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Abstract. To extract useful information from high-dimensional geometric or
structural data, we must find low-dimensional projections that are informative
and interesting to look at. The conventional, manual-interaction methods used
for this purpose are ineffective when the dimensionality of the data is high, or
when the geometric models are complex. Standard methods for determining use-
ful low-dimensional views are either limited to discrete data, or to geometric
information embedded in at most three dimensions. Since geometric data em-
bedded in dimensions above three have distinct characteristics and visualization
requirements, finding directly applicable techniques is a challenge. We present
a comprehensive framework for exploring high-dimensional geometric data mo-
tivated by projection pursuit techniques. Our approach augments manual explo-
ration by generating sets of salient views that optimize a customizable family of
geometry-sensitive measures. These views serve to reveal novel facets of complex
manifolds and equations.

1 Introduction

Humans are adept at recognizing structural relations and patterns among data points,
and the shape and geometric features of objects embedded in up to three spatial dimen-
sions. Visualization methods attempt to exploit this perceptual capability to facilitate
understanding and communicating complex information. Some common examples are
visualizations of vector and scalar fields, state space diagrams of dynamical systems,
high-dimensional geometry, and information visualizations that map multi-variate in-
formation onto geometric structures such as height maps, graphs of networks, and geo-
metric primitives.

However, when the dimensionality of the information space increases beyond three,
it is difficult to meaningfully represent all the relevant attributes of data such as struc-
tural patterns or geometric relations. The problems in visualizing and interpreting high-
dimensional information arise because the nature of high dimensions is unintuitive and
reducing the dimensions of the data for inspection in the familiar dimensions two and
three inevitably results in loss of information. This problem is particularly relevant to
geometric information because the distortions of structural relations, such as those due
to occlusions of important features, or apparent but false intersections of lines and sur-
faces in the projection, can make it difficult to recover the properties of the models
being inspected.
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Facilitating the ability to identify key aspects of high-dimensional geometric data1

is indispensable in many applications and domains of science. For example, while ex-
ploring projective and Riemannian geometry, an important consideration is the ability
to recognize the global and local object features of complex geometric objects. This
is crucial, for example, to understand salient topological properties. Other applications
that involve user-intensive activities, such as goal-directed exploration, require tailored
approaches for navigating and exploring the associated high-dimensional information
spaces.

Although the visualization interfaces for multi-variate data and geometric informa-
tion in two and three dimensions have matured considerably, high-dimensional geometry-
specific issues and requirements have received only limited attention. As a result, the
tools for exploring high-dimensional geometry still employ either two-variable combi-
nation displays or manual selection methods, which can be tedious and ineffective for
exploring complex objects in very high dimensions. In this work, we attack the problem
of finding efficient and perceptually-salient goal-directed methods suitable for explor-
ing high-dimensional geometric models; we are motivated by the tremendous potential
payoff implicit in exploiting high-performance graphics to make the world of high-
dimensional geometry accessible to experts and novices alike.

2 Background

The exploration and recovery of structure in high dimensions has been pursued actively
to investigate multi-variate data, multi-dimensional functions and high-dimensional ge-
ometry. Investigations in all these domains are concerned with the preservation and
discovery of structural relations in the dimensionally reduced representations.

Multi-variate data analysis is usually concerned with the exploration of the most
basic data primitive, the point, which represents a vector of information variables. Pop-
ular methods used for exposing clusters and groupings of the data in lower dimensions
are PCA [1], Euclidean distance-preserving methods like MDS [2], methods based on
random projections [3, 4], and tour-based methods that employ a series of space-filling
projections [5–7]. A particularly important and useful approach is called projection
pursuit [8, 9], which involves the computation of the information content in some low-
dimensional projection using a numerical measure (or projection index).

The domain of multi-dimensional functions focuses on visualizing higher-order
primitives, such as manifolds and hypersurfaces occurring in the visualization of physi-
cal simulations, mathematical constructions, and complex dynamical systems [10–15].

High-dimensional geometry, on the other hand, is concerned with the exploration
of mathematical models embedded in high spatial dimensions. The fascination with
geometry in high dimensions can be traced back to Abbott’s classic treatment in Flat-
land [16]; however, modern efforts to graphically represent high-dimensional models
are usually attributed to Noll’s proposed methods for hyper-objects [17], and Ban-
choff’s visualizations of classical two-manifolds embedded in four dimensions [18, 19].

1 Terminology: geometric data and geometric models, are used interchangeably to refer to a
geometric object; geometric information refers to the higher level construct that includes the
geometric data and the embedding space.
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Since then, extensive research has focused on developing tools and interfaces for ex-
ploring geometry and structure in three [20, 21], four [22–26] and higher-dimensional
spaces [27]. Some important contributions of these investigations are 4D lighting mod-
els [28–30], interfaces for manipulating high-dimensional objects [31, 32], and the re-
cent physically-based and multi-modal explorations of the fourth dimension [33–35].

Our contribution to visualizing high-dimensional geometry diverges from previous
work in that we combine major concepts and methods of projection search and explo-
ration with perception-motivated user interaction tools. The foundation of our approach
is the fact that geometric data and their projections have inherent structural relations
that can be exploited to discover views that are useful both for research-motivated ex-
ploratory analyses and for pedagogical, explanatory demonstrations.

3 Framework for Exploring Geometry

Our framework for exploring geometry in high dimensions is based on a variant of
projection pursuit that we will refer to as geometry projection pursuit (GPP). The goal of
GPP is to find projections of geometric models that reveal their important characteristic
features2. Our framework for GPP includes two important aspects:

– Optimal view finding. We are concerned with finding useful low-dimensional views
of a given geometric model by optimizing appropriate geometric projection indices.
A combination of one or more indices can be used based on the goals of the explo-
ration task or the nature of the geometric information. Section 4 discusses optimal
view finding and index construction in detail.

– Visualizing the search space. Our framework includes the exploitation of displays
that might be called “meta-projections” of the measures plotted against the projec-
tion variables themselves. This rich visualization is composed of the displays of the
measure of the projection indices in all the possible sub-space projections. These
meta-landscapes are employed to represent the richness of various subspaces, and
are treated in Section 5.

Figure 1 summarizes the important steps involved in the process. The framework
integrates manual exploration in N-dimensions with optimal view selection. Selecting
optimal views involves either optimizing a set of projection indices or exploring a visu-
alization of the projections in all relevant subspaces.

3.1 Geometry-specific issues addressed by the Framework

The distinct nature of geometric information compared to other kinds of data in high
dimensions dictates specific requirements for visualization and GPP. Our framework
addresses two important issues concerning high-dimensional geometry:

2 Although the bulk of the literature on projection search and dimensionality reduction focuses
on finding informative views in two dimensions, we are concerned with finding ’good’ views
in two, three, or even four dimensions, where the latter can be explored using efficient human-
guided interactive techniques in 3D and 4D viewers.



4 Sidharth Thakur and Andrew J. Hanson

Fig. 1. Framework for visualizing high-dimensional geometry: after loading a geometric model
into th visualization interface. The geometry can be explored manually or by index optimiza-
tion with GPP. GPP assists exploration by automatic generation of optimal views or via meta
visualizations, which are snapshots of index measures in plotted in parameter subspaces.

– Nature of Geometric Information. Unlike point sets of multi-variate data, geometric
data are composed of vertices that are associated in some order to form simplices,
geometric primitives that describe an elementary p-dimensional region using p+1
vertices; geometric data have structural information inherent to the constituent data
points. Geometric models are typically represented by geometric primitives (sim-
plices) of increasing order of complexity, such as points (vertices), lines (edges),
and surfaces (polygons). An important implication of this organization is that the
standard approaches to multi-variate data analysis, such as clustering or ’dense’
views, are no longer generally applicable due to overlap or occlusion in the projec-
tions of the higher order primitives. A typical example is the toroidal 2-manifold
embedded in 4D shown in Figure 2: the torus is represented using primitives of
increasing complexity but decreasing ambiguity3.

(a) (b) (c) (d)

Fig. 2. A torus embedded in 4D, displayed using different orders of simplices as geo-
metric primitives. The vertices of the torus are obtained by the parametric equation: x =
(cos(θ ),sin(θ ),cos(φ),sin(φ)), where θ ,φ ∈ [0,2π]. The different primitives are: (a) points, (b)
edges, (c) surfaces, and (d) all together.

– Specific tasks in GPP: The design of projection indices used in projection search
must be sensitive to some specific requirements in GPP. For example, an important
task in GPP is to identify salient topological features of an object. An example of a

3 The higher order primitives may not always disambiguate the geometric structure; for exam-
ple, while projecting from from N dimensions to two or three dimensions, false intersections
may arise as artifacts of projection. Additional cues like depth-keyed coloring may be used to
provide information on the relative depth of the intersecting segments.
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particularly interesting feature is the number of holes in a 2-manifold, which indi-
cates the object’s genus. Figure 3 shows a sphere (with zero holes), and orthogonal
projections of 3D and 4D embeddings of the torus, each with a single hole. Other
relevant features include symmetry, occlusion and branch-cuts.

(a) (b) (c) (d)

Fig. 3. Holes in geometric objects: (a) A sphere with no holes (genus=0). (b) A 3D-embedded
torus with one hole (genus=1). (c) A 4D-embedded torus also with one hole (genus=1). (d) Shows
the 4D-embedded torus in a projection for which the hole is no longer visible.

4 Optimal View Finding in N-Dimensions

In this section we describe the first important component of our framework for GPP:
enumerating appropriate information measures and finding one or more low-dimensional
views that have the maximum amount of information content.

Traditionally, the problem of defining a “good view” of some 3D object or a com-
plex scene is encountered frequently in object representation and recognition research.
Traditional methods employ both image-based and non-image based rendering tech-
niques to determine scene complexity and the overall information in the projected views
or silhouettes of objects [36, 37]. Other approaches are derived from object and shape
perception literature, which include contrasting models for either 2D or 3D shape en-
coding (see [37]).

In our scope of work, good or desirable views correspond to the projections (usually
in 2D or 3D) that reveal some desired property of the objects embedded in N spatial
dimensions. Unlike viewpoint selection in three dimensions, our problem is two-fold,
in that not only does a good viewpoint need to be found in N dimensions, but a guideline
for suitable projection is required that maximizes an information measure (projection
index) in some target projection dimension. In our case the choice of the projection
index is usually dictated by the nature of the geometric information or the goal of the
exploratory task.

4.1 Geometric Indices

A projection index is a function that computes a numerical value corresponding to the
total information content in some projection. Projection pursuit in multi-variate data
analysis typically makes use of indices that are based on statistical or entropy-based
calculations. Appropriate indices for geometry exploration, however, can (and should)
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exploit geometry-specific information inherent in the data. Below, we provide a list of
representative geometry-based indices, which is by no means exhaustive and can be
extended to include other meaningful representations:

Table 1: Examples of projection indices suitable for GPP

Geometric Primitive Indices
Points = 0-simplices The most straightforward set of indices are point spread and

point-point distances. Methods used for discrete data points
are also applicable. Given a set of N-dimensional points, P =
(p1, p2, .., pm) we define:

Ispread = ∑(|pi|)

Ipoint distances = ∑
i6= j

(|pi − p j|)

Edges = 1-simplices Edges provide our first measure that directly represents topo-
logical structure of a geometric object. Some suitable measures
are:

Iedge intersection = ∑F(ei j,emn)

Iedge length = ∑
i6= j

ei j

where ei j and emn are edges between pairs of distinct vertices
i, j and m,n; the function F(ei j,emn) determines if there is inter-
section between the two edges.

Faces = 2-simplices 2-simplices represent a two-dimensional manifold or surface
patch in terms of triangles. A simple measure given the surface
elements represented by the vertex triplets (i, j,k) is:

Isurface area = ∑Areai jk

Some other suitable measures are those which compute the
number of occlusions based on 3D depth buffer hits, or face/face
intersections in the projections.

Volume (or Balls) =
3-simplices

A 3-simplex is a three-dimensional volume element. Projection
criteria can be selected to minimize/maximize the projected vol-
ume, or compute the occlusions based on 3D or 4D depth buffer
hits.

Hypervolume = 4-
simplices

Interesting views can correspond to projections that maximize
the polygonal surface area or volume in the 4D projection,
which can be explored in special tools that allow full 4D rota-
tions. This is distinct from maximizing the 2D or 3D projections
of these quantities.
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Table 1: Examples of projection indices suitable for GPP

Geometric Primitive Indices
Non-geometric
indices

Image-based rendering methods can be combined with the
above-mentioned geometric indices to obtain some suitable
metric. For example, we have a hole-finding technique that
utilizes pixel-color information to identify holes of arbitrary
shapes and sizes.

Space walking
Method

Space walking [38] is a method for navigating on topological
manifolds while always projecting the maximal viewable area
onto the screen plane. This solution is similar to a local pro-
jection pursuit approach because, at each step, as the observer
rotates the model, the control system determines the transfor-
mation for orienting the local tangent space around the point of
interest parallel to the screen display plane.

Once one or more indices are chosen, we use the procedure for GPP shown in Figure
4. The step involving viewpoint selection in the N-dimensional space can be achieved
by different methods. For example, random configurations of the N ×N rotation matrix
corresponding to random rotations can be evaluated for optimal views. Another method
is to utilize an optimizer to find the best combination of high-dimensional rotations.

Fig. 4. Finding optimal views by GPP. First, a candidate target projection space is specified. Next,
different projections in the target space are obtained by repeatedly performing rotations in N
dimensions and computing the measure of the indices. Finally, the projections with high values
of the indices are selected.

4.2 N-Dimensional Optimization methods

Once a set of indices has been specified, optimizations in the high-dimensional space
are performed to find a series of maxima (or minima, depending on the type of index).
The general optimization problem can be formalized as follows:
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ND optimization problem: Given a function f (θi, i = 1,2, . . . ,N(N −1)/2) that
accepts N(N −1)/2 rotation angles, one in each of the canonical two-dimensional
planar subspaces spanned by two orthogonal axes, and that returns the value of
a projection index, find the set of orientation angles {θ ′

i } such that for all θi ∈
[0,2π ], the function satisfies f ({θ ′

i }) ≥ f ({θi}).

An important consideration in the ND optimization problem is that search in an
angle θi must be restricted to transformations that actually effect a change in the chosen
projection space. Furthermore, as the dimensionality of the embedding space increases
(e.g., N ≥ 5), the full optimization tends to run very slowly, and finding all local optima
in the search space is a challenge. The problem can be approached, e.g., by simulated
annealing but that can also be very time consuming. While we plan to implement large-
subspace optimization in future approaches, here we focus on an effective approximate
sequential search method using low-dimensional subspaces. Our procedures for N(N −
1)/2 one-dimensional subspace search and pairwise searches of the N(N−1)(N2−N−
2)/8 two-dimensional subspaces of the θi are thus as follows:

1D (2D) approximate optimization method: Compute the optimization measure
f ({θi}) for one choice of i (or (i, j)), and find the optimal point. Fix that point and
repeat for the next i (or (i, j)). Repeat. The result will deviate from a true optimum
but will give good estimate for beginning a less time-consuming search in the
neighborhood of the resulting point. Variants include performing local subspace
optimization incrementally in neighboring subspaces.

We

utilize the Conjugate Gradient method for finding the local optima. We have found that
almost-optimal views, or local optima, are equally interesting as they may reveal addi-
tional perceptual aspects of a geometric model that the mathematically optimal views
may obscure. We therefore track all local minima found by the algorithm. While we
have not accumulated extensive performance data, computing the 2D subspaces of a
2500-vertex surface in 9D takes about 3 minutes; further performance optimization
strategies are being studied.

4.3 Results of Optimal View Finding

We now discuss some results obtained by applying our methods to objects in high di-
mensions. Figure 5 shows different views of a pillow-shaped 4D object obtained by
maximizing the area of the object projected into three dimensions.

Figure 6 contrasts the optimal views of a 4D-embedded torus based on two different
projection indices: (a) projection edge length, and (b) projection area.

Figure 7 shows a more complex example, the cubic CP2 torus, which consists of
nine two-dimensional parametric patches embedded in nine dimensions. Figure 7(b)
shows an interesting projection in the 3D target space with axes (5,7,9). The optimal
view finding method assisted in discovering the object’s single hole (genus=1)4.

4 While the properties of the object were known beforehand, optimal view-finding aided in find-
ing the large hole, which is very tedious to discover manually.
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(a) (b) (c)

Fig. 5. Different projections of a 4D pillow-shaped object whose parametric equation is
{cos(θ ),cos(φ),sin(θ )sin(φ),sin(θ )sin(φ)}. The projections into the 3D space with axes
(1,2,3) are: (a) The default view (b) A flattened view. (c) An optimal view based on a maxi-
mal area projection found by rotations in subspaces (2,3) and (2,4).

(a) (b) (c)

Fig. 6. Different projections of a 4D-embedded torus in the projection space with indices (1,2,3)
(a) The default view. (b) View found by maximizing edge-length between projected vertices; this
view was found by rotations in subspaces (1,2) and (1,4). (c) A view based on maximal-area
projection found by rotations in subspaces (1,3) and (1,4).

5 Visualizing the Search Space of Optimal Views

The second significant part of the framework is the visualization of the search space of
all possible projections. We refer to this as the meta visualization because it provides
additional information on the measures of projection indices. Figure 8 shows a snap
shot of the visualization interface and the meta visualizations.

The meta visualizations provide a quick overview of the richness of different sub-
spaces in the form of thumbnail charts as shown in Figure 8(b). The thumbnails are
generated by automatically roaming through all the subspaces, e.g., by performing ro-
tations in the subspaces and recording values of indices. For objects in very high dimen-
sions, there are possibly hundreds of such thumbnails, and to speed up computation, the
user can either reduce the resolution of the charts or specify what subspaces are to be
explored.

The thumbnails can be magnified into higher resolution charts by clicking on them
in the thumbnails panel. An example is shown in 8(c), in which the horizontal and
vertical axes correspond to rotations in two different subspaces, respectively. Clicking
and dragging anywhere on the magnified chart applies the corresponding rotations to
the object in the main window. This allows quick investigation of optimal views and
their neighborhoods. The chart in Figure 8(c) shows a well-defined region of maxima
of the index; other meta visualizations can of course be much more complex. Another
example in shown in figure 9, which shows a 4D torus in a projection that exposes its
hole, and the meta visualization chart that depicts the associated subspace.
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(a) (b) (c)

Fig. 7. Different projections of a two-dimensional manifold, actually a torus, embedded in nine-
dimensional space: (a) The default view in projection space with indices (1,2,3). (b) Default
view in the projection with indices (5,7,9). (c) A view in the space (5,7,9) that exposes a hole;
the view was found by maximizing the index based on distances between vertices in 3D, a point
spread measure, and the area of the projected 3D surface. The exposure of the hole was maxi-
mized by exploring the neighborhoods of subspaces (4,9), (6,9) and (8,9).

(a) (b) (c)

Fig. 8. The visualization interface. (a) The visualization application. (b) The closeup of the
thumbnail charts representing the measure of a projection index in all 2D subspaces. (c) A mag-
nified view of the thumbnail for subspace (1,3) and (1,4) (thumbnail with black background).
The palette corresponds to the values of the index: dark red = high value, dark blue = low value.

6 Conclusion and Future Work

We have presented a framework for visualizing and exploring high-dimensional geom-
etry using a general philosophy that we refer to as geometric projection pursuit (GPP).
We present several relevant examples of the method targeting the fact that understand-
ing geometric objects in high dimensions has unique and specific requirements in terms
of visualization and exploration. Projection search based on optimization of geometry-
driven indices is useful in exposing features of the object that are relevant to their geo-
metric and topological properties, and to goal-specific tasks requiring the elucidation of
such properties. While we have given examples of some families of simple geometry-
based projection indices, additional arbitrarily complex problem-specific measures can
easily be added to our system. We plan to experiment further with indices that ex-
pose characteristics like symmetry, occlusion, branch-cuts and non-rigid deformations.
It may also be possible to extend the framework to non-geometric data sets and thus to
enhance techniques such as N-dimensional brushing [39]. Another extremely promis-
ing area for future work is the development of intelligent navigational methods to create
smooth transitions among the extensive set of optimal views found by the system.

This research was supported in part by National Science Foundation grants CCR-
0204112 and IIS-0430730.
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(a) (b)

Fig. 9. (a) The hole in a 4D-embedded torus. (b) Its meta visualization in one 2D subspace, (1,4)
combined with (3,4). The dark red areas correspond to the hole in the screen plane. The hole was
identified by comparing the pixel colors for the rendered background and foreground.
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