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Quantifying Transversality
by Measuring the Robustness of Intersections

Herbert Edelsbrunné&rDmitriy Morozov, and Amit Patél

Abstract such a test, the hypothesis is not falsifiable and, by popular
L i ) _philosophical interpretation, not scientific ]13]. The fieu-
By definition, transverse intersections are stable under in lar field discussed i [15] is the mathematical study of singu
finitesimal pe_rturbatipns. Using persis_tent homolqu, WeE€ arities of smooth mappings, which is dominated by qualita-
ten(_j this notion to sizeable perturbatlpns. Spgmﬂpallg, W' tive statements. We refer to the seminal papers by Whitney
assign to each homology class of the intersection its rebust [L7,[18] and the book by Arnold[1] for introductions. A uni-
ness, the magnitude of a perturbation necessary to kifit, & fin concept in this field is the transversality of an ineers
prove that robustness is stable. Among the applications of i, hetyeen two spaces. Its roots go far back in history and
this result is a stable notion of robustness for fixed points appear among others in the work of Poincaré about a cen-
of continuous mappings and a statement of stability for con- tury ago. It took a good development toward its present form
tours of smooth mappings. under Pontryagin and Whitney; see €g./[14]. In this review
of Zeeman’s booK [19], Smale criticizes the unscientific as-
pects of the work promoted in then popular area of catastro-
phe theory, thus significantly contributing to the discaossi
of qualitative versus quantitative statements and to tteedfa
1 Introduction that field. At the same time, Smale points to positive aspects
. ) ) . o and stresses the importance of the concept of transvgrsalit
The main new concept in this paper is a quantification of i, the study of singularities. In a nutshell, an interseci®
the classically differential notion of transversality. i§tis transverse if it forms a non-zero angle and is therefordestab

achieved by extending persistence from filtrations of hemol ,qer infinitesimal perturbations: see Secfibn 2 for a férma
ogy groups to zigzag modules of well groups. definition.

Keywords. Smooth mappings, transversality, fixed points, con-
tours, homology, filtrations, zigzag modules, persistentability.

Motivation. In hind-sight, we place the starting point for . )
the work described in this paper at the difference between Results. We view our work as a measure theoretic exten-
qualitative and quantitative statements and their relesan SiOn of the essentially differential concept of transviisa

in the sciences; see eg. the discussion in Thom's bogk [15 We extend by relaxing the requirements on the perturbations

Chapters 1.3 and 13.8]. It appears the conscious mind thinksl© continuous but not necessarily smooth mappings. At the

in qualitative terms, delegating the quantitative detmilthe ~ SaMe time, we are more tolerant to changes in the intersec-
unconscious, if possible. In the sciences, quantitatiatest tion. To rationalize this tolerance, we measure intereasti

ments are a requirement for testing a hypothesis. Without USing réal numbers as opposeditéor non-existence andl
for existence. The measurements are made using the concept
*This research is partially supported by the Defense AdvdResearch of persistent homology; sed [7] for the original paper md [5

Projects Agency (DARPA) under grants HR0011-05-1-0007 lHR@011- for a recent survey However. we have need for modifica-
05-1-0057. ' !

t Departments of Computer Science and of Mathematics, Dukeetin  tions and use the extension of persistence from filtrations t
sity, Durham, North Carolina, Geomagic, Research Triamgek, North zigzag modules as proposed[in [2]. An important property of
Carolina, and IST Austria (Institute of Science and TecbgglAustria). persistence, as originally defined for filtrations, is thehgt

tDepartments of Computer Science and of Mathematics, Sthtfoi- ; : ; . P ;
versity, Stanford, California, ity of its diagrams; seé [4] for the original proof. There & n
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the following as the main contributions of this paper:

1. the introduction of well groups that capture the toler-

ance of intersections to perturbations, and the proof that

the diagrams of their zigzag module are stable;

n = dim T, Y, which implies that the dimension of the im-
age of the derivative idim D f («)(T,X) < min{m, n}.

We are interested in properties ffthat are stable under
perturbations. We call a properityfinitesimally stablef for
every smooth homotopy; : X x [0,1] — Y with fy, = f,

2. the interpretation of the values in these diagrams asthere is a real numbeér> 0 such thatf; possesses the same

measurements of transversality, referred to as the ro-

bustness of intersections;

3. the application of these results to fixed points and peri-

odic orbits of continuous mappings.

In addition, our results have ramifications in the study ef th

set of critical values, the apparent contour of a smooth map-

ping. Specifically, the stability of the diagrams mentioned

above completes the proof of the stability of the apparent

contour of a smooth mapping from an orientablmanifold

to the plane given i [8]. The need for these stable diagrams

property for allt < ¢, wheref,(z) = F(z,t) forall z € X.
An important example of such a property is the following.
The mappingf is transverseto A, denoted ag’ M A, if
for eachz € X with f(z) € A, the image of the derivative
of f atz together with the tangent spacedfata = f(z)
spans the tangent space¥fat a. More formally, f M A

if Df(x)(T,X) + T,A = T,Y. Itis plausible but also true
that transversality is an infinitesimally stable property.

Product spaces. It is convenient to recast transversality in
terms of intersections of subspaces of the product sgace

was indeed what triggered the development described in thisY’ a manifold of dimensiom: + n. Consider the graphs of

paper.

Outline.

Sectior 2 provides the relevant background. Sec-
tion[3d explains how we measure robustness using well groups
and zigzag modules. Sectibh 4 proves our main result, the

f and of its restriction to the preimage Af

ef f {(z,y) eX XY |y= f(z)};
gf fla {(z,a) eXxA]a=f(x)}.

stability of the diagrams defined by the modules. Sedflon 5 The intersection of interest is betweghf andX x A, two

discusses applications. Sectidn 6 concludes the paper.

2 Background

We need the algebraic concept of persistent homology to ex-

tend the differential notion of transversality as expldine
the introduction. In this section, we give a formal definitio
of transversality, referring td [11] for general backgrdun
differential topology. We also introduce homology and per-
sistent homology, referring to [12] for general backgroimd
classic algebraic topology and {d [6] for a text on computa-
tional topology.

Transversality. Let X,Y be manifolds,f : X — Y a
smooth mapping, andl C Y a smoothly embedded subman-
ifold of the range. We assume the manifolds have finite di-
mension and no boundary, writing = dim X, n = dim Y,
and k = dimA. Given a pointz € X and a smooth
curvey : R — X with 4(0) = z, we call¥(0) the tan-
gent vectorof v at . Varying the curve, we get a set
of tangent vectors called thangent spacef X at x, de-
noted asT,X. Composing the curves with the mapping,
fov:R — Y, we get a subset of all smooth curves pass-
ing throughy = f(z) = f o v(0). Thederivativeof f at
zis Df(z) : T,X — T,Y defined by mapping the tan-
gent vector ofy atx to the tangent vector of o v aty. The
derivative is a linear map and its image is a subspadg, &f.
The dimensions of the tangent spacesare: dim T, X and

manifolds of dimensions: andm + k& embedded iX x Y.
This intersection is the graph ¢f,, which is homeomorphic
to the preimage of. See Figur€]l for an example in which

Y

A= {a}

X xa

Figure 1: The preimage af, consisting of four points on the hori-
zontal axis representing, is homeomorphic to the intersection of
the curve with the horizontal line passing through

m =n = 1andk = 0. Here,T,A = 0 and transversal-
ity requires that whenever the cungd,f, intersects the line,

X x A, it crosses at a non-zero angle. This is the case in Fig-
ure[d which implies that having a cardinality four preimage
of a is an infinitesimally stable property gt Nevertheless,
the left two intersection points are clearly more stablentha
the right two intersection points, but we will need some al-
gebrato give precise meaning to this statement.

Homology. The algebraic language of homology is a
means to define and count holes in a topological space. We



think of it as a functor that maps a space to an abelian group
and a continuous map between spaces to a homomorphism
between the corresponding groups. We have such a func- °
tor for each dimensiory. It is convenient to combine the
homology groups of all dimensions into a single algebraic
structure. WritingH,,(X) for the p-dimensional homology .
group of the topological spacg, we form a graded group
by taking direct sums,

HX) = @H,(X). birth

p>0 ©

death

(é,)

To simplify language and notation, we will suppress dimen- Figure 2: The three off-diagonal points represent the hintthdeath
sions and refer tdH(X) is the homology groupof X. Its of three generators. The number of points in the upper-lefticant
elements are formally written as polynomialg, + ot + equals the rank of the corresponding homology group.

ast? + ..., wherea, is anp-dimensional homology class
and only finitely many of the classes are non-zero. As usual,
adding two polynomials is done componentwise. The groups
H,(X) depend on a choice of coefficient group. The theory
of persistence introduced below requires we use field coef-
ficients. An example is modulo two arithmetic in which the

field isZ; = {0, 1}. Tgep-dlmensmnal grou_p IS th_en avec-  ihe point(i, ) on the diagonal. More generally, the rank of
tor spaceH, (X) ~ Z,", and its rank, the dimension of the  he image ofp; ; equals the number of points in the upper-
vector space, is thg-th Betti number3, = §,(X). Simi- left quadrant anchored at ;).

larly, H(X) is a vector space of dimensi@p20 Bp. We say
X andY have the same homolodythere is an isomorphism
betweenH(X) andH(Y) whose restrictions to the compo-
nents are isomorphisms. Equivalently,(X) = 5,(Y) for
all non-negative integers

events happen; see Figlile 2. For technical reasons that will
become clear shortly, we add infinitely many copies of each
point on the diagonal to the diagram. Given an indexye

can read off the rank dfi(X;) by counting the points in the
half-open upper-left quadrart; oo, 7| x (i, o], anchored at

Stability. Consider now the case in which the spaces in the
sequence are sublevel sets of a real valued fungtiok —

R, that is, there are values such thatX; = ¢~ (oo, 7]

for eachi. A homological critical valueof ¢ is a valuer
such that for every sufficiently small > 0, the homomor-
Persistent homology. Now suppose we have a finite se- phism fromH (¢! (—o0,r — 6]) to H(¢ ! (—o0, r + §]) in-
quence of nested spaces, C X, C ... C X,. Writing duced by inclusion is not an isomorphism. We suppgse
®; = H(X;) for the homology group of théth space, we is tameby which we mean that each sublevel set has finite
get a sequence of vector spaces connected from left to rightrank homology and there are only finitely many homologi-

by homomorphic maps induced by inclusion: cal critical values, denoted as < r, < ... < r,. We can
represent the evolution of the homology classes by the finite
D0 =Py — ... = Dy filtration consisting of the groups; = H(y ™! (—o0, r;]) for

. o . 1 < i < ¢ and by the persistence diagram of that filtra-
We call this sequencefétration. To study the evolution of  ion p — Dgm(®). Lettings : X — R be another tame

the homology classes as we progress from left to right in the ¢, cion, we get another filtratos;, and another persistence
filtration, we lety; ; be the composition ofthe maps betyveen diagram,E = Dgm(¥). Thebottleneck distancbetween
®; and®;, fori < j. We say a class € ®; isbornat ®; if the two is the infimum, over all bijectiong, : D — E, of

it does not belong to the image ¢f_; ;. Furthermore, this the L..-length of the longest edge in the matching,
classa dies enteringd; if ; j_1(«) does not belong to the

image ofy,_1 ;1 buty; ;(a) does belong to the image of Woo(D,E) = infsup|la— p(a)
vi—1,;. We call the images of the mags ; the persistent # a€D

homology group®f the filtration and record the evolution
of the homology classes in theersistence diagramf the
filtration, denoted a®gm(®P). This is a multiset of points
in the extended plan&®? = (R U {—o0,c0})?. Marking STABILITY THEOREM FORTAME FUNCTIONS [4]. Let

an increase in rank on the horizontal, birth axis and a drop ¢ andt> be tame, real-valued functions ¢t Then the

in rank on the vertical, death axis, each point represemts th bottleneck distance between their persistence diagrams is
birth and the death of a generator and records where theséounded from above bijp — || ..

ool

An important result is the stability of the persistence daagy
under perturbations of the function.



Here, |l — ¥, = sup,ex |o(z) — ¢(x)|, as usual. The  A” underf. Writing this in terms of distance functions, we
original form of this result is slightly stronger as it rasts havehgl(o) - fA‘l[O, p]. This inclusion induces a homo-
itself to dimension preserving bijections. The theorem im- morphism between the corresponding homology groups,
plies that the bottleneck distance between the diagrams de-

fined by and« goes to zero as the difference between the jn t H(hy M (0)) — F(p),

two functions approaches zero.
where we simplify notation by writing(p) for H(f, [0, o).

. The image of this map, denoted asjj,, is a subgroup of
3 Measurlng Robustness F(p). The intersection of subgroups is again a subgroup,

. N L . which motivates the following definition.
The main new concept in this section is the well diagram of

the distance function defined by a mappifg X — Y and DEeFINITION. Thewell groupof f; 1[0,7] is the largest

a submamfold& CY. It encod_es the perS|s_tent hom_ology subgroupU(r) C F(r) such that the image di(r) in F(p)

of the preimage of _the submanifold. We begin by setting the 5 -ontained inN,,.«_y im ju, whereh ranges over alp-

stage and introducing the well group of a sublevel set. perturbations off andp = r + & for a sufficiently small
6> 0.

Admissible mappings. AssumeY is a Riemannian mani-

fold and write||y — al|, for the distance between the points The reason for using- instead ofr-perturbations is tech-

y,a € Y assigned by the associated metric. et X — R nical and will become clear later. The requirement that the
be defined by mapping each pointto the distance of its ~ perturbations be homotopic fois not used in the proofs and
image fromA, that is, can therefore be dropped. However, removing the require-
ment changes the well groups and therefore the meaning of
fal@) = inf [f(z) —ally- our results. Similarly, we may obtain additional variants o

our results by modifying the definition of aperturbation in
We call f5 the distance functiordefined byf andA. The other ways.
level setof f, at a valuer is the preimage of that value,
£ ' (r). Thesublevel sefor the same value;, is the union _ _— _ _
of level sets at values at masbr, equivalently, the preimage Example. Toillustrate the definitions, let us consider again

of [0, r]. Writing A" for the set of points at distaneeor less the example in .FigurEI 1. The preimage_@f N {‘_1} Is
from A, we havefA‘l[O,r] — 1A, a set of four points separated by three critical pointg of

From left to right, the values of at these critical points are
a+ri, a — rq, a+ r3. Correspondingly, the distance func-
tion, f, : X — R, has three homological critical values,
namelyr; > 7o > r3. Table[1 shows the ranks &fr)
andU(r) for values ofr in the four intervals delimited by
the homological critical values. Starting with = 0, we

In this paper, we limit the class of mappings to those with
manageable properties. While our goal is a statement of our
results in a context that is sufficiently broad to support in-
teresting applications, we are aware of the technical burde
that comes with generality. We hope that the following class
of mappings gives a happy median between the conflicting
goals of generality and transparency.

|[O,r3) [rs,r2)  [re,71) [r1,00)

DEFINITION. LetX be anm-manifold,Y a Riemannian Fr) 2 3 > 1
n-manifold, andA a k-dimensional submanifold of. A u(r) 4 2 2 0
continuous mapping : X — Y is admissibleéf f~1(A) has
a finite rank homology group. Table 1: The ranks of the homology and well groups defineder t

mappingf and the submanifold. = {a} in Figure[1.
Requiring that the preimage @f has finite rank homology
is s_trictly weaker than demanding that the distance functio pave four points, each forming a component represented by
defined byf andA is tame. a class in the homology group and in the well group of the
sublevel set off,. Therefore, both groups are the same and
Well groups. Leth : X — Y be a mapping homotopic to  have rank four, see the first column in Takle 1. Growing

f, thatis, there is a continuous mappifAg: X x [0,1] — Y turns the points into intervals but leaves the groups theesam
with H(z,0) = f(x) andH(z,1) = h(x) forall z € X. until » reachess, the smallest of the three homological crit-
We call h a p-perturbationof f if ||h — f||., < p, where ical values. At this time, the two right intervals merge into
the norm of the difference is the supremum overalt X one, so the rank of the homology group drops to three. We

of the distance betweenx) and f(x) in Y. The preimage  can find an(rs + ¢)-perturbation whose level set atcon-
of A under ap-perturbation is contained in the preimage of sists of the left two points of ~!(a) but the right two points



have disappeared. Indeed, the level set of evesy+ §)- terminal critical values, the rank a&f, exceeds the rank of
perturbation has a non-empty intersetion with the first two U;;,. The rank of the imagsd; ;+1(U;), is somewhere be-
but can have empty intersection with the merged interval on tween these two ranks. We call a difference betwégand

the right. Hence, the left two intervals have a represeagriati  its image aonventional deathin which a class maps to zero,

in the well group, the merged interval does not, and the rank and a difference between the image dhd; anunconven-

of the well group is two; see the second column in Table 1. tional death in which the image of a class lies outside the
The next change happens wheneachesg. At this time, next well group. We capture both cases by inserting a new
the middle interval merges with the merged interval on the group between the contiguous well groups; see Figlure 3. To
right. The rank of the homology group drops to two, while
the rank of the well group remains unchanged at two; see
the third column in TablEl1. Finally, whenreaches, the
remaining two intervals merge into one, so the rank of the
homology group drops to one. We can find @n + §)-
perturbation whose level setais empty, so the rank of the
well group drops to zero; see the last column in Table 1.

Terminal critical values. Recall that we assume the map-
ping f : X — Y is admissible. The initial homology group,
F(0) = H(f,'(0)), has therefore finite rank, and because Figure 3: Connecting two consecutive well groups to the ignot
U(0) € F(0), the initial well group has finite rank. Imagine  group introduced between them. The clasdies a conventional
we grow the sublevel set by gradually increastirfgpm zero death and the clagsdies an unconventional death.

to infinity. Since the admissibility of does not imply the

tameness of the distance function, this leaves open thé poss this end, we consider the restriction §f;+, to U; and in

bility that £, has infinitely many homological critical values. ~Particular its kernelK; = U; Nker f;;1, which we refer

We call a radiusy, aterminal critical valueof f, if for every to as thevanishing subgroupf U;. Using this subgroup, we
sufficiently smalls > 0 the homomorphism frorf (r — 6) constructQ; = U;/K;. The forward mapa; : U; — Qi, is
to F(r + 6) applied toU(r — §) does not givel(r + 4). | defined by mapping acla$30§+ K;. Itis clearly surjective.

contrast to the homological critical values, there can dnezly The backward mah; : Uiy1 — Q, is defined by mapping

a finite number of terminal critical values. To see this, we @ class) to & + K;, where¢ belongs tof; ., | (). This map
note that the set of images whose common intersection is thelS clearly injective. Instead of a filtration in which all m&ap
well group cannot decrease and the rank of the well group 90 from left to right, we get a sequence in which the maps
can therefore not increase. To state this relationshipemtw  alternate between going forward and backward. As indicated

well groups more formally, we writé(r, s) : F(r) — F(s) below, every other group in the sequence is a subgroup of the
for the homomorphism induced by inclusion. corresponding homology group,
SHRINKING WELLNESSLEMMA. For each choice of Qi b U = Q & Upr 5 Qiag
radii0 < r < s, the image of the well group atcontains ! !
the well group as, that is,U(s) C f(r, s)(U(r)). — F, — Fir1 —

It follows the only way the well group can change is by low- We call this sequence theell moduleof f,, denoted asl.
ering its rank. Since we start with a finite rank well group We remark thatl is a special case of a zigzag module as
atr = 0, there can only be finitely many terminal critical introduced in[[2]. It is special because all forward maps are
values, which we denote a§ < us < ... < ;. To this surjective and all backward maps are injective. Equivéent
sequence, we add, = 0 on the left ands;; = oo on the there are no births other thanlag.

right. It is convenient to index the homology groups and the

well groups accordingly, writing; = F(r;) andU; = U(r;) Left filtration.  Perhaps surprisingly, the evolution of the
for all 7. To these sequence, we afld, = U_, = 0 on homology classes can still be fully described by pairing
the leftandr > = U2 = 0 on the right. Furthermore, we s with deaths, just like for a filtration. To shed light
write f; ; : F; — F; for all feasible choices of < j. on this construction, we follow [2] and turn a zigzag mod-
ule into a filtration. In our case, all births happenlay,
Well module. In contrast to the homology groups, the well so this transformation is easier than for general zigzag-mod
groups of the sublevel sets do not form a filtration. Instead, ules. Writeup; : Uy — F; for the restriction off, ; to
they form a special kind of zigzag module. By definition of the initial well group. By the Shrinking Wellness Lemma,



the image of this map contains tti¢h well group, that is, Well diagrams. Constructing the birth-death pairs that de-
U, C up:(Up). We consider the preimages of the well scribe the well module is now easy. All classes are born at
groups inU, together with the preimages of their vanishing Uy, however, to distinguish the changes in the well group
subgroupsA; = ugj(Ki) andB; = ugj(Ui); see Figur€l4.  from those in the homology group, we say all the claggs
We note that\; /A;_1 ~ kera; andB;/B;;1 ~ cokb;. In well at Uy. They fall ill later, and once they fall ill, they do
words, the first quotient represents the homology classgs th not get well any more. The drop in rank frod) to U, 4 is

die a conventional death and the second quotient represents; = rank(ker a;) + rank(cok b;). We thus have:; copies

the homology classes that die an unconventional death. Asof the point(0, ;) is the diagram. There is no information in
illustrated in Figur&l, the preimages form a nested seauenc the first coordinates, which are all zero. We thus define the
well diagramas the multiset of points, with multiplicities

i, denoting it adDgm(U). For technical reasons that will
become obvious in the next section, we add infinitely many
copies of0 to this diagram. Hence, each pointligm(U) is
either(, a positive real number, o, and the diagram itself

is a multiset of points on the extended lifie= R U {+00}.

It has infinitely many points dt and a finite number of non-
Zero points.

As suggested by the heading of this section, we think of
each point in the diagram as a measure for how resistant a
homology class off ~1(A) is against perturbations of the
Figure 4: The left filtration decomposeés into the preimages of  mapping. At each well group);, an entire set of homol-
the well groups and the preimages of their vanishing sulgrou ogy classes falls ill, and we call; the robustnesf each
classa in this set, denoting it ag(a) = u;.

of subgroups otJy. Together with the inclusion maps, this
gives theletft filtration of the zigzag module,

4 Proving Stability

We are interested in relating the difference between map-
pings to the difference between their well diagrams. After
quantifying these differences, we connect parallel weltimo
ules to form new modules, and we finally prove that the well
diagram is stable.

O—>AO_’---_’Al+1:Bl+1—>...—>B():U0.

We can recover the well groups with ~ B, /A;_;. Recall
thatU;;» = 0, which impliesK;; = U;;;. It follows that
the middle two groups in the left filtratiod;; andB;1,
are indeed equal.

Compatible bases. A useful property of the left filtration

is the existence of compatible bases of all its groups. By
this we mean a basis &f, that contains a basis for eaéh

and eaclB;. Specifically, we rewritdJ, as a direct sum of
kernels of forward maps and cokernels of backward maps:

Distance between functions. Let X be anm-manifold,Y

a Riemanniam-manifold, andA C Y a k-manifold. Let
f,9: X — Y be two admissible mappings and assume they
are homotopic. Recall that the distance betwgemndg is
quantified by taking the largest distance between correspon
Up =~ kerag®...dkeraj; 1 @ cokb; @ ...d cokbyg. ing images inY, that is,

Reading this decomposition from left to right, we encounter lf =9l = sup|f(z)—g@)|y-

theA; and theB; in the sequence they occur in the left filtra- wex

tion. Choosing a basis for each kernel and each cokernel, weUsing A, we get two functionsfs, ga : X — R. Similar

thus get compatible bases for all groups in the left filtratio  to the mappings, the distance between them is the largest
We call this thdeft filtration basisof Uy. It is unique up to difference between corresponding values, that is,

choosing bases for the kernels and cokernels.

Consider now a homology classin Uy and its represen-
tation as a sum of basis vectors. We writ;) for the pro-
jection of « to the kernel of the-th forward map, which is
obtained by removing all vectors that do not belong the the

[fa —9alle = sup|fa(z) — ga(2)l.
reX

The two distances are related. Specifically, the distanee be
tween the functions cannot exceed the distance between the

basis ofker a;. Similarly, we writea(b;) for the projection mappings.

of « to the preimage ofok b;. Letting j be the minimum DISTANCE LEMMA. Let f4,94 : X — R be the func-
index such thatv(a;) = «(b;) = 0 forall i > j, we say that  tions defined by the mapping5¢ : X — Y and the sub-
afallsill atw;. manifoldA C Y. Then||fa — gall« < IIf — 9ll -



PROOFE We prove a stronger result, namely that the claimed To prove minimality, we consider a matching that has at least

inequality holds everywhere, that is, one inversion, that is, pair@:;, v;) and(u;,vs) with i < j
ands < t. If u; = u; orvs = v, then switching to the
[fa(@) —galz)] < [[f(2) —g(@)lly 1) pairs (u;, vs) and(u;, v;) preserves the sorted vector of ab-

) o o ) solute differences. Otherwise, the new vector is lexicplgra
at every point: € X. We may simplify this inequality by jcally smaller than the old vector. Indeed, the minimum of
assuming thaf () — ga(x) is non-negative. Suppose there  the four points isu; or v, and the maximum is; or v;. If

exists a point, € A for which g, () = [la — g(x)||. Being the minimum and the maximum are from opposite diagrams
a metric, the distance ili obeys the triangle inequality, and  then, they delimit the largest of the four absolute differs)c

in particular and this largest difference belongs to the old vector. Gther

wise, both absolute differences shrink when we switch the

la—g(@)lly +1lg(x) — f(@)ly = lla—f@)y pairs. Repeatedly removing inversions as described eventu

ally leads to the inversion-free matching, which shows that

The right hand side i bound hich im-
 right hand side is an upper bound fr(x) which im it minimizes the vector and its largest entry is the botttdne

plies [1). Since we did not assume thats compact, there

might not be a point at whiclg(x) attains its distance to distance.

A. But for everyé > 0, there is a pointt € A such that

ga(z)+9 > |la — g(x)||y. Plugging this into the triangle in-

equality above giveg (z) — ga(z) — 6 < || f(z) — g(@)|ly- Bridges. The main tool in the proof of stability is the con-
Letting § go to zero, we gef{1). cept of a short bridge between parallel filtrations. Theikeng

of these bridges relates to the distance between the funsctio
defining the filtrations. Let = || f — g|| .. By the Distance
Lemma, we have{ fa — g/, < e, which implies that the
sublevel set ofj, for radiusr is contained in the sublevel
set of f, for radiusr + . Hence, there is a homomorphism
B, : G(r) — F(r + ), which we call thebridge from G

to F at radiusr. We use the bridge to connect the initial
segment ofG to the terminal segment d¢f. The endpoints

Distance between diagrams. Let G(r) be the homology

group andV(r) C G(r) the well group ofg, [0, r]. As for

f, we insert quotients between contiguous well groups and

connect them with forward and backward maps to form a

well module, denoted &g. The corresponding well diagram,

ng(V), IS again a multiset (.)f _pomts IR, consisting of In- of the bridge satisfy the property expressed in the Shrikin

finitely many copies of) and finitely many non-zero points. Wellness Lemma

Recall that the bottleneck distance between the diagrams of '

[ andyg is the length of the longest edge in the minimizing  BripcE LEMMA. LetB, : G(r) — F(r+¢) be the bridge

matching. Because our diagrams are one-dimensional, theyt, wheres = || f — gll. ThenU(r + ) C B, (V(r)).

bottleneck distance is easy to compute. To describe the algo

rithm, we order the positive points in both diagrams, ggttin  PROOF. Let« be a homology group it (r + £). By defini-
tion of well group, there is a sufficiently small > 0 such

0 < wp < wy < < UM thata belongs to the image ¢f(h~1(A)) in F(r +¢) for ev-
0 < nn < v < < v, ery (r+e+d)-perturbatior of f. This includes al(r +0)-
perturbations of. It follows that the preimage af in G(r)

where we add zeros to make sure we have two sequences of
the same length. Thiaversion-free matchingairsu; with

v; for all i. We prove that this matching gives the bottleneck
distance.

elongs to the well group, that i8,-!(a) € V(r).

Everything we said about bridges is of course symmetric
in F andG. In other words.f, '[0,7] C g, '[0,7 + ¢] and

MATCHING LEMMA. Assuming the above notation, the there is a bridge fror(r) to G(r + <) for everyr > 0.

bottleneck distance betwe&ypm(U) andDgm(V) is equal

to maxy<;<as |ui — vil. New modules. We use the Bridge Lemma to construct
new zigzag modules from the well modules ffand g.

PROOF. For a given matching, we consider the vector of ab- Specifically, we useB, to connect the initial segment of

solute differences, which we sort largest first. Comparing v, from V(0) to V(r), to the terminal segment af, from

two such vectors lexicographically, we now prove that the y(r + ¢) to U(cc). To complete the module, we insert

inversion-free matching gives the minimum vector. Thisim- Q(r) = V(r)/(V(r) N ker B,.) betweernV(r) andU(r + ¢).

plies the claimed inequality, The forward map, fronV(r) to Q(r), is surjective, and the
backward map, fron(r + ¢) to Q(r) is injective; see Fig-
Woo (Dgm(U), Dgm(V)) = |max lu; — vil, urefB. The new zigzag module is thus of the same type as the



well modules implying it has a left filtration basis that give
rise to a family of compatible bases for the groups in the left
filtration.

Figure 5: The zigzag module obtained by connecting an Irség-
ment ofV to a terminal segment af.

A particular construction starts with the filtratioR€)) —
... = F(o0) and G(0) — ... — G(oo) and addsB, :
G(0) — F(e). Following the bridge fronG to F at0, we get

a new filtration and a new zigzag module, denoting the latter

asW; see Figur€le. The decomposition\wf(0) = V(0) by
the left filtration ofW is similar to the decomposition &f(0)

by the left filtration ofU; see FigurEl4. Lettingbe the index
suchthat; < e < wu; 41, we haveF(e) = F; andU(e) = U,.
The classes id\;_; and inU,/B; die before we reach(e).
The remaining classes forbh(¢) ~ B;/A;_;. Correspond-
ingly, there are homology classes \i(0) that die before
we reachF(¢), namely the ones in the kernel of the forward
map, fromW(0) to Q(0), and in the preimage of the coker-
nel of the backward map, frotd(s) to Q(0). The remain-
ing classes formiV(s) ~ B, *(U(e))/(W(0) N ker By). The
two quotient groupd)(¢) andW(e), are decomposed in par-
allel so that choosing a basis fo(<) gives one forW(e).
This will be useful shortly.

Main result. We are now ready to state and prove the sta-
bility of the well diagram.

STABILITY THEOREM FORWELL DIAGRAMS. Let
U,V be the well modules of the functiorfs, g, defined by
the admissible, homotopic mappingsy : X — Y, where
X, Y, andA C Y are manifolds of finite dimension andlis
Riemannian. Theh/ (Dgm(U), Dgm(V)) < ||f — 9]/ -

PROOF We construct a bijection frofdgm(U) to Dgm(V)

which « falls ill and note that- > <. Let 8 belong to the
left filtration basis ofV(0) = W(0) such that the images of

a andf in W(e) = U(e) coincide. We now construct yet
another zigzag module, by adding a first bridge frétm —

e —0) toF(r —¢) and a second bridge froR{r + ¢) back to
G(r+e+46), wheres > 0is sufficiently small such that there
are no deaths in the intervial — ¢, r + ], except possibly at

r. We denote the resulting module by see Figuréle. We
note that all maps between groups are induced by inclusion
so that the diagram formed by the filtrations and the bridges
between them commutes.

F,U

<x=

3 ‘ ‘ € I €

Figure 6: The four curves represent four filtrations as welaur
the zigzag modules. The middle two are constructed fromtiero
two by adding bridges connecting the dots.

By construction, the image ¢fin F(r—§) is non-zero and
belongs tdJ(r — ¢). In contrast, the image ¢f in F(r + 0)
is either zero or lies outsidé(r + ¢). Applying the Bridge
Lemma going backward along the first bridge, we note that
the image ofs € W(0) = X(0) in G(r — € — ) is hon-zero
and belongs t&(r—s—4). Applying the Bridge Lemma go-
ing forward along the second bridge, we note that the image
of Bin G(r+e40) is either zero or lies outsidé(r +c+4).
Since we can choose> 0 as small as we like, this implies
thatg falls ill somewhere in the interval — ¢, r + £]. In the
matching, this radius is paired wiih the radius at whicla
falls ill in U. The absolute difference between the two radii
is at most, as required.

5 Applications

In this section, we use the stability of the transversaligam
sure to derive stability results for fixed points, periodie o

such that the .. -distance between matched points is at most bits, and apparent contours. All three problems can betecas

e = ||f —ygll.. Specifically, we match each poiat< ¢ in
Dgm(U) with a copy of0 in Dgm(V), and we use the parallel
bases olU(¢) andW(e) for the rest, wherdV is the zigzag
module obtained by adding the bridge frdo F at radius
0, as described above.

Let « belong to the left filtration basis dJ(0) such that
its image belongs to the basisdfs). Letr be the value at

in terms of intersections between manifolds and are thezefo
amenable to the tools developed in this paper.

Fixed points. A fixed pointof a continuous mapping from
a topological space to itself is a point that is its own image.
Assuming this space is the-dimensional Euclidean space
andb is the mapping, we introduce a mappifig R™ — R™



defined byf(z) = x — b(z). A fixed point ofb is a root off,

thatis, f(z) = 0. Writing X = Y = R™ andA = {0}, the
origin of R™, we get the setting studied in this paper. Each
fixed pointz of b corresponds to a class in thelimensional
homology group off ~*(0). Using the methods of this paper,
we assign a non-negative robustness meag(se, to x. It
gives the magnitude of perturbation necessary to remose thi
fixed point. This does not mean that a perturbation of smaller
magnitude has a fixed point at precisely the same location
but rather that it has one or more fixed points in lieurof
Letting o(x) be the maximum robustness of all fixed points,
then this implies that every(z)-perturbation off has at least
one fixed point. This implication suffices to give a new proof
of a classic topological result on fixed points. [Bt be the
closed unit ball inR™.

BROUWER s FIXED POINT THEOREM. Every continu-
ous mapping : B™ — B™ has a fixed point.

PrROOF Extendb to a mapping fronR™ to R"* by defining
b(x) equal to its value at:/||z||2 wheneverr ¢ B™. Let

f : R™ — R™ be defined byf(z) = = — b(z) and let

g : R™ — R™ be the identity, defined by(z) = z. We
may assume that is admissible, else the homology group
of f~1(0) has infinite rank ang has infinitely many roots.
The other mappingy, is clearly admissible, with a single
root atz = 0. The distance between the two mappings is

1f =9l

sup || f(z) —g(@)l
TER™

sup |[b(x)]|2,
reR™

which is at most. The well diagram of the identity consists
of a single, non-zero point at plus infinity. The StabilityeFh
orem for Well Diagrams implies that the well diagram fof
also has a point at plus infinity. But this implies thfahas a
root and, equivalently, thathas a fixed point.

The above reduction of fixed points to a transversality set-
ting uses the difference between two points, an operation no
available if the mapping : M — M is defined on a general
Riemannian manifold. In this case, we can use the corre-
spondence between the fixed pointd @ind the intersection
points between the graph band the diagonal il x M. To
apply the results of this paper, we $ét= M, Y = M x M|
andA = {(2/,2') | 2/ € M}. Furthermore, we define the
distance between two poinis= (2/,2”) andy = (v, y")
in M x M equal to

(0.9]

{ 2" ="l

Itis not difficult to see that this setting gives the same stbu
ness values for the cad = R™ discussed above.

if 2" # y';

Hx'_yHY ifx’::yﬁ

Periodic orbits. We generalize the above setting by allow-
ing for fixed points of iterations of the mapping. Lettifvj
be a Riemannian manifold anl: M — M a mapping, we
write f7 : M — M for the j-fold composition off with
itself. A sequence

P}(x) - (Iaf(x)an(I)a"-afjil(x))

is anorder-j periodic orbitof f if f7(z) = fofi~1(z) = x.

It is straightforward to see the following relationship be-
tweenf and itsj-fold composite.

ORBIT LEMMA. A pointz € M is a fixed point off” iff
Fj(x) is an order; periodic orbit off.

We can therefore use the methods of this paper to measure
the robustness af, that is, to determine how mugh needs

to be perturbed to remove the fixed point. However, it would
be more interesting to measure how mytcheeds to be per-
turbed to remove the periodic orbit. This is different bessau
not every mapping can be written as tjiold composite

of another mapping. Adapting the framework accordingly is
not difficult. Substituting perturbatiorts of f for those of

17, we intersect the images of the homomorphisms induced
by h7. Call the resulting values the robustness of the periodic
orbits of order;.

Apparent contours. As mentioned in the introduction,][8]
reduces the stability of the contour of a mapping to the sta-
bility of well diagrams, the main result of this paper. We
briefly review the reduction. Le¥l be a compact, orientable
2-manifold andf : M — R? a smooth mapping. The deriva-
tive of f at a pointz is a linear map from the tangent space
to R2. The pointz is critical if the derivative at: is not sur-
jective, and thepparent contoupf f is the set of images of
critical points. Beyond smoothness ffwe assume that the
distance functions it defines are admissible. Specificilty,
eacha € R?, the functionf, : M — R is defined by map-
ping every point to f,(z) = || f(z) — a|l, and we assume
thatf,1(0) consists of a finite number of points.

To study the apparent contour, we consider the entire
2-parameter family of distance functions. Fixing a value
a € R?, the sublevel sets of, form a filtration of ho-
mology groups and a zigzag module of well groups. Each
point in the preimage of, falls ill at a particular radius
interpreted as the robustness of that point. The main re-
sult of this paper implies that this measure is stable, that i
Woo(Dgm(U), Dgm(V)) < [|fa — gall., whereU andV
are the well modules defined by the mappirfgg : M — R
and the value: € R2. As shown in[[8], this implies that the
apparent contours gfand ofg are close. The sense in which
they are close is interesting in its own right and we refer to
that paper for details.



6 Discussion

The main contribution of this paper is the definition of a ro-
bustness measure for the homology of the intersection be-
tween manifolds, and a proof that this measure is stable. The
question arises how different robustness is from persisten
and whether there is a reduction of one to the other. We de-
scribe a setting in which the two are almost the same. Let
X be a manifold)Y = R, andA = (—o0,al. In the persis-
tence diagram of : X — R, the points inf—o0, a] x (a, o]
correspond to classes aliveaatin other words, the quadrant
represents the homology groBf)) = H(A). Assumingz is

not a terminal critical value of,, this is also the initial well
group,U(0) = F(0). A point (ry, r4) in this quadrant satis-
fiesr, < a < rq, and a clasa represented by this point falls
illat o(«) = min{ry—a,a—rp}. In other words, the robust-
ness ofw can be computed from its birth and death values in
the filtration of sublevel sets. We know of no such reduction
to persistence in more general settings. Perhaps, rolssstne
sits somewhere between the classiparameter notion of
persistence and the algebraically much less tractabldg-mult
parameter generalization| [3]. Besides staking out thid-an
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