wylie, and K. W. Boyack. Cluster stability
and the use of noise in interpretation of clustering. In Proc. IEEE
Symposium on Information Visualization, pages 23–30, 2001.

[6] P. Eades. A heuristic for graph drawing. Congressus Numerantium,
42:149–160, 1984.

[7] T. Kohonen. Self-Organizing Maps. Springer-Verlag, 1995.
[8] Y. Koren, L. Carmel, and D. Harel. ACE: A fast multiscale eigenvector

computation for drawing huge graphs. In Proc. IEEE Symposium on
Information Visualization, pages 137–144, 2002.

[9] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[10] J. X. Li. Visualization of high dimensional data with relational per-
spective map. Information Visualization, 3(1):49–59, 2004.

[11] A. Morrison and M. Chalmers. Improving hybrid MDS with pivot-
based searching. In Proc. IEEE Symposium on Information Visualiza-
tion, pages 85–90, 2003.

[12] A. Morrison, G. Ross, and M. Chalmers. A hybrid layout algorithm
for subquadratic multidimensional scaling. In Proc. IEEE Symposium
on Information Visualization, pages 152–158, 2002.

[13] A. Morrison, G. Ross, and M. Chalmers. Fast multidimensional scal-
ing through sampling, springs and interpolation. Information Visual-
ization, 2(1):68–77, 2003.

[14] S.G. Parker and C.R. Johnson. SCIRun: A scientific programming
environment for computational steering. In Proc. Supercomputing,
1995.

[15] G. Ross and M. Chalmers. A visual workspace for hybrid multidimen-
sional scaling algorithms. In Proc. IEEE Symposium on Information
Visualization, pages 91–96, 2003.

[16] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by
locally linear embedding. Science, 290(5500), Dec 22 2000.

[17] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geo-
metric framework for nonlinear dimensionality reduction. Science,
290(5500):2319–2323, Dec 22 2000.

[18] W. S. Torgerson. Multidimensional scaling: I. theory and method.
Psychometrika, 17:401–419, 1952.

[19] J. A. Wise, J. J. Thomas, K. Pennock, D. Lantrip, M. Pottier, A. Schur,
and V. Crow. Visualizing the non-visual: Spatial analysis and interac-
tion with information from text documents. In Proc. IEEE Symposium
on Information Visualization, pages 51–58. IEEE, 1995.



Figure 1: Visual Quality: S Dataset Left: We show the 50,000 point S-shaped benchmark dataset laid out with the Morrison [12] algorithm,
taken after a full layout computation that takes 150 seconds. Right: We show a partially placed version of the same dataset after steering
with MDSteer for roughly 20 seconds. We see the same large-scale structure, and the local region on the lower right where we have focused
computational resources is completely filled in.

Figure 2: Visual Quality: Environmental Dataset. Left: We show the 40,000 point real environmental dataset laid out with the Morrison [12]
algorithm, taken after a full layout computation that takes 16 minutes. Right: We show a partially placed version of the same environmental
dataset after steering with MDSteer for roughly 2 minutes. Again, we see the same large-scale structure.



Figure 3: Time to complete the layout of a spatial subregion of the dataset for our steerable method compared to the full layout of non-steerable
Morrison [12]method. The MDSteer timings are for a subset of the total points because we are steering to a spatial subregion. For example,
MDSteer placed an average of 3900 points for the 1 Million point sized S-dataset. Left: We compare the times across a range of dataset sizes
of a synthetic 3-dimensional S-shaped benchmark dataset. Right: We compare the times across a range of a 294-dimensional real dataset of
environmental sustainability measures.

Figure 4: Layout Stress Top Left: We compare the stress across a range of dataset sizes of a synthetic 3-dimensional S-Shaped dataset. Top
Right: We compare the stress across a range of a 294-dimensional real dataset of environmental sustainability measures. Bottom Left, Bottom
Right: We plot the layout stress for the actual number of points placed, rather than the dataset size. These two quantities are disjoint with
our scalable methods.



Figure 5: Steerable Progressive Layout. We show the progression of steered layouts. The onscreen regions outlined in bold red are user-selected
bins. Black outlines identify bins that contain no more unplaced points. Left Column: S benchmark data with dimensionality 3 and cardinality
200,000. Right Column: Real environmental data with dimensionality 294 and cardinality 40,000.


