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Quantifying Transversality
by Measuring the Robustness of Intersections∗

Herbert Edelsbrunner†, Dmitriy Morozov‡, and Amit Patel§

Abstract
By definition, transverse intersections are stable under in-
finitesimal perturbations. Using persistent homology, we ex-
tend this notion to sizeable perturbations. Specifically, we
assign to each homology class of the intersection its robust-
ness, the magnitude of a perturbation necessary to kill it, and
prove that robustness is stable. Among the applications of
this result is a stable notion of robustness for fixed points
of continuous mappings and a statement of stability for con-
tours of smooth mappings.

Keywords. Smooth mappings, transversality, fixed points, con-
tours, homology, filtrations, zigzag modules, persistence, stability.

1 Introduction
The main new concept in this paper is a quantification of
the classically differential notion of transversality. This is
achieved by extending persistence from filtrations of homol-
ogy groups to zigzag modules of well groups.

Motivation. In hind-sight, we place the starting point for
the work described in this paper at the difference between
qualitative and quantitative statements and their relevance
in the sciences; see eg. the discussion in Thom’s book [15,
Chapters 1.3 and 13.8]. It appears the conscious mind thinks
in qualitative terms, delegating the quantitative detailsto the
unconscious, if possible. In the sciences, quantitative state-
ments are a requirement for testing a hypothesis. Without
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such a test, the hypothesis is not falsifiable and, by popular
philosophical interpretation, not scientific [13]. The particu-
lar field discussed in [15] is the mathematical study of singu-
larities of smooth mappings, which is dominated by qualita-
tive statements. We refer to the seminal papers by Whitney
[17, 18] and the book by Arnold [1] for introductions. A uni-
fying concept in this field is the transversality of an intersec-
tion between two spaces. Its roots go far back in history and
appear among others in the work of Poincaré about a cen-
tury ago. It took a good development toward its present form
under Pontryagin and Whitney; see eg. [14]. In this review
of Zeeman’s book [19], Smale criticizes the unscientific as-
pects of the work promoted in then popular area of catastro-
phe theory, thus significantly contributing to the discussion
of qualitative versus quantitative statements and to the fate of
that field. At the same time, Smale points to positive aspects
and stresses the importance of the concept of transversality
in the study of singularities. In a nutshell, an intersection is
transverse if it forms a non-zero angle and is therefore stable
under infinitesimal perturbations; see Section 2 for a formal
definition.

Results. We view our work as a measure theoretic exten-
sion of the essentially differential concept of transversality.
We extend by relaxing the requirements on the perturbations
to continuous but not necessarily smooth mappings. At the
same time, we are more tolerant to changes in the intersec-
tion. To rationalize this tolerance, we measure intersections
using real numbers as opposed to0 for non-existence and1
for existence. The measurements are made using the concept
of persistent homology; see [7] for the original paper and [5]
for a recent survey. However, we have need for modifica-
tions and use the extension of persistence from filtrations to
zigzag modules as proposed in [2]. An important property of
persistence, as originally defined for filtrations, is the stabil-
ity of its diagrams; see [4] for the original proof. There is no
comparably general result known for zigzag modules. Our
main result is a step in this direction. Specifically, we view
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the following as the main contributions of this paper:

1. the introduction of well groups that capture the toler-
ance of intersections to perturbations, and the proof that
the diagrams of their zigzag module are stable;

2. the interpretation of the values in these diagrams as
measurements of transversality, referred to as the ro-
bustness of intersections;

3. the application of these results to fixed points and peri-
odic orbits of continuous mappings.

In addition, our results have ramifications in the study of the
set of critical values, the apparent contour of a smooth map-
ping. Specifically, the stability of the diagrams mentioned
above completes the proof of the stability of the apparent
contour of a smooth mapping from an orientable2-manifold
to the plane given in [8]. The need for these stable diagrams
was indeed what triggered the development described in this
paper.

Outline. Section 2 provides the relevant background. Sec-
tion 3 explains how we measure robustness using well groups
and zigzag modules. Section 4 proves our main result, the
stability of the diagrams defined by the modules. Section 5
discusses applications. Section 6 concludes the paper.

2 Background
We need the algebraic concept of persistent homology to ex-
tend the differential notion of transversality as explained in
the introduction. In this section, we give a formal definition
of transversality, referring to [11] for general background in
differential topology. We also introduce homology and per-
sistent homology, referring to [12] for general backgroundin
classic algebraic topology and to [6] for a text on computa-
tional topology.

Transversality. Let X,Y be manifolds,f : X → Y a
smooth mapping, andA ⊆ Y a smoothly embedded subman-
ifold of the range. We assume the manifolds have finite di-
mension and no boundary, writingm = dim X, n = dim Y,
and k = dim A. Given a pointx ∈ X and a smooth
curveγ : R → X with γ(0) = x, we call γ̇(0) the tan-
gent vectorof γ at x. Varying the curve, we get a set
of tangent vectors called thetangent spaceof X at x, de-
noted asTxX. Composing the curves with the mapping,
f ◦ γ : R → Y, we get a subset of all smooth curves pass-
ing throughy = f(x) = f ◦ γ(0). Thederivativeof f at
x is Df(x) : TxX → TyY defined by mapping the tan-
gent vector ofγ atx to the tangent vector off ◦ γ at y. The
derivative is a linear map and its image is a subspace ofTyY.
The dimensions of the tangent spaces arem = dimTxX and

n = dimTyY, which implies that the dimension of the im-
age of the derivative isdimDf(x)(TxX) ≤ min{m,n}.

We are interested in properties off that are stable under
perturbations. We call a propertyinfinitesimally stableif for
every smooth homotopy,F : X × [0, 1] → Y with f0 = f ,
there is a real numberδ > 0 such thatft possesses the same
property for allt < δ, whereft(x) = F (x, t) for all x ∈ X.
An important example of such a property is the following.
The mappingf is transverseto A, denoted asf ⊤∩ A, if
for eachx ∈ X with f(x) ∈ A, the image of the derivative
of f at x together with the tangent space ofA at a = f(x)
spans the tangent space ofY at a. More formally,f ⊤∩ A

if Df(x)(TxX) + TaA = TaY. It is plausible but also true
that transversality is an infinitesimally stable property.

Product spaces. It is convenient to recast transversality in
terms of intersections of subspaces of the product spaceX×
Y, a manifold of dimensionm + n. Consider the graphs of
f and of its restriction to the preimage ofA,

gf f = {(x, y) ∈ X× Y | y = f(x)};

gf f |A = {(x, a) ∈ X× A | a = f(x)}.

The intersection of interest is betweengf f andX × A, two
manifolds of dimensionsm andm+ k embedded inX×Y.
This intersection is the graph off |A, which is homeomorphic
to the preimage ofA. See Figure 1 for an example in which

gf f

X× aA = {a}

X

Y

Figure 1: The preimage ofa, consisting of four points on the hori-
zontal axis representingX, is homeomorphic to the intersection of
the curve with the horizontal line passing througha.

m = n = 1 andk = 0. Here,TaA = 0 and transversal-
ity requires that whenever the curve,gf f , intersects the line,
X×A, it crosses at a non-zero angle. This is the case in Fig-
ure 1 which implies that having a cardinality four preimage
of a is an infinitesimally stable property off . Nevertheless,
the left two intersection points are clearly more stable than
the right two intersection points, but we will need some al-
gebra to give precise meaning to this statement.

Homology. The algebraic language of homology is a
means to define and count holes in a topological space. We
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think of it as a functor that maps a space to an abelian group
and a continuous map between spaces to a homomorphism
between the corresponding groups. We have such a func-
tor for each dimension,p. It is convenient to combine the
homology groups of all dimensions into a single algebraic
structure. WritingHp(X) for the p-dimensional homology
group of the topological spaceX, we form a graded group
by taking direct sums,

H(X) =
⊕

p≥0

Hp(X).

To simplify language and notation, we will suppress dimen-
sions and refer toH(X) is the homology groupof X. Its
elements are formally written as polynomials,α0 + α1t +
α2t

2 + . . ., whereαp is anp-dimensional homology class
and only finitely many of the classes are non-zero. As usual,
adding two polynomials is done componentwise. The groups
Hp(X) depend on a choice of coefficient group. The theory
of persistence introduced below requires we use field coef-
ficients. An example is modulo two arithmetic in which the
field isZ2 = {0, 1}. Thep-dimensional group is then a vec-
tor space,Hp(X) ≃ Z

βp

2 , and its rank, the dimension of the
vector space, is thep-th Betti number, βp = βp(X). Simi-
larly, H(X) is a vector space of dimension

∑

p≥0
βp. We say

X andY have the same homologyif there is an isomorphism
betweenH(X) andH(Y) whose restrictions to the compo-
nents are isomorphisms. Equivalently,βp(X) = βp(Y) for
all non-negative integersp.

Persistent homology. Now suppose we have a finite se-
quence of nested spaces,X1 ⊆ X2 ⊆ . . . ⊆ Xℓ. Writing
Φi = H(Xi) for the homology group of thei-th space, we
get a sequence of vector spaces connected from left to right
by homomorphic maps induced by inclusion:

Φ : Φ1 → Φ2 → . . .→ Φℓ.

We call this sequence afiltration. To study the evolution of
the homology classes as we progress from left to right in the
filtration, we letϕi,j be the composition of the maps between
Φi andΦj , for i ≤ j. We say a classα ∈ Φi is bornatΦi if
it does not belong to the image ofϕi−1,i. Furthermore, this
classα dies enteringΦj if ϕi,j−1(α) does not belong to the
image ofϕi−1,j−1 butϕi,j(α) does belong to the image of
ϕi−1,j . We call the images of the mapsϕi,j the persistent
homology groupsof the filtration and record the evolution
of the homology classes in thepersistence diagramof the
filtration, denoted asDgm(Φ). This is a multiset of points
in the extended plane,̄R2 = (R ∪ {−∞,∞})2. Marking
an increase in rank on the horizontal, birth axis and a drop
in rank on the vertical, death axis, each point represents the
birth and the death of a generator and records where these

birth

de
at

h

(i, i)

Figure 2: The three off-diagonal points represent the birthand death
of three generators. The number of points in the upper-left quadrant
equals the rank of the corresponding homology group.

events happen; see Figure 2. For technical reasons that will
become clear shortly, we add infinitely many copies of each
point on the diagonal to the diagram. Given an index,i, we
can read off the rank ofH(Xi) by counting the points in the
half-open upper-left quadrant,[−∞, i]× (i,∞], anchored at
the point(i, i) on the diagonal. More generally, the rank of
the image ofϕi,j equals the number of points in the upper-
left quadrant anchored at(i, j).

Stability. Consider now the case in which the spaces in the
sequence are sublevel sets of a real valued functionϕ : X→
R, that is, there are valuesri such thatXi = ϕ−1(∞, ri]
for eachi. A homological critical valueof ϕ is a valuer
such that for every sufficiently smallδ > 0, the homomor-
phism fromH(ϕ−1(−∞, r − δ]) to H(ϕ−1(−∞, r + δ]) in-
duced by inclusion is not an isomorphism. We supposeϕ
is tameby which we mean that each sublevel set has finite
rank homology and there are only finitely many homologi-
cal critical values, denoted asr1 < r2 < . . . < rℓ. We can
represent the evolution of the homology classes by the finite
filtration consisting of the groupsΦi = H(ϕ−1(−∞, ri]) for
1 ≤ i ≤ ℓ and by the persistence diagram of that filtra-
tion, D = Dgm(Φ). Lettingψ : X → R be another tame
function, we get another filtraton,Ψ, and another persistence
diagram,E = Dgm(Ψ). Thebottleneck distancebetween
the two is the infimum, over all bijections,µ : D → E, of
theL∞-length of the longest edge in the matching,

W∞(D,E) = inf
µ

sup
a∈D

‖a− µ(a)‖∞.

An important result is the stability of the persistence diagram
under perturbations of the function.

STABILITY THEOREM FORTAME FUNCTIONS [4]. Let
ϕ andψ be tame, real-valued functions onX. Then the
bottleneck distance between their persistence diagrams is
bounded from above by‖ϕ− ψ‖∞.
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Here,‖ϕ− ψ‖∞ = supx∈X |ϕ(x) − ψ(x)|, as usual. The
original form of this result is slightly stronger as it restricts
itself to dimension preserving bijections. The theorem im-
plies that the bottleneck distance between the diagrams de-
fined byϕ andψ goes to zero as the difference between the
two functions approaches zero.

3 Measuring Robustness
The main new concept in this section is the well diagram of
the distance function defined by a mappingf : X → Y and
a submanifoldA ⊆ Y. It encodes the persistent homology
of the preimage of the submanifold. We begin by setting the
stage and introducing the well group of a sublevel set.

Admissible mappings. AssumeY is a Riemannian mani-
fold and write‖y − a‖

Y
for the distance between the points

y, a ∈ Y assigned by the associated metric. LetfA : X→ R

be defined by mapping each pointx to the distance of its
image fromA, that is,

fA(x) = inf
a∈A

‖f(x)− a‖
Y
.

We call fA the distance functiondefined byf andA. The
level setof fA at a valuer is the preimage of that value,
f−1

A
(r). Thesublevel setfor the same value,r, is the union

of level sets at values at mostr or, equivalently, the preimage
of [0, r]. Writing A

r for the set of points at distancer or less
from A, we havef−1

A
[0, r] = f−1(Ar).

In this paper, we limit the class of mappings to those with
manageable properties. While our goal is a statement of our
results in a context that is sufficiently broad to support in-
teresting applications, we are aware of the technical burden
that comes with generality. We hope that the following class
of mappings gives a happy median between the conflicting
goals of generality and transparency.

DEFINITION. Let X be anm-manifold,Y a Riemannian
n-manifold, andA a k-dimensional submanifold ofY. A
continuous mappingf : X→ Y is admissibleif f−1(A) has
a finite rank homology group.

Requiring that the preimage ofA has finite rank homology
is strictly weaker than demanding that the distance function
defined byf andA is tame.

Well groups. Let h : X → Y be a mapping homotopic to
f , that is, there is a continuous mappingH : X× [0, 1]→ Y

with H(x, 0) = f(x) andH(x, 1) = h(x) for all x ∈ X.
We call h a ρ-perturbationof f if ‖h− f‖∞ ≤ ρ, where
the norm of the difference is the supremum over allx ∈ X

of the distance betweenh(x) andf(x) in Y. The preimage
of A under aρ-perturbation is contained in the preimage of

A
ρ underf . Writing this in terms of distance functions, we

haveh−1

A
(0) ⊆ f−1

A
[0, ρ]. This inclusion induces a homo-

morphism between the corresponding homology groups,

jh : H(h−1

A
(0))→ F(ρ),

where we simplify notation by writingF(ρ) for H(f−1

A
[0, ρ]).

The image of this map, denoted asim jh, is a subgroup of
F(ρ). The intersection of subgroups is again a subgroup,
which motivates the following definition.

DEFINITION. The well group of f−1

A
[0, r] is the largest

subgroupU(r) ⊆ F(r) such that the image ofU(r) in F(ρ)
is contained in

⋂

h:X→Y
im jh, whereh ranges over allρ-

perturbations off andρ = r + δ for a sufficiently small
δ > 0.

The reason for usingρ- instead ofr-perturbations is tech-
nical and will become clear later. The requirement that the
perturbations be homotopic tof is not used in the proofs and
can therefore be dropped. However, removing the require-
ment changes the well groups and therefore the meaning of
our results. Similarly, we may obtain additional variants of
our results by modifying the definition of aρ-perturbation in
other ways.

Example. To illustrate the definitions, let us consider again
the example in Figure 1. The preimage ofA = {a} is
a set of four points separated by three critical points off .
From left to right, the values off at these critical points are
a + r1, a − r2, a + r3. Correspondingly, the distance func-
tion, fa : X → R, has three homological critical values,
namelyr1 > r2 > r3. Table 1 shows the ranks ofF(r)
andU(r) for values ofr in the four intervals delimited by
the homological critical values. Starting withr = 0, we

[0, r3) [r3, r2) [r2, r1) [r1,∞)

F(r) 4 3 2 1
U(r) 4 2 2 0

Table 1: The ranks of the homology and well groups defined for the
mappingf and the submanifoldA = {a} in Figure 1.

have four points, each forming a component represented by
a class in the homology group and in the well group of the
sublevel set offa. Therefore, both groups are the same and
have rank four, see the first column in Table 1. Growingr
turns the points into intervals but leaves the groups the same
until r reachesr3, the smallest of the three homological crit-
ical values. At this time, the two right intervals merge into
one, so the rank of the homology group drops to three. We
can find an(r3 + δ)-perturbation whose level set ata con-
sists of the left two points off−1(a) but the right two points
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have disappeared. Indeed, the level set of every(r3 + δ)-
perturbation has a non-empty intersetion with the first two
but can have empty intersection with the merged interval on
the right. Hence, the left two intervals have a representation
in the well group, the merged interval does not, and the rank
of the well group is two; see the second column in Table 1.
The next change happens whenr reachesr2. At this time,
the middle interval merges with the merged interval on the
right. The rank of the homology group drops to two, while
the rank of the well group remains unchanged at two; see
the third column in Table 1. Finally, whenr reachesr1, the
remaining two intervals merge into one, so the rank of the
homology group drops to one. We can find an(r1 + δ)-
perturbation whose level set ata is empty, so the rank of the
well group drops to zero; see the last column in Table 1.

Terminal critical values. Recall that we assume the map-
pingf : X → Y is admissible. The initial homology group,
F(0) = H(f−1

A
(0)), has therefore finite rank, and because

U(0) ⊆ F(0), the initial well group has finite rank. Imagine
we grow the sublevel set by gradually increasingr from zero
to infinity. Since the admissibility off does not imply the
tameness of the distance function, this leaves open the possi-
bility that fA has infinitely many homological critical values.
We call a radius,r, aterminal critical valueof fA if for every
sufficiently smallδ > 0 the homomorphism fromF(r − δ)
to F(r + δ) applied toU(r − δ) does not giveU(r + δ). In
contrast to the homological critical values, there can onlybe
a finite number of terminal critical values. To see this, we
note that the set of images whose common intersection is the
well group cannot decrease and the rank of the well group
can therefore not increase. To state this relationship between
well groups more formally, we writef(r, s) : F(r) → F(s)
for the homomorphism induced by inclusion.

SHRINKING WELLNESSLEMMA . For each choice of
radii 0 ≤ r ≤ s, the image of the well group atr contains
the well group ats, that is,U(s) ⊆ f(r, s)(U(r)).

It follows the only way the well group can change is by low-
ering its rank. Since we start with a finite rank well group
at r = 0, there can only be finitely many terminal critical
values, which we denote asu1 < u2 < . . . < ul. To this
sequence, we addu0 = 0 on the left andul+1 = ∞ on the
right. It is convenient to index the homology groups and the
well groups accordingly, writingFi = F(ri) andUi = U(ri)
for all i. To these sequence, we addF−1 = U−1 = 0 on
the left andFl+2 = Ul+2 = 0 on the right. Furthermore, we
write fi,j : Fi → Fj for all feasible choices ofi ≤ j.

Well module. In contrast to the homology groups, the well
groups of the sublevel sets do not form a filtration. Instead,
they form a special kind of zigzag module. By definition of

terminal critical values, the rank ofUi exceeds the rank of
Ui+1. The rank of the image,fi,i+1(Ui), is somewhere be-
tween these two ranks. We call a difference betweenUi and
its image aconventional death, in which a class maps to zero,
and a difference between the image andUi+1 anunconven-
tional death, in which the image of a class lies outside the
next well group. We capture both cases by inserting a new
group between the contiguous well groups; see Figure 3. To

Ui

biai

Qi

α

β

Ui+1

Fi+1Fi

Figure 3: Connecting two consecutive well groups to the quotient
group introduced between them. The classα dies a conventional
death and the classβ dies an unconventional death.

this end, we consider the restriction offi,i+1 to Ui and in
particular its kernel,Ki = Ui ∩ ker fi,i+1, which we refer
to as thevanishing subgroupof Ui. Using this subgroup, we
constructQi = Ui/Ki. The forward map,ai : Ui → Qi, is
defined by mapping a classξ to ξ+Ki. It is clearly surjective.
The backward map,bi : Ui+1 → Qi, is defined by mapping
a classη to ξ + Ki, whereξ belongs tof−1

i,i+1
(η). This map

is clearly injective. Instead of a filtration in which all maps
go from left to right, we get a sequence in which the maps
alternate between going forward and backward. As indicated
below, every other group in the sequence is a subgroup of the
corresponding homology group,

Qi−1

bi−1

← Ui
ai→ Qi

bi← Ui+1

ai+1

→ Qi+1

↓ ↓
→ Fi → Fi+1 →

We call this sequence thewell moduleof fA, denoted asU.
We remark thatU is a special case of a zigzag module as
introduced in [2]. It is special because all forward maps are
surjective and all backward maps are injective. Equivalently,
there are no births other than atU0.

Left filtration. Perhaps surprisingly, the evolution of the
homology classes can still be fully described by pairing
births with deaths, just like for a filtration. To shed light
on this construction, we follow [2] and turn a zigzag mod-
ule into a filtration. In our case, all births happen atU0,
so this transformation is easier than for general zigzag mod-
ules. Writeu0,i : U0 → Fi for the restriction off0,i to
the initial well group. By the Shrinking Wellness Lemma,
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the image of this map contains thei-th well group, that is,
Ui ⊆ u0,i(U0). We consider the preimages of the well
groups inU0 together with the preimages of their vanishing
subgroups,Ai = u−1

0,i (Ki) andBi = u−1

0,i (Ui); see Figure 4.
We note thatAi/Ai−1 ≃ ker ai andBi/Bi+1 ≃ cok bi. In
words, the first quotient represents the homology classes that
die a conventional death and the second quotient represents
the homology classes that die an unconventional death. As
illustrated in Figure 4, the preimages form a nested sequence

Ai

Fi+1FiU0

UiBi+1

Ai+1

Bi

Ui+1

Figure 4: The left filtration decomposesU0 into the preimages of
the well groups and the preimages of their vanishing subgroups.

of subgroups ofU0. Together with the inclusion maps, this
gives theleft filtration of the zigzag module,

0→ A0 → . . .→ Al+1 = Bl+1 → . . .→ B0 = U0.

We can recover the well groups withUi ≃ Bi/Ai−1. Recall
thatUl+2 = 0, which impliesKl+1 = Ul+1. It follows that
the middle two groups in the left filtration,Al+1 andBl+1,
are indeed equal.

Compatible bases. A useful property of the left filtration
is the existence of compatible bases of all its groups. By
this we mean a basis ofU0 that contains a basis for eachAi

and eachBi. Specifically, we rewriteU0 as a direct sum of
kernels of forward maps and cokernels of backward maps:

U0 ≃ ker a0 ⊕ . . .⊕ ker al+1 ⊕ cok bl ⊕ . . .⊕ cok b0.

Reading this decomposition from left to right, we encounter
theAi and theBi in the sequence they occur in the left filtra-
tion. Choosing a basis for each kernel and each cokernel, we
thus get compatible bases for all groups in the left filtration.
We call this theleft filtration basisof U0. It is unique up to
choosing bases for the kernels and cokernels.

Consider now a homology classα in U0 and its represen-
tation as a sum of basis vectors. We writeα(ai) for the pro-
jection ofα to the kernel of thei-th forward map, which is
obtained by removing all vectors that do not belong the the
basis ofker ai. Similarly, we writeα(bi) for the projection
of α to the preimage ofcok bi. Letting j be the minimum
index such thatα(ai) = α(bi) = 0 for all i ≥ j, we say that
α falls ill atuj.

Well diagrams. Constructing the birth-death pairs that de-
scribe the well module is now easy. All classes are born at
U0, however, to distinguish the changes in the well group
from those in the homology group, we say all the classesget
well at U0. They fall ill later, and once they fall ill, they do
not get well any more. The drop in rank fromUi to Ui+1 is
µi = rank(ker ai) + rank(cok bi). We thus haveµi copies
of the point(0, ui) is the diagram. There is no information in
the first coordinates, which are all zero. We thus define the
well diagramas the multiset of pointsui with multiplicities
µi, denoting it asDgm(U). For technical reasons that will
become obvious in the next section, we add infinitely many
copies of0 to this diagram. Hence, each point inDgm(U) is
either0, a positive real number, or∞, and the diagram itself
is a multiset of points on the extended line,R̄ = R ∪ {±∞}.
It has infinitely many points at0 and a finite number of non-
zero points.

As suggested by the heading of this section, we think of
each point in the diagram as a measure for how resistant a
homology class off−1(A) is against perturbations of the
mapping. At each well groupUi, an entire set of homol-
ogy classes falls ill, and we callui the robustnessof each
classα in this set, denoting it as̺(α) = ui.

4 Proving Stability
We are interested in relating the difference between map-
pings to the difference between their well diagrams. After
quantifying these differences, we connect parallel well mod-
ules to form new modules, and we finally prove that the well
diagram is stable.

Distance between functions. Let X be anm-manifold,Y
a Riemanniann-manifold, andA ⊆ Y a k-manifold. Let
f, g : X → Y be two admissible mappings and assume they
are homotopic. Recall that the distance betweenf andg is
quantified by taking the largest distance between correspond-
ing images inY, that is,

‖f − g‖∞ = sup
x∈X

‖f(x)− g(x)‖
Y
.

Using A, we get two functions,fA, gA : X → R. Similar
to the mappings, the distance between them is the largest
difference between corresponding values, that is,

‖fA − gA‖∞ = sup
x∈X

|fA(x) − gA(x)|.

The two distances are related. Specifically, the distance be-
tween the functions cannot exceed the distance between the
mappings.

DISTANCE LEMMA . Let fA, gA : X → R be the func-
tions defined by the mappingsf, g : X → Y and the sub-
manifoldA ⊆ Y. Then‖fA − gA‖∞ ≤ ‖f − g‖∞.
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PROOF. We prove a stronger result, namely that the claimed
inequality holds everywhere, that is,

|fA(x)− gA(x)| ≤ ‖f(x)− g(x)‖
Y

(1)

at every pointx ∈ X. We may simplify this inequality by
assuming thatfA(x)− gA(x) is non-negative. Suppose there
exists a pointa ∈ A for whichgA(x) = ‖a− g(x)‖

Y
. Being

a metric, the distance inY obeys the triangle inequality, and
in particular

‖a− g(x)‖
Y

+ ‖g(x)− f(x)‖
Y
≥ ‖a− f(x)‖

Y
.

The right hand side is an upper bound onfA(x) which im-
plies (1). Since we did not assume thatA is compact, there
might not be a point at whichg(x) attains its distance to
A. But for everyδ > 0, there is a pointa ∈ A such that
gA(x)+ δ ≥ ‖a− g(x)‖

Y
. Plugging this into the triangle in-

equality above givesfA(x)− gA(x)− δ ≤ ‖f(x)− g(x)‖
Y
.

Letting δ go to zero, we get (1).

Distance between diagrams. Let G(r) be the homology
group andV(r) ⊆ G(r) the well group ofg−1

A
[0, r]. As for

f , we insert quotients between contiguous well groups and
connect them with forward and backward maps to form a
well module, denoted asV. The corresponding well diagram,
Dgm(V), is again a multiset of points in̄R, consisting of in-
finitely many copies of0 and finitely many non-zero points.
Recall that the bottleneck distance between the diagrams of
f andg is the length of the longest edge in the minimizing
matching. Because our diagrams are one-dimensional, the
bottleneck distance is easy to compute. To describe the algo-
rithm, we order the positive points in both diagrams, getting

0 ≤ u1 ≤ u2 ≤ . . . ≤ uM ;
0 ≤ v1 ≤ v2 ≤ . . . ≤ vM ,

where we add zeros to make sure we have two sequences of
the same length. Theinversion-free matchingpairsui with
vi for all i. We prove that this matching gives the bottleneck
distance.

MATCHING LEMMA . Assuming the above notation, the
bottleneck distance betweenDgm(U) andDgm(V) is equal
to max1≤i≤M |ui − vi|.

PROOF. For a given matching, we consider the vector of ab-
solute differences, which we sort largest first. Comparing
two such vectors lexicographically, we now prove that the
inversion-free matching gives the minimum vector. This im-
plies the claimed inequality,

W∞(Dgm(U),Dgm(V)) = max
1≤i≤M

|ui − vi|,

To prove minimality, we consider a matching that has at least
one inversion, that is, pairs(ui, vt) and(uj , vs) with i < j
ands < t. If ui = uj or vs = vt then switching to the
pairs(ui, vs) and(uj, vt) preserves the sorted vector of ab-
solute differences. Otherwise, the new vector is lexicograph-
ically smaller than the old vector. Indeed, the minimum of
the four points isui or vs and the maximum isuj or vt. If
the minimum and the maximum are from opposite diagrams
then they delimit the largest of the four absolute differences,
and this largest difference belongs to the old vector. Other-
wise, both absolute differences shrink when we switch the
pairs. Repeatedly removing inversions as described eventu-
ally leads to the inversion-free matching, which shows that
it minimizes the vector and its largest entry is the bottleneck
distance.

Bridges. The main tool in the proof of stability is the con-
cept of a short bridge between parallel filtrations. The length
of these bridges relates to the distance between the functions
defining the filtrations. Letε = ‖f − g‖∞. By the Distance
Lemma, we have‖fA − gA‖∞ ≤ ε, which implies that the
sublevel set ofgA for radiusr is contained in the sublevel
set offA for radiusr + ε. Hence, there is a homomorphism
Br : G(r) → F(r + ε), which we call thebridge from G

to F at radiusr. We use the bridge to connect the initial
segment ofG to the terminal segment ofF. The endpoints
of the bridge satisfy the property expressed in the Shrinking
Wellness Lemma.

BRIDGE LEMMA . LetBr : G(r)→ F(r+ε) be the bridge
at r, whereε = ‖f − g‖∞. ThenU(r + ε) ⊆ Br(V(r)).

PROOF. Letα be a homology group inU(r + ε). By defini-
tion of well group, there is a sufficiently smallδ > 0 such
thatα belongs to the image ofH(h−1(A)) in F(r+ε) for ev-
ery(r+ε+δ)-perturbationh of f . This includes all(r+δ)-
perturbations ofg. It follows that the preimage ofα in G(r)
belongs to the well group, that is,B−1

r (α) ∈ V(r).

Everything we said about bridges is of course symmetric
in F andG. In other words,f−1

A
[0, r] ⊆ g−1

A
[0, r + ε] and

there is a bridge fromF(r) to G(r + ε) for everyr ≥ 0.

New modules. We use the Bridge Lemma to construct
new zigzag modules from the well modules off and g.
Specifically, we useBr to connect the initial segment of
V, from V(0) to V(r), to the terminal segment ofU, from
U(r + ε) to U(∞). To complete the module, we insert
Q(r) = V(r)/(V(r) ∩ kerBr) betweenV(r) andU(r + ε).
The forward map, fromV(r) to Q(r), is surjective, and the
backward map, fromU(r + ε) to Q(r) is injective; see Fig-
ure 5. The new zigzag module is thus of the same type as the
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well modules implying it has a left filtration basis that gives
rise to a family of compatible bases for the groups in the left
filtration.

V(0)

G(r)

V(r)

Q(r)

F(r + ε)

(r + ε)
U

U(∞)

Figure 5: The zigzag module obtained by connecting an initial seg-
ment ofV to a terminal segment ofU.

A particular construction starts with the filtrationsF(0)→
. . . → F(∞) and G(0) → . . . → G(∞) and addsB0 :
G(0)→ F(ε). Following the bridge fromG to F at0, we get
a new filtration and a new zigzag module, denoting the latter
asW; see Figure 6. The decomposition ofW(0) = V(0) by
the left filtration ofW is similar to the decomposition ofU(0)
by the left filtration ofU; see Figure 4. Lettingi be the index
such thatui ≤ ε < ui+1, we haveF(ε) = Fi andU(ε) = Ui.
The classes inAi−1 and inU0/Bi die before we reachF(ε).
The remaining classes formU(ε) ≃ Bi/Ai−1. Correspond-
ingly, there are homology classes inW(0) that die before
we reachF(ε), namely the ones in the kernel of the forward
map, fromW(0) to Q(0), and in the preimage of the coker-
nel of the backward map, fromU(ε) to Q(0). The remain-
ing classes formW(ε) ≃ B−1

0 (U(ε))/(W(0) ∩ kerB0). The
two quotient groups,U(ε) andW(ε), are decomposed in par-
allel so that choosing a basis forU(ε) gives one forW(ε).
This will be useful shortly.

Main result. We are now ready to state and prove the sta-
bility of the well diagram.

STABILITY THEOREM FORWELL DIAGRAMS. Let
U,V be the well modules of the functionsfA, gA defined by
the admissible, homotopic mappingsf, g : X → Y, where
X, Y, andA ⊆ Y are manifolds of finite dimension andY is
Riemannian. ThenW∞(Dgm(U),Dgm(V)) ≤ ‖f − g‖∞.

PROOF. We construct a bijection fromDgm(U) to Dgm(V)
such that theL∞-distance between matched points is at most
ε = ‖f − g‖∞. Specifically, we match each pointu ≤ ε in
Dgm(U) with a copy of0 in Dgm(V), and we use the parallel
bases ofU(ε) andW(ε) for the rest, whereW is the zigzag
module obtained by adding the bridge fromG to F at radius
0, as described above.

Let α belong to the left filtration basis ofU(0) such that
its image belongs to the basis ofU(ε). Let r be the value at

which α falls ill and note thatr > ε. Let β belong to the
left filtration basis ofV(0) = W(0) such that the images of
α andβ in W(ε) = U(ε) coincide. We now construct yet
another zigzag module, by adding a first bridge fromG(r −
ε− δ) to F(r− δ) and a second bridge fromF(r+ δ) back to
G(r+ε+δ), whereδ > 0 is sufficiently small such that there
are no deaths in the interval[r− δ, r+ δ], except possibly at
r. We denote the resulting module byX; see Figure 6. We
note that all maps between groups are induced by inclusion
so that the diagram formed by the filtrations and the bridges
between them commutes.

W
X

0 r ∞

ε ε δ δ ε

G, V

F, U

Figure 6: The four curves represent four filtrations as well as four
the zigzag modules. The middle two are constructed from the outer
two by adding bridges connecting the dots.

By construction, the image ofβ in F(r−δ) is non-zero and
belongs toU(r − δ). In contrast, the image ofβ in F(r + δ)
is either zero or lies outsideU(r + δ). Applying the Bridge
Lemma going backward along the first bridge, we note that
the image ofβ ∈ W(0) = X(0) in G(r − ε− δ) is non-zero
and belongs toV(r−ε−δ). Applying the Bridge Lemma go-
ing forward along the second bridge, we note that the image
of β in G(r+ε+δ) is either zero or lies outsideV(r+ε+δ).
Since we can chooseδ > 0 as small as we like, this implies
thatβ falls ill somewhere in the interval[r− ε, r+ ε]. In the
matching, this radius is paired withr, the radius at whichα
falls ill in U. The absolute difference between the two radii
is at mostε, as required.

5 Applications
In this section, we use the stability of the transversality mea-
sure to derive stability results for fixed points, periodic or-
bits, and apparent contours. All three problems can be recast
in terms of intersections between manifolds and are therefore
amenable to the tools developed in this paper.

Fixed points. A fixed pointof a continuous mapping from
a topological space to itself is a point that is its own image.
Assuming this space is them-dimensional Euclidean space
andb is the mapping, we introduce a mappingf : R

m → R
m
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defined byf(x) = x− b(x). A fixed point ofb is a root off ,
that is,f(x) = 0. Writing X = Y = R

m andA = {0}, the
origin of R

m, we get the setting studied in this paper. Each
fixed pointx of b corresponds to a class in the0-dimensional
homology group off−1(0). Using the methods of this paper,
we assign a non-negative robustness measure,̺(x), to x. It
gives the magnitude of perturbation necessary to remove this
fixed point. This does not mean that a perturbation of smaller
magnitude has a fixed point at precisely the same location
but rather that it has one or more fixed points in lieu ofx.
Letting̺(x) be the maximum robustness of all fixed points,
then this implies that every̺(x)-perturbation off has at least
one fixed point. This implication suffices to give a new proof
of a classic topological result on fixed points. LetB

m be the
closed unit ball inRm.

BROUWER’ S FIXED POINT THEOREM. Every continu-
ous mappingb : B

m → B
m has a fixed point.

PROOF. Extendb to a mapping fromR
m to R

m by defining
b(x) equal to its value atx/‖x‖2 wheneverx 6∈ B

m. Let
f : R

m → R
m be defined byf(x) = x − b(x) and let

g : R
m → R

m be the identity, defined byg(x) = x. We
may assume thatf is admissible, else the homology group
of f−1(0) has infinite rank andf has infinitely many roots.
The other mapping,g, is clearly admissible, with a single
root atx = 0. The distance between the two mappings is

‖f − g‖∞ = sup
x∈Rm

‖f(x)− g(x)‖
2

= sup
x∈Rm

‖b(x)‖2,

which is at most1. The well diagram of the identity consists
of a single, non-zero point at plus infinity. The Stability The-
orem for Well Diagrams implies that the well diagram off
also has a point at plus infinity. But this implies thatf has a
root and, equivalently, thatb has a fixed point.

The above reduction of fixed points to a transversality set-
ting uses the difference between two points, an operation not
available if the mappingb : M → M is defined on a general
Riemannian manifold. In this case, we can use the corre-
spondence between the fixed points ofb and the intersection
points between the graph ofb and the diagonal inM×M. To
apply the results of this paper, we setX = M, Y = M×M,
andA = {(x′, x′) | x′ ∈ M}. Furthermore, we define the
distance between two pointsx = (x′, x′′) andy = (y′, y′′)
in M×M equal to

‖x− y‖
Y

=

{

∞ if x′ 6= y′;
‖x′′ − y′′‖

M
if x′ = y′.

It is not difficult to see that this setting gives the same robust-
ness values for the caseM = R

m discussed above.

Periodic orbits. We generalize the above setting by allow-
ing for fixed points of iterations of the mapping. LettingM

be a Riemannian manifold andf : M → M a mapping, we
write f j : M → M for the j-fold composition off with
itself. A sequence

F j(x) = (x, f(x), f2(x), . . . , f j−1(x))

is anorder-j periodic orbitof f if f j(x) = f ◦f j−1(x) = x.
It is straightforward to see the following relationship be-
tweenf and itsj-fold composite.

ORBIT LEMMA . A point x ∈ M is a fixed point off j iff
Fj(x) is an order-j periodic orbit off .

We can therefore use the methods of this paper to measure
the robustness ofx, that is, to determine how muchf j needs
to be perturbed to remove the fixed point. However, it would
be more interesting to measure how muchf needs to be per-
turbed to remove the periodic orbit. This is different because
not every mapping can be written as thej-fold composite
of another mapping. Adapting the framework accordingly is
not difficult. Substituting perturbationsh of f for those of
f j , we intersect the images of the homomorphisms induced
byhj . Call the resulting values the robustness of the periodic
orbits of orderj.

Apparent contours. As mentioned in the introduction, [8]
reduces the stability of the contour of a mapping to the sta-
bility of well diagrams, the main result of this paper. We
briefly review the reduction. LetM be a compact, orientable
2-manifold andf : M→ R

2 a smooth mapping. The deriva-
tive of f at a pointx is a linear map from the tangent space
to R

2. The pointx is critical if the derivative atx is not sur-
jective, and theapparent contourof f is the set of images of
critical points. Beyond smoothness off , we assume that the
distance functions it defines are admissible. Specifically,for
eacha ∈ R

2, the functionfa : M → R is defined by map-
ping every pointx to fa(x) = ‖f(x)− a‖

2
and we assume

thatf−1
a (0) consists of a finite number of points.

To study the apparent contour, we consider the entire
2-parameter family of distance functions. Fixing a value
a ∈ R

2, the sublevel sets offa form a filtration of ho-
mology groups and a zigzag module of well groups. Each
point in the preimage ofa falls ill at a particular radius
interpreted as the robustness of that point. The main re-
sult of this paper implies that this measure is stable, that is,
W∞(Dgm(U),Dgm(V)) ≤ ‖fa − ga‖∞, whereU and V

are the well modules defined by the mappingsf, g : M→ R

and the valuea ∈ R
2. As shown in [8], this implies that the

apparent contours off and ofg are close. The sense in which
they are close is interesting in its own right and we refer to
that paper for details.
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6 Discussion
The main contribution of this paper is the definition of a ro-
bustness measure for the homology of the intersection be-
tween manifolds, and a proof that this measure is stable. The
question arises how different robustness is from persistence
and whether there is a reduction of one to the other. We de-
scribe a setting in which the two are almost the same. Let
X be a manifold,Y = R, andA = (−∞, a]. In the persis-
tence diagram off : X→ R, the points in[−∞, a]× (a,∞]
correspond to classes alive ata. In other words, the quadrant
represents the homology groupF(0) = H(A). Assuminga is
not a terminal critical value offA, this is also the initial well
group,U(0) = F(0). A point (rb, rd) in this quadrant satis-
fiesrb ≤ a < rd, and a classα represented by this point falls
ill at ̺(α) = min{rd−a, a−rb}. In other words, the robust-
ness ofα can be computed from its birth and death values in
the filtration of sublevel sets. We know of no such reduction
to persistence in more general settings. Perhaps, robustness
sits somewhere between the classic1-parameter notion of
persistence and the algebraically much less tractable multi-
parameter generalization [3]. Besides staking out this land-
scape, the results in this paper raise a number of questions
and invite extensions in several directions.

• There are no principle obstacles to generalizing the no-
tion of robustness to non-manifold spaces. Are there ap-
plications that can drive this extension or is it feasible to
ask for a most general setting in which our framework
is meaningful?

• Fixed points of mappings play an important role in
game theory [16]. Can the results of this paper be used
to gain better insights into the nature of fixed points
as they arise in different games? What are contexts in
which the robustness of a fixed point is relevant to the
understanding of the dynamics of a game?

• The three applications sketched in Section 5 barely
scratch the surface of the possible. An interesting di-
rection for further research are mappings from lower
to higher dimensions. For example, the boundary of a
computer-aided design model is the image of a mapping
from a2-manifold toR

3. Can our results be used to de-
tect and remove accidental self-intersections, a problem
of significant economic importance [10].

• Except for a few special settings, we have no algorithms
for computing well diagrams. The main obstacle is the
infinite set of perturbations that appears in the definition
of well groups. However, since the groups that arise for
admissible mappings are finite, only a finite number of
perturbations are relevant. Can we approach the algo-
rithmic question from this direction?
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