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A digital computer and automatic plotter have been used 
to generate three-dimensional stereoscopic movies of the 
three-dimensional parallel and perspective projections of 
four-dimensional hyperobjects rotating in four-dimensional 
space. The observed projections and their motions were a 
direct extension of three-dimensional experience, but no pro- 
found "feeling" or insight into the fourth spatial dimension was 
obtained. The technique can be generalized to n-dimensions 
and applied to any n-dimensional hyperobject or hypersurface. 

I n t r o d u c t i o n  

In his now classic book on Flatland, Edwin Abbot t  [1] 
describes the social order resulting in a world restricted to 
two spatial dimensions. The inhabitants  of this world are 
completely unable to visualize a third spatial dimension and 
are therefore thoroughly baffled by the weird distortions 
of the two-dimensional projections into their world of 
simple three-dimensional objects. Man finds himself in a 
similar s tate of puzzlement concerning spatial dimensions 
higher than three, and really never even knows whether he 
might be witnessing the three-dimensional projection of 
some higher-dimensional event. When man does not com- 
prehend he sometimes gives religious significance, and 
therefore not surprisingly a fifth dimension has even been 
proposed as " the  ul t imate spiritual essence" [8]. 

The mathematics  and projective geometry of three- 
dimensional space can be generalized to any number  of 
dimensions so tha t  an n-dimensional hyperobject  can be 
mathematical ly projected into an ( n - -  1)-dimensional 
space. Such projection could be applied repetitively until 
finally a three-dimensional object representing the suc- 
cessive projections of an n-dimensional hyperobject  is 
obtained. If  desired, the hyperobject  might move in n-di- 
mensional space so tha t  its three-dimensional projection 
would not be stationary. A relatively simple form of motion 
is rotation of the hyperobject  in n-dimensional space. 

This paper  is a review of the mathemat ics  for two types 
of projection of n-dimensional hyperobjects and for n- 

dimensional rotation. Any n-dimensional hyperobject  
could then be manipulated mathemat ical ly  by  a digital 
computer.  The final three-dimensional projection of the 
rotating hyperobject  could be drawn automatical ly on a 
computer-controlled visual display device as a stereoscopic 
movie. 

As an example of this technique, a computer  technique 
for generating three-dimensional movies of the perspec- 
t ive projections into three-dimensional space of four- 
dimensional hyperobjects is described. Now, like the in- 
habitants  of Flatland, we too are puzzled by the strange 
distortions of the projection into three-dimensional space 
of a rotating but  rigid four-dimensional hyperobjeet.  Using 
intuition to extend to four dimensions our knowledge of 
the type  of distortions resulting from three-dimensional 
perspective projection, it is possible to explain the distor- 
tions but  still impossible to visualize the rigid four-di- 
mensional hyperobject.  

R o t a t i o n  

Throughout  this paper, bold-face lower-case letters will 
represent column vectors while matrices will be represented 
by bold-face capital letters. The column vector x = (x l ,  
x2, •. • , x~) t represents any point in n-dimensional space 
where the superscript t indicates transposition. 

In  n-dimensional space the simplest rotation is in a two- 
dimensional plane. I f  rotation is in the plane of xa and xb 
( the a-b plane), then the rotation matrix Rab(a) has the 
elements 

ri~ = 1 except raa = rbb = COS Or, (1) 
r~ = 0 exceptrab = --rb~ = --s in a. 

For example, the rotation matrix for a rotation through an 
angle a in the 2-4 plane in five-dimensional space is leo011 0 eos~  0 --sino~ 

R~(~)  = 0 0 1 0 • (2) 

sin a 0 cos 

0 0 0 

The n-dimensional rotation specified by eq. ( 1 ) is called 
a two-dimensional plane rotation since only those co- 
ordinates of a vector in the two-dimensional plane deter- 
mined by the axes xa and Xb are changed. Thus, in three- 
dimensional space, rotation about  the x3 axis would be 
called rotation in the x~-x~ plane. In  spaces of higher than 
three dimensions, rotation about  an axis is meaningless 

V o l u m e  10 / N u m b e r  8 / A u g u s t ,  1967 C o m m u n i c a t i o n s  of  t h e  ACM 4 6 9  



in terms of eq. (1) since a multi tude of nonparallel two- 
dimensional planes are all perpendicular to the same axis. 
For  example, in four-dimensional space the Xx-X~, x l - x3 ,  

and x2-xa planes are all perpendicular to the x4-axis. 
Any n-dimensional rotation matrix can be written as the 

product of n ( n -  1 ) /2  two-dimensional-plane n-dimensional 
rotation matrices [5]. Thus, e.g., in four-dimensional space 

1~ = Rl:(al)l~,~(a~)R14(a~)n:~(a4)n~(a~)a~(a0). (3) 

Project ion 

The most common form of projection in three-dimen- 
sional space is the perspective projection of an object as 
seen by each of our two eyes. A perspective projection is 
produced graphically, as shown in Figure 1, by first choos- 
ing a viewing point from which to view the object. A two- 
dimensional plane is then placed between the object and 
the viewing point. Straight lines are drawn from the object  
to the viewing point; their intersections with the plane 
are the perspective projection of the object. This procedure 
can be extended as follows to n-dimensional objects. 

As shown in Figure 2, the point p = (X1, X2, • • • , X~) ~ 
in the n-dimensional space with axes x l ,  x2, • • • , x~_l, x~ 
is to be perspectively projected onto the ( n -  1 ) -dimensional 
hyperplane defined by x~ = F. For simplicity, the viewing 
point v is located a distance R along the x~-axis. A straight 
line is drawn from p to v, and its intersection p with the 
(n--1)-dimensionM hyperplane is the desired perspective 
projection: 

I Xi' ] 

2 ! - - 1  = 

X~ '  ) 

(R  -- F)X1 

R --  X n  
(R - F)X2 

R - Z n  

( R  - F ) X . _ j  

R - Z n  
F 

(4) 

The n th  coordinate of p '  is constant since p '  lies in the 
(n - -  1)-dimensional hyperplane. Accordingly, p '  can also 

be represented as a (n -1 ) -d imens iona l  vector mathe- 
matically derived as the perspective projection of its 
counterpart  in the n-dimensionM space: 

(R - F)X1 

R - Xn 

(R - F)X2 
2 

Pn-1 = R - - X n  . (5) 

:1 (R - F)Xn-1 
R -- X,~ 

Another type of projection is derived from perspective 
projection by choosing the viewing point at  infinity, i.e., 
v = (0, 0, . . . ,  ~)~. Since the projection lines are all 
parallel in the limit, this is commonly called parallel pro- 
jection. By  taking the limit of eq. (4) as R -+ ~ ,  the par- 
allel projection q '  of the n-dimensional point p = (X1, 
X2, " "  , X , ) ' i s  

X2 
q'  = • (6) 

X 1 

Thus, the parallel projection is identical with the original 
point in the first ( n - - l )  dimensions. 

Hype rob j  ec ts  

A hyperobject in n-dimensional space can be represented 
as straight line segments connecting an ordered se* of 
points On in number). Similarly, an n-dimensional hyper- 
surface can be depicted visually as a finite set of points 
randomly scattered over its surface. In  either case, the 
n-dimensional hyperobject or hypersurface can be specified 
as a set of n-dimensional vectors which, if desired, might 
be combined together as the columns of a matrix. Thus, an 

FIG. 1. Perspect ive projection of a three-dimensional cube onto 
a two-dimensional plane 

7.2 
p =(x,,, x~ . . . . .  x~)t 

r n-DIMENSIONAL ] 

), O, . . .  ,O) t ~ 7"I 

(n-l)- DIMENSIONAL 
- ~  HYPERPLANE 

x 

7. v:(C~,o ..... o,R)~ 

FIG. 2. Perspect ive projection of a point  in n-dimensional  space 
onto an (n--1)-dimensional hyperplane 
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n-dimensional hyperobject or hypersurface can be repre- 
sented as an n X m matrix H given by 

I Yl(1) Y,(2) . . .  Y,(m) 1 

Y2(1) Y2(2) ""  Y2(m) t 
H ~ 

i : ! 

I Yn(1) Y~(2) ""  Y~(m)J 

(7 )  

The mathematical restriction on the Y's or the algorithm 
used in calculating them determines the hyperobject or 
hypersurface represented by the matrix H. For  example, if 

(Yi ( j )  - -  C~) 2 = p2 (8) 
i - I  

for a l l j  = 1, . . .  , m, then the points all lie on the surface 
of an n-dimensional hypersphere with center at (C1, C2, 
• . .  , C ~ )  ~. 

If  the line representation of a hyperobject with disjoint 
portions is desired, then the disjoint portions of the hyper- 
object must be specified so as not to be connected together 
with straight lines. Also, even if the hyperobject is not 
disjoint, certain line segments might have to be treated 
disjointly if the restriction is imposed that  no line be drawn 
twice. For example, the 12 edges of a three-dimensional 
cube can not be drawn as a connected line without drawing 
some edges more than once. 

C o m p u t e r  T e c h n i q u e  

Since our habitation is restricted to a maximum of three 
spatial dimensions, we are unable to visualize a fourth 
much less a higher spatial dimension. We are able to 
perceive three-dimensional depth as a result of the slightly 
different images seen by our eyes. The illusion of depth 
can be created by viewing stereoscopically a pair of per- 
spective two-dimensional pictures, but  such perspectives 
are very tedious to calculate and draw. However, computer 
techniques are presently available for calculating and 
automatically plotting the left eye and right-eye images of 
some three-dimensional object [6]. If desired, a three- 
dimensional movie can be generated in this manner using 
the computer and automatic plotter to generate a sequence 
of pictures. Thus, if an n-spatial-dimensional object is 
mathematically projected onto three dimensions, the com- 
puter can produce the required drawings to obtain a 
three-dimensional depth effect. A movie can be produced 
by simply choosing to rotate the hyperobject in n-dimen- 
sional space. Although this procedure is generally applica- 
ble to n-dimensions, the details that  follow will describe 
the actual implementation to four-dimensional hyperob- 
jects and hypersurfaces. 

The computer program performs the following functions. 
First, the object matrix H specifying the desired hyper- 
object is read into the computer from punched cards. 
The hyperobject is then rotated in four-dimensional space 
to a new orientation with object matrix 

Y = nob(~)H (9) 

for a single plane rotation or by 

Y = Rab(a)Rcd(f~)Res(3')H (10) 

for a succession of three plane rotations. The rotated hyper- 
object Y is projected into three-dimensional space either 
by  perspective projection given by 

I 
X1(1) "-" Xt(m)) 

X2(1) . . .  X~(m){ 

Xa(1) ... Xa(m)J 

Yl(1) Yl(m) (11) 
R -- Y4(1) R - -  Y4(m) 

Y2(1) Y2(m) 
= (R - F) 

R -- Y4(1) R -- Y4(m) 

Ys(1) Ya( m ) 
R -- Y4(1) R -- Y4(m) 

or by parallel projection given by  

X2(1) " -  X2(m){ = Y=(1) ... Y2(m)| (12) 
/ { 

Xa(1) ... Xa(m)J ~Ya(1) ... Ya(m)J 

The stereoscopic pair of two-dimensional perspective 
projections of the three-dimensional projection of the 
hyperobject are calculated by  the computer and auto- 
matically plotted on a single frame of film. The hyperobject 
is then rotated through an incremental angle, and the 
various projections from four dimensions to three dimen- 
sions and from three dimensions to a pair of two-dimen- 
sional projections are repeated finally resulting in ye t  
another frame of the movie. 

E x a m p l e s  

The hypercube is the n-dimensional generalization of 
either a two-dimensional square or a three-dimensional 
cube. I t  is bounded by pairs of parallel (n- -  1 )-dimensional 
hyperplanes which are all the same distance apart. The 
three-dimensional cube is bounded by  three pairs of two- 
dimensional faces or squares while the four-dimensional 
hypercube is bounded by four pairs of three-dimensional 
hyperfaces which now are cubes. The n-dimensional hy- 
percube has 2 ~ vertices and n. 2 ~-1 edges so that  a four- 
dimensional hypercube has 16 vertices and 32 edges. 

The 16 vertices specifying a four-dimensional hypercube 
were calculated and ordered into 33 points which when 
connected sequentially by straight lines would produce the 
hypercube's 32 edges. These points formed the object- 
matrix specification of the hypercube, and the computer 
then produced three-dimensional movies of the parallel 
and perspective projections of the hypercube rotating in 
four-dimensional space. Selected frames from the movie of 
the perspective projection are shown in Figure 3. 

The perspective projection of a four-dimensional hyper- 
cube is a cube within a cube with corresponding vertices 
connected together. This and the motion caused by rota- 
tion can better  be understood by analogy with a three- 
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dimensional cube. The perspective projection of a cube is a 
square within a square with pairs of edges connected to- 
gether, because the face, here a square, closest to the view- 
ing point will appear  largest. Similarly, the hypercube's  
hyperface (now a cube) closest to the viewing point will 
appear  largest so tha t  a cube within a cube is obtained. 

I f  a cube rotates in a two-dimensional plane perpen- 
dicular to a line passing through both the origin and the 
viewing point, the perspective projection simply rotates as 
a whole. If, however, this line does not pass through the 
viewing point, then the position of the faces changes so tha t  
the projections of the faces change their size as the cube 
rotates. The four-dimensional extension of this is tha t  the 
three-dimensional cube within a cube similarly rotates as a 
whole if the line passing through both the origin and the 
viewing point is perpendicular to the rotation plane. How- 
ever, when this line is not perpendicular to the rotation 
plane, the cubes change their size as they rotate  so tha t  the 
hyperface (cube) closest to the viewing point is always 
largest. In  the actual movie, the viewing point is si tuated 
on the x~-axis, and three different matrix transformations 
are used for the rotations: (1) three complete revolutions in 
the 1-3 plane, i.e., R13(a); (2) three complete revolutions 
in the 2-4 plane, i.e., R:4(a),  and (3) three successive 
matrix transformations,  i.e., R23(a)R13(~)R34(3,). 

For  the parallel projection from four dimensions to three 
dimensions there are no perspective distortions, and there- 
fore the nearest and farthest  hyperfaces are both  the same 
size. Thus, the parallel projection of the hypercube is two 
cubes joined together to produce a cuboid. As the hyper- 
cube rotates, no perspective distortions occur as a result of 
the projection from four dimensions to three dimensions. 
A few selected frames from the movie are shown in Figure 4. 

Three-dimensional movies of the perspective projection of 
a four-dimensional simplex, hypertetrahedron,  and hyper- 
sphere were also generated by  the computer.  The  hyper- 
surface of the hypersphere was specified by  randomly scat- 
tering points on its surface which were plotted as dots by 
the computer  in the final movie. The points were scattered 
so as to have a uniform distribution over the surface of 
the hypersphere. 

A five-dimensional hypercube was projected perspec- 
t ively from five dimensions to four dimensions, and the 
four-dimensional projection was projected perspectively to 
three dimensions. However,  the final three-dimensional 
projection, which appeared as a cube-within-a-cube within 
a cube-within-a-cube was extremely complicated so tha t  
the distortions resulting from the rotation were very diffi- 
cult to follow. Thus, four dimensions would seem to be a 

FIG. 3 FIG. 4 

FIG. 3. Selected frames from a computer-genera ted  three-dimen-  
sional movie showing the  three-dimensional  perspect ive project ion 

of a four-dimensional hypercube. The hypercube is being viewed 
from the x4-axis and is rotating in the xl - x3 plane. To view this 
figure in 3-D, place a sheet of paper on edge between one stereo 
pair. Position your head so each eye sees only one image. The 
pictures should then seem to merge and appear three dimensional 
FIG. 4. The three-dimensional parallel projection of a four- 
dimensional hypercube 
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practical limit since higher-dimensional objects are pres- 
ently too detailed to be displayed adequately by the com- 
puter. 

D i s c u s s i o n  

At first it was thought that the computer-generated 
movies of the four-dimensional hyperobjects might result 
in some "feeling" or insight for the visualization of a fourth 
spatial dimension. In particular, perhaps some visualiza- 
tion of a solid four-dimensional hyperobjeet would be 
gained from the distortions in the three-dimensional per- 
spective projection. Unfortunately, this did not happen, 
and we are still as puzzled as the inhabitants of Flatland in 
attempting to visualize a higher spatial dimension. 

However, the importance of the techniques presented 
in this paper is the use of a digital computer to generate 
visual displays of the three-dimensional projections of the 
hyperobjects. Such displays of rotating hyperobjects could 
be produced most efficiently by a computer since the pro- 
jections and drawing would be too tedious and impractical 
to produce by any other method. Although no actual mental 
visualization of the fourth dimension resulted from the 
computer-generated displays, it was at least possible to 
visually display the projections and be puzzled in attempt- 
ing to imagine the rigid four-dimensional hyperobject. Of 
course, these techniques should be useful in displaying data 
with more than three variables. 

The movies have already been useful in extending 
knowledge of three-dimensional perspective projections to 
higher dimensions. The techniques have been applied to 
real-time graphical displays so that the user can rotate, 
translate, and manipulate hyperobjects and hyperdata 
and immediately see the results on a graphical display. 
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LETTERS--Continued from p. 463 

without  passing any other  label,, and let  Si,¢ be the  sequence of 
ass ignment  s ta tements  obeyed on this path.  Define new Boolean 
variables Bo, B1 , .. - , B~.  Then  P is equiva lent  to the  program: 
START:  Bo e.- t r u e ;  B1 ¢- f a l se ;  . . .  ; B,,--~ fa l se ;  

L:  i f  Bn t h e n  go to  EXIT;  
i f  B o A  P o , 0 t h e n  b e g i n  B0 := fa l se ;  S0,o ; 

Bo := t r u e  e n d  e l s e  

i f  Bi ~ Pi,j t h e n  b e g i n  Bi := f a l se ;  S~,; ; 
Bj := t rue  e n d  e l s e  

i f  B~_i A P,-L,,  t h e n  b e g i n  B,~_~ := fa l se ;  S.-L~ ; 
B,~ := t r u e  e n d ;  

go to  L; 
E X I T  : 
This  program has a t r ivial  flowchart of the form indicated above. 

B6hm and Jacopini  are interes ted in reducing as far  as possible 
the number  of concepts used and i t  is then  reasonable to code up 
previous flow of control into variables,  as this ca r  usually be done 
within the existing framework. If, however, one's mot iva t ion  is to 
simplify the program's  s t ructure  so t ha t  we may be t t e r  answer 
questions such as whether  the program loops indefinitely, then 
this coding of the control into variables is no help at  all. I t  remains 
true though t h a t  the block form is a very natura l  s tandard  form 
to use, and it  is certainly possible to t ransform many  programs 
into equiwdent  programs in block form wi thout  resorting to the 
coding of control features as values of variables. Some prel iminary 
conjectures along this line are reported in my  paper  referred to 
above. DAVID C. COOPER 

Carnegie Institute of Technology 
Pittsburgh, Pennsylvania 15213 

A C o m m e n t  o n  G a l l e r ' s  L e t t e r  
ED I T O R  : 

I find Mr. Gal ler ' s  le t ter  to the membership  [Comm. ACM 10, 
5 (May 1967)] a wel l - intended guide to pene t ra t ing  the  AC1VI power 
s t ructure .  " F r e d  Jones , "  a typical  p rogrammer  wi th  some ideas 
about  file s t ructures ,  s t a r t s  i n M r .  Gal ler ' s  account  as an unknown,  
and rises unt i l  "he may even find himself a subcommit tee  chair-  
m a n . "  This  up-note  ending is as unques t ioned as t h a t  in a classic 
Hollywood movie,  unt i l  Mr. Galler  adds, " I t  could happen to 
almost anyone- - i t  did to some of us ."  To me, t h a t  is an 
unwi t t ingly  f rank s t a t emen t  of a menace. 

Commit tees  don ' t  often discover anythfing. If Fred  Jones '  ideas 
about  file s t ruc tures  are genuinely good, he should indeed spread  
them around,  and he should l is ten to and benefit  f rom the related 
ideas of o thers ;  the network of commit tees  and meet ings  is admir-  
ably sui ted for this.  Bu t  he should also pursue his ideas fur ther ,  
which might  bes t  be done by  not finding himself a subcommit tee  
chairman.  Wi th  the  surplus of " j o i n e r "  act ivi t ies  in the computer  
field, a line should be drawn as to how many  to take pa r t  in. 

If  such a line is not  drawn,  as in Mr. Gal ler ' s  otherwise excellent 
editorial ,  the creat ive accomplishments  possible outside the mech- 
anisms of " t h e  e s t ab l i shmen t "  of committees ,  meetings,  arid 
block-diagram power s t ruc tu res  will be killed. In  fact ,  some 
tota l ly ,  perversely independent  types,  I believe, might  con t r ibu te  
at  least  as much  to computer  science as do the unques t ioning 
joiners  of committees.  Self-directed, in tens ive  though t  and re- 
search,  as well as some mellow, not -geared- to- the-minute  reflec- 
t iv i ty ,  is needed in this  computer  game. 

JERRY A. RALYA 
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