
VisDB: Database Exploration Using
Multidimensional Visualization

Daniel A. Keim and Hans-Peter Kriegel
University of Munich

In this system, each display

pixel represents one

database item. Pixels are

arranged and colored to

indicate the item‘s

relevance to a user 9uery

and to give a visual

impression of the

resulting data set.

cientific, engineering, and environmental databases can S contain data collected automatically and continuously via
sensors and, for example, satellite monitoring systems. Finding
the data you want in these very large databases-with tens of
thousands or even millions of data items-can be very difficult.
Even researchers experienced in using a database and query
system have trouble “mining” these databases for the interest-
ing data sets. Users who do not know the data and its distribu-
tion exactly might need dozens of queries to get started.

The query specification process is the corc of the problem.
With today’s database systems and query interfaces, users must
issue queries one at a time. Generally, you cannot change a
query slightly or express vague queries. Most importantly. you
get no feedback on the query except in the form of the result-
ing data set-which may contain either no data items, and thus
no hint for continuing the search, or too many data items to
browse efficiently.

Researchers have developed many approaches to improve
the database query interface so that it gives better feedback
when the query yields unexpected results. For example, graph-
ical database interfaces let users browse the data visually.’
These interfaces either sort the data for users or provide direct
hypertext-like access to more detailed versions of it. Another ap-

proach uses cooperative database interfaces’ that try to give
“approximate answers’’ when the original queries do not pro-
vide a satisfactory answer. This approach employs such tech-
niques as query generalization, which drops or relaxes a
selection predicate when the original queries fail, and statistical
approximations or intensional responses-instead of full enu-
meration-when the query results are very large. Joshi, Kaplan,
and Lee4 first presented the key ideas for these techniques. Co-
operative systems mainly help the user understand the results
and refine erroneous queries; they do not help find interesting
properties of the data such as functional dependencies, local
correlations, or exceptional data items.

Information retrieval is another area that relates to our work.
A lot of research in this area has been done to improve recall and
precision in querying databases of unstructured data such as
full text. For example, one approach employs user-provided
relevance assessments of results to rerank the results or rerun
adapted queries.’

The VisDB system supports the query specification process by
representing the result visually. The main idea behind the system
stems from the view of relational database tables as sets of mul-
tidimensional data where the number of attributes corresponds
to the number of dimensions. In such a view, it is often unclear

40 0277 17~16’44 $ 4 0 0 ’) IWJ IFFE IEEE Computcr Graphics and Applications

VisDB Database Exploration Using Multidimensional Visualizatron

which dimensions are independent and which are dependent. In
most cases, only a limited number of the dimensions are of in-
terest in a certain context. In the VisDB system, we therefore
restrict the number of visualized dimensions to those that are
part of the query. In other words, the dimensionality of our vi-
sualizations corresponds to the number of selection predicates.

Researchers have proposed many approaches to visualizing
arbitrary multivariate, multidimensional data. The well-known
books of Berth6 and Tufte7 include many examples. More re-
cent techniques include shape coding: worlds within worlds:
parallel coordinates,’” iconic displays,”J2 dimensional stack-
ing,I3 hierarchical plotting,I4 and dynamic methods.I5 In devel-
oping a system to handle databases consisting of tens of
thousands to millions of data items, our goal is to visualize as
many data items as possible while, at the same time, giving the
user some kind of feedback on the query. The obvious limit for
any kind of visualization is the resolution of current displays,
which is on the order of one to three million pixels. For exam-
ple, our 19-inch displays with a resolution of 1,024 x 1,280 pix-
els has about 1.3 million pixels.

To explore large data sets efficiently, a system must be inter-
active. Empirical studies show that interactive, slider-based in-
terfaces considerably improve efficiency and accuracy in
accessing databases.16 Equally important is the possibility of
getting immediate feedback on the modified query. By playing
with such a system, users can learn more about the data than
they can by issuing hundreds of queries.

A new query paradigm
In today’s database systems, users specify queries in a one-by-

one fashion. This is adequate if you can specify the desired data
exactly and access a clearly separated data set. Many database
applications work this way. For example, accounting and reser-
vation systems base their queries on keys that access the de-
sired data exactly. If you search transactions for a specific
account, the resulting data set is clearly separated. Therefore,
one query generally suffices to get the desired data.

In other application areas, however, especially those with
very large data volumes such as scientific, engineering, and en-
vironmental databases, it is often difficult to find the desired
data. Problems occur if the database contains data different
from what the user expects or if the user does not know exactly
what to look for. In the latter case, querying the database is like
an inexact search. If a query does not provide the desired result,
the user must query the database again, usually by a similar
query that differs in just one detail. Often, the user must issue
many similar queries before finding the desired result.

Users have problems in querying a database when they do not
know the database system, the data model and query language,
or the database schema. But even if they have perfect knowl-
edge in all these domains-that is, their queries are both syn-
tactically and semantically correct-users can still get query
results that do not correspond to their intentions, simply be-
cause they do not know the specific data in the database. In this

case, they will find it very difficult to estimate the amount of data
that will be retrieved, especially for range queries and complex
queries with many selection predicates.

The VisDB query interface uses visualization techniques to
give users more feedback on their query results. For example,
environmental scientists searching a huge database of test series
for significant values might be looking for some correlation be-
tween multiple dimensions for a specific period of time and geo-
graphic region. Since none of the query parameters is fixed,
finding the desired information is generally very difficult. There-
fore, researchers might start by specifying one query that cor-
responds to some assumption, but they might not find an
interesting correlation until they issue many refined queries
and apply statistical methods to the results.

The VisDB system simplifies the query specification process.
To begin, users still have to specify one query. Then, guided by
the visual feedback, they can interactively change the query ac-
cording to the impression they get from the visualized results.
In exploring very large databases, the visualization of results
coupled with the means of incrementally refining the query of-
fer an effective way to find interesting data properties.

The key idea of VisDB is to use the phenomenal capabilities
of the human vision system for analyzing midsize amounts of
data efficiently and immediately recognizing patterns that would
be difficult, even impossible, for computers to find. One major
research challenge is to find visualization techniques that sup-
port the user in analyzing and interpreting large amounts of
multidimensional data.

visualizing large data sets of
multidimensional data

The basic idea underlying our visualization techniques is to
use each pixel of the screen to visualize the data items resulting
from a query. The query results thus give the user not only the
data items fulfilling the query but also a number of data items
that approximately fulfill the query. The approximate results are
determined by calculating distances for each selection predi-
cate and combining them into the relevance factor. The distance
functions are data-type and application dependent, so the ap-
plication must provide them. Example distance functions in-
clude the numerical difference (for metric types), distance
matrices (for ordinal and nominal types), and lexicographical,
character, substring, or phonetic difference (for strings). The
sidebar titled “Calculating the relevance factors” describes im-
portant aspects of this procedure.

Basic visualization technique
Our basic technique for visually displaying the data on screen

is to sort them according to their relevance with respect to the
query and to map the relevance factors to colors. The sorting is
necessary to avoid completely sprinkled images that would not
help the user understand the data. One question in designing the
VisDB system was how to arrange the relevance factors on the
screen. We tried several arrangements such as top-down, left-

September 1994

1

41

-
Visualization

Calculating the relevance factors
The procedure for calculating relevance factors addresses

the issues described here.

Calculating the distance. The first step is to determine
the distance between the attribute and the corresponding
query values for each data item. The distance functions used
in this step are data-type and application dependent. In
some cases, even for a single data type, multiple distance
functions can be useful.

types such as date, we can determine the distance of two
values easily by their numerical difference. For nonmetric
types such as enumerations with a noninterpretable distance
between values (ordinal types such as grades) or with
noncomparable values (nominal types such as professions),
there is no obvious way to determine the distance. For
ordinal types, the distance might be defined by some
domain-specific distance function or by a distance matrix
containing the distances for all pairs of values. A distance
matrix can also be useful for nominal types, but even a
constant value can be an adequate distance in some cases.
There are many possibilities for calculating the distance of
string data types. Depending on the application and the
retrieval context, the user might want to choose between
lexicographical, character, substring, or even some kind of
phonetic distance.

For number types such as integer or real and other metric

Combining distances into the relevance factor. The
next step combines the independently calculated distances
of the different selection predicates. This is not
straightforward, however, because we must consider the
distances for the different selection predicates with respect
to the distances of the other selection predicates.

One problem is that the relative importance of the
multiple selection predicates is highly user and query
dependent. Only user interaction can solve this because only
the user can determine the priority of the selection
predicates. Therefore, the user must provide weighting
factors q , representing the order of importance of the
selection, where j E 1, . . . , #sp, and #sp is the number of
selection predicates.

A second problem is that the values calculated by the
distance functions may be in completely different orders of
magnitude. For example, in a medical application, a distance
of 1 gram per deciliter for hemoglobin may be very high,
and a distance of 1,000 erythrocytes per deciliter may be
very small. We solve this problem by normalizing the
distances. We can define a simple normalization as a linear
transformation of the range (d,,,,,, dmaJ for each selection
predicate to a fixed range such as (0. 255).

normalized distances of multiple selection predicates into a
single distance value, we use numerical mean functions such

For combining the independently calculated and

as the weighted arithmetic mean for AND-connected
condition parts and the weighted geometric mean for OR-
connected condition parts. More exactly, for each data item
x, the combined distance is calculated as

SP

Combined Distance; = w j *d , in case of ‘AND‘
J =1

SP

Combined Distance, = nd,,”’ in case of ’OR’,
,=1

After calculating the combined distance for the whole
condition, we determine the relevance factor as the inverse
of that distance value. The relevance factor thus combines
information on how well a data item approximates the
query into one value representing a data item‘s relevance
with respect to the query.

Note that special applications may use other specific
distance functions, such as the Euclidean, Ip, or
Mahalanobis distance in n-dimensional space, to determine
the distances of multiple selection predicates.

Reducing the amount of data to be displayed. Since
the number of data items in the database may be much
higher than the number of data items that can be displayed
on screen, we had to find adequate heuristics to reduce the
amount of data and to determine the data items whose
relevance should be displayed. The most exact way uses a
statistical parameter, namely, the a-quantile. The a-quantile
is defined as the lowest value (a such that

where 0 2 a 5 1, F(x) is the distribution function and flx) is
the density function.

Let r be the number of distance values that fit on the
screen, #sp the number of selection predicates, and n the
number of data items in the database. Then only data items
with an absolute distance in the range [0, r/(n * (#sp + 1))-
quantilel are presented to the user. If negative and positive
distance values are used, then the range of values presented
to the user is given by [a, * (1 -p)-quantile, (q, * (1 - p) +
p)-quantilel where p = r/(n * (#sp + 1)) and a,, is determined
by q,-quantile = 0.

In the special case of two dimensions assigned to the two
axes, we can use the combined a-quantiles for two
dimensions. For the grouping arrangement, the number of
data items that can be displayed on the screen is lower since
each data value requires multiple pixels.

to-right, and centered, and found that arrangements with the
highest relevance factors centered in the middle of the window
seemed the most natural. As shown in Figure 1, we color the
100-percent-correct answers yellow and place them in the mid-
dle of the visualization with the approximate answers creating

a rectangular spiral around this region.
The colors range from yellow to green, blue, red, and almost

black to denote increasing distance from the correct answers. We
chose this color scale empirically (see the sidebar “Coloration of
the relevance factors”). To relate the visualization of the over-

42 IEEE Computer Graphics and Applications

VisDE Database Exploration Using Multidimensional Visualization

Figure 1. Spiral-shaped arrangement of one dimension.

Figure 2. Arrangement of windows for displaying five-dimensional data.

all result to visualizations of
the different selection predi-
cates (dimensions), we gener-
ate a separate window for
each selection predicate of
the query and arrange the
windows next to each other,
as shown in Figure 2. In the
separate windows, we place
the pixels for each data item
at the same relative position
as they appear for that data item in the overall result window.

All the windows together make up the multidimensional vi-
sualization. By relating corresponding regions in the different
windows, the user can perceive data characteristics such as mul-
tidimensional clusters or correlations. Additionally, the separate
windows for each selection predicate provide important feed-
back to the user, for example, on the restrictiveness of each se-
lection predicate and on exceptional data items.

Mapping two dimensions to the axes
We also experimented with other screen arrangements of the

data items. One straightforward idea was to display the data in
2D or 3D with selected dimensions assigned to the axes. Such
arrangements, however, can cause many data items to concen-
trate in one screen area while other areas remain virtually
empty. These arrangements can also cause some data items to
be superimposed on others, thereby making the latter items in-
visible.

Although 2D or 3D visualizations might be helpful in cases
where the data have some inherent 2D or 3D semantics, we did
not pursue this idea for several reasons. First, in most cases, the
number of data items that can be represented on the screen at
the same time is quite limited. This conflicted with our goal of
presenting as many data items as possible on screen. Second, in
most cases where a 2D or 3D arrangement of the data really
makes sense, systems using such arrangements have already
been built. For example, a 2D visualization is obviously the best
support for spatial queries of 2D data, and basically all geo-
graphical information systems provide such visual data repre-
sentations.

However, for all cases where no inherent 2D or 3D semantics
of the data exists, our visualization technique can provide valu-
able visual feedback when querying the database. We decided
to improve our interface by including some feedback on the di-
rection of the distance into the visualization. We assigned two
dimensions to the axes and arranged the relevance factors ac-
cording to the direction of the distance. As shown in Figure 3 on
the next page, we arrange negative distances to the left and pos-
itive distances to the right for one axis dimension; for the other

Coloration of the relevance factors
Visualizing the relevance factors using color corresponds

to the task of mapping a color scale to a single parameter
distribution. The advantage of color over gray scales is that
the number of just noticeable differences (JNDs) is much
higher. The main task is to find a path through color space
that maximizes the number of JNDs but is, at the same
time, intuitive for the application domain.'

In designing the VisDB system, we experimented with
different color maps. We found that coloration has a high
impact on the system's intuitivity. The user may, for
example, implicitly connect good answers with light colors
and bad answers with dark colors, or green colors with
good answers and red colors with bad answers (like the
colors used for traffic lights). We tried many variations of
the color map to enhance the usefulness of our system
and selected a color map with constant saturation,
increasing value (intensity), and hue (color) ranging from
yellow over green, blue, and red to almost black to denote
the distance from the correct answers.

The color model used in the VisDB system is a variation
of the hue, saturation, value (HSV) model. Instead of the
hexcone in the HSV model, we use a circular cone with the
intensity defined as the Euclidean distance to the black
axis and the saturation defined as the Euclidean distance
to the gray axis. In the HSV model, both parameters are
determined by using the maximum of (r , g, b). In contrast
to color scales generated according to the HSV model, our
model provides color scales whose lightness ranges
continuously from light to dark colors.

Since the usefulness of color maps varies depending on
the user and the application, the VisDB system lets users
define their own color maps and employ them instead of
our standard color map.

Reference
1 . G.T. Herman and H. Levkowitz, "Color Scales for Image Data,"

/€E€ CG&A, Vol. 12, No. 1, Jan. 1992, pp. 72-80.

September 1994 43

Visualization

Figure 3.2D arrangement of one dimension

Figure 4. Grouping for five-dimensional data.

axis dimension, negative dis-
tances are to the bottom and
positive ones to the top.

With this kind of represen-
tation, we do not show the
distance of data items directly
by their location. Instead, we
denote the absolute value of
their distance by color and
their direction by the location
relative to the correct answers
(colored yellow). Thus, each
data item can be assigned to
one pixel, and no overlay oc-
curs between data items with
the same distance. A problem
may arise in some special
cases, for example. i f there
are no data items having a
negativc distance for both
axis dimensions hut there are many data items having a ncga-
tive distance for one axis dimension and a positive distance for
the other. In this case, the bottom left corner of the window
would be completely empty.

In the worst case, two diagonally opposite corners of the win-
dow could be completely empty and, as a result, only half as
many data items as possible presented to the user. Even in this
case. the user gets valuable information on how to change the
query to get more or fewer results.

Grouping the dimensions
In both the original and 2D arrangements, the pixels corrc-

sponding to the different dimensions of one data item are dis-
tributed in different windows for each dimension. In contrast,
the grouping arrangement places all dimensions for one data
item in one area. The idea of grouping the dimensions into one
area is similar to the shape-coding approach described in Bed-
d ~ w . ~ In our approach, however. we do not focus on shape to
distinguish the data items, and we manage the criterion and ar-
rangement of the data items differently. As shown in Figure 4,
we arrange each area in a rectangular spiral shape according to
the combined relevance factor of the considered data items.
The coloring of distances for the different dimensions can be the
same as in the original or 2D arrangement. The generated vi-

sualizations, however, are completely different.
Preliminary experiments show that the grouping arrange-

ment requires more pixels per data value. In the original and 2D
arrangements, we used one pixel per dimension per data item.
Empirical tests show that the grouping arrangement requires an
area of at least 2 x 2 pixels per dimension per data item for the
visualization to provide useful results (3 x 3 or 4 x 4 pixels pro-
vide better results). This implies that only one-fourth (or even
one-ninth or one-sixteenth) of the data items can be displayed
on screen at one time, making the grouping arrangement suit-
able only for a focused search on smaller data sets. Note that this
arrangement also calls for additional pixels in the area sur-
rounding each data item. Otherwise, it would be impossible to
know which pixels belong to which data item.

Even though it may visualize fewer data items, the grouping
arrangement provides more useful visualizations for data sets
with larger dimensionality. In the original and 2D arrangements,
the pixels for each dimension of the data items are related only
by their position. For relatively small dimensionality (fewer
than eight dimensions), humans seem to relate the different
portions of the screen quite easily. The higher the dimension-
ality, the more difficult it becomes. The grouping arrangement
does not require the user to make these correlations and there-
fore seems advantageous for larger dimensionalities.

4.1 IEEE Computer Graphics and Applications

~ ~~ ~~ ~

VisDB: Database Exploration Using Multidimensional Visualization

Figure 5. The VisDB system
interface.

Interactive data exploration
T o give users immediate feedback on query changes, VisDB

needs dynamic query modification capabilities. The visualiza-
tions provide feedback on the amount of data retrieved, the re-
strictiveness of conditions, the distribution of distances for each
condition, and special areas the user might be interested in. For
example, if the yellow region in the middle of each window
grows larger, it means that more data items are fulfilling the
condition (and vice versa). If a window becomes darker. the
corresponding selection predicate is becoming more restrictive.
If the overall structure changes, the distribution of distances
for the corresponding selection predicate is changing, and so on.
These visual indicators help users understand the effects of
query modifications quickly and learn more about the data in
the database, especially in the context of large databases with
millions of data items.

In the VisDB system, users initially specify their queries
through graphical user interfaces such as Grad? or traditional
query languages such as SQL. As a result of this query, they
get the VisDB interactive query and visualization interface
shown in Figure 5. The interface features a “Visualization” por-
tion on the left and a “Query Modification” portion on the right.
The Visualization portion displays the data set resulting from
the query, including a certain percentage of approximate an-
swers, by using one of the three visualization methods described
in the previous section.

The Query Modification portion provides sliders for modi-
fying the selection predicates and weighting factors as well as
some other options. Different kinds of sliders are available for
different data types and distance functions. Sliders for num-
bers, for example, allow graphical manipulations of either the
lower and upper limits or the medium value and some specified
deviation. Sliders for discrete types reflect the discrete nature
of the data by allowing only discrete movements o f the slider.

For example, sliders for non-
metric types (ordinal and
nominal data types) can dis-
play enumerations of the pos-
sible values and allow users to
select the values. Users can
design special sliders for spe-
cial data types and distance
functions, such as strings with
different distance functions.

Below the three sliders on
the far right, the interface lists
several parameter ficlds for
each selection predicate,
namely, the number of re-
sults, query range (min and
max), weighting factors, data
values of a selected tuple, and
data valucs corresponding to
a selected color range (first

and last). The possibility o f correlating data values to some
color or color range for each selection predicate might help the
user understand the visualization and modify the query ac-
cordingly. Users can focus on sets of data items with a specific
color by selecting a color range with one of the sliders. VisDB
will then retrieve only those data items in the Corresponding
visualization window that have the selected color for the con-
sidered attribute. The other visualization windows will also dis-
play these same data items, allowing the user to easily compare
the values of the other attributes of those data itcms.

Also helpful in understanding the visualization and finding in-
teresting data spots is the possibility of selecting a specific data
item in one of the visualization windows, highlighting it in all vi-
sualization windows, and displaying the values for the attributes
in the selected tuple field. This option lets the user focus on ex-
ceptional data items or get an example of a data item from an
interesting region in one of the windows.

Below the color spectrum for the overall result, there are
fields for the number of data items in the database. the number
of data itcms displayed in the visualization window (absolute
value and percentage). and the number of resulting data items
presented to the user. Using a slider. the user can change the
percentage of data displayed or the allowed range. (In the lat-
ter case. the percentage is determined using the heuristics de-
scribed in the sidebar “Calculating the relevance factors.”)
Changing the percentage of data displayed can completely
change the visualization, since the distance values are normal-
ized according to the new range.

In the normal mode, the system recalculates the visualiza-
tion after each query modification. The user also has the option
of having the system recalculate queries only on demand. This
option is useful for large databases with many data items or for
complex distance functions that take a considerable amount of
time to recalculate. Other menu options let the user choose dif-

September l Y Y 4 45

-
Visualization

l 1 Figure 6. Eight-dimensional data displayed with the three different

a b

ferent distance or combinator functions, select a different visu-
alization technique or slider type, add or delete selection pred-
icates, extend the query, or issue a new query.

Examples
Figures 5 through 8 display several visualizations of query

results. We generated the visualization in Figure 5 by using sur-
face point data from a large molecule complex (subtilisin carls-
berg with eglin). In our molecular biology project, we have used
the VisDB system to find regions where molecules can dock by
identifying sets of surface points with distinct characteristics.

In evaluating our visualization techniques, we currently ex-
plore other data sets including a large database of geographical
data, a large environmental database, a NASA earth observa-
tion database, and artificially generated data sets. Artificial data
sets are crucial for comparing different visualization techniques
to find their strengths and weaknesses.” They let us vary the
number of data items, number of dimensions, and data prop-
erties (for example, the distribution of each dimension and the
number and size of clusters) for controlled comparisons.

The visualizations displayed in Figures 6 through 8 use arti-
ficially generated data consisting of a uniformly distributed base
data set and multiple clusters. The data set used for Figure 6
consists of 1,000 eight-dimensional data items with five clus-
ters. The data set used for Figure 7 is similar, except it consists
of 7,000 data items. Figure 8 is generated from a database with

visualization methods (1,OOO data items): (a) hasic visualization
technique, (b) 2D arrangement, and (c) grouping arrangement.

Figure 7. Eight-dimensional data displayed with the three different
visualization methods (7,000 data items): (a) basic visualization
technique, (b) 2D arrangement, and (c) grouping arrangement.

b l a

100,000 five-dimensional data items containing five clusters. In
the visualizations, many regions of different colors are clearly
identifiable and denote clusters of data items with a compara-
ble distance. There are interesting correlations between the
windows for different selection predicates. For example, re-
gions that have a specific color in the window for one selection
predicate have a different color in the window for another se-
lection predicate. Corresponding regions with different colors
denote clusters of data items with similar characteristics. The
color of the region for some dimension corresponds to the clus-
ter’s distance from the reference region in that dimension.

In Figure 8, the red region for selection predicate 3 corre-
sponds to the green region for selection predicate 2, which means
there is a cluster of data items with distinct characteristics for
these two dimensions. The colors denote the distance from the
specified values for both dimensions, which is higher in the case

16 IEEE Computer Graphics and Applications

VisDE: Database Exploration Using Multidimensional Visualization

I I Figure 8. Five-dimensional artifically generated data items (lO0,OOO
l a I

of selection predicate 2, as indicated by the darker color (red).
Another interesting observation shows up in comparing the

visualizations in Figure 7a and b and Figure 8a and b. The col-
ored regions of the basic visualization technique often cluster in
one quadrant of the 2D arrangement (for example, see the
brown region for selection predicate 8 in Figure 7a and b). This
provides additional information on the position of the cluster
with respect to the two dimensions assigned to the axes. It might
also help the user in modifying the query. Also interesting, but
not easily identifiable in the printed version of our visualiza-
tions, are hot spots-that is, single exceptional data items in
otherwise homogeneous regions.

Much of the information users get from the visualization is re-
lated to the data semantics. Due to space limitations, we do not
elaborate on these aspects here. To do so would require intro-
ducing the schema and instances of the databases used. In the
case of the artificial data sets, this would mean at least a speci-
fication of the base data set and all clusters.

The VisDB system is useful not only for such data mining
tasks as finding hot spots, groups of similar data, and correla-
tions among different dimensions. It also addresses such tasks
as similarity retrieval and finding adequate query parameters
and weighting factors. For example, in large CAD databases of
3D parts, it is not obvious how to formally describe similarity.
Usually, there are many parameters describing the parts (in
one real-world mechanical engineering application, we had 27

~~

data items): (a) basic visualization technique and (b) 2D arrangement.

parameters), and each parameter might be important for a part
to be similar. In CAD databases, you would issue a query
searching for similar parts by using fixed allowances for some of
the parameters. As a result, the query would get only the in-
formation concerning whether or not a data item fulfills all al-
lowances. However, you could miss a part that exactly fits in all
but one parameter. Therefore, in similarity retrieval, it seems
important to provide approximate responses and let the user ad-
just the allowances and weighting parameters. Our system pro-
vides features that exactly support these tasks, making it a
promising candidate for use in similarity retrieval.

Our system also helps find corresponding data items in mul-
tiple independent databases. If the user can define a distance
function for the two attributes to be joined, our system may
help identify closely related data items and find adequate pa-
rameters for approximately joining the databases.

Visualizin the results of
camp ? ex queries

In addition to supporting simple one-table queries, where all
selection predicates are connected by the same Boolean oper-
ator, our visualization techniques also support complex queries,
such as queries with arbitrarily connected selection predicates
(nested ANDs and ORs), multitable queries, and some types of
nested queries (for details, see Keim, Kriegel, and SeidlI8).
VisDB uses multiple layers of windows for different parts of
these queries. This gives users visual feedback for each part of
the query and helps in understanding the overall result.

Multiple layers of windows are sufficient for queries with
nested Boolean operators, but to support multitable and nested
queries requires a mechanism for joining tables and dealing
with the cross product. To support multitable queries, VisDB
considers all data items of the cross product that approximately
fulfill the join condition. The user obtains a separate window for
the join condition wherein all data items of the cross product ful-
filling the join condition are yellow and all others are colored ac-
cording to their distance.

If tables are connected by foreign keys, it does not make
sense to consider approximate results because the distances on
foreign keys may not have any semantics. In such cases, VisDB
considers only those data items that fulfill the join condition; it
generates no visualization for the join condition. In many other
cases, however, i t is helpful to consider data items that approx-
imately fulfill join conditions. For joins on numerical attributes,
for example, we can use the numerical difference between the
considered data items of the two relations as an approximation
of the join condition to be fulfilled. In a similar way, we can de-
termine the distances for non-equijoins (a1 < a2) or
parametrized (non-equi)joins (a1 - a2 < c).

In the case of nested queries, VisDB provides separate visu-
alizations for each selection predicate, including the subqueries
involved. In the visualization corresponding to the overall result
of a subquery, the user sees yellow when the subquery condition
is fulfilled and otherwise the color corresponding to the dis-

September 1994 47

I - Visualization

tance of the data item most closely fulfilling the subquery con-
dition. We determine the data item most closely fulfilling the
subquery condition by the minimum distance resulting from an
approximate join of the inner and the outer relation(s).

Instead of displaying a single value for the whole subquery,
the system might give users the option of selecting a single data
item and getting the complete subquery with all its selection
predicates, including the join of inner and outer relation(s) pre-
sented in a separate window.

Implementation
The visualizations presented in Figures 5 through 8 are screen

dumps from working with the VisDB system. We have imple-
mented the system in C++/Motif running under X Windows on
HP 7xx machines. The current version is main memory based
and supports interactive database exploration for databases
containing up to 50,000 data items (on HP 735 workstations).
We find this performance very encouraging since we have not
yet optimized our algorithms. The implementation runs into
performance problems, however, when interfacing with cur-
rent commercial database systems because they offer no access
to partial query results and no support for incrementally chang-
ing queries. Nor do they use multidimensional data structures
for fast secondary storage access.

We are currently working on improving the performance in
directly interfacing with database systems. In the future, we
plan to implement the VisDB system on a parallel machine that
will support interactive query modifications even for midsize to
large amounts of data and complex distance functions.

Future extensions
Inspired by our prototype, we have several ideas to extend the

VisDB system. One extension is automatic generation of
queries that correspond to some specific region in a visualiza-
tion window. The user will identify the region graphically. The
system will then find adequate selection predicates to provide
the desired data items. Another idea is to generate time-series
visualizations corresponding to queries changed incrementally.
By changing the query, different portions of multidimensional
space can be visualized, allowing even larger amounts of data
to be displayed. To further improve our system, we intend to ap-
ply it to many different application domains, each having its
own parameters, distance functions, query requirements, and so
on. In addition to real-world data, we will also use artificially
generated data sets that allow controlled studies on the effec-
tiveness of our visualization techniques.

Conclusions
Visualization techniques can help researchers explore very

large amounts of arbitrary, multidimensional data and find in-
teresting data sets-hot spots, clusters of similar data, or cor-
relations between different dimensions. Our approach to these
“data mining” tasks combines traditional database querying
and information retrieval with new data visualization tech-

niques. The VisDB system can visualize at once the number of
data values equal to the number of pixels on current displays,
providing valuable feedback on the database query and helping
users find results that would otherwise remain hidden. The sys-
tem’s interactivity lets users focus on interesting data.

We believe that query and visualization systems like ours are
valuable for many applications. They may be the starting point
for new visual solutions to problems that have proved very dif-

0 ficult. Querying large databases is just one example.

Acknowledgments
We want to thank all the people who contributed to the VisDB system,

especially Thomas Seidl, who implemented the first prototype of the sys-
tem, and Juraj Porada, who implemented the current version.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

References
A. Motro, “Flex: A Tolerant and Cooperative User Interface to
Databases,” IEEE Trans. on Knowledge and Data Engineering, Vol.

D.A. Keim and V. Lum, “Gradi: A Graphical Database Interface for
a Multimedia DBMS,” Proc. Int’l Workshop on Interfaces to
Database Systems, in Lecture Notes in Computer Science, Springer,
London, 1992, pp. 95-112.
S.J. Kaplan, “Cooperative Responses from a Portable Natural Lan-
guage Query System,”Amjicial Intelligence, Vol. 19,1982, pp. 165-187.
A.K. Joshi, S.J. Kaplan, and R.M. Lee, “Approximate Responses
from a Data Base Query System: Applications of Inferencing in
Natural Language,” Proc. 5th Int’l Joint Conf: on Artificial Intelli-
gence, 1977, pp. 211-212.
G. Salton and M.J. McGill, Introduction to Modern Information Re-
trieval, McCraw-Hill, New York, 1983.
J. Bertin, Graphics and Graphic Information Processing, Walter de
Gruyer & Co., Berlin, 1981.
E.R. Tufte, The Visual Display of Quantitative Information, Graph-
ics Press, Cheshire, Connecticut, 1983.
J. Beddow, “Shape Coding of Multidimensional Data on a Micro-
computer Display,” Proc. Visualization 90, IEEE Computer Society
Press, Los Alamitos, Calif., 1990, pp. 238-246.
S. Feiner and C. Beshers, “Visualizing n-Dimensional Virtual Worlds
with n-Vision,” Computer Graphics, Vol. 24, No. 2,1990, pp. 37-38.
A. Inselberg and B. Dimsdale, “Parallel Coordinates: A Tool for Vi-
sualizing Multidimensional Geometry,” Proc. Visualization 90,
IEEE CS Press, Los Alamitos, Calif., 1990, pp. 361-370.
R.M. Pickett and G.G. Grinstein, “Iconographic Displays for Visu-
alizing Multidimensional Data,” Proc. IEEE Conf: on Systems, Man
and Cybernetics, IEEE Press, Piscataway, N.J. 1988, pp. 514-519.
R.D. Bergeron, L.D. Meeker, and T.M. Sparr, “Visualization-Based
Model for a Scientific Database System,” in Focus on Scientific Vi-
sualization, H. Hagen, M. Miller, and G. Nielson, eds., Springer,
Berlin, 1992, pp. 103-121.
J. LeBlanc, M.O. Ward, and N. Wittels, “Exploring N-Dimensional
Databases,” Proc. Visualization 90, IEEE CS Press, Los Alamitos,
Calif., 1990, pp. 230-239.
T. Mihalisin et al., “Visualizing Scalar Field on an N-dimensional

2, NO. 2,1990, pp. 231-246.

48 IEEE Computer Graphics and Applications

VisD6: Database Exploration Using Multidimensional Visualxatmn

Lattice,” Proc. Visualization 90, IEEE CS Press, Los Alamitos.
Calif., 1990, pp. 255-262.

15. F. Marchak and D. Zulager, “Effectiveness of Dynamic Graphics in
Revealing Structure in Multivariate Data, ” Behavior, Research Mrth-
ods, Instruments and Computers. Vol. 24. No. 2,1992. pp. 253-257.

16. B. Shneiderman. “Dynamic Queries for Visual Information Seek-
ing,” to appear in IEEE Software, 1994.

Daniel A. Keim is a teaching research assistant in
the Institute for Computer Science at the Univer-
sity of Munich, Germany. His research interests
include visualization of statistical data. visual sup-
port for querying databases, database support for
visualization systems, interfaces to database sys-
tems. and interoperability of heterogeneous
databases. Keim received his diploma (equivalent

to an MS degree) in computer science from the University of Dortmund
in 1990. Currently, he is finishing his PhD in computer science.

17. D. Bergeron. D.A. Keim, and R. Pickett. “Test Datasets for Evalu-
ating Data Visualization Techniques.” in Perceptird lssues I n Vislr-
alization. G.G. Grinstein and H. Levkowitz, eds., Springer,
Heidelberg, 1994.

18. D.A. Keim, H.-P. Kriegel, and T. Seidl. “Supporting Data Miningof
Large Databases by Visual Feedback Querics.” Proc. 10th h i t ’ / Con{
on Data Eng., IEEE CS Press. Los Alamitos. Calif.. 1994. pp. 302-313.

Hans-Peter Kriegel is a professor for database and
information systems in the Institute for Computer
Science at the University of Munich. Germany.
His research interests are in spatial database sys-
tems, particularly query processing. performance
issues. and parallel operations. Data exploration
and data mining in very large spatial databases led

his MS and PhD in 1973 and 1976. respectively. from the University of
Karlsruhe. Germany.

Readers can contact the authors at the Institute for Computer Science, University of Munich. Leopoldstr. 1 IB, D-80802 Munich. e-mail (keini.
kriegel]@informatik.uni-muenchen.de

September 1994

, -

Reader Service Number 1

49

mailto:kriegel]@informatik.uni-muenchen.de

