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Abstract—As data sources become larger and more complex, the ability to effectively explore and analyze patterns among varying

sources becomes a critical bottleneck in analytic reasoning. Incoming data contain multiple variables, high signal-to-noise ratio, and a

degree of uncertainty, all of which hinder exploration, hypothesis generation/exploration, and decision making. To facilitate the

exploration of such data, advanced tool sets are needed that allow the user to interact with their data in a visual environment that

provides direct analytic capability for finding data aberrations or hotspots. In this paper, we present a suite of tools designed to facilitate

the exploration of spatiotemporal data sets. Our system allows users to search for hotspots in both space and time, combining linked

views and interactive filtering to provide users with contextual information about their data and allow the user to develop and explore

their hypotheses. Statistical data models and alert detection algorithms are provided to help draw user attention to critical areas.

Demographic filtering can then be further applied as hypotheses generated become fine tuned. This paper demonstrates the use of

such tools on multiple geospatiotemporal data sets.

Index Terms—Geovisualization, kernel density estimation, syndromic surveillance, hypothesis exploration.
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1 INTRODUCTION

HEALTH reports, terrorism alerts, criminal activities, and
numerous other incidents need to be analyzed and

evaluated, often within the context of related data sets. It is
no longer efficient for a single analyst to pull files, take
notes, form hypotheses, and request data from different
sources. Instead, tools need to be developed that bring
varying data sources into a unified framework assisting
analysis and exploration. These needs are being addressed
by the emergence of a new scientific field, visual analytics.

Visual analytics is the science of analytical reasoning

assisted by interactive visual interfaces [40]. Major challenges

in this field include the representation and linkage of large-
scale multivariate data sets. In order to facilitate enhanced
data exploration and improve signal detection, we have
developed a linked geospatiotemporal visual analytics tool
designed for advanced data exploration. This paper presents
a set of extensions to our previous suite of visual analytics
tools [31] for the enhanced exploration of multivariate
geospatiotemporal data. Our system features include

. a new kernel density estimation that works for both
urban and rural populations;

. dually linked interactive displays for multidomain/
multivariate exploration and analysis;

. novel data aggregation for effective visualization
and privacy preservation;

. control charts for identifying temporal signal alerts;

. demographic filter controls that enable database
querying and analysis through a simple graphical
interface;

. spatiotemporal history via contour line ghosting;

. bivariate exploration combining contours and color;

. multivariate exploration combining height maps,
contours, and color;

. thresholding data to analyze specific trends;

. interactive color mapping tools for enhanced data
contextualization;

. region selection tools for analyzing area specific
hotspots.

Our work focuses on advanced interactive visualization
and analysis methods providing linked environments of
geospatial data and time series graphs. Hotspots found in
one display method can be selected and immediately
analyzed in the corresponding linked view. Furthermore,
our work focuses on the early detection and analysis of
hotspots facilitated through the use of control charts for
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alert detection. Alerts generated in the temporal realm can
be quickly analyzed in the geospatiotemporal interface,
helping users find patterns simultaneously in the spatial
and temporal domains. Concurrently, we have also applied
statistical modeling techniques to estimate event distribu-
tions in the spatial realm. Users may select hotspots from
the generated heatmaps and analyze historical time series
data in the area to look for unusual trends or potential areas
of interest. Such doubly linked views allow users to quickly
form and test hypotheses, thereby reducing the time needed
to reject false positives and confirm true alerts.

We have also extended our previous system [31] to
include the spatiotemporal history, bivariate and multi-
variate exploration, thresholding, and color mapping tools.
Contour histories provide users with geospatiotemporal
views of current and past data trends, allowing them to
track hotspot movement across time, or look for correlations
between multiple variables. We also allow interactive range
selection and thresholding to allow users to focus directly
on hypothesis specific information. Furthermore, we de-
monstrate the flexibility of such tools by providing example
applications in the domain of law enforcement data analysis
and syndromic surveillance.

1.1 Law Enforcement Data

One data source we focus on is law enforcement data. These
data come in the form of traffic violations, misdemeanors,
criminal activities, etc. These data are typically spatiotem-
poral, containing the location of the incident, the time, and
some description allowing the data to be classified into
various categories. Such data can be analyzed for trends,
enabling agencies to better manage their resources and
deploy officers to potential problem areas. Our work
utilizes data from the West Lafayette Police Department,
and through contacts with former State Highway Patrol
officers, we are able to tailor our tools toward officer
specific needs.

1.2 Syndromic Surveillance Data

Another data source that we explore is syndromic surveil-
lance data. Recently, the detection of adverse health events
has focused on prediagnosis information to improve
response time. This type of detection is more largely termed
syndromic surveillance and involves the collection and
analysis of statistical health trend data, most notably
symptoms reported by individuals seeking care in emer-
gency departments. Currently, the Indiana State Depart-
ment of Health (ISDH) employs a state syndromic
surveillance system called Public Health Emergency Sur-
veillance System (PHESS) [19], which receives electronically
transmitted patient data (in the form of emergency
department chief complaints) from 73 hospitals around the
state at an average rate of 7,000 records per day.

These complaints are then classified into nine categories
(respiratory, gastrointestinal, hemorrhagic, rash, fever,
neurological, botulinic, shock/coma, and other) [11] and
used as indicators to detect public health emergencies
before such an event is confirmed by diagnoses or overt
activity. Unfortunately, detection of events from these
indicators is an extremely challenging issue. Fig. 1 shows
a typical month of emergency department visits for those

complaints classified as neurological syndromes. During
this time period, there was one event of carbon monoxide
poisoning which happened to coincide with the largest
peak on December 21; however, this peak is not signifi-
cantly higher than any other peak during this month.
Obviously, the detection of such a small signal deviation
can be extremely difficult.

Again, it is important to note that the tools being
developed are supervised by our partners in the Indiana
State Department of Health. Prior to tool development, we
meet with our partners and discuss the needs and
functionalities of the tools and work to build them in such
a manner as to enhance their work flow. We have found
that tools developed for syndromic surveillance have
translated well to the analysis of law enforcement data,
and feedback from both agencies has been valuable in
creating appropriate tools.

2 RELATED WORK

As previously stated, visual analytics is the science of
analytic reasoning facilitated by interactive visual interfaces
[40]. In order for these interfaces to be effective, they need to
integrate not only data exploration and visualization tools,
but also human factors such as interaction, cognition,
perception, collaboration, presentation, and dissemination.
In order to create an effective visual analytics systems,
methods from a variety of backgrounds must be merged
together in a simple, yet effective framework. This section
covers relevant topics in the areas of crime analysis,
syndromic surveillance, multivariate interaction techniques,
time series visualization, and geographical visualization.

2.1 Crime Analysis

In order to improve public safety and prevent crimes, law
enforcement agencies need to analyze the volumes of data
from multiple systems, search for trends, and deploy
services appropriately. As such, many packages exist for
studying spatial relationships between crime and area
demographics. Work by Messner and Anselin [34] uses
exploratory spatial data analysis to visualize spatial
distributions and suggest clusters and hotspots. Specifi-
cally, they look at spatial autocorrelation and box maps.
Other work includes WebCAT by Calhoun et al. [10] which
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Fig. 1. A sample syndromic surveillance signal containing a carbon

monoxide poisoning event.



focuses on enhanced data sharing and crime data analysis
tools via the web. Their tools include chloropleth mapping
and capabilities to export records to excel. Our work
presents similar capabilities to both Messner and Anselin
[34] and Calhoun et al. [10]; however, we also include
dynamically linked views and advanced hotspot detection
tools not found in either of these works.

2.2 Syndromic Surveillance Systems

Data from public health surveillance systems have long
been recognized as providing meaningful measures for
disease risks in populations [25], [39]. As such, many
disease modeling packages, outbreak alert algorithms and
data exploration systems have been developed to aid
epidemiologists in identifying outbreaks within their data.
Some of the most popular of these systems are the Early
Aberration Reporting System (EARS) [22], the Electronic
Surveillance System for the Early Notification of Commu-
nity-based Epidemics ESSENCE [27], and Biosense [28].
Unfortunately, all of these systems offer limited data
exploration tools and little-to-no interactive geospatial
support. Furthermore, many detection algorithms em-
ployed by these systems generate a large amount of false
positives for epidemiologists to analyze. While creating
algorithms to reduce false positives is important, our work
focuses on creating advanced visual analytics tools for more
efficiently exploring these alerts and hypotheses.

2.3 Multivariate Interaction Techniques

When creating an interactive framework for data explora-
tion and hypothesis testing/generation there are a variety
of interactive techniques that can be applied. The majority
of techniques utilized in our work focus on the probing,
brushing, and linking of data in order to help analysts refine
their hypotheses. These methods emphasize the interaction
between human cognition and computation through dyna-
mically linked statistical graphs and geographical repre-
sentations of the data (e.g., [13], [7], [4]).

Examples of recent work in spatiotemporal interaction
include VIST-STAMP by Liao [26], FemaRepViz by Pan and
Mitra [35], and LAHVA by Maciejewski et al. [32]. VIS-
STAMP supports the overview of complex patterns through
a variety of user interactions. Specifically, this work focuses
on visualizing multivariate patterns using parallel coordi-
nate plots and self-organizing maps. FemaRepViz provides
a display of Federal Emergency Management Agency
(FEMA) reports on a globe and dynamically determines
where each report should be placed based on the text of the
report. It also allows the user to navigate through time;
displaying only the relevant reports for that period. And
finally, LAHVA looked at using multiple data sets (pet and
human health data) with similar properties to enhance
disease surveillance. This system provided a geospatiotem-
poral interface with limited interaction among different
view windows. Our current system is similar in that it
allows users to explore both spatially (through panning and
zooming) and temporally through interactive time sliders
and history filter/aggregation controls.

Examples of recent work in multivariate data exploration
through linked views and probing includes work by
Weaver [44], who created a system for interactively
expressing sequences of multidimensional set queries by

cross-filtering data values across pairs of views. Another
example is work by Stasko et al. [38] which introduced the
Jigsaw system which provides a series of visual interfaces
that deal with identifying linkages between entities within a
data set. Other work includes the use of data probes by
Butkiewicz et al. [9]. This work noted that when analysts are
zoomed out of their data, local trends are suppressed, and
when zoomed in, spatial awareness and comparison
between regions is limited. Our current system uses similar
modalities in that users can selectively filter data through
query command and through interaction between the
linked interfaces. Furthermore, when zooming into the
data, we allow users to manipulate rendering parameters
(such as color) in order to help better contextualize and
explore hotspots in their local surroundings.

2.4 Time Series Visualization

One of our key linked views is a time series visualization
view. The analysis of time series data is one of the most
common problems in any data domain, and the most
common techniques of visualizing time series data (se-
quence charts, point charts, bar charts, line graphs, and
circle graphs) have existed for hundreds of years. Recent
work in time series visualization has produced a variety of
techniques, an overview of which can be found in [2]. Of the
more modern techniques, some of the most commonly
applied are the theme river [21], the spiral graph [45], and
the time wheel [41].

Work on event prediction [8] and pattern recognition [8]
was done by Buono et al. for time series data. This work
presented users with a tool to explore multivariate time
series for common patterns, and extended this approach for
predicting future events. Other techniques of interest
include the visualization of queries on databases of
temporal histories [12], and novel glyphs for representing
temporal uncertainties [3]. Unfortunately, most temporally
oriented visualization techniques are not suited to represent
branching time, or time with multiple perspectives. As
such, the modification of existing techniques is necessary in
order to more adequately analyze multivariate data from
varying sources.

Our work focuses primarily on line graphs showing
event counts. These graphs are then statistically analyzed
and plotted as control charts in order to quickly provide the
analysts with contextual information about the significance
on an event. We allow for the plotting of multiple series on
a single graph, as well as interactive selection tools for area/
region specific plots.

2.5 Geographical Visualization

Another key linked view is the geographical visualization
component. Geographic visualization is a field focused on
displaying data with a geographic context such as a map. In
more recent years, it has ballooned to include increasingly
complex data, other spatial contexts, and information with a
temporal component.

Several current systems exist that leverage advanced
geographical visualization techniques for various health
data. MacEachren et al. [30] presented a system designed to
facilitate the exploration of time series, multivariate, and
georeferenced health statistics. Their system employed
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linked brushing and time series animation to help domain
experts locate spatiotemporal patterns. Further work in
analyzing health statistics was done by Edsall et al. [16].
Here, the use of interactive parallel coordinate plots was
used to explore mortality data as it relates to socioeconomic
factors. Other work includes Dang et al. [15] and Zhao et al.
[46] which utilized dynamic queries and brushing for
creating choropleth map views, and Tominski et al. [42]
developed a system for visualizing health data for the
German state Mecklenburg-Vorpommern. This system
allowed users to interactively select diseases and their
parameters and view the data over a specific time interval at
different temporal resolutions. Further work in this system
[43] employed the use of intuitive 3D pencil and helix icons
for visualizing multiple dependent data attributes and
emphasizing the type of underlying temporal dependency.

Work by Hargrove and Hoffmann [20] used multivariate
clustering to characterize ecoregion borders. Here, the
authors select environmental conditions in a map’s indivi-
dual raster cells as coordinates that specify the cell’s
position in environmental data space. The number of
dimensions in data space equals the number of environ-
mental characteristics. Cells with similar environmental
characteristics will appear near each other in data space.

3 VISUAL ANALYTIC ENVIRONMENT

Our system adopts the common method of displaying
georeferenced data events on a map and allowing users to
temporally scroll through their data. However, such
exploration only provides slices of spatial data at a given
time or an aggregate thereof. In order to understand these
slices, users need to know the trends of previous data (and,
if possible, model future data trends). Furthermore, a
limiting factor in using mapping as a tool for syndromic
surveillance and crime analysis is that aggregation of data

can lead to unreliable estimates of the true measure of the
event impact. Fortunately, the data used in our visual
analytics system provide georeferenced locations, allowing
us to either aggregate the data on a spatial level, or employ
statistical methods to model the data over arbitrarily sized
georegions. As such, our system employs advanced
statistical models for data exploration, enabling new
visualizations, analyses, and enhanced detection methods.

3.1 System Features

Fig. 2a provides a conceptual overview of our visual
analytics system, and Fig. 2b provides a screenshot of the
system modified specifically for syndromic surveillance
data. Note that all features described in this section are
available for both crime analysis and syndromic surveil-
lance. Data entering our system first undergo a cleaning and
transformation process. This process is then refined through
feedback from our visual analytics system. Furthermore, the
user may report data errors as well, allowing for data
correction. Finally, frequently accessed time series models of
the data are also stored in the database for future use after
initial modeling is done via our visual analytics system.

Further interaction is performed within the different
viewing and modeling modalities of the system. As shown
in Fig. 2b, the main viewing area is the geospatiotemporal
view, and the three graphs on the right allow users to view
a variety of data sources simultaneously for a quick
comparison of trends across varying hospitals/precincts
or data aggregated over spatial regions. Both the geospatial
and time series viewing windows are linked to the time
slider at the left side of the screen. This allows users to view
the spatial changes in the data as they scroll across time.
Additionally, temporal controls are also employed. These
controls are denoted as “aggregate” and “increment” in the
scroll bar window. The aggregate function allows the user
to show all data over a period of x days. The increment
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Fig. 2. The visual analytics system. (a) The conceptual diagram of our visual analytics system. Observe the interaction between the analyst and the
system as well as the modeling components of the system. (b) Our visual analytics system. The left portion of the screen represents the interactive
temporal tools. We include time aggregation tools, pull down menus for data classifier selections, keyword searches for chief complaint text, and
demographic filtering for age and gender. The main viewing area is a geospatiotemporal view that has pan and zoom controls in the upper left
corner. Hospitals and regions of the map may be selected with a circular query tool for interactive time series generation. The rightmost windows are
the temporal views, showing selected time series plots broken down into their relevant components. Users may select points or regions of time to
interactively manipulate the geospatial temporal window. For analyzing crime data, the interface is modified only slightly to reflect the relevant
categories.



function allows the user to step through the data by
increments of 1, 2, 3, . . . days. All temporal views also
provide a locking mechanism in which the user can choose
to freeze the data window(s) while exploring changes
across time in other views. This allows users to explore data
while keeping a reference point to the time-varying trend(s)
under inspection.

Another key feature of our system is the interactive
demographic and category filtering. Users interactively
generate database search queries through the use of check
boxes and edit controls to find specific categories, key-
words, and gender and age demographics from the data.
Such work furthers hypothesis generation and exploration
as users can now quickly filter signals by demographic
constraints in order to search for correlations. The choices of
filters affect both the geospatiotemporal viewing area and
all unlocked temporal plots.

3.2 Data Aggregation and Privacy Preservation

Our system also provides multiple views for enhanced
visualization and analysis. One simple, yet key view for this
data set is showing georeferenced data locations on the map
in order to provide analysts with a quick overview of
statistics across the area of interest. Unfortunately, in both
syndromic surveillance and crime data, showing exact
event locations on a map is encumbered by privacy issues.
Previous work in visualizing health statistics bypasses these
concerns by showing data spatially aggregated over
geographical areas such as zip code or county. While such

visualizations are useful, there are times when it may be of
interest to analysts to simply see a plot of event locations on
a smaller level of data aggregation. Unfortunately, not all
software users have the same level of permissions for
viewing this data.

A naive visualization method would be to zoom out of
the map at such a level that a pixel would represent a large
enough region that it would be difficult to extract any
private information about event mapped on a transformed
geolocation to pixel basis. Unfortunately, as the data set
becomes arbitrarily large, the visual clutter cannot be
reduced in such a manner, see Fig. 3a, and it becomes clear
that a visualization of every record at a high spatial zoom
level is not effective for analysis. Furthermore, simple
methods, such as using additive opacity to demonstrate
event density, Fig. 3c, are inadequate as the number of
events makes it impossible to readily distinguish density
levels between areas. This is further complicated when the
events are then highlighted with regard to their locations.
Fig. 3b shows the syndromic patients mapped in red. In
order to alleviate this problem, we have employed a
method of data aggregation for enhanced visualization at
low resolution views, which also acts as a privacy
preserving technique at low zooms.

Our data aggregation method finds sets of event
locations where each member is at most a set distance from
at least one other member. The group is then represented by
a circle at the set’s geographic center that has an area
proportionate to the size of the set. This allows us to
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Fig. 3. Data aggregation and privacy preservation. (a) Georeferenced syndromic surveillance data as small additive opacity circles.

(b) Georeferenced data overlaid with red circles representing syndromic patients. (c) Data aggregation for enhanced visualization. (d) High-

resolution zoom of an area of interest. (e) Actual patient locations at a high-resolution zoom overlayed with our data aggregation method.



successfully aggregate data around major cities while
preserving the autonomy of smaller sets in rural areas.
This method is derived from the idea of connected
components in graph theory, where patients are connected
if and only if they are within the threshold distance from
another patient in the graph [14]. The generated circles are
then colored using a color map [6], where the color
represents the percent of events within a given category
found within this geographical centroid. This method
operates under the assumption that the data are clumped
in certain locations, otherwise it is possible to have an
aggregation that hides too much of the actual data.
Furthermore, as this method groups data at its geographic
center of mass, it preserves the data context and helps
alleviate privacy concerns.

Fig. 3c shows the low resolution aggregation of our
syndromic surveillance data across the state of Indiana.
Fig. 3d shows the zoomed in region, and Fig. 3e represents
where the actual patient locations would be with respect to
their representation as a geographic centroid.

3.3 Heatmaps

While such data aggregation can be useful for an overall view
of event distribution, it is also useful to model the event
distribution across the entire area of interest in order to
approximate trends where little or no data values exist.
Therefore, our system provides a geospatial heatmap [17]
view which employs a diverging color map (or any other
Color Brewer scheme) [6] to represent the percentage of a
given event category over the total events seen on a given day.

The georeferenced data contain a set of observations in
which an event (crime/syndrome) occurs at location Xi

associate at time t with a hospital/precinct and is classified
with a particular category. Such data are often aggregated
by county or zip code and then shown to the user. This type
of aggregation can be thought of as a histogram or box-plot
of the data, and while a spatial histogram can be useful,
such a visualization does not provide any hints as to what
may be occurring in areas with little-to-no event data.
Furthermore, areas with a small number of events may
stray toward a high percentage of the total events in the
category under question. In those cases, visual alerts may be

triggered that would clearly appear as false positives once
the individual records were analyzed. Fig. 4a demonstrates
the problems with visualizing such histogram distributions.
The national baseline influenza-like-illness (ILI) percentage
during flu season is 2.1 percent [1] for the 2006-2007 season.
Note in Fig. 4a that many counties seem to be visually
displaying an extremely high level of ILI, where if we
compare this to the overlaid data aggregation circles, these
counties actually have very few patients contributing to the
aggregations’ center of mass as seen in Figs. 4b and 4c.

To overcome these issues, our system estimates the
probability density function of all the recorded events using
the georeferenced locations and produces a heatmap
visualization of the area. To this end, we employ a kernel
density estimation [37]. Kernel density estimation takes a
collection of sample points and fits a weighting function at
each point. A kernel is a nonnegative real-valued integrable
function that integrates to one over all real values, and is
symmetrical about the origin. The bandwidth of the kernel
can be fixed or dynamic depending on the method
employed. The bandwidth of the kernel influences the
magnitude of the kernel, i.e., kernels with large bandwidths
have a smaller height.

Equation (1) defines the multivariate kernel density
estimation, and this method has been used in other works
[23], [29], [18]. To reduce the calculation time, we have
chosen to employ the Epanechnikov kernel, (2).

f̂hðxÞ ¼
1

N

XN
i¼1

1

hd
K

x�Xi

h

� �
; ð1Þ

KðuÞ ¼ 3

4
ð1� u2Þ1ðkuk�1Þ: ð2Þ

Here, h represents the multidimensional smoothing para-
meter, N is the total number of samples, d is the data
dimensionality, and the function 1ðkuk�1Þ evaluates to 1 if the
inequality is true and zero for all other cases. We calculate
both the density estimation for the event category of interest
as well as the density estimation of all categories in our
system using an appropriately chosen h for each data set.
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Fig. 4. Data aggregation and privacy preservation visualized as a percentage of syndromic population over the total population seen. (a) Data

aggregated by county. (b) Data aggregated through nearest neighbor groupings. (c) A combination of data aggregation to enhance contextual

visualization.



The density estimation for the event category of interest is
then divided by the density estimation for the total events to
provide a percentage count for the expected number of
events within a given area.

Unfortunately, a fixed bandwidth kernel turns out to be
inappropriate for our data due to sparse data counts in rural
counties and high data counts in large urban areas. A large
fixed bandwidth over smoothes the data while trying to
accommodate for the sparse data regions, and a small fixed
bandwidth is unable to handle data in sparse regions,
creating visual alerts in a similar fashion.

To overcome these issues, we employ the use of a
variable kernel method [37], (3). This estimate scales the
parameter of the estimation by allowing the kernel scale to
vary based upon the distance from Xi to the kth nearest
neighbor in the set comprising N � 1 points.

f̂hðxÞ ¼
1

N

XN
i¼1

1

di;k
K

x�Xi

di;k

� �
: ð3Þ

Here, the window width of the kernel placed on the point
Xi is proportional to di;k (where di;k is the distance from the
ith sample to the kth nearest neighbor) so that data points in
regions where the data are sparse will have flatter kernels.
Unfortunately, our data sets also exhibit problems with this
method. In healthcare data, a primary recipient of emer-
gency care are patients of long-term healthcare facilities (for
example, nursing homes). As such, the use of the k nearest
neighbors may result in a di;k of 0 as many patients visiting
emergency rooms may report the same address. This
concept can be extended to large apartment complexes
generating many noise complaints in the crime data, as well
as data uncertainty (for example, many hospitals report
unknown patient addresses as the hospital address). To
overcome these issues, we slightly modify the variable
kernel estimation to force it to have a minimum fixed
bandwidth of h as shown in (4).

f̂hðxÞ ¼
1

N

XN
i¼1

1

maxðh;di;kÞ
K

x�Xi

maxðh;di;kÞ

 !
: ð4Þ

In the case of our modified variable kernel estimation, we
calculate the kernel only spatially as opposed to both
spatially and temporally as was done in the fixed
bandwidth method. Future work will include extending
our modified density estimation into the temporal domain.
Results from our variable kernel estimation can be seen in

Fig. 5. Slight problems in the estimation can be found near
the state borders due to the abrupt cutoff of data in those
areas. Future work will address these issues through more
advanced spatial modeling.

3.4 Context through Color Exploration

Of key importance in all the previously presented data
aggregation methods is the choice of coloring. In coloring
our maps, data ranges get binned to a certain color. Clearly,
the choice of bins can be based on model assumptions of the
expected percentage of events within an area. However,
each category of event will have varying model assump-
tions. Furthermore, the distribution of the data can also play
a key role in placing hotspots into the proper context. For
example, if the data are binned such that the maximum
value covers a large range of variation, it is possible that
such a mapping could hide hotspots within hotspots.

As such, we have created an interactive color widget for
exploring data ranges. This widget allows users to modify
the color scale either interactively or through a set of
mathematical binning functions. We provide functions for
linear, ramp, exponential, and logarithmic binning.

In linear binning, the points on the map are first binned
across a large histogram. The histogram is then divided
such that each color represents an equal number of points
within the data. For ramp binning, the histogram is divided
such that each color represents an increasingly larger
number of points, following along the line y ¼ x. This idea
is then extended for both exponential and logarithmic
curves. Future work will include binning the data to a
Gaussian distribution. The distribution functions were
based on observations that the mathematical distributions
are often able to automatically highlight various properties
of the data with little user interaction. Further research into
this connection is left to future work.

In exploring the data through contextual color clues, our
domain experts typically employed the use of either a
default mathematical binning, or arranged the color bins
manually such that the last bin began at some data
threshold of interest. In Fig. 5, the data have been mapped
using a logarithmic binning. Both the data aggregation and
the kernel density estimation tools can be used in conjunc-
tion for contextualizing hotspots. Here, we find several
hotspots in the state. When placed in the context of the data
aggregation overlay (Fig. 5b), we begin to develop
hypotheses of key places that need further exploration.
These places are marked by the black squares in Fig. 5b.
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Fig. 5. Kernel density estimate (KDE) heatmaps visualized as a percentage of syndromic population over the total population seen. (a) KDE

heatmap. (b) Contextualizing the KDE heatmap by overlaying patient data aggregated through nearest neighbor groupings. (c) A zoomed in view of a

local hotspot. (d) Contextualizing a hotspot through interactive coloring.



Further, we see the dense hotspot centered in the middle
of the state. To further explore this hotspot, users may zoom
into the map. The zoom results in a recalculation of the
kernel density estimate as the latitude/longitude point
space mapping to the grid changes. Fig. 5c provides a
zoomed in view of the state’s central hotspot. Notice that
this heatmap is dominated by a singular range of red. In
Fig. 5b, the user interactively adjusts the color scale to
provide more binning across that particular data range.
Through this interaction, the user is now able to find several
previously undetectable peaks within this region that may
warrant further investigation.

3.5 Time Series Analysis

While the spatial visualizations employed in our system are
useful for detecting hotspots, it is also helpful for an
analytics system to provide hints as to where outbreaks
may be occurring. To this end, we have employed the use of
a standard epidemiological algorithm for time series
analysis, the cumulative summation (CUSUM) [22]. The
CUSUM algorithms provide alerts for potential outbreaks in
the temporal domain, and users of our system may then
select these alerts for further exploration in the geospatio-
temporal viewing window.

St ¼ max 0; St�1 þ
Xt �

�
�0 þ k�xt

�
�xt

� �
: ð5Þ

Equation (5) describes the CUSUM algorithm, where St is
the current CUSUM, St�1 is the previous CUSUM, Xt is the
count at the current time, �0 is the expected value, �xt is the
standard deviation, and k is the detectable shift from the
mean (i.e., the number of standard deviations the data can
be from the expected value before an alert is triggered). We
apply a 28 day sliding window to calculate the mean, �0,
and standard deviation, �xt , with a 3 day lag, meaning that
the mean and standard deviation are calculated on a 28 day
window 3 days prior to the day in question. Values chosen
were based on the EARS C2 alert method detailed in [22].
Such a lag is used to increase sensitivity to continued

outbreaks while the 28 days provides a month worth of
baseline data to test against while minimizing long-term
historical effects. Fig. 6 shows the application of the
CUSUM algorithm to the temporal plot of ILI counts
during peak flu season. An alert is represented by a large
red circle, which is generated if St exceeds the threshold (for
a point of reference the threshold is typically set at three
standard deviations from the mean in the Early Aberration
Reporting System and is shown as the green line in Fig. 6).

3.6 Exploration with Linked Views

While the alerts generated from aberration detection
algorithms may produce a useful starting point for explora-
tion, they may also be eliciting false alarms. Furthermore,
analysts may want to explore areas where information may
be unknown, for example, visual hotspots generated in our
heatmap approach may contain only sparse data points.
Ideally, analysts would like to dynamically query and select
elements on the visual display in order to see how selections
update related views. This type of selection is commonly
referred to as brushing [5] and it is used in many interactive
visualization environments [33], [36].

For our implementation, we use only the highlight
operation over the time dimension of our temporal view
and the spatial region of our main viewing window. In the
temporal view, the highlighted region is shown in red and
once the mouse button is released, all other information
displays are updated to reflect the selection. Because the
individual plots are interrelated, only one may be brushed at a
time. The principal purpose of this feature is to allow selection
of the current day and the number of days being aggregated
together from the plot windows based on a region of interest
in the plotted data. In Fig. 6a, we see a series of hospital
generated alerts (the red marks) in the middle temporal
viewing window. In this figure, a user has clicked on an alert,
causing the temporal window to lock in place, while scrolling
the geospatial window back in time to the alert on that day.
Notice that the events associated with the hospital/precinct
and category are now exclusively shown on the map.
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Fig. 6. Exploration using linked views. (a) Images taken from our system illustrating the linked temporal analysis to the geospatial filtering. Here, a
user has selected the alert occurring on 01-01-2007. The geospatial viewing window then opens that day’s data corresponding to the alert allowing
for further investigation. (b) Images taken from our system illustrating the linked views in selecting geospatial areas and seeing temporal plots. Here,
a user has selected an area in north-west Indiana (the green circle). This selection brings up the time series graph and our alert detection algorithm
finds an unusual event in that area on that day.



In the geospatial view, highlighting is performed
through a circular selection of an area. This circular
selection allows users to select multiple geographic regions
and view their temporal history. In Fig. 6b, we see a
heatmap of the state. In this figure, note that the circled area
represents a user selection. Here, the user has chosen a
region of the state that appears to currently be a syndromic
hotspot. A linked time series analysis view plots the data
from that area in the lower right window. Here, we see that
an alert (small red circle) is found for that area on the day in
question. A user can then further explore these alerts by
clicking on the alerts in the time series window to find the
patients associated with this alert in the geospatial window.

3.7 Temporal Contours

Along with exploring data context through color adjust-
ments, we also provide contour line options for preserving
the temporal history of the data. In the case of using
temporal contours, data shown in the heatmap mode can be
overlaid with the past x-days worth of contour lines. The x-
days is a user defined parameter, and the color date
aggregation is shown as a label on the maps, providing
users with the appropriate temporal context. This allows
users to view shifting hotspots across time and analyze the
movements of trends and patterns over days.

In Fig. 7a, the analyst has visualized a heatmap of all
criminal reports in West Lafayette, Indiana, over the past
year. The analyst then overlays a 100 day aggregate of the
noise complaint data from the beginning of the semester as a
contour in order to see which hotspots on the map are most
related to noise. Here, we can see that the noise complaints are
directly correlated with an area of West Lafayette nearest
Purdue’s Campus (the yellow polygon). Next, the analyst
changes mode to only view the heatmap noise complaints
from this time period (Fig. 7b), and then uses the contour
history mode to compare the next 50 day period aggregate of
noise complaints to the previous map (Fig. 7b).

3.8 Multivariate Views

Our system also provides a series of complex viewing
modalities for searching for correlations between multiple
variables. In a two-dimensional view of the geographic area,
one can map the density estimated heatmap color to
variable x, and then create another heatmap for variable y,

thus providing a multivariate view of the geographical
location and the x and y variables. Variable y can then be

displayed as contours overlaid on the heatmap of variable x.
Users can then look for places of high contours and high
colors to search for correlations between data variables.

Furthermore, one can create a view for multiple variables by
assigning a third variable as height. The data can then be

viewed in three dimensions, and users can search for
correlations between three variables simultaneously. The
heatmaps, contours, and height are all calculated based on

the kernel density estimation described earlier in Section 3.3.
In Fig. 8a, the analyst is searching to see if there are any

hotspots showing a correlation between rash cases (the
contours) and shock/coma cases (the color). Here, the
analyst finds that there are large concentrations of cases in
several overlapping areas. The analyst then also chooses to
look for cases associated with respiratory illness, and enters
3D mode. In 3D mode, height now represents the
magnitude of respiratory illness cases. Fig. 8 shows the
3D view with color, contour, and height mapping.

3.9 Interactive Thresholding

Our system also provides users the ability to interactively
select data threshold values that they are interested in. In
order to better focus attention on areas of interest, users
may choose to only look at event values, where the
percentage of events occurring in an area is greater than
some threshold, t. Fig. 9a illustrates an analyst searching for
gastrointestinal hotspots in Indiana. In Fig. 9b, the user has
thresholded the data such that only higher values will
appear. The user then moves forward in time by 10 days
(Fig. 9b) using the temporal contour ghosting to track the
movement of hotspots across the state. Contours are
displayed such that the most recent days are drawn with
a higher opacity, thus, creating the temporal contour
ghosting. However, as the number of historical days being
viewed increases, the number of colors that can be
distinguished in this manner reaches its maximum. As
such, contour ghosting is only effective for a limited
historical basis. Note that the thresholding is also applied
to the contour history as well, where again, the lighter the
contours, the further in the past they have occurred.
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Fig. 7. Contour mapping for contextual cues. (a) The analyst has created a heatmap of one year’s worth of crime data in West Lafayette Indiana with

the yellow polygon representing Purdue University Campus. The contours overlaid represent the noise complaints aggregated over the past

100 days. (b) The analyst plots only the noise complaints aggregated over the past 50 days as a heatmap. (c) The analyst plots the noise complaints

aggregated over the next 50 day period. The contours in this figure represent the previous noise complaint map outline.



4 UNDERSTANDING HOTSPOTS

By using a combination of geospatial and temporal
visualization and analytics tools, our system provides
analysts with tools for real-time hypothesis generation
and exploration. Here, we present two example cases of
using such a system to analyze data.

4.1 Syndromic Hotspots

To better illustrate the hypothesis generation/exploration
phase, we conducted an informal interview with an Indiana
State Department of Health (ISDH) syndromic surveillance

epidemiologist. During this interview, we discussed how an
epidemiologist would search for syndromic hotspots,
creates an initial hypothesis, and what steps are taken in
an attempt to confirm or deny this hypothesis.

Traditionally, the first items examined when identifying

potential syndromic problem areas are the spatial alerts

generated for a given syndrome. Based on the epidemio-

logist’s experience, certain alerts will be immediately

resolved as false positives, and others will be moved to

the top of the queue. From the alerts the epidemiologist

identifies as potential problems, a hypothesis is formulated
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Fig. 8. Multivariate views. (a) The analyst has created a heatmap of shock/coma cases overlaid with contours for rash. (b) The analyst adds the

category respiratory as the height dimension.

Fig. 9. Interactive thresholding. (a) The analyst searches for gastrointestinal hotspots. (b) The analyst uses the thresholding capability to filter the

data. (c) The analyst moves forward in time viewing movement trends among the data.



stating that a problem with syndrome X is occurring in
patients found at location Y. These alerts are aggregated by
zip code level, meaning that zip codes A, B, C, etc.,
contribute to the alert. From this step, the epidemiologist
would look at the time series data for all zip codes
contributing to the alert in order to gain a better under-
standing of where the baseline lies. In contrast, our visual

analytics tool allows users to select an arbitrary region to
view the time series data, providing a baseline for the
overall area, potentially allowing quicker comparison.

Often, the next step taken would be to further corrobo-
rate the geospatial area of the alert by looking at the
counties involved and pulling up county level alerts, their
corresponding time series plots, and county maps down to
the zip code level. Similarly, our tool provides both

heatmaps at the reduced levels of granularity, as well as a
finer, smoother granularity heatmap option that the
epidemiologist thought may add value. If, from the
heatmap, the hypothesis cannot be rejected, the next step
is to drill down to patient level data in order to assess the
actual chief complaints. For example, if (in the case of a
gastro-intestinal problem) a patient’s “vomiting” is related

to pregnancy, then it is less likely to be part of the
gastrointestinal outbreak being considered in this hypoth-
esis. As such, sometimes potential clusters then fall apart.
Next, the epidemiologist would look at the patient level

data to assess time stamps and actual chief complaints for
clustering which may lead to filtering by ages for clustering

and gender for skew if clues exist that lead the hypothesis
refinement in those directions. If there was a string of

elevated days, then the analyst would group these elevated
days and do the same type of descriptive analysis. Our dual

linked views provide advanced tools for such an operation,
aiding in the overall hypothesis exploration.

During this process, the epidemiologist also searches for

potential “cosyndromes” in the same geography, such as
fever, to see if it is somehow linked to the gastrointestinal

problem. Again, the linked views and filter options of our
system allow the user to easily look at multivariate time

series components. If concurrent syndromes are found, this
potentially strengthens the hypothesis and may lead to a

follow-up with the actual emergency department(s) in-
volved. Fig. 10 illustrates the use of our system during the
hypothesis exploration phase.

First, in Fig. 10a, the user has selected the syndrome he/
she is interested in analyzing, in this case, gastrointestinal.

This generates a query to the database, and the epidemiol-
ogist can now look at the patient distribution with either an

additive opacity for all patients that visited an emergency
department, or as an aggregate of the data. Next, the user
visually searches for unusual hotspots using a combination

of the kernel density estimation and the patient overlay. The
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Fig. 10. Using visual analytics for hypothesis exploration in syndromic surveillance. (a) The user observes a heatmap for a given syndrome, in this
case, gastrointestinal. (b) Next, the user selects an area of interest, generating a time series plot for that region. Note that in the time series plot
generated, an alert is occurring on the day of interest. (c) The user then drills down to the hospital level by selecting the neighboring hospital and
generating a time series plot for that emergency department. Here, we see that there is no hospital level alert for gastrointestinal syndromes.
(d) Finally, the user looks for correlating symptoms and filters by the keyword fever. New time series plots are generated. While an alert still exists for
the selected area, the user can now see that this alert was generated by only one individual, meaning an outbreak is unlikely.



user may select multiple areas for testing; however, if the
area selected shows no temporal alert for the day in
question, then it is likely that the hypothesis of area X being
problematic is rejected.

In Fig. 10b, the user has selected an area of the map in
central Indiana, and the corresponding time series graph
that was generated indicates that the selected area is
showing an alert on the day in question. The next step in
analyzing this alert is to look at data from the nearby
emergency departments. In this case, there is only a
single emergency department. The user clicks on the
hospital glyph on the map, and the time series plot for
this emergency department is generated, see Fig. 10c. In
this time series plot, there is no alert generated for this
emergency department for the day in question. This
weakens the hypothesis that there is an outbreak in the
area; however, the user may still want to take further
steps to confirm/deny the hypothesis.

The next step taken is to look for corresponding
symptoms. In this case, the user looks for patients with
gastrointestinal syndromes that also reported signs of fever.
Fig. 10d shows this filter query. Note that the heatmap and
time series plots are automatically updated from the query.
We can see now that there are no visual hotspots occurring
on the map; however, there is still a time series alert for that
area. Further investigation of the time series alert shows
that the expected number of patients was slightly less than
one, and one patient came in on that day, thereby
generating an alert. It is now unlikely that an outbreak is
occurring in this area, and the hypothesis can be denied
after a brief analysis of the patient record.

While it may seem odd that one case can cause an
outbreak alert, this is quite a common occurrence in all
current systems. For example, the carbon monoxide case
shown in Fig. 1 contains only three emergency department
complaints. Therefore, the high sensitivity is necessary to
avoid missing small cluster cases.

4.2 Syndromic Hotspots in Current Systems

In order to further evaluate our system, we would need to
include experts within the field of syndromic surveillance in
order to reduce training time and develop meaningful test
scenarios. Currently, the Indiana State Department of Health
employs only a few epidemiologists (who we have con-
sulted). While it is possible that other counties in the state
employ epidemiologists with knowledge of syndromic
surveillance, the pool of available subjects is quite limited.

In regards to system evaluation, we provide a comparison to
the current tools employed at the State Department of Health.

The current tool used by the Indiana State Department of
Health is ESSENCE [27]. The alerts are displayed in a line
listing (Fig. 11) that is reviewed every day with color codes
representing serious and mild alerts. There are region alerts
for counties, hospital alerts, and spatial alerts for detecting
clusters. Selecting an alert from the line listing will bring up
a time series of 90 days, from here you can drill down to the
details of the alert, including the ability to map the patients
by zip code.

As discussed in the previous section, our program is also
able to generate temporal alerts based on any level of spatial
aggregation for counties and hospitals. Future work will
include the introduction of spatial alerts through the use of
SatScan [24]. Our advantages over the ESSENCE system
includes the ability to interactively aggregate data over a
variety of temporal ranges, as well as providing a variety of
spatial aggregation methods (as opposed to only plotting
data by zip code). We also provide enhanced interactive
filtering for multivariate data exploration as well bivariate
views through coloring and contouring and multivariate
views through the addition of height fields.

4.3 Crime Hotspots

Our second expert is an independent evaluator with
experience as an Indiana State Police Commanding Officer.
He is an accomplished security professional having a
25 year operations background in public safety, corporate
security, and the military. He is retired from the Indiana
State Police reaching the rank of Regional Commander. In
this capacity, he was responsible for overseeing the
investigative mission within a 12,000 square mile, 21 county
region in northwest Indiana. His authority covered all
criminal and civil investigations, including death investiga-
tions, violent crimes, thefts, burglaries, public corruption,
and internal investigations. Again, many police depart-
ments do not employ crime analysts as their budgets are
limited. As such, the use of a single expert for feedback and
evaluation seems to be the most appropriate. The scenario
presented in this section is based on questions the evaluator
wished to ask of the data.

In the case of our crime data, events occur less frequently
than in the case of syndromic surveillance data. As such,
analysts often wish to look at the last x-days or weeks of data
and begin planning new patrol routes based on previous
trouble locations. For our example, the analyst first pulls up
all criminal activities for the 2007-2008 Purdue University
school year (Fig. 12a), and finds two major areas of activities,
one nearby campus, and one near the intersection of two
major cross-streets. In this case, two major hotspots are
evident, one near campus, and one located at an intersection
some distance from the main campus.

Here, the analyst chooses to investigate the causes
leading to the secondary hotspot. First, the analyst searches
for what types of crimes are occurring near the secondary
hotspot by filtering the region by various crime categories
and finds that theft is the leading crime in that area. Next,
the analyst compares the thefts from fall semester in West
Lafayette to the overall criminal activities of the 2007-2008
school year. Fig. 12a shows the overall crimes from the
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Fig. 11. Sample ESSENCE output showing daily values for a single

Indiana county.



2007-2008 school year overlayed with contours from the
2007 Fall semester theft reports. Next, the analyst investi-
gates if the end of the fall semester (the week of finals and
the week directly after finals) indicates a high rate of thefts,
and shifts the contours to only map to the last 20 days of the
fall semester (Fig. 12b). The analyst finds that in the fall
semester, no thefts are occurring during this time period.

Next, the analyst chooses to compare with events from
the spring semester. Fig. 12c shows the overall crimes from
the 2007-2008 school year overlayed with contours from the
2008 Spring semester thefts. Next, the analyst investigates if
the end of the Spring semester (finals week and the week
after finals) indicates a high rate of thefts, and overlays the
theft contours from the last 20 days of the semester, Fig. 12d.
Here, the analyst finds that a large number of thefts are
taking place during this time period. The analyst may then
begin forming hypotheses about why this occurs at the end
of the Spring semester (more students moving out of town,
warmer weather) as opposed to at the end of Fall semester
when more houses are empty for the holidays.

Based on this tool, the analyst found that he was easily able
to test hypotheses that he had about the nature of criminal
activities in the West Lafayette community. Currently, with
departments that have no crime analysts, he felt that our tool
provided a simple and intuitive means of analyzing that data
the department would benefit from. Being able to visually
understand what the data represent is important at the
tactical level for the street officer to anticipate problems
before they occur. For the Police Chief, visualization provides
a strategic advantage in deploying resources, managing
budgets, and developing strategies for crime reduction and
predictive analytics. Our expert found this to be the next
generation of crime mapping technology that along with its
mobile capabilities and ease of use, could be easily integrated
into current law enforcement products and techniques.

5 CONCLUSIONS AND FUTURE WORK

Our current work demonstrates the benefits of visual
analytics for understanding syndromic hotspots. By linking
a variety of data sources and models, we are able to enhance
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Fig. 12. Using visual analytics for hypothesis testing in crime analysis. The user is analyzing thefts (as contours) versus all crimes (as color) for a

given school year (2007-2008). (a) The user analyzes fall semester thefts (contours) compared with the over all school year crimes. (b) The user

analyzes the last 20 days of the fall semester for thefts. (c) The user analyzes spring semester thefts. (d) The user analyzes the last 20 days of spring

semester.



the hypothesis generation and exploration abilities of our
state partners. Our initial results show the benefits of
linking traditional time series views with geospatiotempor-
al views for enhanced exploration and data analysis. Our
system also moves away from traditional spatial histogram
visualizations, providing a finer granularity of heatmap for
more accurate hotspot detection.

Other future work includes advanced modeling of
geospatiotemporal data for enhanced data exploration and
hotspot detection. Furthermore, we plan to include a suite of
aberration detection algorithms and their corresponding
control charts for enhanced alert detection in the temporal
domain. We also plan on employing spatiotemporal cluster-
ing algorithms (such as SatScan [24]) for hotspot detection as
well as other correlative analysis views within the temporal
domain (scatter plots, calendar view, etc.). Furthermore, we
plan to enhance our system from a visual analytics system to
a predictive analytics system, creating views to allow for
event planning, prediction and interdiction. Once these
features are implemented, we plan to deploy our system
with our state partners for further evaluation.
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