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Multiajmensional entities are modeled, displayed, and 
understood with a new algorithm vectorizing data of any 
dimensionality. This algorithm is called SBP; it is a vectorized 
generalization of parallel coordinates. Classic geometries of any 
dimensionality can be demonstrated to facilitate perception and 
understanding of the shapes generated by this algorithm. SBP 
images of a 4D line, a circle, and 3D and 4D spherical helices 
are shown. A strategy for synthesizing multi-dimensional 
models matching multi-dimensional data is presented. Cument 
applications include data mining; modeling data-defined 
structures of scientific interest such as protein structure and 
Calabi-Yau figures as multi-dimensional geometric entities; 
generating vector-fused data signature “finger prints’ of classic 
frequency spectra that identify substances; and treating complex 
targets as multi-dimensional entities for automatic target 
recognition. SBP Vector Data Signatures apply to all pattern 
recognition problems. 
CR Categories: H.2.8 Database Applidons, Data Mining; 
1.2.6 Learning, Knowledge acquisition; 1.3.3 Picturehwge 
Generation, Viewing A l g o r i w  H. 1.2 UserMachine Systems, 
Human Information Processing; H.5.1 Multimedia Information 
Systems, Animations, Artificial, augmented, virtual realities; 
1.2.10 Vision & Scene Understanding, Representations, data 
structures, & transforms; 1.5 Pattern Recognition; 1.5.4 
Applications, Computer Vision. 
Additional Keywords: Multidimensional Visualization, Vector 
Data Fusion, Multidimensional Geometry. 

1. OVERVIEW 
Presented here is a new way to see structures of any dimension. 
The new way begins conventionally by showing a 3rd 
dimension, D3, along a line at an angle c1 in 2 dimensions, 
Figure 1. Each of the next dimensions would be shown at its 
o m  different angle in aa expanded Figure. The structures to be 
seen are described by data k m  a spreadsheet. The columns are 
called dimensions and the rows are called vectors. The cells and 
their values are treated as component vectors, each is drawn at 
its own dif€erent angle as assigned in that expanded Figure. 
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SBP is an algorithm that adds each component vector to the 
prior one, summing the whole row to a single-end-point 
resultant. This vector summing process for n dimensions is the 
same as that done for 3 dimensions summed to a 3D point in 
Figure 1. A 3D and 5D vector sum is shown in Figure 2. 

Images created by SBP am not intuitively obvious. Geometric 
examples of a 4D straight line, a 2D spherical helix (a circle), a 
3D spherical helix, and a 4D spherical helix are given to initiate 
familiarization, see Figure 4. A helix with a small pitch looks 
like a surface. A web site is cited [6] that gives other examples 
including 12D data (a spreadsheet with 12 columns). That site is 
animated. Animation improves understanding of SBP structures. 

Several possible future applications of SBP are cited. An 
example application which would use the technique described 
for a Vector Data Signature of hquency spectra could be 
dynamic generation of a single number computer ID (in 3 
dimensions) for one’s own written signature spectrum. 

An application to scientific data could be the generation of 
multi-dimensional structural models for entities such as proteins, 
the structure of which is traditionally displayed as a complex 
ribbon in 3 dimensions. 

Visualization entails building models of entities for display, 
hopefully revealing their structure and the relationships among 
their elements. Entities of interest for multi-dimensional 
visualization are systems described by data; the elements of that 
data are typically presented in a spreadsheet. The columns are 
called dimensions, and the rows are instances where values in 
the cells of the row are examples satisfying the conditions of 
that system. 

A general structure for visualizing multi-dimensional datasets is 
parallel coordinates [1],[3]. Parallel Coordinates allow one to 
see any number of dimensions concurrently by arranging the 
coordinates parallel to each other. Shortcomings of version [3] 
of parallel coordinates include: 

1. One point from nD orthogonal space maps 
into n points in parallel coordinates, 

2. Straight lines in orthogonal space do not map 
into straight lines in parallel coordinates, 

3. The sequence in which the parallel co-ordmates are 
considered determines the apparent relationships among the 
elements of the data defined system. This is the “pesky 
problem” cited by Inselberg of dstermining the proper sequence 
in which to consider the coordinates. nDV’s version of parallel 
coordinates [4],[6] eliminates shortcoming (2), but (1) and (3) 
remain common to Inselberg’s and nDVs versions of parallel 
coordinates. 

Key problems and thomy issue8 in visualization of multi- 
dimensional entities are cited in [2]. SBP appears to satisfy the 
3 issues cited: a geometry is illustrated here, that geometry is 
used to initiate intuitive perception, and evaluations via 
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applications are being undertaken. Much work remains; this is 
just a glimpse, seeing some multi-dimensional entities, 
evaluating the process, and planning what remains to be done. 

Explanations of n D V ' s  approach to parallel coordinates are in 
[4] and [6]. Parallel coordinate perspectives are especially 
important in the analysis of unknown data structures. This will 
be sMlmarized in 4.3 below. 

The background for overcoming the shortcomings of parallel 
coordinates is the basic technique for showing a 3rd dimensional 
coordinate in 2-space by drawing it at an angle between the first 
two orthogonal coordinates, Figure 1. 

3. INTRODUCTION 
Seeing the 4& and higher dimensions is easy when these higher 
dimensions are not at right angles to each other. These higher 
dimensions are added as additional lines in Figure I ,  each at 
their own unique angle. 

SBP (Single-point Broken-line Parallel-coordinates) [6] is an 
extension of parallel coordinates where the parallel coordinates 
are broken into pieces associated with the vectorized value of 
each dimension. These component vectors can be summed to 
give a single-end-point resultant for each row of the spreadsheet, 
as in Figure 2. This new algorithm overcomes all 3 
shortcomings cited above for visualization via parallel 
CoordinateS. 

I y 3D Display space 
/ z  

X 

Figure 2 - SBP vector principle 
h Y ,  z define Display spa=) 

In 2-space,plotting n coordinates each at their own incremental 
angle a in Figure 2 which is less than 90" makes it practical to 
draw multi-coordinate data and to generate single-end-points for 
each row in that data. Doing 50 provides an algorithm f a  data of 
arbitrary dimensionality that is extendable, generalizeable, and 
visualizable. SBP extends the classic techuique of showing a 
third dimension at an angle in 2-space. SBP uses a different 
angle in 2-space for each higher dimension where a Erom 
Figure 2 is a standard increment added for each dimension. 

Understanding the relationships and structure of SBP models is 
best done using animated SBP models of simple geometric 
shapes as demonstrated on nDV's web site: 
www.globalsvcs.com/ndv' [6]. 

To reap these introductory concepts: using data as presented m 
a spreadsheet, SBP treats each column's data as a component 
vector. The amplitude of this component vector is the value in 
the cell, and the column's identification designates the unit 
(angle) vector for this component vector. SBP generates the 
vector sum of all component vectors in a spreadsheet row as in 
Figure 2. The single-end-point vector resultant for each row is 

Vector-@sed data. Each row of data in a spreadsheet is 
summarized as a single 3D point in Cartesian display space. 
SBP generates these single-end-points of n dimensional data 
from the n component vectors of each row. SBP facilitates 
numerical analyses of data based on vector fusion; facilitates 
visualization of data that has been simplified via vector fusion; 
and reduces huge databases in an interesting fashion. 

4. SBP MODEL 

4.1. Description 

"Points" are a critical concept when visualizing the values of a 
spreadsheet. The concept of the tag associated with each point is 
also important. 

A point consists of: 
A. a value (a number), and 
B. its tag that consists of 

1. A designator indicatiug columnar association (unit 
angle vector in 2D or [r,y] display space), 

2. A row number associatiOn (the u t  vector z 
associated with depth in 3D display space), and 

3. The name of the spreadsheet. 
To "ize visual clutter, tags are not printed in Display space. 

The explicit construction used by SBP is summarized in Figure 
3. SBP is also explaiued and demonstrated in [4], [6]. 

Pairing of all component vectors was chosen to create images of 
4D and 5D cubes similar to those dram manually. The two 
component vectors in each pair are plotted at 90' to each other, 
as are the first two dimensions in Figure 1 and Flgure 2. 
Pairing is not necessary in general for SBP; the component 
vectors could each be at their own angle as shown for 
subsequent dimensions in Figure 2. But pairing is helpfbl in 
visual comparisons with classical structures, and pairing into 
orthogonal sets is very helpfil in understanding the complex 
shapes generated for multi-dimensional entities. The effect of 
pairing is demonstrated statically in Figure 4 for View 2 of the 
circle and View 2 of the 4D Spherical Helix, the right-angle line 
sets in red are the orthogonally paired component vectms. 

Helices of the various curved geometric shapes are created in 
nDV's Geometry since data point summations are lines or 
curves, not surfaoes. 

In Figure 3, two small spreadsheets are given; the iirst is for 4- 
dimensional SBP vectors, the second is for 6-dimensional 
vectors. Three rows of zeros space the vectors apart. The first 
model illustrates 4 SBP component vectors, each of 4 
dimensions (Dimensions B,C,D,E from the upper spreadsheet). 
Note that the ikst two vectors are comprised of 4 unit-length 
components, one for each dimension. The second two vectors 
have differing length components as defined in their 
spreadsheet, The four vectors correspond to the four rows: Row 
3, Row 4, Row 8, and Row 9 of the spreadsheet. Each vector is 
made up of components from each dimension (column). The 
images are prints of actual SBP component vectors from their 
defining spreadsheets with these Excel row and column labels. 

An important detail of SBP component vectors is that they are 
plotted as vector resultants - i.e., each vector component is 
added as a vector to the previous component vectors. 
Orthogonal pairs of successive component vectors are plotted at 
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successive angles with respect to each other. In the case of 4 
dimensions, the second pair of component vectors is plotted at 
45” with respect to the 5st  pair. In the case of 6 dimensions, the 
second pair is plotted at 30’ with respect to the first pair, and the 
3d pair at 30” to the 2“d pair or at 60” to horizontal. 

The general rule is to plot paired orthogonal sets of component 
vectors at ( a = 180’ / n) degree increments where n is the 
number of dimensions involved. 

The lower spreadsheet in Figure 3 defines four vectors each of 
6-Dimensions (a, C, D, E, F, G) that are separated from each 
other by 3 rows of zeros (to provide visual separation). The fbur 
vectors are defined for the cell values in rows 22,23,27,28. 

The mge View is a rotation of the SBP models in the first view. 
Each pair of orthogonal component vectors is plotted at a slight 
“Broken-line” piece of “Parallel-coordinate” distance, and it is 
plotted into the ‘’2” or “depth” direction of the 3D display space 
used for SBP visualizations. The Edge View show a small 
“Broken-line” offset, and it shows the larger parametric steps of 
the defining parametric equations in the depth or z direction of 
display space. 

SBP models are best viewed dynamically in conventional 3D 
display space 161. Dynaaic or animated viewing of SBP models, 
and of nDVs Parallel Coordinate models, conveys deeper 
understandings of the structures involved than is possible with 
the static images presented in the origiual Parallel coordinate 
models [3]. 

4.2. Characteristics of SBP Data Models 

The principal attributes of SBP models are: 
A. Great reduction in the visual complexity frokm that of the 

Parallel Coordinate models shown in [3] and [4] when 
only SBP end-points are displayed. 

B. The n points (per n-D vector) in Parallel Coordinates are 
reduced to one resultant point. 

C. The coordinate sequence dependency of Parallel Coordinate 
models is eliminated [4],[6]. 

D. Shapes seen are not intuitively obvious initially. Multi- 
dimensional structures are complicated 

SBP vector endpoinis are commutative with respect io column 
sequence. Commtativi@ arises direcily as one property of 
vector addition. 

Understanding SBP mapping is helped by observing and 
studying SBP models of classic geometries, Figure 4. Since 
these geometries are generated by parametri c expressions, 
“solid“ shapes are helices of cylindrical, spherical, or toroidal 
form. 

Straight lines from classical orthogonal space appear as 
straight lines, and circles as circles in these multi-dimensional 
images of SBP. These charactmhtks are also Properties 
resuldngjkom vector addition 

3D SBP spherical helix structures have the characteristic 
“spherical” line signature of FSgure 4. The “sphericity” in SBP 
is not that of 3 0  spherical helices in orthogonal space because 
SBP models are basically 2D representations of n dimensions. 
Helices with very small pitch and mauy points can appear as 
surfaces. Note the shape of the particular 4D spherical helix in 
Figure 4. One needs to see these shapes in animation to 

understand and recognize the signature forms of basic geometric 
shapes in SBP. 
4.3. Purpose of Geometric Images 

Visualization studies can comprise at least four generic kinds of 
analyses, all of which draw upon geometric images for 
understandina: 
A. 

B. 

C. 

D. 

Analysis Gf each coordinate’s data to determine its internal 
structure 141. 
Determining if the multi-dimensional data implies the 
presence of any higher geometric symmetries. In other 
words, can the data be fitted to any classical multi- 
dimensional geometries? 
Utilizing Vector Data Signature capability to identify and 
simplify complex entities. 
Research into the power and meaning of the characteristic 
signature shapes generated by SBP. 

Geometric images demonstrate SBP signatures for a range of n- 
D models using classic simple geometric shapes. SBP straight 
l ies,  circles, and spherical helices of 3,4, 6 and 8 dimensions 
are given in [4], [6]. 

Parametric expressions for geometric shapes are a key tool for 
studying data structure in Parallel Coordinates and in SBP. 
Parametric expressions reveal elements that create specific 
geometric shapes. Use of parametric representations enables 
mathematical generalization processes for creating successively 
higher dimensional versions of those shapes. As shown in the 
equations of Figure 4, higher dimensional definitions in 
parametric equation form are then used to generate images of 
those higher dimensional structures. Familiarity with SBP 
images of high dimension geometric shapes, and knowledge of 
the Fourier components that constitute such shapes is very 
helpful in syntheses matching data to the appropriate high 
dimension geometry. nDV’s parallel coordinate images are 
used to understand each dimension’s structure by itself. SBP 
images display the cumulative structural effect of all 
dimensions. SBP images are easy to generate and examine. 
They also show the effect of all n dimensions on each other. 

For data of unknown structure, Fourier analyses of each 
dimension’s data down each column gives the sine and cosine 
makeup of each dimension. With this Fourier knowledge, the 
complete spectrum of circular or spherical components 
describing each coordinate’s structure is identified. 4.3.B. above 
uses this process to identi@ higher geometric symmetry. 

Understanding of structure is enhanced by viewing the 
animated, fly-by, structures in display space (both Maple fbr 3D 
and SBP for nD) compared to static prints. 

5. VECTOR-FUSED DATA SIGNATURES 
5.1. Derivation 

SBP generates a single point 3D vector resultant from the data 
in all n ~01umus for each row of the spreadsheet. This discrete 
point is the vector resultant of that row, providing a 3D end- 
point identifyina, the n dimensional data of that row. This SBP 
vector can be visualized in 3D display space, and it can be 
manipulated mathematicall5 this end-point resultant symbolizes 
that data, and it is a repetitive, reproducible, quantitative 
measure of that data. 

The single-end-point is the vector-@ed signature of that data. 
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The set of component vectors are the unique vector definition of 
that data because the single-end-points could possibly be 
generated by other component vector combinations. When 
concerns about uniqueness arise, the set of component vectors 
provide unique identification. 

5.2. Applications 

A key application of Vector-&sed Data Signatures is 
identification of substances by their infhred, Raman, x-ray, 
sonic, or other spectra. Spectral analyses are powerFul tools in 
science used to characterrze ' substances and their structure. A 
spectrum usually arises as an analog image generated by 
detectors of energy and drawn typically as a function of 
!hquency. Such specira are intricate pattems that are difficult to 
recogllize visually. 

Vector-fused Data Signatures provide a new m y  to identify 
spectra: immediate digital recognition of a substance by its 
vectorized spectral signature. 

The analog image of a spectnrm CBD be converted to digital data 
for representation in a spreadsheet by sampling the frequency 
and amplitude values of that image. An example of this is given 
in the next section. Quantization of images needs to be at a 
sufficiently high resolution to capture all important details. Each 
sampling fhquency is considered to be a dimension so that 
columns correspond to discrete fhquencies. A spreadsheet row 
of amplitude values at those sampling frequencies is the 
digitized spectrum. 

The SBP vector sum for the row of amplitude values at each 
sampling frequency is a single 3-dimensiond point in SBP 
display space. This single-end-point is the Vector (SBP) Data 
Signature for the values in that row. Vector Data Signatures 
can be identified, compared, added, multiplied (weighted), and 
visualized as a single point in normal 3D display space. 

Vector Data Signatwa are single point idmtiyers (in 3 
dimensions) of multi-dimensional entities having any number of 
dimensions. 

Identification of spectra with their Vector Data Sigaature c a ~  
become a powerful way to see, manipulate, identify, and 
understand substances and mixtures of substances. 

5.3. Example: a Vector Data Signature for 
Spectra. 

The technique for identifying spectra using SBP bees by 
representing a typical spectrum as a row m a spreadsheet. The 
following examples of spectra are &om reference [5]. The 
single-point 3D SBP Vector Data Signatures (DS) of the spectra 
of some chemicals are [DS3, = (value of s, value of y, value of 
z)in SBP space]: 

tert-butylacetylene: DS3, = (149,1534, -1.5) 
diethyl-ether(&) DS3, = (96,942, -1.5) 

isopropylgroup DSSl =(151,1315,-1.5) 

The subscript indicates the number of sample points per 
spectrum; here 31 samples are taken per spectrum. The larger 
the number of samples, the more accurate the signature. For 
identification purpes .  the same number of sample points nee& 

(adulterated mixture with t&-bUtylaWtylm) 
tert-butyle POUP DS3l = (78,1553,-1.5) 

to be wed for each spectrum. Sampling of chemical spectra with 
1800 sample points appears to be proving adequate and accurate. 

To understand how to use SBP generated signatures, begin by 
assuming that a simple line spectnun looks like: 

Further assume that there may be, for example, 1800 possible 
spaces for a spectral line, some of which are filled as sketched, 
most of which have nothing. The set can then be considered a 
row of a spreadsheet 1800 columns wide. Some cells have a 
value, in this case unit value, the others zero. Column 
designation corresponds to sampling fkequency ( or wavelength). 
SBP treats the row index as a small uniform offiet in the z 
direction (as in the Edge View of Figure 3) and cumulatively 
generates the values for z shown in the DS31 signatures above. 

Making an SBP model from one row of a spreadsheet generates 
one 3D point as the vector resultant of all 1800 component 
vectors (coordinates). Any time that this specific spectrum is 
encountered, there will be one point at that location in SBP 
space, Figure 5. Many different spectral measurements of the 
substance that generates this specific spectral pattern will 
generate a cluster of points. The better the measurements, the 
tighter the cluster. Similarly for a second substance B; its 
spectrum will create a point at a different location in SBP 
display space. 

r * \  

El Figure 5. 

Assume that there are 3 clusters representing 3 substances at 
A n , B  9 a n d C h  . Anytimeaspectrumistalcenofoneof 
those substances, there will be another point added to one of the 
clusters. Assume that one wishes to determine the % mix of 
substances A and B. To do this, one needs to map the profile of 
points that represent increasing percentages of B as one moves 
from A to B. The line shown in Figure 5 indicates one possible 
profile. Once calibrated, the spectrum of a mixture of A and B 
generates a known point on this profile. Similarly, one can 
calibrate percentage mixes of C going from A to C, and then 
from C to B. Calibrating these spectra for mixes of A$, and C 
will generate a d a c e  contained inside these boundaries. 

The spectrum of a sample containing an unknown mix of these 
substances will generate a point &at fits on this surface. Once 
such a surface has been calibrated, one sample spectrum of the 
unknown will immediately identify which substances are in the 
mix as well as their percentages in that mix. 
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The sample spectnun above had only "ones" in it - i.e., a 
ftesuency line was either present or not. Actual spectra, such as 
those used to generate the DS 31 signatures above, have values 
associated with each frequency (the amplitude at that 
frequency). SBP generates vectorized singleend-points for any 
set of values in a row across a spreadsheet. Any spectrum (or 
any other kind of data such as target data) can be represented as 
a row in a spreadsheet. Its vector signature can then be generated 
by SBP. 

Vector data signatures are a computer manipulatable "finger 
print" for complex, multi-dimensional entities. SBP end-points 
are a 3-dimensional signature for an n-dimensional entity. 
However, it is possible that other n-dimensional entities can 
generate this same 3D end-point. 

Uniqueness of an SBP signature is confined only by 
comparison of the authentic set of componeni vectors wiih the 
set of component vectors comprising the unknown vector to be 
identified. 

6. CLASSES OF APPLICATIONS 
6.1. ATR. 
Automatic target recognition is an application where targd (or 
objectives) are characterized by many experimentally 
determined criteria. A particular example of "target" recognition 
is with Vector Data Signatures. As in the case of identifying 
specific spectra, "target" characteristic signatures can be 
assigned to any image or relationship that can be articulated. 
Experimental descriptions, image descriptions, numerical 
c-ons are appropriate. Vector Data Signatures 
identify anything that can be quantified. 

6.2. Multidimensional models of scientitlc data 
Fitting multi-dimensional data to multi-dimensional geometries 
is a new research capability enabled by being able see multi- 
dimensional structures and by being able to synthesize multi- 
dimensional structures firom the data of each dimension. This is 
43.B above. 

Proteins, for example, are typically modeled as long, twisting, 
folded nibons in 3D space. These models are typically 
assembled from many samples of ID data structured to fit into a 
three dimensional image. Approximately 14 different canonical 
fold structures are used in the 3D synthesis. The resultant is the 
long ribbon structure used to illustrate a protein in 3D drawings. 

One issue is, what are the "native" dimensions of a protein, and 
a second issue is, how many dimensions are there? An nD 
visualization hypothesis is that protein data could be fitted to an 
8-dimension toroidal helix. The nD torus is a more general 
structure than are nD spheres. nD spherical helices are 
synthesized by Fourier components only. 

Fitting sbructures fiom nature to multi-dimensional geometries is 
greatly facilitated by being able to see and treat the data as 
multi-dimensional. Seeing data in its appropriate nD geometry 
may reveal more symmetry or relevant structure of that data than 
do multi-dimensional models viewed with only tbree dimensions 
at a time in the manner of Maple or Mathematica program 
packages, 

7. SUMMARY 

Data-dehed multi-dimensional entities can be modeled and 

5.4. Meaning of Data Signatures 

. .  

visualized using either nDVs Parallel Coordinates or SBP 
Vector Coordinates. These new capabilities use two different 
techniques to facilitate understanding: animation, and mappings 
that maiutain straight lines as straight lines to assist intuitive 
perception. SBP generates single-end-point geometries. 

The techniques are of a general utility. They can be used to 
model, show, see, analyze, and to come to understand the 
relationships and structures of any multi-dimensional system. 

These techniques are extendable: 
A. They are being used to visualize systems that are %maU" in 

the sense of a person's ability to see rtnd perceive 
entities of relatively simple complexities, and 

B. They can be applied to any size data. SBP Vector Data 
Signatures are applicable to all pattem recognitions 
and reduce the amount of data to be analyzed or visualized. 

Further work remains to fully characterize SBP mappings and to 
verify the results mathematically. The purpose of models and 
visualization techniques is to facilitate the understanding of 
structures within multi-dimensional datasets. These models are 
intended to help answer the question: What is this data telling 
us? However, other techniques classically used to analyze data 
are still relevant. Visualization of multi-dimensional entities is 
expected to be of significant assistance in directing and using 
other data analysis methodologies. Zi nebs to see it. 

The new capabilities for presenting multi-dimemional visual 
models lead to new approaches for data analysis. Synthesis of 
models for multidimensional data using, for example, Fourier 
techniques, is a new capability resulting from the work 
presentedhere. 

These new methods support mnstruction, use, and inkrpretation 
of entities that are believed to be usefilly represented as multi- 
dimensional systems. Many systems of scientific interest may 
be modeled as multi-dimensional entities because such systems 
are often generated or characta+zed by many separate 
parameters. Examples considered for the SBP approach are 
protein structures, Calabi-Yau figures in super-string theory, and 
the ultimate structure of the universe. 
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Figure 3: SBP Vector Structure 
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