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ABSTRACT

There is presently a variety of methods by which to create visualizations, and many of these require a great deal
of manual intervention. Even with those methods by which it is easy to create a single visual representation,
understanding the range of possible visual representations and exploring amongst them is difficult. We present
a generalized interface, called cogito, that permits the user to control exploration of the visualization output of
various manual tools, all without the requirement to modify the original tool. Programming within the cogito
API is required to connect to each tool, but it is not onerous. We consider that the exploratory experience or
activity is valuable, and that it is possible to easily create this experience for standard tools that do not normally
permit exploration. We illustrate this approach with several examples from different kinds of manual interfaces
and discuss the requirements of each.

Keywords: exploration, visualization, batch, scripts, modular visualization environments, toolkits, human-
computer interaction

1. INTRODUCTION

When Haber and MacNabb1 described the visualization pipeline, the question was how to realize a particular
visual representation. Now, many years later, the question is how a user can find the particular visual repre-
sentation that helps him or her gain some insight or communicate an idea. Sicard and Marck2 found cognitive,
didactic, and aesthetic logics in scientific pictures, which are not separable without knowledge of the author’s
intent. For them, scientific pictures are “imbued with the ‘view’ of the author which claims to be objective. But,
in fact, it is attached to ‘thought history’, technological history, scientific history and is marked by aesthetic
choices, cultural bias, and perceptional practices.” All in all, the selection of a visual representation involves
more than objective consideration of the problem to be depicted.

Consider that any visual representation can be decomposed into parameters, each with their own values. A
parameter could be “graph type,” with values including “bar chart,” “pie chart,” “line chart,” “scatter plot,” and
so on. Each visual representation can be denoted as an N -tuple, where vi is a value of parameter Pi. In practise,
not all N -tuples may correspond to valid visual representations because of incompatibilities between values of
different parameters. The Cartesian product of the values from all the parameters forms the N -dimensional
space of available visual representations.

〈v1, v2, . . . , vN 〉 ∈ P1 × P2 × . . . × PN

The space of available visual representations can be very large, and it can be difficult to grasp the implications
of all available combinations of values. This fact only exacerbates the problem of selecting and specifying the
individual elements in a visual representation. In the midst of so many combinations, it can be difficult to find
a visual representation that is apposite.

The use of parameters and values to describe particular visual representations is an adaptation of Bertin’s3

retinal variables, which he used to systematically explore marks on a plane and to show how those marks
could be used to construct diagrams, networks, and maps. Similar concepts are found in Modular Visualization
Environments4 (MVEs) such as AVS5 (Application Visualization System), and the toolkit philosophy of vtk .6

Figure 1 presents a sample visual representation, based on a small dataset from Bertin3[page 100]. It provides
a view of the French economy from the early 1960s. For each département in France, the data provides: the

Visualization and Data Analysis 2007, edited by Robert F. Erbacher, Jonathan C. Roberts, Matti T. Gröhn, Katy Börner
Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 6495, 64950R, © 2007 SPIE-IS&T · 0277-786X/07/$18

SPIE-IS&T/ Vol. 6495  64950R-1



—fnc.ntig. In ,<t.r I

li)fl

—i'ercenlage in SecLr II

— [cell lage in Sec Lr III

Figure 1. One possible visual representation of Bertin’s data, constructed from parameters and values that specify
features including the graph type, the annotation, the sorting of the data, and the colours.

workforce (in thousands of workers) for each of the three sectors (primary, secondary, and tertiary) in the
economy; the total workforce (the sum of the three sectors); and the percentage of the workforce in each sector.

Bertin3 remarked that “to construct 100 DIFFERENT FIGURES from the same information requires less
imagination than patience. However, certain choices become compelling due to their greater ‘efficiency.’ ” But
the question of efficiency is closely linked to the task at hand and the user’s experience with the elements of a
visual representation, as Casner7 describes. Therefore, cogito8–10 is designed to facilitate, through interactive
articulation and evaluation of visual representations, each user’s own assessment of efficiency, while requiring far
less patience than a manual approach.

The remainder of the paper is organized as follows. Section 2 introduces relevant background about visual-
ization tools. Section 3 describes the basic architecture of cogito and how it can act as an interface to various
existing visualization tools. Section 4 describes use of the cogito with vtk, GNUplot ,11 R,12 and openDX 13 in
examples. Finally, Section 5 presents some conclusions and areas for future work.

2. BACKGROUND

Through adaptation of the classification of Kochhar et al.,14 it is possible to distinguish manual, automatic, and
augmented visualization systems based on the relationship that they establish between human and computer.

Automated systems, like BOZ,7 appear to the user as black boxes, which are given input and produce output.
They address the concern15 that the size of the visualization parameter space is typically so large that the user
would be overwhelmed if he or she had to deal directly with it in its entirety.

Augmented systems aid the user by allowing certain well-defined tasks to be performed primarily by the
computer, with the effect of increasing people’s capabilities to tackle complex problems. Design Galleries,16

for example, works to provide a good sampling of the range of alternatives based on a user-specified means
for comparison, given a priori. Jankun-Kelly and Ma’s spreadsheet interface17 allows exploration with greater
context as the rows and columns of the spreadsheet show the values of the two different parameters being
manipulated at any one time. However, the user must specify how each visual representation is to be constructed.
Both of these systems lack flexibility, though, because they require a tight coupling with the software that realizes
the alternatives for display. Furthermore, the a priori specification of an objective function required by Design
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Galleries can limit the possibility for exploration. The spreadsheet approach is limited because it works with only
two parameters at a time, though many more may be involved. The spreadsheet approach therefore decreases
the likelihood that the best available visual representation may be found by the user.

Manual systems provide the building blocks, but leave the responsibility for assembling these building blocks
with the user. Therefore, exploration requires patience on the part of the user, who must explicitly specify new
combinations and then keep track of his or her experiments in case any of them should need to be revisited. Even
for problems with relatively small parameter spaces, an exhaustive evaluation of alternatives is almost always
impractical. Instead, humans rely on heuristic search methods, which are likely to find acceptable solutions in
a reasonable amount of time (what Simon18 called satisficing). These search heuristics can be of two sorts, in
general. If the problem is well-understood, local search techniques may be employed effectively. If the problem
is new, however, a global search of the space may be better suited to the exploration of alternatives. Manual
systems do not necessarily lend themselves to either form of search. In both cases, either new programming
must be done or an existing program must be invoked in a new way. Furthermore, humans are not suited to the
bookkeeping required for these searches of parameter space and therefore usually rely on some form of external
memory. Still, a manual approach remains attractive for those people who write the code for their own use or
for use by a very focused community. That neither a global nor a local search is well-supported in general makes
these searches less of a concern to developers of manual systems.

In particular, we consider manual programs as falling into one of three categories: Batch Invocation Programs
(BIPs) with GNUplot and R as examples; Scripted Modular Visualization Environments (SMVEs) with openDX
as an example; and Toolkits and Application Programming Interfaces (TAPIs) with vtk as an example. These
are considered, in order, in the following paragraphs.

Fox19 has built a graphical user interface for R to support an introductory course in statistics. His goal is to
ease introductory users into script writing directly in the Tcl/Tk20 command environment. Similarly, xgfe (X-
windows GNUplot Front End)21 presents users with the GNUplot functionality through the more familiar menus
and buttons. Both of these graphical user interfaces are intended to introduce users to the native environments
of each tool. They provide fairly complete access to the underlying capabilities of each tool.

openDX comes with a graphical user interface and a scripting language. The graphical user interface provides
visual programming capabilities, much like AVS5 and others. These were developed to ease the programming
requirements for visualization. They provided a visual programming capability that offered several advantages
for development over coding alone. However, visual representations constructed in these systems are dependent
on these systems for viewing. The scripting interface allows a more traditional programming experience and may
be preferable for more complicated tasks.

The Visualization Toolkit,6 otherwise known as vtk, provides a great many capabilities to its users. As a
toolkit, it can be seen as a collection of utilities or as a library of functions that a programmer may employ. An
implementation using vtk requires programming knowledge, and so vtk ’s direct user base is limited to people
with knowledge of at least one of the languages for which there exists an interface in vtk.

The Visualization Toolkit began with a focus on coding that is more traditional than any of the other
examples thus far considered. Its graphical interfaces have been developed more recently. Lefer22 describes a
parsing system that analyzes the C++ implementation files of a vtk distribution, and provides the user with
a graphical user interface mapped to the classes found within vtk. This interface allows direct manipulation of
the vtk object properties without knowledge of any programming language but it also introduces users to the
complexity of vtk itself. The user must still know something of vtk ’s render pipeline in order to construct a valid
visual representation, and he must also understand what values are valid for a given interface within vtk. It
does not provide a means to abstract the visualization from the specific tools needed to realize it. MayaVi23 and
QteVTK24 represent more general means of interacting with a particular vtk visual representation using tools
that are relevant to the exploration of the underlying data. As such, they have had success in providing the
benefits of both MVEs and vtk.

In all of the aforementioned cases of interfaces, it is difficult to get far from the underlying tool and to
create an abstraction that is apart from command syntax. Side-Views25 modified the menus inside of GIMP ∗

∗GNU Image Manipulation Program, http://www.gimp.org
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to show previews of various commands. However, this fine-grained preview requires substantial knowledge of the
application before it can be undertaken.

According to Perkins,26 a space can appear either as clue-rich (homing), in which the solution is evident,
or clue-poor (Klondike), in which the solution must be found by “prospecting.” Insight may be gained by the
transformation of a space from Klondike to homing, possibly through exploration. The power of the augmented
systems, which support various forms of exploration, cannot easily be brought to the existing manual systems.
What is required is a means of generating automatically particular alternatives for the user to evaluate. In the
next section, we describe how this can be done through the cogito system.

3. ARCHITECTURE
An interface for this exploration must be such that a user with little syntactic knowledge can navigate the space.
The interface must produce complete visual representations and show enough context to permit navigation. A
schematic is shown in Figure 2. Sims27 is one of several inspirations that embody what is called “interactive
evolution”: a user directs the search of the visualization parameter space by making selections of complete visual
representations, and those selections determine the makeup of the subsequent search space. The cogito system
supports the user by managing the display of alternatives to illustrate the breadth of what is available (see
Figures 2, 5,6, 7, and ??). Some systems that provide multiple coordinated views28 require a great deal more
from the user.

Figure 2. Schematic look at the interface: the parameter space of available alternatives is partitioned according to
user-specified viewing criteria. Each partition (A – F) has a representative element (a – f), which is displayed to the user
in separate cells in the interface. The subspace for the next search iteration is based on the user selection (b and f).

The main premise of the cogito architecture is interchangeability. The interface does not rely on a particular
task or implementation of the parameter space. This was accomplished through separation of the cogito system
into 3 distinct portions (Figure 3).

Figure 3. Design model for cogito system.

The User Interface portion implements the exploration aspects of cogito, and simply renders and responds
to the interaction points—buttons, list selections, and so forth. This layer encapsulates each user’s conception
of the problem.
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The Core portion provides the main functionality of cogito itself. The cogito Core handles the invocation
of the manual visualization tool controlled by the view selected by the user. In response to each invocation,
the manual visualization tool provides a completed visual representation in a form that can be displayed in one
of the cells of the interface, as depicted in Figure 2. This portion also handles the grouping of image layouts,
history navigation, and system initialization.

The Application portion provides the abstract interface by which the Core can communicate with a variety
of manual visualization tools. To interface with cogito, the visualization system must articulate the parameters
and values that it has to offer (this can be influenced by what the user wants to accomplish). This information
is used by the Core portion to construct each invocation of the tool. It is useful to consider each of the
manual visualization tools as providing a service to the cogito system, for the realization of requested visual
representations (Figure 1, for example). The cogito system then becomes an example of a service-oriented
architecture.

Batch Invocation Programs are programs that can provide a visualization for a given parameter set through
non-interactive techniques. Typically called from a command prompt with options appended to the execution
command or a configuration file, cogito can interact with these programs by constructing command-line in-
vocations with parameter flags or customized configuration files. Cogito supports a sophisticated XML-based
configuration language that allows a developer to specify a parameter space and command syntax for virtually
any batch-style process.

Modular Visualization Environments are typically designed to encourage direct user interaction, supporting
only limited forms of inter-process communication. However, many MVEs also provide scripting interfaces that
can provide batch-style interaction. Using a specially generated script, MVEs can become like Batch Invocation
Programs with the same style of interaction. A developer is then responsible for both an XML configuration
and a scripting interface, but generally only the most basic of script files is needed. This script file provides a
template or foundation for a wide variety of visual representations available from the MVE.

Toolkits and APIs provide perhaps the most potential flexibility for visualization. It is frequently very
interesting to explore the potential of an API such as OpenGL or vtk. In most cases, a toolkit developer can
produce a simple program that cogito can use as a batch invocation process, but sometimes the full flexibility or
efficiency of the program is best obtained through live interaction. Cogito supports a dynamic library version of
application interface, to extend the potential for space exploration beyond simple static images or batch program
output. A developer creates a shared object that extends cogito’s application interaction API, and generates
whatever form of representation is desired.

By addressing these three major forms of interaction for manual programs, cogito provides a great deal of
both control and flexibility. Virtually any existing manual application can work within the cogito interface,
usually with no modification to the existing code so long as batch-like interaction can be achieved. The only
caveat is that someone with knowledge of how to interact with the manual application must be available when the
application is first placed within the cogito interface. Note that detailed knowledge of the manual application’s
capabilities is not required.

This design allows the same interface to be used for a variety of different visualization tools. It is then easy
for a user to switch between tools. A user needs only understand what options are available, not necessarily
how they work, and cogito frees the user to explore the ramifications of these options in an intuitive and
consistent manner. Interface specification is done in terms of the user’s view of the parameter space instead of
the application’s available functionality.

4. EXAMPLES

A common element to all interaction is the XML configuration file. One such file is included in Figure 4 and is
described in the following subsection.
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4.1. Batch Invocation Programs (BIPs)

To demonstrate the effectiveness of a cogito connection to Batch Invocation Programs, we present sample ap-
plications created for R12 and GNUplot.11 These applications represent a class of applications designed for
statistical analysis, and they can generate a variety of interesting graphics to enhance and present tabular data.

GNUplot supports very simple interaction through configuration files that can contain data and instructions
for representing that data. In our very simple example, we explore the various ways that a simple curve based on
four data points can be graphed with a set of different graphing parameters. The data points remain constant,
but we explore the various ways they may be represented.

In Figure 4, the GNUplot XML configuration file is shown. GNUplot works with an external configuration
file, so each of the named components is replaced in the example configuration file example.gpt with values
drawn from the ranges defined in the XML file. As can be seen in this example, floating-point numbers can be
defined by a range instead of listed explicitly. The y1coord is defined to be any value between 0.05 and 0.95
(inclusive) with samples taken at increments of 0.1. Meanwhile, the graph types, which are explicit named types
from within GNUplot, are simple string types that are inserted into the configuration file directly.

<?xml version="1.0"?>
<!DOCTYPE xmlappmodule SYSTEM "cogito-conf.dtd">
<xmlappmodule>

<source>
<component type="float" name="y1coord">

<valmin>0.05</valmin>
<valmax>0.95</valmax>
<valinc>0.1</valinc>

</component>
<component type="string" name="graphtype">

<value>csplines</value>
<value>bezier</value>
<value>unique</value>

</component>
<component type="float" name="y2coord">

<valmin>0.05</valmin>
<valmax>0.95</valmax>
<valinc>0.1</valinc>

</component>
</source>
<output>

<program>
<command>/sw/bin/gnuplot</command>
<workingdir>/</workingdir>
<configfile index="1" type="gpt">${APPDIR}configs/example.gpt</configfile>
<outfile type="png" configfile="true"/>

</program>
</output>

</xmlappmodule>

Figure 4. XML configuration file for GNUplot.

R12 is a much more complex data analysis tool. Typically used as an interactive command-based statistical
interpreter, R command files are more akin to script files. R provides many more display options than GNUplot,
and our example program allows a user to explore all the different representations of a multivariate survey of
student abilities. Figure 6 shows our R sample through a cogito interface.

4.2. Scripted Modular Visualization Environments (SMVEs)

OpenDX is a visual programming environment for data visualizations. Using data objects and connective sym-
bols, users can create various visual representations of a variety of data types. It is particularly suited to
displaying measurements of physics experiments. Moreover, its connectivity-style interaction is very powerful
and can lead to a variety of new ways to explore the data—but it is difficult to intuit how the data connections
work and what a given connection “means”. Figure 7 compares the normal OpenDX interface to an example
running under cogito.
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Figure 5. Screen shot of the cogito interface used to explore curve variations available within GNUplot.

As it is a graphical programming tool, OpenDX does not intuitively integrate with a batch-oriented paradigm
for interaction. To create a batch-style interaction, though, is relatively simple. A basic image path is designed
in OpenDX, and saved as an OpenDX script. These are ASCII text documents, so cogito can, with its XML
configuration language, be trained to generate modified OpenDX scripts .

For our example, the space explored covers a selection of transforms that can be performed on a given mesh
model within OpenDX. This exploration allows a user to become comfortable with the various effects that can
be applied to a mesh, and only the developer of the initial script and XML configuration need be moderately
familiar with the semantics of OpenDX.

As a highly sophisticated programming environment, OpenDX produced the largest sample space of all of our
examples (see Table 4.3). Many of the explored components, that is, inputs to the program, are named cryptically
and are difficult for a user to understand. But by exploring the parameter space visually through cogito, the
user can ignore the complexity of the underlying software and focus on selecting the visual representation that
is most meaningful to him or her.

4.3. Toolkits and Application Programming Interfaces (TAPIs)
Our example of an API interacting with cogito is the vtk API.6 For this example, we attempted to replicate the
Shapes9 application for cogito, which was originally implemented in OpenInventor.29 For this simple example,
it was sufficient to create a basic command-line wrapper for vtk that runs in two modes: a batch mode that
generates a single image of a shape based on parameters given on the command line, and an interaction mode
that launches an exploration window for a given shape when launched without a specified output file.
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Figure 6. R through a cogito interface.

Figure 7. On the left, a simple openDX application in the native graphical user interface. Notice the number of possible
arguments to “image” (denoted by the number of tabs on the upper edge of the “image” block. On the right, a similar
application presented through the cogito interface.
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Example Program Components Explored (Elements) Total Space

GNUplot
First Y-Coordinate (10)

Second Y-Coordinate (10)
Interpolation curve (3)

300

R

Plot Type (5)
X-Axis (5)
Y-Axis (6)
Factor (6)

900

OpenDX

Background (6)
Colour (6)

Direction (4)
Value (10)

Number (10)

14,400

vtk

Shapes (13)
Colours (3)

Transparency (4)
Rotations (4x, 4y, 4z)

9,984

Table 1. Size of parameter space for each example.

The cogito screen generated for vtk is seen in Figure 8. An additional feature of this particular example is
the addition of the “Examine” button, defined as an extra action in the XML configuration. When the button
is clicked, the same batch application is launched with the same configuration parameters. However, without
any output specification, the program is immediately launched into the interactive three-dimensional viewer for
the vtk sample. This feature demonstrates how cogito can be used to move from an exploration environment to
a more traditional application seamlessly, allowing the user to take his or her final decision and begin working
with it directly.

Even though this is a simple example, the space of available visual representations contains nearly 10,000
alternatives: (13 shapes) × (3 colours) × (4 transparencies) × (4 rotations in x) × (4 rotations in y) × (4
rotations in z) = 9,984 points in the parameter space. The parameter space sizes of all of our examples are
summarized in Table 4.3.

5. CONCLUSIONS

The cogito interface provides the means both to obtain a global view of the contents of the parameter space and
to make local modifications through the “New Space” dialogue box (see Figure 9). Being able to change one’s
view of the current parameter space (through the “View Key”) enables a user to transform the space into one
that is “homing.”26

Insight gained from the use of the cogito system could be applied to constructing a meaningful objective
function for use with Design Galleries.

Adaptation of the cogito interface to the various manual systems was straightforward, making further adap-
tations possible. We have shown that it is easy to create an exploratory experience for a manual tool with which
a user might be familiar. A promising route may be the further abstraction of the applications from any specific
tools, which would enable one to switch easily between GNUplot, R, OpenDX, and vtk as the tool which realizes
the visualizations. From the user perspective, the same conceptual view of all these tools can be maintained.
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Figure 8. A sample screen showing the cogito interface to the vtk application.

Figure 9. A close up of the New Space dialogue obtained if the upper left and lower right images from Figure 8 are
selected.
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