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The von Neumann relation generalized to
coarsening of three-dimensional
microstructures
Robert D. MacPherson1 & David J. Srolovitz2

Cellular structures or tessellations are ubiquitous in nature. Metals and ceramics commonly consist of space-filling arrays of
single-crystal grains separated by a network of grain boundaries, and foams (froths) are networks of gas-filled bubbles
separated by liquid walls. Cellular structures also occur in biological tissue, and in magnetic, ferroelectric and complex fluid
contexts. In many situations, the cell/grain/bubble walls move under the influence of their surface tension (capillarity), with
a velocity proportional to their mean curvature. As a result, the cells evolve and the structure coarsens. Over 50 years ago,
von Neumann derived an exact formula for the growth rate of a cell in a two-dimensional cellular structure (using the relation
between wall velocity and mean curvature, the fact that three domain walls meet at 120u and basic topology). This forms the
basis of modern grain growth theory. Here we present an exact and much-sought extension of this result into three (and
higher) dimensions. The present results may lead to the development of predictive models for capillarity-driven
microstructure evolution in a wide range of industrial and commercial processing scenarios—such as the heat treatment of
metals, or even controlling the ‘head’ on a pint of beer.

We consider physical systems in which space is divided into cells/
grains/bubbles, which we refer to here as ‘domains’. We assume that
the growth of these domains is driven by capillarity. This applies to
grains in metals or ceramics, and to bubbles in foams1,2. The rate of
change of the volume of a domain is given by a physical constant
2Mc times the integral of the mean curvatureK over the walls of the
domain3,4. Here c is the surface tension of the domain wall and M
is a kinetic coefficient that describes its mobility. If the domains are
grains in a metal or a ceramic, then a wall between two adjacent
domains moves with velocity 2McK (the Gibbs–Thompson effect)5.
If the domains are bubbles in a foam, then 2cK is the pressure
difference between adjacent bubbles, and the gas diffuses through
the wall at a rate 2McK per unit area, where M is now proportional
to the diffusivity6.

The integral of the mean curvature over all of the walls of a domain
is a difficult quantity to use in theories for domain growth. In 1952,
von Neumann1 found a manageable expression for the growth of
domains in two-dimensional space:
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Here dA/dt is the rate of change of the area of a domain, ai is the
exterior (turning) angle at a triple junction on that domain (where
three domain walls meet—see Fig. 1a), and n is the number of such
triple junctions around a particular domain. A more general deriva-
tion of the same result was provided by Mullins3. The derivation of the
von Neumann–Mullins formula is this: the domain is surrounded by a
closed curve, the total integral of the (mean) curvature K around
which (and indeed around any closed curve) is 2p. However, ai of this
total curvature is localized in an abrupt turn at the ith triple junction,
so it does not contribute to the integral of K along the walls. If the
surface tension c is the same on each wall, the equilibrium angle is

ai 5 2p/6. Like von Neumann and Mullins1,3, we explicitly assume that
the domain walls move sufficiently slowly that this angle remains fixed
at its equilibrium value. We treat ai 5 2p/6 as a boundary condition
for three domain walls meeting at a junction (in any dimension $2).

The von Neumann–Mullins relation is remarkable in that it is both
exact and purely topological; the rate of growth of any domain only
depends on n, its number of sides (or corners where three domains
meet, that is, triple junctions)1,3. This relation forms the basis of
much of what is known today about isotropic domain growth.
Fifty years ago, the grain growth pioneer Smith wrote ‘‘It is greatly
to be hoped that he [von Neumann], or some other mathematician,
will be able to deduce similar relations in three dimensions.’’7 Until
now, no exact extension of von Neumann’s two-dimensional result
into three (or higher) dimensions has been found (despite a half
century of intense effort in the materials, physics, engineering and
mathematics communities8–13). The purpose of this Article is to pro-
vide an exact extension of this relation into all dimensions, and show
that the von Neumann–Mullins relation, and its physically important
extension to three dimensions, are simply special cases of the more
general mathematical result.

Our three-dimensional von Neumann–Mullins relation is this: the
rate of change of the volume V of a domain D is given by:
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The quantityL(D) is a natural measure of the linear size of domain D

and
Pn

i

ei Dð Þ, where ei is the length of triple line (edge) i and the

summation is over all n triple lines of D (see Fig. 2a). This result is
exact. A proof is provided in the Supplementary Information.

We digress to give the definition and properties of the quantity
L(D). Consider a line, ,, through the origin of some coordinate
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system in three dimensions; p is a point on ,, and ‘\p is the plane
perpendicular to line , at point p. We define the Euler width of a
domain D in the direction , as E‘ Dð Þ~

Ð
px(‘\p \D)dp (see Fig. 2b),

where the integral is over all points p along line , and x(‘\p \D) is the
Euler characteristic of the intersections of the domain D with plane
‘\p . The Euler characteristic is the number of objects or pieces in the
plane ‘\p \D minus the number of holes in those objects/pieces. (For
a convex object with no holes, x 5 1.) The mean width of D,L(D), is
twice the Euler width, averaged over all lines , through the origin. If
the object D is a line or a curve, the mean width is its length; for a
convex object, the mean width is twice the average length of the
projection onto a line ,, so for a sphere it is twice its diameter. The
mean width is additive in the sense that if D1 and D2 are objects with
mean width L(D1) and L(D2), the union of these two objects has
mean width L D1|D2ð Þ~L D1ð ÞzL D2ð Þ{L D1\D2ð Þ. Note that
the same additivity rule applies to the volume or surface area of a pair
of objects. Hadwiger’s theorem states that any measure of the linear
dimension of a convex body that is additive and continuous is simply
proportional to the mean width14–18. The mean width of an object can
be computed analytically for many shapes, including all flat-faced
polyhedra, and computed numerically for arbitrary shapes, as is
shown in detail in Supplementary Information.

A few comments on the main result, equation (2), are in order.
First, unlike the von Neumann–Mullins result in two dimensions,
this result is not purely topological. The rate of change of the domain
volume depends on the mean width of the domain and the total
length of the triple lines. It does not, however, depend explicitly on
grain shape. Note that the summation of the lengths of all triple lines
(in equation (2)) can be described as the mean width of the set of
triple lines, L(edge(D)), where edge(D) is the set of triple lines.

We can rewrite the right side of equation (2) as –2pMcL(D)
(1 2 f/6), where f ~L(edge(D))=L(D). If we write the number
of faces on a domain (a face is a region of the surface of D bounded
by triple lines) as m, then it can be seen that f scales as m1/2.
Using this relation, we can rewrite equation (2) approximately as
dD2/dt 5 C1Mc(6 2 C2m1/2), where we have assumed that all lengths
are proportional to the same linear dimension D of domain D, and C1

and C2 are constants. This result looks very similar to the classic two-
dimensional von Neumann–Mullins result (a similar result was
found by Hilgenfeldt et al.10), that is, the right side of the equation
is topological. Unlike the exact extension of the von Neumann rela-
tion to three dimensions (equation (2)), this result is approximate
and simply shows the correct scaling. As both of the terms on the
right side of equation (2) are proportional to the linear dimension of
the domain, it can be seen that dD3/dt is simply proportional to D or
that D / t1/2. Such parabolic growth is typical of capillarity-driven
domain coarsening19,20.

We can deduce the two-dimensional von Neumann–Mullins rela-
tion from equation (2) by considering a prism of cross-sectional
shape C with n sides and length l in three dimensions (see Fig. 1b).
For large l (holding C constant), the prism appears as a line such that
L(D) < l and the sum of the edge lengths is simply nl. Inserting
these into equation (2) yields dV/dt < ldA/dt < 22pMc (l 2 ln/6).
Cancelling l from each side and taking the limit that lR‘ exactly
yields the two-dimensional von Neumann–Mullins relation.

The von Neumann–Mullins relation can be restated by noting
that dA/dt 5 –(pMc/3)(6 2 n) 5 –2pMc[x(D 2 x(vert(D))/6], where
x(vert(D)) is the Euler characteristic of the vertices of the domain D
(that is, the number of triple points). We note that this form of the von
Neumann–Mullins relation is very similar to our three-dimensional
result written in the form dV/dt 5 –2pMc (L(D) 2L(edge(D))/6)).
The similarity between the two suggests that there may be a more
general expression that works in all dimensions. This is, in fact, true
and can be expressed as:
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where d is the dimension of space, Vd is the volume of domain Dd

in d dimensions, and Dd22 is the (d 2 2)-dimensional feature of the
domain (for example, vertices in two dimensions, edges in three
dimensions, …). In this expression, Hd22 is known as the Hadwiger
(d 2 2)-measure in geometric probability14,15. The definition of H is
akin to that of L above. Consider a (d 2 2)-dimensional plane, ,,

through the origin in d dimensions; p is a point on ,, and ‘\p defines

the two-dimensional plane perpendicular to , at p. Hd22(Dd) is equal

to the average of E Ddð Þ~
Ð
p

x(‘\p \Dd)dp over all planes , through

the origin. In two dimensions, H0(D2) 5 x(D2) and H0(D0) 5

x(vert(D)). In three dimensions, H1(D3) 5L(D3) and H1(D1) 5

L(edge(D3)). These agree with the two-dimensional von Neumann
relation and our exact three-dimensional result, respectively.

As most modern models for the evolution of polycrystalline micro-
structures start with a postulated extension of the two-dimensional
von Neumann–Mullins result into three dimensions, the new, exact
theory for the evolution of each grain provides a firm foundation for
the development of rigorous statistical models for microstructure
evolution that respect the underlying geometric and topological con-
straints of a space-filling network21,22.
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Figure 2 | Notation used in description of the three-dimensional von
Neumann–Mullins relation. a, A grain with six faces and twelve edges from a
three-dimensional network. ei are the lengths of edge i. b, The intersection of
a domain (D) and plane ‘\p which has its normal parallel to , at point p.
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Figure 1 | A two-dimensional grain and its extension into three dimensions.
a, A schematic illustration of a grain in a two-dimensional network
structure. The dotted lines indicate domain boundaries of adjacent domains,
and ai is the turning angle at triple point i. b, The same grain extended into a
three-dimensional prism of length l and cross-sectional shape C.
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