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Hyperdimensional Data Analysis Using 
Parallel Coordinates 

EDWARD J. WEGMAN* 

This article presents the basic results of using the parallel coordinate representation as a high-dimensional data analysis tool. 
Several alternatives are reviewed. The basic algorithm for parallel coordinates is laid out and a discussion of its properties as 
a projective transformation is given. Several duality results are discussed along with their interpretations as data analysis tools. 
Permutations of the parallel coordinate axes are discussed, and some examples are given. Some extensions of the parallel 
coordinate idea are given. The article closes with a discussion of implementation and some of my experiences. 

The classic scatter diagram is a fundamental tool in the 
construction of a model for data. It allows the eye to detect 
such structures in data as linear or nonlinear features, 
clustering, outliers and the like. Unfortunately, scatter 
diagrams do not generalize readily beyond three dimen- 
sions. For this reason, the problem of visually representing 
multivariate data is a difficult, largely unsolved one. The 
principal difficulty, of course, is the fact that whereas a 
data vector may be arbitrarily high dimensional, say n,  
Cartesian scatterplots may only be done easily in two di- 
mensions and, with computer graphics and more effort, 
three dimensions. 

I propose as a multivariate data analysis tool the fol- 
lowing representation. Instead of using a scheme that tries 
to preserve the orthogonality of the n-dimensional co-
ordinate axes, draw them as parallel. A vector (x , ,  
x2, . . . , x,,) is created by plotting x, on axis 1, x2 on axis 
2, and so on through x,, on axis n.  These points are joined 
by a broken line. Figure 1 illustrates two points (one solid, 
one dashed), plotted in parallel coordinate representation, 
that agree in the fourth coordinate. The principal advan- 
tage of this plotting device is clear. Each vector (x,, x2, 
. . . ,x,) is represented in a planar diagram, so each vector 
component has essentially the same representation. 

My parallel coordinates proposal has its roots in a num- 
ber of sources. Griffen (1958) considered a two-dimen- 
sional parallel coordinate device as a method for graphically 
computing Kendall's tau correlation coefficient. Hartigan 
(1975) described his "profiles algorithm" as "histograms 
on each variable connected between variables by identi- 
fying cases" (p. 29). Although he did not recommend 
drawing all profiles, a profile diagram with all profiles 
plotted is, in fact, a parallel coordinate plot. There is, 
however, far more mathematical structure, particularly 
high-dimensional structure, to the parallel coordinate dia- 
gram than Hartigan exploited. Inselberg (1985) originated 
the parallel coordinate representation as a device for com- 
putational geometry. His 1985 paper is the culmination of 
a series of technical reports dating from 1981. Finally, 
Diaconis and Friedman (1983) discussed the so-called M 
and N plots. Their special case of a 1-and-1 plot is a parallel 
coordinate plot in two dimensions. Indeed, the 1-and-1 
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plot is sometimes called a before-and-after plot and has a 
much older history. Also related is the Andrews (1972) 
plot, which can be viewed as a Fourier-series interpolation 
of the points on the parallel coordinate axes. This inter- 
polation preserves some least squares properties because 
of Parseval's relationship but does not enjoy the statistical 
interpretations available for parallel coordinates because 
of projective geometry dualities. 

The fundamental theme of this article is the highly struc- 
tured mathematical nature of the transformation from 
Cartesian coordinates to parallel coordinates, which maps 
mathematical objects into mathematical objects. Thus al- 
though the use of parallel coordinates as a data analysis 
tool may, at first glance, appear unlikely to be successful, 
because it is highly structured interpretations may be given 
and intuition developed. Of course, Cartesian coordinate 
representations have a long history; consequently, there 
has been much development of intuition about the ap- 
pearance of structures represented by them. Similar 
intuition for parallel coordinate representations must, 
therefore, be developed. One should suspend reservations 
about parallel coordinates due to the lack of developed 
intuition in anticipation that this article and future work 
will develop the needed intuition. 

Section 1 is a discussion of other multivariate data rep- 
resentations. In Section 2,  I discuss some of the basic facts 
about parallel coordinate geometry. Parallel coordinates 
are closely linked to ideas in projective geometry, so these 
connections are delineated in Section 3. Some statistical 
interpretations are offered in Section 4 and an illustrative 
example is given in Section 5 .  Section 6 focuses on some 
variants of parallel coordinates. Appendix A provides a 
rather nice result on minimal permutations of parallel co- 
ordinate axes and Appendix B a discussion of the con- 
nection between parallel coordinates and star diagrams. 

1. OTHER MULTIVARIATE DATA REPRESENTATIONS 

Alternative static multidimensional representations 
have been proposed by several authors, including Cher- 
noff's (1973) faces, Fienberg's (1979) star diagrams, and 
Cleveland and McGill's (1984a,b), Carr, Nicholson. Lit- 
tlefield, and Hall's (1986), and others' scatterplot matrices. 
The Chernoff faces and star diagrams are what might be 
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Figure 1. Parallel Coordinate Representation of Two n-DimensiOnalPoints. 

thought of generically as icon-based representations. Scat- 
terplot matrices are representations of projections of data 
into grouped two-dimensional plots. Much of Carr et al.'s 
work focused on a mixture of projection- and icon-based 
representations. An important alternative technique based 
on the use of motion is the computer-based kinematic 
display, yielding the illusion of three-dimensional scatter 
diagrams. This technique was pioneered by Friedman and 
Tukey (1973) under the name PRIM-9 and is now available 
in a variety of commercial software packages. Coupled 
with easy data manipulation, the kinematic display tech- 
niques spawned the exploitation of such methods as pro- 
jection pursuit (Friedman and Tukey 1974) and the grand 
tour (Asimov 1985). Clearly, projection-based techniques 
are highly successful and lead to important insights con- 
cerning data. Nonetheless, one must be cautious in making 
inferences about high-dimensional data structures based 
on projection methods alone. 

I inject this cautionary note because for hyperdimen- 
sional geometry, normal two- and three-dimensional 
geometric intuition fails very rapidly with increase in 
dimension. An easy illustration involves the general in- 
tersection of two two-planes in Euclidian four-space. The 
normal three-dimensional intuition is that the general in- 
tersection of two planes is a line. One can construct four- 
space analytically, however, as the Cartesian product of 
two orthogonal two-planes. It is immediate from that ob- 
servation that the general intersection of two two-planes 
in four-space is a point. The following two examples il- 
lustrate the potential pitfalls of projection-based methods. 
See Kendall (1961) for a general treatment of n-dimen- 
sional geometry. 

Example 1.1 Diagonals in Hyperspace 

Consider the general ray diagonal in n-dimensional 
space, that is, the vector passing through (d, ,  dl, . . . , d,) 
and originating at (0, 0,  . . . , 0). Here d, = 2 1 .  Choose 
any diagonal and fix it. For purposes of discussion, con- 
sider the ray diagonal through (1, 1 ,  . . . , 1). It is easy 
to see for n = 2 that the angle 82 between the ray diagonal 
and any of the coordinate axes is characterized by cos O2 
= 112/2. A simple inductive argument leads to cos 8, = 

l l v n  in the general case. For n -+ x,cos 8, -+ 0 so that 
0, + n12. Thus the ray diagonals are nearly orthogonal 
to the coordinate axes for reasonably large n. A simple 
computation shows that there are 2" ray diagonals or 2"-[ 
diagonals in n-dimensional space. From a data analytic 

perspective, this computation implies that data structures 
lying near a diagonal in hyperspace will be mapped nearly 
into the origin in every lower-dimensional projection onto 
the original coordinates, but a similar data structure lo- 
cated near a coordinate axis will not be. Thus the intuition 
gained from a scatter diagram in two or three dimensions 
is highly dependent on the coordinate axis system chosen. 
It is relatively easy to miss real data structures by simply 
examining lower-dimensional projections. 

Example 1.2 Hypervolume of a Thin Shell 

The area of a circle of radius r is c2rZ, the volume of a 
sphere of radius r is c,r3, and in general, the hypervolume 
(content) of a hypersphere of radius r is c,rn. In general, 
then, the hypervolume of a thin shell is c,[rn - (r - E)"], 
and the hypervolume of the thin shell relative to the hy- 
pervolume of the n sphere is 1 - (1 - ~ l r ) " .  Since 1 -
E I ~< 1, the relative hypervolume converges to 1 as n -+ 

x.Loosely speaking, most of the hypervolume is close to 
the (n - 1)-dimensional hypersurface of the n sphere. 

Consider then a probability measure that is uniform in 
the volume of an n-dimensional hypersphere. Consider 
further a random sample of observations drawn at random 
according to this measure. If n-dimensional scatter dia- 
grams could be visualized, most of the observations would 
lie close to the (n - 1) hypersurface of the n sphere. If 
on the other hand, we project observations onto a two- 
plane, we get a scatter diagram with a circular cross-sec- 
tion. The most intense concentration of observations 
would be near the center; that is, the distribution would 
appear unimodal. Indeed, it is easy to show that the mar- 
ginal density would be unimodal. [In the case of two di- 
mensions, the density on the one-plane would be f(x) = 

n-'(1 - x2)"?.] Thus, curiously, in the n-dimensional scat- 
ter diagram, most of the observations would lie near the 
boundaries of the n sphere, but in the two-dimensional 
projection, most of the observations would lie near the 
center. I contend that the two-dimensional projection may 
convey the wrong intuition. 

These examples show that exploratory data analysis 
based on projection techniques including two- and three- 
dimensional scatter diagrams is potentially misleading. It 
would be highly desirable to have a simultaneous repre- 
sentation of all coordinates of a data vector, especially if 
the representation treated all components in a similar man- 
ner. The standard Cartesian coordinate representation 
fails because of the requirement for orthogonal coordinate 
axes. In a three-dimensional world, it is difficult to rep- 
resent more than three orthogonal coordinate axes. Thus 
we are motivated to give up the orthogonality requirement 
and replace the standard Cartesian axes with a set of n 
parallel axes. 

2. PARALLEL COORDINATE GEOMETRY 

The parallel coordinate representation enjoys some el- 
egant duality properties with the usual Cartesian orthog- 
onal coordinate representation. Consider a line Il' in the 
Cartesian coordinate plane given by X:y = mx + b, and 
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Figure 2. Cartesian and Parallel Coordinate Plots of Two Points. The tu Cartesian coordinate system is superimposed on the xy parallel 
coordinate system. 

consider two points lying on that line, say (a, ma + b) 
and (c, mc + b). For simplicity of computation, consider 
the xy Cartesian axes mapped into the xy parallel axes as 
described in Figure 2. Superimpose Cartesian coordinate 
axes tu on the xy parallel axes so that the y parallel axis 
has the equation u = 1. The point (a, ma + b) in the xy 
Cartesian system maps into the line joining (a, 0) to (ma 
+ b, 1) in the tu coordinate axes. Similarly, (c, mc + b) 
maps into the line joining (c, 0) to (mc + b, 1). It is a 
straightforward computation to show that these two lines 
intersect at a point (in the tu plane) given by F: 
[b(l - m)-I, (1 - m)-'I. Notice that this point in the 
parallel coordinate plot depends only on m and b, the 

-parameters of the original line in the Cartesian plot. Thus 
.Y is the dual of S, giving the interesting duality that points 
in Cartesian coordinates map into lines in parallel coor- 
dinates and lines in Cartesian coordinates map into points 
in parallel coordinates. 

For 0 < (1 - m)-I < 1, m is negative and the inter- 
section occurs between the parallel coordinate axes. For 
m = - 1, the intersection is exactly midway. A ready 
statistical interpretation can be given. For highly nega- 
tively correlated pairs, the dual line segments in parallel 
coordinates tend to cross near a single point between the 
two parallel coordinate axes. The scale of one of the vari- 
ables may be transformed in such a way that the intersec- 
tion occurs midway between the two parallel coordinate 
axes, in which case the slope of the linear relationship is 
-1. 

In the case of (1 - m)-' < 0 or (1 - m)-'  > 1, m is 
positive and the intersection occurs external to the region 
between the two parallel axes. In the special case of m = 

1, this formulation breaks down. It is clear, however, that 
the point pairs are (a, a + b) and (c, c + 6). The dual 
lines to these points are the lines in parallel coordinate 
space with slope b-I and intercepts -ab- '  and -cb-I, 
respectively. Thus the duals of these lines in parallel co- 
ordinate space are parallel lines with slope b-'. We thus 
append the ideal points to the parallel coordinate plane 
to obtain a projective plane. The ideal points may be 
thought of as extra points added to the ordinary plane 
and, intuitively, as the points where parallel lines intersect. 
There are thus as many ideal points as there are slopes. 

Consequently, these parallel lines intersect at the ideal 
point in direction b-'. One model for the projective plane 
is a hemisphere with diametrically opposed equatorial 
points identified. 

In the statistical setting, the following interpretation can 
be made. For highly positively correlated data, lines tend 
not to intersect between the parallel coordinate axes. By 
suitable linear- I-escaling of one of the variables, the lines 
may be made approximately parallel in direction with 
slope b-'. In this case the slope of the linear relationship 
between the rescaled variables is 1. See Figure 3 for an 
illustration of a sequence of correlations ranging from 
large positive to large negative. 

3. 	 NATURAL HOMOGENEOUS COORDINATES 
AND CONICS 

The point-line, line-point duality seen in the transfor- 
mation from Cartesian to parallel coordinates extends to 
conic sections. A more complete discussion of projective 

Figure 3. Parallel Coordinate Plot of Six-Dimensional Data Illustrating 
Correlations of p = 1 ,  .8, .2, 0,- .2, -.8,and - 1. 
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transformations of conics was given by Dimsdale (1984). 
Inselberg (1985) generalized the notion of conics in par- 
allel coordinates to what he calls h stars. A general ref- 
erence for projective geometry and natural homogeneous 
coordinates can be found in Fishback (1962). For the dis- 
cussion of conics, however, consider both the xy plane and 
the tu plane to be augmented by suitable ideal points so 
that both may be regarded as projective planes. The rep- 
resentation of points in parallel coordinates is thus a 
transformation from one projective plane to another. 
Computation is simplified by an analytic representation. 
The usual coordinate pair, (x, y), is not, however, sufficient 
to represent ideal points. I plan to represent points in the 
projective plane by triples, (x, y, 2). Consider two distinct 
parallel lines having the equations ax + by + cz = 0 and 
ax + by + c'z = 0. Simultaneous solution yields (c -
cl)z = 0, so z = 0 describes ideal points. The represen- 
tation of points in the projective plane is by triples, (x, y, 
z), which are called natural homogeneous coordinates. If 
z = 1, the resulting equation is ax + by + c = 0, and 
so (x, y, 1) is the natural homogeneous-coordinate rep- 
resentation of a point (x, y) in Cartesian coordinates lying 
on ax + by + c = 0. Notice that if (px ,  py, p)  is any 
multiple of (x, y, 1) on ax + by + c = 0, then 

apx + bpy + cp = p(ax + by + c) = p . O  = 0. 

Thus the triple (px,  py, p )  represents equally well the 
Cartesian point (x, y) lying on ax + by + c = 0, so the 
representation in natural homogeneous coordinates is not 
unique. If p is not 1 or 0, however, we can simply rescale 
the natural homogeneous triple to have a 1 for the z com- 
ponent and thus read off the Cartesian coordinates di- 
rectly. If the z component is 0, we know immediately that 
we have an ideal point. 

Notice that we could equally well consider the triples 
(a, b, C) as natural homogeneous coordinates of a line. 
Thus triples can represent either points or lines reiterating 
the fundamental duality between points and lines in the 
projective plane. Recall now that the line P:y = mx + 
b is mapped into the point 5:[b(l - m)-', (1 - m)-'1 
in parallel coordinates. In natural homogeneous coordi- 
nates, Y is represented by the triple (m, - 1, b) and the 
point Y by the triple [b(l - m)-', (1 - m)-', 11 or, 
equivalently, by (b, 1, 1 - m). The latter yields the ap- 
propriate ideal point when m = 1. A straightforward com- 
putation shows that for 

t = xA or (b, 1, 1 - m) = (m, -1, b)A. Thus the 
transformation from lines in orthogonal coordinates to 
points in parallel coordinates is a particularly simple pro- 
jective transformation with the rather nice computational 
property of having only addition and subtraction. . . 

a point '2. expressed in ho-
mogeneous coordinates maps into the line represented by 
(1, x1 - x2, -xl) in natural homogeneous coordinates. 

Another straightforward computation shows that the lin- 
ear transformation given by t = xB or (1, x1 - x2, -xl) 
= (xl, x2, 1)B, where 

describes the projective transformation of points in Carte- 
sian coordinates to lines in parallel coordinates. Because 
these are nonsingular linear transformations, hence pro- 
jective transformations, it follows from the elementary 
theory of projective geometry that conics are mapped into 
conics. This is straightforward to see because an elemen- 
tary quadratic form in the original space-say, xCxr,  
where x '  denotes x transpose-represents the general 
conic. Clearly then, since t = xB, B nonsingular, we have 
x = tB-l; so tB-lC(B-')'t' is a quadratic form in the image 
space. An instructive computation involves computing the 
image of an ellipse ax2 + by2 - cz2 = 0 with a ,  b, c > 
0. The image in the parallel coordinate space is ct2 -
b(u + v ) ~= av2, a general hyperbolic form. 

The quadratic form does not describe a locus of points, 
but rather the natural homogeneous coordinates of a locus 
of lines, a line conic. The notion of a line conic is, perhaps, 
a strange one. By this I mean a locus of lines the natural 
homogeneous coordinates of which satisfy the equation 
for a conic. These may be more easily related to the usual 
notion of a conic by realizing that the envelope of this line 
conic is a point conic. In this computation, the point conic 
in the original Cartesian coordinate plane is an ellipse and 
the image in the parallel coordinate plane is, as we have 
just seen, a line hyperbola with a point hyperbola as en- 
velope, as illustrated in Figure 4 with a parallel coordinate 
plot of a five-dimensional hypersphere. As it turns out, 
this has an important statistical interpretation. 

AXIS 5 


AXIS 4 


AXIS 3 


AXIS 2 


AXIS 1 


F~gure4. Parallel Coordinate Plot of a Five-hmensional Hypersphere. 
Every axis pair is correspondingly the parallel coordinate plot of a circle. 
Notice the hyperbolic envelopes. 
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I mentioned the duality between points and lines and 
conics and conics. There are two other nice dualities. Ro- 
tations in Cartesian coordinates become translations in 
parallel coordinates and vice versa. Perhaps more inter- 
esting from a statistical point of view, points of inflection 
in Cartesian space become cusps in parallel coordinate 
space and vice versa. Thus the relatively hard-to-detect 
inflection point property of a function becomes the notably 
more easy-to-detect cusp in the parallel coordinate rep- 
resentation. Inselberg (1985) discussed these properties in 
detail. It is well worth noting that the natural homoge- 
neous coordinate representation is a standard device in 
computer graphics because a nonlinear transformation (ro- 
tation in two-space) can be represented as a 3 x 3 linear 
transformation of natural homogeneous coordinates. See, 
for example, Plastock and Kalley (1986). 

4. STATISTICAL INTERPRETATIONS 

Since ellipses map into hyperbolas, they provide an easy 
template for diagnosing uncorrelated data pairs. With a 
completely uncorrelated data set, we would expect the 
two-dimensional scatter diagram to fill substantially a cir- 
cumscribing circle. As illustrated in Figure 4, the parallel 
coordinate plot would approximate a figure with a hyper- 
bolic envelope. As the correlation approaches - 1, the 
hyperbolic envelope would deepen, so in the limit, we 
would have a pencil of lines, what I call the crossover 
effect. As the correlation approaches + 1, the hyperbolic 
envelope would widen, with fewer and fewer crossovers, 
so that in the limit we would have parallel lines. Thus 
correlation structure can easily be diagnosed from the par- 
allel coordinate plot. As noted earlier, Griffen (1958) used 
this as a graphical device for computing Kendall's tau. 

Griffen, in fact, attributed the graphical device to 
Holmes (1928), which predates Kendall's discussion. Grif- 
fen demonstrated that the computational formula for com- 
puting Kendall's tau by means of Holmes's graphical 
method is r = 1 - [4X/n(n - I)], where X i s  the number 
of intersections resulting from connecting the two rankings 
of each member by lines, one ranking having been put in 
natural order. Although the original formulation was 
framed in terms of ranks for the x and y axes, it is clear 
that the number of crossings is invariant to any monotone 
increasing transformation of either x or y ,  the ranks being 
one such transformation. Because of this scale invariance, 
one would expect rank-based statistics to have an intimate 
relationship to parallel coordinates. 

It is clear that if there is a perfect positive linear rela- 
tionship with no crossings, then X = 0 and r = 1. Simi- 
larly, if there is a perfect negative linear relationship, the 
bottom pair of coordinates in Figure 3 is appropriate and 
we have a pencil of lines. (A pencil of lines is a set of lines 
that are coincident at a single point.) Since every line meets 
every other line, the number of intersections is (;), so 

Linear relationships are comparatively easy to diagnose 
by using parallel coordinates, particularly negative linear 
relationships, since the eye seems to note the crossover 

effect quickly. Moreover, linear relationships exhibited by 
several sets of adjacent pairs of parallel coordinate axes 
may be interpreted as several sets of collinearities. Two 
sets of collinearities, in turn, may be interpreted as points 
lying in a two-dimensional plane, with d sets of collinear- 
ities being interpreted as points lying in a d-dimensional 
hyperplane. Thus detecting linear structure is important 
in understanding data structure, particularly if one is in- 
terested in fitting multiple linear regression models. A 
linear rescaling of one or more of the axes is sometimes 
helpful because it guides the eye in looking for approxi- 
mately parallel line segments. Of course, nonlinear rela- 
tionships will not respond to simple linear rescaling. By 
suitable nonlinear transformations, it should be possible, 
however, to transform to linearity. Knowing the nonlinear 
transformation that yields linearity in the data gives a fun- 
damental model building tool. 

Clustering is easily diagnosed by using the parallel co- 
ordinate representation. See, for example, Figure 5 (a) 
and (b), illustrating separation in both x and y and in only 
the first coordinate. Indeed, the individual parallel coor- 
dinate axes represent one-dimensional projections of the 
data. Thus separation on any one axis represents a view 
of the data that allows the detection of clustering. Because 
of the connectedness of the multidimensional parallel co- 
ordinate diagram, it is usually easy to see whether this 
clustering propagates through other dimensions. My ex- 
perience indicates that clustering may occur not in any 
single dimension but in combinations. Figure 5(c) indicates 
the appearance of three clusters in both Cartesian plots 
and parallel coordinate plots. In neither projection do 
these clusters separate, but they do separate in their joint 
relationship. A more extensive example of this is illus- 
trated by the five-dimensional automobile example in Fig- 
ure 10. 

So far I have developed intuition for pairwise parallel 
coordinate relationships. The idea, however, is to stack 
these diagrams and represent all n dimensions simulta- 
neously. Recall that Figure 4 is a parallel coordinate plot 
of a five-dimensional hypersphere. A five-dimensional el- 
lipsoid would have a similar general shape, but with hy- 
perbolas of different depths. Figure 6 illustrates some data 
structures one might see in a five-dimensional data set. 
First, the plots along any given axis represent dot dia- 
grams, hence convey graphically the one-dimensional mar- 
ginal distributions. In this illustration, the first axis is 
meant to have an approximately normal distribution shape 
and axis two has the shape of the negative of a chi-square. 
Figure 6 illustrates a number of instances of linear (both 
negative and positive), nonlinear, and clustering situa- 
tions. Indeed, it is clear that there is a three-dimensional 
cluster along coordinates 3, 4, and 5. Note also that the 
left cluster in Figure 6 consists of a series of parallel line 
segments between axes 4 and 5 and between axes 3 and 
4, indicating that these points are collinear in the 4-5 and 
3-4 planes. Since two general lines determine a plane, 
these points are coplanar in the 3-4-5 three-dimensional 
space. Moreover these same line segments exhibit the 
crossover effect between the 2 and 3 axes, and they are 
also collinear there. Thus because three general lines de- 
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Figure 5. (a) Clustering That Is Separated in Both x and y, Represented in Parallel Coordinates. (b) Clustering That Is Separated 
in the x Coordinate but not the y Coordinate. (c) Clustering That Is Separated in Neither Projection. Since the first coordinate of the 
crossover point for negatively correlated variables is dependent on the intercept, we can separate overlapping clusters. 

termine a three-dimensional hyperplane, this left cluster 
must lie in a three-dimensional hyperplane in five-dimen- 
sional space. 

Consider also the appearance of a mode in parallel co- 
ordinates. The mode is, intuitively speaking, the location 
of the most intense concentration of probability. Hence 
in a sampling situation, it will be the location of the most 
intense concentration of observations. Since observations 
are represented by broken line segments, the mode in 
parallel coordinates will be represented by the most in- 

tense bundle of broken line paths in the parallel coordinate 
diagram. Roughly speaking, we should look for the most 
intense flow through the diagram. In Figure 6, such a flow 
begins near the center of coordinate axis 1and finishes on 
the left side of axis 5 .  

Figure 6 thus illustrates some data analysis features 
of the parallel coordinate representation, including the 
ability to diagnose one-dimensional features (marginal 
densities), two-dimensional features (correlations and 
nonlinear structures), three-dimensional features (cluster- 



Figure 6. A Five-Dimensional Scatter Diagram in Parallel Coordinates 
Illustrating Marginal Densities, Correlations, Three-Dimensional Clus- 
tering and Hyperplanes, and a Five-Dimensional Mode. 

ing and hyperplanes), and a five-dimensional feature (the 
mode). Notice that in Figure 6, the parallel coordinate 
axes were ordered from 1through 5. This allowed an easy 
pairwise comparison of 1 with 2, 2 with 3, and so on. The 
pairwise comparison of 1 with 3, 2 with 5, and so on was 
not easily done, however, since these axes were not ad- 
jacent. A natural question arises about the number of 
permutations required so that in some permutation every 
axis is adjacent to every other axis. Although there are n! 
permutations, many of these duplicate adjacencies. Ac- 
tually, far fewer permutations are required-to be precise 
(n + 1)12 for an n-dimensional data set. Here (.) is the 
greatest integer function. The details of this result are 
given in Appendix A .  This result is used in Section 5 ,  
where I consider a real data set that will illustrate some 
additional capabilities of parallel coordinates. 

5. AN AUTOMOBILE DATA EXAMPLE 

We consider data on 74 1979 model-year automobiles; 
in particular, we consider a five-dimensional set of data 
consisting of measured variables-price, miles per gallon, 
gear ratio, weight, and cubic-inch displacement. Based on 
the discussion in Appendix A ,  for n = 5 ,  [n + 1112 = 3 
presentations are needed to present all pairwise permu- 
tations (see Figs. 7-9). In Figure 7, perhaps the most 
striking feature is the crossover effect evident in the re- 
lationship between gear ratio and weight. This suggests a 
negative correlation, which is reasonable because a heavy 
car would tend to have a large engine providing consid- 
erable torque, thus requiring a lower gear ratio. Con- 
versely, a light car would tend to have a small engine 
providing small amounts of torque, thus requiring a higher 
gear ratio. 

Consider as well the relationship between weight and 
cubic-inch displacement. In this diagram there is a con- 
siderable amount of approximate parallelism (relatively 
few crossings), suggesting positive correlation. This is a 
graphic representation of a fact most people are prepared 
to believe: that big cars tend to have big engines. Quite 
striking, however, is the negative slope going from low 
weight to moderate cubic-inch displacement. This is clearly 
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Figure 7. A Parallel Coordinate Plot in Five Dimensions of Automobile 
Data. Note the negative correlation between gear ratio and weight. 

an outlier that is unusual in neither variable but, rather, 
in their joint relationship. The same observation is high- 
lighted in Figure 8. 

The relationship between miles per gallon and price is 
also worthy of comment. The left side shows an approx- 
imate hyperbolic boundary and the right side clearly 
illustrates the crossover effect. This suggests that for 
inexpensive cars or poor mileage cars, there is relatively 
little correlation. Costly cars, however, almost always get 
relatively poor mileage whereas good gas mileage cars are 
almost always relatively inexpensive. 

In Figure 8, the relationship between gear ratio and 
miles per gallon is instructive. This diagram suggests two 
classes. Notice that there are a number of observations 
represented by line segments tilted slightly to the right of 
vertical (high positive slope) and a somewhat larger num- 
ber with a negative slope of about - 1. Within each of 

Weight 


Displace 


Mileage 


Gear Rat 


Price 


Figure 8. The Second Permutation of the Five-Dimensional Presen- 
tation of the Automobile Data. There are two classes of linear relation- 
ships between gear ratio and miles per gallon. 
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these two classes, there is approximate parallelism, sug- 
gesting that the relationship between gear ratios and miles 
per gallon is approximately linear. This is a believable 
conjecture because low gears = big engines = poor mile- 
age but high gears = small engines = good mileage. It is 
intriguing, however, that there seem to be two distinct 
classes of automobiles, each exhibiting a linear relation- 
ship but with different linear relationships within each 
class. 

Indeed in Figure 9, the third permutation, this separa- 
tion into two classes is highlighted in a truly five-dimen- 
sional sense. Figure 10 represents a subset of the data in 
Figure 9. In particular, Figure 10(a) describes a class of 
vehicles that have relatively poor gas mileage, are rela- 
tively heavy, are relatively inexpensive, have relatively 
large engines, and have relatively low gear ratios. Figure 
10(b) highlights a class of vehicles that have relatively good 
gas mileage, are relatively light weight, are relatively in- 
expensive, have relatively small engines, and have rela- 
tively high gear ratios. In 1979, these two characterizations 
describe, respectively, domestic automobiles and im- 
ported automobiles. 

6. GRAPHICAL EXTENSIONS OF PARALLEL 
COORDINATE PLOTS 

The basic parallel coordinate idea suggests some addi- 
tional plotting devices. I call these, respectively, the par- 
allel coordinate density plots and color histograms. These 
are extensions of the basic idea of parallel coordinates, 
but they are structured to exploit additional features to 
convey certain information more easily. 

6.1 Parallel Coordinate Density Plots 

Although the basic parallel coordinate plot is a useful 
device in itself, like the conventional scatter diagram, it 
suffers from heavy overplotting with large data sets. To 
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Figure 9. The Third Permutation of the Five-Dimensional Presentation 
of the Automobile Data. This presentation illustrates two five-dimen- 
sional clusters that are individually highlighted in Figure 10. 
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Figure 10. (a) Parallel Coordinate Plot of Cars Characterized as Amer- 
ican Automobiles. (b) Parallel Coordinate Plot of Cars Characterized 
as Imported Automobiles. 

get around this problem, the parallel coordinate density 
plot is computed as follows. The algorithm is based on 
Scott's (1985) notion of average shifted histogram (ASH), 
adapted to the parallel coordinate context. As with an 
ordinary two-dimensional histogram, appropriate rectan- 
gular bins are selected. A potential difficulty arises be- 
cause a line segment representing a point may appear in 
two or more bins in the same horizontal slice. Obviously, 
if we have k n-dimensional observations, we would like 
to form a histogram based on k entries. Since the line 
segment could appear, however, in two or more bins in a 
horizontal slice, the count for any given horizontal slice is 
at least k and may be bigger. Moreover, every horizontal 
slice may not have the same count. To get around this, 
convert line segments to points by intersecting each line 
segment with a horizontal line passing through the middle 
of the bin. This gives an exact count of k for each hori- 
zontal slice. Construct an ASH for each horizontal slice 
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(typically averaging five histograms to form the ASH). I 
have used contours to represent the two-dimensional den- 
sity, although gray-scale shading could be used in a display 
with sufficient bit-plane memory. Parallel coordinate den- 
sity plots have the advantage of being graphical represen- 
tations of data sets that are simultaneously high dimen- 
sional and very large. 

Examples of parallel coordinate density plots are given 
in Figures 11 and 12. These are particularly interesting 
because they are, respectively, the parallel coordinate den- 
sity plots of a solid four-dimensional sphere and a four- 
dimensional sphere with a hole of radius .5. An ordinary 
three-dimensional sphere with a hole is a difficult chal- 
lenge from an exploratory data analysis perspective be- 
cause the spherical symmetry will disguise the hole in all 
projections. Slicing the three-sphere with a two-plane will 
reveal a hole. Such a device will not work with a four- 
sphere having a hole, however, because any three-dimen- 
sional projection of a four-sphere will be a solid three- 
sphere. Thus slicing with a two-plane will not reveal any 
hole. The differences show up readily in a parallel coor- 
dinate density plot. The construction of parallel coordinate 
density plots is discussed further in Miller and Wegman 
(1990). 

6.2 Color Histograms 

For an rz-dimensional data set, there are n parallel axes. 
A vertical section through the diagram corresponds to an 
observation. The idea is to code the magnitude of an ob- 
servation along a given axis by a color bin, the colors being 
chosen to form a color gradient. typically 5-15 colors. The 
diagram is drawn by choosing an axis, say x i ,  and sorting 
the observations in ascending order. Along this axis, 
blocks of color are arranged according to the color gra- 
dient, with the width of the block being proportional to 
the number of observations falling into the color bin. The 
observations on the other axes are arranged in the order 
corresponding to the xLaxis and color coded according to 

Figure 7 7 .  Parallel Coordinate Density Plot of a Solid Four-Dimen- 
sional Sphere. 

their magnitude. Of course, if the same color gradient 
shows up on, say, the x,,, axis as on the .xi,,then we know 
xi is positively "correlated" with x,,. If the color gradient 
is reversed, we know the **correlation" is negative. We 
used the term "correlation" advisedly, since in fact. if the 
color gradient is the same but the color block sizes are 
different, the relationship is nonlinear. Of course, if the 
x, is unrelated to x,,,. An example of a color histogram is 
given in Figure 12b. Figure 12b is based on 10 measure- 
ments of the automobile data plotted in Figures 7-10. The 
color histogram clearly reveals the nonlinear positive as- 
sociation among the variables engine displacement. 
turning circle, length. weight, and trunk space and the 
nonlinear negative association of these with gear ratio and 
mileage. There is also a slight positive association with 
price. 

7. IMPLEMENTATIONS 

My parallel coordinate data analysis software has been 
implemented in two 'forms. One is a PASCAL program 
operating on the IBM R T  under the AIX operating sys- 
tem. This code allows for up to four simultaneous windows 
and offers simultaneous display of parallel coordinates and 
scatter diagrams. It offers highlighting, zooming, and other 
similar features and allows the possibility of nonlinear re- 
scaling of each axis. It incorporates the axis permutations 
described in Appendix A as well as parallel coordinate 
density plots and color histograms. The second imple- 
mentation is under development for MS-DOS machines 
and includes similar features. In addition, it has a mouse- 
driven painting capability and can do real-time rotation of 
three-dimensional scatterplots. Both programs use EGA 
graphics standards, with the second also using VGA or 
Hercules monochrome standards. 

I regard the parallel coordinate representation as com- 
plementary to scatterplots. A major advantage of the par- 
allel coordinate representation over the scatterplot matrix 
is the linkage provided by connecting points on the axes. 
This linkage is difficult to duplicate in the scatterplot ma- 
trix. Because of the projective line-point duality, the 
structures seen in a scatterplot can also be seen in a parallel 
coordinate plot. Moreover,  Cleveland and McGill's 
(1984b) work suggests that it is easier and more accurate 
to compare observations on a common scale. The parallel 
coordinate plot and the derivatives of it, de facto, have a 
common scale and so, for example, a sense of the varia- 
bility and central tendency among the variables is easier 
to grasp visually in parallel coordinates when compared 
with the scatterplot matrix. On the other hand, one might 
interpret all of the ink generated by the lines as a signif- 
icant disadvantage of the parallel coordinate plot. My ex- 
perience with this is mixed. Certainly, for large data sets 
on hard copy, this is a problem. On the other hand with 
traditional scatterplots viewed on an interactive graphics 
screen, particularly a high-resolution screen, I have often 
found that individual points can get lost because they are 
simply not bright enough. That does not happen in a par- 
allel coordinate plot. If many points are plotted by using 
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Figure 12. (a) Parallel Coordinate Density Plot of a Four-Dimensional Sphere With a Hole of Radius .5. (b) Color Histogram Representing 
Ten-Dimensional Automobile Data. 

parallel coordinates on a monochrome screen, however, 
it is hard to distinguish them. 1 have gotten around this 
problem by plotting distinct points in different colors. In 
an EGA or VGA implementation, this means 16 colors. 
This is surprtsingly effective in separating points. In one 
experiment, I plotted 5,000 five-dimensional random vec- 
tors using 16 colors. In spite of total overplotting, 1 was 
still able to see structure. In data sets of somewhat smaller 
scale, 1 have implemented a scintillation technique. With 
this technique, when there is overplotting, the screen view 
scintillates between the colors representing the overplotted 
points. The speed of scintillation is proportional to the 
number of points overplotted, and by carefully tracing 
colors, one can follow an individual point through the 
entire diagram. I have found painting to be an extraor- 
dinarily effective technique in parallel coordinates, using 
a painting scheme that paints not only all lines within a 
given rectangular area but also all lines lying between two 
slope constraints. This is very effective in separating clus- 
ters. I also use invisible paint to eliminate observation 

points from the data set temporarily. This is a natural way 
of doing a subset selection. 

This latter implementation is known as Mason Hyper-
graphics (see Wegman and Bolorforoush 1989) and con- 
tains, in addition, the capability for rotating scatterplots, 
stereographic scatterplots, scatterplot matrices, star dia- 
grams, and grand tour. 1 expect it to be commercially 
available in the near future. The RT implementation is 
available on request, but with.very limited documentation. 

APPENDIX A: PERMUTATION OF THE AXES FOR 
PAIRWISE COMPARISONS 

A construction for determining the permutations is repre- 
sented in Figure A .  A graph is drawn with vertices representing 
coordinate axes, labeled clockwise 1 to n. Edges represent ad- 
jacencies, so vertex 1 connected to vertex 2 by an edge means 
axis 1 is placed adjacent to axis 2. Constructing a minimal set of 
permutations that completes the graph is equivalent to finding 
a minimal set of orderings of the axes so that every possible 
adjacency is present. Figure A(a) illustrates the basic zigzag pat- 
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tern used in the construction, creating an order in Figure A(a) 
of 1 2 7 3 6 4 5. For n even, this general sequence can be written 
as 1, 2, n, 3 , n  - 1, 4, n - 2 , .  . . , (n + 2)12, a n d f o r n o d d ,  
a s 1 , 2 , n , 3 , n - 1 , 4 , n - 2  , . . . , ( n + 3 ) 1 2 .  

An even simpler formulation is 

with n, = 1. Here it is understood that 0 mod n = n mod n = 

n. This zigzag pattern can be recursively applied to complete the 
graph. That is, if we let n r )  = n,, we may define 

n t + ~ )= (n t )  + 1)mod n ,  j = 1, 2, . . . , [(n - 1)12], 

where [.] is the greatest integer function. For n even, it follows 
that this construction generates each edge in one and only one 
permutation. Thus n12 is the minimal number of permutations 
needed to assure that every edge appears in the graph or ,  equiv- 
alently, that every adjacency occurs in the parallel coordinate 
representation. For n odd, the result is not exactly the same. 
There is no duplication of adjacencies for j < [(n - 1)12]. How- 
ever, j < [(n - 1)/2] will not provide a complete graph. The 
case of j = [(n - 1)12] in Equation (A.2) will complete the 
graph, but it will also create some redundancies. Nevertheless, 
it is clear that [(n + 1)12] permutations are the minimal number 
needed to complete the graph and thus provide every adjacency 
in the parallel coordinate representation. Thus the minimal num- 
ber of permutations of the n parallel coordinate axes needed to 
insure adjacency of every pair of axes is [(n + 1)12]. These 
permutations may be constructed by using Equations (A. 1) and 
(A.2). 

APPENDIX B: STAR DIAGRAMS AND 

PARALLEL COORDINATES 


The star diagrams discussed in Fienberg (1979) can be ex-
tended in a natural way by computations similar to those in 
Section 2. The basic idea is to consider an n-dimensional plot as 
follows. Drawn radial lines from a common center point a t  equal 
angles (0 = 2nln) and label each according to one of the vari- 
ables, x,. Mark each axis proportionally to the size of the vari- 
able, x,.and join markings on adjacent axes by a straight line 
segment. This is, of course, similar to the parallel coordinate 
paradigm in that points map into line segments, except that for 
star diagrams the coordinate axes intersect. Although not com- 
monly done, it is possible to plot all data points on the same 

Figure A. (a) Complete Graph Representing the Three Permutations 
Necessary for All Adjacencies in a Six-Dimensional Parallel Coordinate 
Plot. (b) Basic Construction for Determining Permutations of Parallel 
coordinate Axes Shown Here for a Seven-Dimensional Plot. 

Journal of the American Statistical Association, September 1990 

Figure 6. Cartesian Coordinate Diagram and Sector of Star Plot. The 
tu Cartesian coordinate system is superimposed on the xy sector of 
the star plot. Here, a* is the point [(ma + b)cos(O), (ma + b)sin(Q)] 
and c*  is the point [(mc + b)cos(Q), (mc + b)sin(Q)]. 

diagram. One sector of such a diagram is illustrated in Figure 
B. If points (a, ma + b) and (x, mc + b) lie on a straight line, 
9,in Cartesian coordinates, we have already seen that the parallel 
coordinate dual of .?,P, is a point that depends only on the param- 
eters m and b determining .A!. A natural question is whether or 
not such a corresponding phenomenon happens in the star dia- 
gram. It is not difficult to see that the point (a, ma + b) is 
mapped into the line segment joining (a, 0) to [(ma + b)cos 8, 
(ma + b)sin B], where the latter points are given in the tu co- 
ordinate system. Similarly, (c, mc + b) is mapped into the line 
segment joining (c, 0) to [(mc + b)cos 8, (me + b)sin 01. The 
line segments joining these points have the following respective 
equations in the tu coordinate system: 

u = [(ma + b)sin B(t - a)]l[(ma + b)cos O - a] 

and 

u = [(me + b)sin B(t - c)]/[(mc + b)cos O - c]. 

Simultaneous solution of these equations does not yield solutions 
independent of a and c, hence the locus of intersection points is 
not degenerate. In fact, since points on they axis are projectively 
related (but not by a central perspectivity) to  points on the x 
axis (since they are linear transforms, x +mx + b) and the two 
axes are not coincident, by elementary projective gemetry the 
locus of line segments is a conic (see Fishback 1962, p. 142). If 
the points are related by a central perspectivity, then the conic 
is degenerate. This is true in the special case shown earlier for 
parallel coordinates. Notice that in the special case of b = 0, 
the lines given above become 

u = [m sin O(t - a)]l[m cos B - 11 

and 

u = [m sin O(t - c)]l[m cos B - 11. 

Thus the two line segments have a common slope independent 
of a or c but an intercept that is dependent on a and c. Thus the 
lines do have a common intersection at an ideal point whose 
direction depends only on m and 6'. The star diagrams have 
mathematical roots in projective geometry in common with par- 
allel coordinates, but because of the lack of parallelism, they do 
not share the line-point duality properties that yield useful sta- 
tistical interpretations. 

[Received October 1988. Revised November 1989.1 

REFERENCES 

Andrews, D. F. (1972), "Plots of High Dimensional Data," Biometrics, 
28, 125-136. 



675 Wegman: Hyperdimensional Data Analysis 

Asimov, D.  (1985), "The Grand Tour: A Tool for Viewing Multidi- 
mensional Data," SIAM Journal of Scientific and Statistical Comput- 
ing, 6, 128-143. 

Carr, D. B., Nicholson, W. L., Littlefield, R., and Hall, D. L. (1986), 
"Interactive Color Display Methods for Multivariate Data," in Statis-
tical Image Processing and Graphics, eds. E.  Wegman, and D. De- 
Priest, New York: Marcel Dekker, pp. 215-250. 

Chernoff, H. (1973), "Using Faces to Represent Points in k-Dimensional 
Space," Journal of the American Statistical Association, 68, 361-368. 

Cleveland, W. S., and McGill, R.  (1984a), "The Many Faces of the 
Scatterplot," Journal of the American Statistical Association, 79, 807- 
822. 
-(1984b), "Graphical Perception: Theory, Experimentation, and 

Application to the Development of Graphical Methods," Journal of 
the American Statistical Association, 79, 531-554. 

Diaconis, P., and Friedman, J. (1983), "M and N Plots," in Recent 
Advances in Statistics, New York: Academic Press, pp. 425-447. 

Dimsdale, B. (1984), "Conic Transformations and Projectivities," Tech- 
nical Report 6320-2753, IBM Los Angeles Scientific Center, Santa 
Monica, CA. 

Fienberg, S. (1979), "Graphical Methods in Statistics," 	 The American 
Statistician, 33, 165-178. 

Fishback, W. T. (1962), Projective and Euclidian Geometry, New York: 
John Wiley. 

Friedman, J., and Tukey, J.  W. (1973), PRIM-9 [Film], Stanford, CA: 
Stanford Linear Accelerator Center, Bin 88 Productions. 

(1974), "A Projection Pursuit Algorithm for Exploratory Data 
Analysis," IEEE Transactions in Computing, (2-23, 881-889. 

Griffen, H. D. (1958), "Graphic Computation of tau as a Coefficient of 
Disarray," Journal of the American Statistical Association, 53, 441- 
447. 

Hartigan, J .  A. (1975), Clustering Algorithms, New York: John Wiley. 
Holmes, S. D.  (1928), "Appendix B: A Graphical Method for Estimating 

R for Small Groups," in Educational Psychology, ed. P. Sandiford, 
New York: Longmans, Green, pp. 391-394. 

Inselberg, A. (1985), "The Plane With Parallel Coordinates," The Visual 
Computer, 1, 69-91. 

Kendall, M. G. (1961), A Course in the Geometry of n-Dimensions, 
London: Charles Griffen. 

Miller, J. J., and Wegman, E .  J .  (1990), "Construction of Line Densities 
for Parallel Coordinate Plots," to appear in Computational Statistics 
and Graphics, eds. A .  Buja and P. Tukey, New York: Springer-Verlag. 

Plastock, R.  A , ,  and Kalley, G .  (1986), Computer Graphics, New York: 
McGraw-Hill. 

Scott, D. W. (1985), "Average Shifted Histograms: Effective Nonpara- 
metric Density Estimators in Several Dimensions," Annals of Statistics, 
13, 1024-1040. 

Wegman, E. J., and Bolorforoush, M. (1989), 	Mason Hypergraphics, 
Fairfax Station, VA: Professional Statisticians Forum. 


