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ABSTRACT

Historically, efforts at user modelling in educational
systems have tended to employ knowledge representations
in which symbolic (or “linguistic”) cognition is
emphasized, and in which spatialhisual cognition is
underrepresented. In this paper, we describe our progress
in developing user models for an explicitly “spatial”
educational application named HyperGami, in which
students design (and construct out of paper) an endless
variety of three-dimensional polyhedra. This paper gives a
brief description of the HyperGami system, discusses our
observations (and experimental results) in understanding
what makes certain polyhedral shapes diftlcult or easy to
visualizq and describes the ideas through which we plan
to augment HyperGami with user models that could
eventually form the computational basis for “intelligent
spatial critics.”
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INTRODUCTION
It has long been an ambition of software designers—
particularly designers of educational computing systems-
to incorporate user models in their applications. Indee4 it
is arguable that the entire field of intelligent computer-
aided instruction (ICAI) is based ultimately on the notion
of creating computational models of students’ knowledge,

skills, or goals; these models may then be employed to
diagnose errors or misconceptions, chart progress, or offer
guidance or advice. Classically, such models have
employed schemes in which students’ knowledge is
represented in symbolic structures-as a collection of
productions [1], as a structured “lattice” of skills
(expressed as production-like rules) [5], as a semantic
network of facts (expressed as relationships between sym-
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bols) [7], or as a set of “issues” with which the student is
familiar [6]. Perhaps not coincidentally, the domains to
which these models are applied—the domains for which
the ICAI systems are thus written-tend to anticipate the
knowledge representation schemes to be employed. These
systems consequently focus on domains in which
expertise seems to be most easily expressed through
natural language-domains such as game-playing [6],
subtraction [5], algebraic manipulation [1], geographical
knowledge [7], programming [1, 17], and so forth.

Important as these “linguistic” representations of
knowledge are, there is an increasing body of evidence to
suggest that spatial/visual cognition is an important
factor in expertise in a variety of mathematical, scient~lc,
and artistic domains. Gardner, for example, includes
spatial intelligence as one of his “multiple intelligences”
[14]; while Siemankowski and McKnight [25] present
evidence that spatial cognitive abilities show a strong
correlation with performance in college science curricula.
Undoubtedly, in the lore of creative scientific and
mathematical work, visual imagery and thinking are
accorded a high importance in a marvelous boolG Miller
[19] presents historical evidence indicating that such
thinkers as Boltzmann, Einstein, and Poincar6 thought of
their own cognitive processes as strongly visual in naturtz
Hadamard [16], in a classic description of mathematical
cognition, places a heavy emphasis on visual thinking

(see also Fomenko [13] for a more recent expression of
similar sentiments); while Ferguson [11] discusses the
role of visual thinking in engineering and design.

This paper follows up on the work of these researchers,
describing our progress in developing user models for a
domain that is strongly spatiovisual in nature: namely,
the construction of three-dimensional polyhedral solid
shapes. Our motivation for these user models arises from
efforts in creating an educational software system,
HyperGami, that permits students to create and explore
polyhedral forms on the computer screen, and to then
construct tangible paper versions of those shapes. Our
user models have been informed both by systematically
observing students using HyperGami and by conducting a
study (with 24 undergraduate participants) to illuminate
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the difficulties that adults have in understanding and
interpreting three-dimensional shapes. In its present state,
our user modelling component for HyperGami is only
partially complete, and has thus not yet been incorporated
in the HyperGami system “out in the field; ultimately,
our goal is to employ this component as part of a larger
“critiquing system” for visual thinking (building on ideas
of Fischer and his colleagues [12]), in which the computer
can advise students of heuristics for visual thinking and
interpretation as applied to particular mathematical and
design tasks.

Before proceeding further, it should be noted that the
status of “mental imagery” (and by extension,
“visual/spatial cognition”) as an experimental construct in
cognitive science has long been a matter of intense debate.
Some researchers (e.g., Pylyshyn [23]) argue that there is
little support for a uniquely “imagistic” element to
cognition that cannot be accounted for by more traditional
symbolic models; while others (e.g., Kosslyn [18])
present arguments for an integral role for mental imagery
in visual processing tasks such as object recognition.
This paper will not seek a resolution of this debate
(Gardner [15] and Tye [26] present good chapter- and
book-length summaries of the arguments, respectively;
while Block [3] includes a number of provocative essays
both “pro” and “con” on the subject). InsteacL we take an
essentially pragmatic approach to the question our goal is
to represent users’ understanding of three-dimensioml
shapes in terms that are primarily visual/geometric in
nature (e.g., which faces or edges are “imaged by the
user, and in what orientation), and to present the user with
visual-thinking heuristics that make use of these terms.
We believe that this “visually-oriented language carries
pedagogical value, inasmuch as it respects people’s typical
introspedive experience of understanding solid geometry
nonetheless, we acknowledge that our visually-oriented
vocabulary may ultimately come to be viewed as a
suggestive shorthand for some more general (and by
implication less “visual”) representation.

In the remainder of this paper, we present our ideas for
implementing user models for tasks in spatial cognition.
The following (second) section motivates our work by
presenting a brief oveiwiew of the HyperGami system. In
the third section, we discuss several experimental results
relevant to the question of what makes certain HyperGami
solids “difficult” or “easy” for users and we outline the
essential points of a pragmatic computational metric for
“degree of diftlculty” in visualization. The fourth section
describes how these computational ideas have been
implemented, to date, as working user models to be
incorporated in the HyperGami system, and we conclude
with a discussion of ongoing and future directions for
research.

HYPERGAMI: AN EDUCATIONAL SYSTEM
FOR THREE-DIMENSIONAL DESIGN
HyperGami is written (by the first two authors) in
MacScheme [S 1] and runs on all color Macintosh
computers. The basic idea behind the program is that it
permits users to design customized polyhedral shapes, and
to view those shapes in a three-dimensional rendering on
the computer screen; the program then “unfolds” those
shapes into a two-dimensional pattern (a “folding net”)
which may then be decorated output to a color printer,
and folded into a tangible mathematical model. Figure 1
depicts two of the windows on the HyperGami screen:
here, an octahedron is shown both as a three-dimensional
solid (in the “ThreeD” window) and in folding net form
(in the “TwoD” window). The user is in the process of
decorating the folding net, employing a variety of
techniques: hand-drawn figures, turtle graphics, solid
colors, and patterns have been employed in the decoration
shown. (Still other types of decorative strategies—
including, e.g., color gradients—are available in the
program as well.)

Figure 1. A HyperGami solid (at right, in the ThreeD
window) and corresponding folding net (at left, in the
TWOD window). The user has decorated the folding net
which will eventually be printed out and folded. The
figure also shows another feature of the HyperGami
system, in which the user has elected to “paint” the
decorations of the folding net over the view of the three-
dimensional solid to provide an indication of what the
eventual solid will look like when it is folded.

An especially powerful feature of the HyperGami system
is its design as a programmable application [8] in which
direct manipulation interface techniques are combined with
an interactive programming language. HyperGami
includes an “enrich&i” version of the basic MacScheme
language—a version augmented with an extensive
vocabulary of application-specific procedures and objects.
The user can thus employ HyperGami’s version of
Scheme to quickly create an endless variety of customized
polyhedral solids (starting from simpler shapes). Figure 2
shows an illustration: the user has “truncated” the
octahedron of Figure
“jewel-like” shape),

1 at one of its vertices (producing a
and the program has produced a
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folding net for this new solid. HyperGmi in fact contains
the ingredients for what might be considered a “functional
algebra” of solid objects, allowing users a variety of
means for creating new solids from old ones: by
combining two solids together at a face, by slicing a solid
through a plane, or by stretching (or shrinking) a solid
along some axis.

t5EP

while the prism has two types of faces and two values for
the dihedral angle). Nonetheless, most observers would

report that the prism “feels”, intuitively, like a simpler
shape. Clearly, then, the most obvious metrics-number
of faces, types of faces, and so forth-are inadequate to
describe the reasons that certain shapes are introspectively
deemed “easy” or “difficult.”

Figure 3. The decagonal prism (left) and the dodecahedron.

Figure 2. The folding net and three-dimensional solid
view of an octahedron that has been truncated at one
vertex.

Our interest in developing HyperGami is in creating an
exploratory y and artistic tool for solid geometry,
appropriate both for children and adults; much more detail,
both about the system and about its educational uses, can
be found in [9]. To date, the system that we have fielded
has not been augmented with a user modelling
componen~ but in observing the sorts of diftlcuhies that
students have in visualizing three-dimensional solids, we
have come to the belief that HyperGarni could be usefully
extended by modules that anticipate which solids might be
problematic for users to visualize. With the addition of
such modules, the HyperGami system might eventually
be employed to offer advice in how to develop skills of
spatial visualization. The remainder of this paper describes
our progress in this direction. We begin, in the following
section, with a discussion of our observations (and
experimental results) in investigating the question of how
the sorts of polyhedra constructed in HyperGami are
visualized by students.

WHAT MAKES THREE-DIMENSIONAL
SOLIDS DIFFICULT (OR EASY) TO
VISUALIZE?: SOME EXPERIMENTAL
RESULTS
The attractiveness and fascination of polyhedra is often
noted by teachers of mathematics [21]; but it is
worthwhile to ask what particular factors make certain
polyhedra appear “easy to visualize” for students, while
others are viewed as more difficult. As an example, we
might contrast the two shapes shown in Figure 3: a
decagonal prism and a dodecahedron. Both shapes have
twelve faces; and the mathematical description of the
dodecahedron is, by some measures, simpler than that of
the prism (the dodecahedron, for instance, has only one
type of face and only one dihedral angle between faces,

Figure 4. Three elementary-school students holding an
octahedron as they discuss their view of the shape. In each
case, the child held the shape in a “diamond” orientation
(and all three of these children verbally described the shape
as a “diamond” as well).

One important clue toward answering this question may
be found in the manner in which people place preferred
orientations on solids. Consider, for example, Figure 4:
this figure shows several stills from videotaped interviews
that we conducted with three representative elementary-
school-aged HyperGami users during the past year. In
these interviews, the children were asked to discuss
(among other topics) their ideas about certain solid
shapes; in the figure, the three children are shown holding
an octahedron (originally shown in Figure 1, and depicted
in two alternative orientations in Figure 5). A striking
element of the children’s discussion of the octahedron is
their consistency in its orientation for each child, the
shape is held in a “diamond” orientation (i.e., with a
vertex at the top and bottom)—and indeed, all three
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children described the shape as a “diamond’-even though
this is not the orientation that the solid would occupy if it
were placed on a table. Figure 5 shows this “stable”
coutlgumtion of the octahedron.

.&...&.....
Figure 5. The octahedron, in its “diamond” (left) and
“stable” (right) configumtion.

The “preferred” orientation suggested by the video stills in
Figure 4 was corroborated by a more recent systematic
study. In this study, 24 undergraduates (14 males and 10
females) were tested for their interpretations of various
solid shapes. Each subject was asked to look at 12
polyhedral shapes: in the experimental procedure, the
subject extracted the shape (a paper model) tlom an opaque
box handled the shape and studied it for 30 seconds; and
then replaced the shape in, the box. With the shape out of
sigh~ the subject was then asked both to sketch the shape
and to write a brief (at most 2-sentence) description for the
shape. This protocol was repeated for each of the 12
separate shapes. After viewing all 12 shapes, the subject
was also asked to write down a name for each of the
shapes (if the subject felt that the shape could in fact be
described by a name). (Compare Woodrow’s [27] study of
children drawing cubes, and Mitchelmore [20] for a study

along similar lines conducted with children in Jamaica and
the United States.)

Space considerations preclude a detailed description of the
results of this experiment ([10] presents much more
thorough analysis), but several particular results are worth
mentioning here. In sketching the octahedron 20 of the
24 subjects produced a drawing that could (conservatively)
be interpreted as presenting the solid in the same
“diamond orientation indicated in Figure 5; indeecL 10
students included the term “diamond either in their
description or one-word name for the solid (and 9 of those
who did not use the word “diamond” indicated an
interpretation of the solid as some sort of “double
pyramid”). Similar consistent orientation preferences were
seen for a number of other shapes: Figure 6 shows several
solids in their “preferred orientations. On the other hancL
for the “doubly-capped cube” shown in Figure 7, 16 of 24
studenta drew the shape in its “vertical” orientation and 8
in its “horizontal” orientation; thus, while there was a
clear preference for the former orientation, a significant
number of subjects chose an alternative orientation.

The results of this study (and of the earlier interviews)
suggest that in forming images of solid shapes, people

have a number of orientation heuristics at work. In some
cases (as for the octahedron, or the “house” in Figure 6)
these heuristics tend to produce an overwhelming

preference for a particular orientation (or, what maybe the
same thing, a rejection of alternative orientations). In
other cases (as for the “doubly-capped cube”) the heuristics
may conflict to produce (among a group of individuals)
more than one “typical” orientation.

Figure 6. Several solids in their apparently preferred
orientations (as viewed from a region in the octant with
positive x-, y-, and z- coordimtes). The square antiprism
(upper left) has its two square faces at “top” and “bottom”;
the capped cube (upper right) is conf@red as a “house”;
the trapezohedron (bottom) has its degree-four vertices at
“top” and “bottom”.

$-——_—
II

i

Figure 7. The doubly-capped cube in the two alternative
orientations (“vertiti and “horizontal”) approximated by
subjects’ drawings.

Our belief is that an understanding of people’s orientation
preferences for solids can provide an important insight
into why certain polyhedra are seen as “difficult” or
“easy.” In order to make an estimate of a particular shape’s
level of “visualization difllculty”, we must fiist produce a
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plausible preferred orientation for the solid and then rate
this orientation according to the presence or absence of a
number of features. Empirically, these “desimble” features
appear to include: a preponderance of non-diagonal edges
(with some preference to vertical as opposed to horizontal
edges); a vertical axis of rotational symmetry bilateral
symmetry; and stability (i.e., the apparent center of
gravity of the solid is over either a “flat” bottom face of
the solid or is directly over the botiom-most vertex of the
solid). By implication the “preferred” orientation for a
given solid is one that gives rise to a combination (in
some sense, the “best” combination) of desirable visual
features; likewise, a solid S will be interpreted as “easy”
compared to S’ if the preferred orientation for S results in
a larger combination of desirable visual features than does

the prefened orientation for S’. 1

It would certainly be possible to conjecture innate
biological bases for these “desirable” visual features of
solids. The human visual system has a higher degree of
sensitivity to vertical (as opposed to diagonal) stimuli—
this phenomenon is sufficiently well-known to go by the
name of the “oblique effect” [2]; thus, a solid orientation
(such as that of the “stable” octahedron in Figure 5) in
which diagonals predominate may be rejected in favor of
an orientation whose edges can be better resolved visurdly.
In a similar vein, human beings themselves (when viewed
frontally) exhibit bilateral symmetry, and this may
account for a preference for solid orientations that likewise
exhibit this feature. (See, for instance, the discussion in
Braitenberg [4], pp. 43-47 and 129-130.) In any event
while these would clearly be profitable directions to
pursue, our own immediate interests are in using the
empirically-determined “desirable visual features” (as
inferred from the favored orientations of particular solids)
to produce serviceable initial estimates indicating which
solids will be viewed as difficult by users. In the
following section, we turn to the question of
implementing these estimates within the H yperGami
system.

INCORPORATING MODELS OF SPATIAL
COGNITION IN HYPERGAMI
There are two central tasks involved in producing a
computational estimate of the “degree of dh%culty” for a
given solid S: fur+ we need to offer a preferred orientation
for S (i.e., we need to find some orientation that produces
a combination of desirable features); second we need to

lNote that these features apply to the solid in a given
on”entution as seen by a hypothetical viewer. For instance,
the two orientations of the doubly-capped cube in Figure
7 differ in their visual features: only the (left) “vertical”
orientation includes a four-fold axis of rotational
symmetry about the vertical axis, while the (right)
“horizontal” orientation appears more “stable” in that it
rests on a face as opposed to a vertex.

evaluate that preferred orientation for S, taking into
account the number of desirable features achieved. We
now examine, in turn, these two tasks and how they are
approached in the current implementation of HyperGami.

Finding a Preferred Orientation of a Solid
We produce a preferred orientation for a solid S in
HyperGami by a generate-and-test method in which the
program first produces a collection of candidate
orientations for a soli& and an “orientation evaluation”
module then compares these orientations for desirable
visurd features. To produce an orientation the algorithm
first assumes that the solid is being viewed from a
position along the positive y-axis, and further assumes
(by convention) that the center of mass of the solid’s
vertices will be at the origin; thus, the “top” of the solid
is above the xy-plane (i.e., in the half-plane determined by
z >= O), and the “left” of the solid (from the viewer’s
standpoint) is in the half plane determined by x >0. The
generation portion of our generate-and-test rdgorithm now
tries two types of rules by which to orient a given solid:
by rendering a particular set of parallel edges vertical; or
by finding a line between two “important” locations on
the solid (where the “important” locations are vertices,
edge midpoints, and face midpoints), checking whether
that line passes through the center of mass of the soli~
and (if so) making that line coincident with the z-axis.
Once these rules am appliq “secondary” rotations maybe
attempted (for instance) to orient a solid so that additional
edges will appear horizontal to the viewer (i.e., these
edges will be parallel to the x-axis). Often, these
orientation rules will in fact produce identical solids; so
the algorithm removes duplicate orientations and
compares distinct candidate orientations. While these rules
do not produce rm exhaustive list of orientations, they do
appear to produce a plausible set from which to choose a
“best” orientation. Figure 8 depicts the four candidate
orientations produced for a cube using these rules: the fiist
(at upper left) is chosen by fwst rendering a set of edges
parallel to the z-axis, then rotating the solid so as to
produce a set of edges parallel to the x-axis. The second
orientation first finds a line between two (opposite)
vertices of the cube and makes this line parallel to the z-
axis; the system then tries to rotate the cube so that a
maximal number of edges are parallel to the x-axis;
failing this, the algorithm rotates the cube so that it is
bilaterally symmetric when viewed along the y-axis. The
third orientation is similar to the secon~ except with an
additional rotation by 180 degrees about the y-axis.
Finally, the fourth candidate orientation of the cube has
taken a line between two other “interesting points’’-two
midpoints of the cube edges—and has made that line
coincident with the z-axis; subsequently, the cube is
rotated so that a maximal number of edges are parallel to
the x-axis.
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Figure 8. Four candidate orientations for a cube.

The “test” portion of the generate-and-test method for
orienting a solid now compares the candidate orientations
(such as those shown in Figure 8) for their desirability.
For instance, among the orientations for the cube shown
in Figure 8, the fwst is judged to be preferable to the latter
three primarily on the basis of the presence of a large
number of vertical and horizontal edges; the stability of
the figure (the fact that it rests on a flat face) is also noted
as a desirable feature of the this Fist candidate orientation.
The algorithm thus deems this orientation the most
desirable overall, and this is the orientation of the cube
that the program produces.

Figure 9 shows two other examples of “preferred”
orientations suggested by the program (along with one
other “less desirable” candidate orientation). It should be
noted that for these shapes, the program’s preferred
orientation is at least roughly consistent with the most
commonly offered orientation indicated by the
experimental subjects described in the previous section
for instance, the program (like the subjects) prefers the
octahedron in a “diamond-like” orientation, and the capped

cube in the “house” orientation. (It likewise prefers the
square antiprism in the “square-on-top-and-bottom”
orientation; and it prefers the somewhat more-popular
“vertical” orientation of the bicapped cube shown in
Figure 7, mildly favoring a pattern in which the “tip” of a
pyramid-like portion of a solid is in a vertical line with
the center of the solid.) Beyond such coarse-grained
qualitative statements, the program’s orientations are
admittedly hard to compare exactly with those of the
subjects, inasmuch as the subjects’ responses were
produced in the form of a drawing in general, the human
subjects seemed to prefer drawing the solids in a
somewhat “oblique” representation whereas the program
prefers a more “head~n” view of a solid. Figure 10 offers

an illustration of this distinction: the left side of the
figure shows a representative view of a triangular prism as
drawn by one of the experimental subjects, while the
second shows the view of the prism when given its

preferred orientation by the program. For both the
program and human subject, then, the prism is oriented
with a rectangular face toward the bottom; but the
program’s preferred view is in principle dwctly “into” one
of the triangular faces of the solid which would therefore
be the only face visible.
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Figure 9. Two shapes with their preferred orientations (at
left), along with a sample “less-preferred orientation (at
right). Top row: a capped cube (“house”). Bottom row: a
square antiprism.
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Figure 10. A subject’s drawn prism (left) and the
program’s preferred orientation of the prism (the viewer is
assumed to be sitting on the positive y-axis, at the right
of the picture, looking toward the origin). The program is
thus “looking” at the prism straight along the y-axis and
its “view’’-unlike that drawn by the student—is simply
of a triangle.

Estimating Difficulty of Alternative Solids
The second step in producing an approximate metric of
“difficulty of visualization” is to compare distinct solids,
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in their preferred orientations, for desirable visual features.
Once the algorithm described in the previous subsection
has produced preferred orientations for two solids S and S,
a “solid-comparison” algorithm produces a judgment of
relative difficult y between these two solids. This
comparison reflects a variety of heuristics similar to those
used in judging between orientations of one particular
solid it assumes that an “easier” solid will include fewer

diagonal edges, a stable (flat) bottom, and bilateral
symmetry. Unlike the orientation-comparison algorithm,
the solid-comparison algorithm does not assume that a
high degree of rotational symmetry about the z-axis is
preferr@ nor does it assume that a greater number of faces
pointed toward the viewer is necessarily desirable.
(Retaining these heuristics would tend to favor, as
“easier”, solids with similar overall structural properties,
but a greater number of faces and edges: for instance, a
decagonal prism in its best orientation would be
interpreted as “easier” than a hexagonal prism.)

Using this method for estimating “difficulty of
visualization”, the program produces a partial ordering of
three-dimensional solids according to their visualizability.
Comparing the best orientations of various solids, we
obtain a rank-from easiest to hardest-as follows (see
figures 6,7, and 9):

Cube > House> Octahedron > Bicapped Cube > Square
AntiPrism > Trapezohedron

ONGOING WORK AND FUTURE
DIRECTIONS
While much progress has been made in developing
pragmatic user models of tasks that employ spatial
cognition in HyperGami, an even greater amount remains
unexplored. First, while these algorithms do in fact
produce plausible estimates of “the easiest orientation of a
solid or “whether a solid S is more readily visualizable
than some other solid S’”, they run at a severely slow
pace (estimating the best orientation of even a relatively
simple solid may take well upward of fifteen minutes),
rendering them currently impractical for rapid interactive
use in HyperGami. That is, we would not wish a
HypeK3ami user to informally cobble together some new
solid and immediately have to pause for twenty minutes
while the program produces an estimate of the difficulty
of the newly-generated solid. The immediate tasks, then,
are to explore ways of generally speeding up the user
modelling process—by having the algorithms run as
“background tasks” within the application, by optimizing
the algorithms themselves (“tuning” them for speed), and
perhaps by sacrificing some accuracy or caution in the
current algorithms (to obtain even rougher estimations of
best orientation and “easiest” solid).

User models of the kind that we have described here may
ultimately be of interest in interface design for
applications besides HyperGami. Consider (e.g.) what
such models might imply for the design of an

“intelligent” CAD system. Ideally, such a program could
estimate which views of a solid-under-construction are
likely to be thought of as difficult or easy, and could
accordingly suggest “easy” viewing angles to help the
user better understand and visualize a new solid; or it
might suggest “hard” viewing angles in the anticipation
that these angles would be unexpected to the user. Going
a bit further, such a system could make some judgment
about whether the user is working on a diftlcult or simple
solid, and could tailor its interface accordingly (e.g., by
offering more advice about especially diftlcult solids, or a
wider variety of alternative views).

There are other, more basic—and perhaps more
interesting-questions that we can now begin to ask by
building upon the user models that we have implemented.
We might wish to know, for instance, to what degree the
heuristics that we have identified and modelled
computatiorudly are culturally dependent (cf. Mitchelmore
[20]) : are people from (say) other geographic regions or
cultural backgrounds dependent upon the same heuristics,
and—if so-do the degrees of dependence differ? (For
instance, we might wish to see whether the preference for
bilateral symmetry in solids is indeed rooted in human
biology as opposed to cultural experience.) We might
wish to know whether differential strengthening or
appearance of these heuristics appear to account for the
development of spatial cognition in children (for instance,
in comparing orientations of a given solid, does a
preference for stability appear to predate a preference for
higher degree of rotational symmetry in children?), And
finally-thinking again of the pedagogical purpose of the
HyperGami system—we would like to refine our current
notions of user modelling to produce truly individuated
(and potentially diagnostic) portraits of spatial cognition:
that is, we may eventually be able to determine whether
an individual has greater or lesser difficulty in considering
alternative orientations for solids, and whether practice in
this activity appears to impact other measures of spatial
cognition. Even better, we may be able to suggest still
other techniques for visualizing three-dimensional solids
by looking for fresh “spatial heuristics” with which to
interpret solids; that is, people might be taught to “look
for embedded solids” (such as the cube whose vertices are
at the center of each face of the octahedron), or to “look
for unexpected symmetries” (such as the three-fold
rotational symmetry about each vertex of the cube). In
this fashion, we may be able to eventually produce
theoretical y motivated “mathematical visualization
heuristics” analogous to the mathematical problem-
solving heuristics advocated by such writers as Polya [22]
and Schoenfeld [24].
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