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Abstract

This paper introduces a method of viewing multi-dimensional surfaces. Economists may find
it useful when estimating complex econometric models or using sophisticated simulations, to
gain some intuition on what their models “look like.” Besides describing this method, this
paper explores two estimation problems: a rational expectations model and the estimation of a
translog production function.

Introduction

Economists use multi-dimensional functions most every day in their research. Obvious examples
include statistical optimization by maximum likelihood and simulation of complex models. How-
ever, unlike their cousins with two dependent variables, multi-dimensional functions are difficult
or nearly impossible to visualize. While formal analysis hardly requires visualization, a “feel” for
the function certainly aids intuition and can help the researcher understand the model’s quirks. It
may also aid choosing the appropriate optimization algorithm. Conventional algorithms, such as
conjugate gradient, variable metric (quasi-Newton), and the simplex method assume that the func-
tion is unimodal (and the first two assume that it is roughly quadratic). Of course, functions can
be more complicated, and for these problems, a variety of methods have been proposed, includ-
ing the genetic algorithm (Dorsey and Mayer, 1995) and simulated annealing (Goffe et al., 1994).
However, they are more computationally expensive, so it is not necessarily wise to use them in-
discriminately. To some degree this paper follows Goffe (1999), where three different methods
were used to illustrate different functions and to aid in the selection of the correct optimization
algorithm.

As described in Goffe (1999), the literature on the visualization of multi-dimension functions
appears to be surprisingly limited. Some require sophisticated software, others require substantial
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user training, while others are not suitable for many dimensions. For instance, Feiner and Besh-
ers (1990) develop an interesting method that unfortunately requires their complex software with
stereo glasses. Bowyer et al. (1998) has the same complexity, but does not require stereo glasses.
Inselberg and Dimsdale (1994) describe “parallel coordinates,” but they are not suitable for arbi-
trary function surfaces (they can be useful for statistical data). Rucker (1985) is clearly limited to
four dimensions.

The next section of this paper describes the method, and following that are two example sec-
tions. The first one contains simple functions to illustrate this method, and the second shows the
surfaces of two econometric estimation problems (a rational expectations model and a translog
production function). From these “pictures,” one gains insight into these models.

Formulation

The method introduced in this paper is built upon polar coordinates in n dimensions using the
formulation from Kendall (1961, pp. 15-16). Polar coordinates in n dimensions are

(1)

with

This clearly simplifies to the the well-known set of polar coordinates in two dimensions:

with and spherical coordinates in three dimensions:

with
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Of course, this hardly aids the plotting of a multi-dimensional function—it simply changes
the coordinate system. To plot a multidimensional surface as a function with two inputs, we will
“collapse” the vector to a function of the scalar variable , as follows:

(2)

Note that the restrictions on the values of are achieved with this parameterization. Also note
that with the exception of the value of , the values of are orthogonal to each other, so one
can think of the ’s as roughly sampling -space in an efficient manner.

To plot a multidimensional function, one plots the function’s value as a function of and .
Thus, a function of several dimensions appears as a plot in polar coordinates with two inputs. The
radius of the original function is maintained, and subsumes the vector. As will be seen below,
it does so in a particularly useful manner.

To illustrate this method for , the systems of equations (1) and (2) become

with

The function is then plotted as a function of and . For larger n, the function
is plotted the same way, but contains a larger vector of . Thus, a number of variables can be
plotted, but as described below, there are some practical limits.

Examples of several functions are shown below, but first it is useful to examine the Cartesian
coordinate axes of the original function with this method. Rather tedious inspection shows that for
arbitrary , and for various values of , this method “hits” each Cartesian coordinate axis. Thus, the
Cartesian coordinate axes are “maintained” with this method. For Table 1 shows the values
of and the resulting axes ( denotes the axis with the positive or negative end denoted by the
appropriate sign). Figure 1 illustrates this with a unit sphere centered on the Cartesian coordinate
origin. The curved dotted line on the sphere shows the values of as a function of and
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, which in turn is a function of as it moves from to (the initial and ending point
is ). A careful look will show that the curved dotted line intersects each of the coordinate
axes (an animation would clearly be useful here). Figure 2 shows the same sphere from overhead
(along the axis) and Figure 3 show the sphere from the side. These figures give a sense of how
the “samples” various values of .

Table 1
x axis

Figure 1: Unit Sphere with Coordinate Axes
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Figure 2: Another View of the Unit Sphere

Figure 3: Yet Another View of the Unit Sphere
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Non-Economic Examples

This section illustrates this method on several non-economic functions. As in the rest of this paper,
only three variables are plotted. Four or perhaps five variables could be plotted, but the number
of coordinate axes would be 16 and 32 respectively. Clearly, to plot a large number of variables
with this method, one needs either a large monitor or large page. However, useful results can be
obtained with even a relatively small number of variables.

Figure 4 shows the function

Using the notation of the previous section, the Cartesian coordinate axes are marked in the plot.
The function is plotted for values of from 1 to 10, and the symmetric nature of the function is
very easily seen.

Figure 4: Symmetric Function
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Another symmetric function is shown in Figure 5; it is

Again, it appears exactly as one would expect.
Figure 6 shows a variation of Figure 5 that is not symmetric:

6



Figure 5: Another Symmetric Function
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Figure 6: Non-Symmetric Function
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The impact on the and axes is very clear and entirely predictable.
Figure 7 shows another non-symmetric function:

Note how the positive regions appear in two places—there is some redundancy with this technique.
Recall Figures 1, 2 and 3—the function is sometimes “sampled” at nearly identical points.

Figure 7: Another Non-Symmetric Function
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Economic Examples

Following Goffe (1999), the function from Hoffman and Schmidt (1981), with synthetic data from
Veall (1990) is examined here. It is a rational expectations model estimated by maximum likeli-
hood. It has 8 variables: and . The model is described by

(3)

(4)

(5)

(6)

(7)
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Equation (7) is derived from the other equations, and (4), (5) and (7) are used to estimate the
model.

Figure 8 shows the first three variables plotted. The center point is the minimum found via sim-
ulated annealing in Goffe (1996) (as described there, this function is relatively hard to optimize).
The results are not terribly remarkable—they confirm that the center point does indeed seem to
be the minimum (it has a value of 79.67), and that the function varies in these variables, which is
hardly surprising.

Figure 8: Rational Expectations Model
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Figure 9 shows the function for the last three variables (all variances). As this plot makes
immediately clear, this model cannot distinguish the values of these parameters. This was hinted
at in runs of simulated annealing in Goffe (1996), but the ancient adage about pictures would seem
to apply here.

To further illustrate this visualization method, a translog functional form was fitted to synthetic
data generated from a CES production function. A standard CES production function, with inputs

and and output of the form

was used, with A set to unity, to .75, and to 4. This value of was chosen as it leads to an
elasticity of substitution of .2, and as Wales (1977) reports, the translog has a difficult time with
the CES when this elasticity strays from unity. The number of observations was set to 100, and
both and trended upwards with random variation supplied by the pseudo-random number
generator of Marsaglia and Zaman (1987). From the generated data, the translog functional form
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Figure 9: Another View of the Rational Expectations Model

x1

x2

x-1

x-2
x3

x-3

x-3

x3

-15

-10

-5

0

5

10

15
-15

-10
-5

0
5

10
15

64

66

68

70

was fitted by minimizing the sum of squares using simulated annealing (granted, it could have
been estimated with OLS, but hopefully this will provide insight for those translog models that
cannot be estimated with OLS). The plot for the last three ’s is shown in Figure 10 (the first three

’s show a similar pattern). The extreme steepness of this function is clear from the labels on the
z-axis; at a radius of 10 from the minimum (with a value of .19), the minimum value is 574, and
the maximum value is 61,193. While not a serious estimation problem here (although simulated
annealing did find it a bit of a challenge), it does suggest that for more complex translog models,
the very steep valleys might hinder easy estimation.
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Figure 10: Translog Production Function
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Conclusion

This paper introduced a method to visualize a function of multiple dimensions in a relatively in-
tuitive manner. Economists may find it useful for dealing with difficult functions that arise in
estimation and modeling. While one is limited to plotting four or perhaps five different variables,
as the examples showed, this is often sufficient to gain valuable insights.
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