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Abstract 

The main purpose of this paper is to present a unified treatment of the formula for dimension 
of the transversal intersection of compacta in Euclidean spaces. A new contribution is the proof of 
inequality dim(X f? Y) > dim(X x Y) - n for transversally intersecting compacta X, Y C iw”, 

based on a correct interpretation of the classical Cogolvili theorem. Also included is a short 
summary of a new direction of dimension theory, called extension theory, which is needed for the 
proof. 0 1998 Elsevier Science B.V. 
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1. Introduction 

A remarkable progress in dimension theory observed in the last decade was stimulated 

by the discovery of a new geometrical phenomenon, namely that the formula 

dim(PnQ) =dimP+dimQ-n 

for dimension of the transversal (i.e., general position) intersection of two polyhedra 

in IF?? does not generalize to the class of compacta. As a consequence, a new branch 
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of dimension theory, the so-called extensional dimension, arose in an attempt to find a 

correct version of the formula above for this, more general class of spaces. The expected 

formula for compacta X, Y c IR” which intersect transversally looks quite natural: 

dim(X n Y) = dim(X x Y) - n. 

The main part of the formula, the inequality dim(X n Y) < dim(X x Y) - n has been 

proved by now for all compacta [ 111, except for codimension 2. The proof strongly relies 

on the theory of extensional dimension. 

In this article we survey the history of this formula and we describe the structure of its 

proof which has been dispersed in several articles. We have also included a new result, 

namely a proof of the inequality 

dim(X n Y) 3 dim(X x Y) - R. 

As it follows from the intersection formula, the difference between compacta and poly- 

hedra concerning their intersections is due to the well-known “nonlogarithmic” behaviour 

of the dimension theory on the class of compacta [2,28]. 

In particular, by a theorem of Bockstein, for every n-dimensional compacturn X with 

dim(X x X) < 2 dim X, the dimension of its transversal self-intersections in lF?.‘” would 

have to be - 1. This implies the nonstability of its self-intersections and consequently 

the density of the subspace of all embeddings E(X, R2n) in the space C(X, R2n) of all 

maps of X into IR 2n, by the standard Pontryagin-Nbbeling argument. 

The history of the transversal intersection formula for compacta begins with the fol- 

lowing question due to Ancel [25]: Does there exist an n-dimensional compactum X 

such that every mapping f : X 4 IR? is approximable by embeddings? 

McCullough and Rubin first announced a negative answer in [25]. Soon thereafter 

Krasinkiewicz found a gap in their argument and also constructed an example of “disjoint 

membranes” (later simplified by Lorentz, cf. [23]), thereby disproving the key lemma 

of [25]. Subsequently, Kamo and Krasinkiewicz [21] and, independently, McCullough 

and Rubin [26], using the new concept of “disjoint membranes”, constructed an example 

which provided a positive answer to the Ancel question. 

Independent efforts by Krasinkiewicz [22], Spiei [30,31], and these authors [14,15,17] 

resulted in the following theorem on the approximations by embeddings, which represents 

a generalization of the Pontryagin-Nobeling theorem, combined with its converse: 

Theorem 1.1. For every integer n > 0 and every compactum X the following assertions 

are equivalent: 

(1) dim(X x X) < n; and 

(2) the subspace &(X. IP) of all embeddings is dense in the space C(X, Rn) of all 

continuous mappings of X into R?. 

The verification of the Pontryagin-Nobeling direction (i.e., that (1) + (2)) represents 

the more difficult part of the proof of Theorem 1.1. It relies on algebra, the Alexander 

duality and some special tricks in dimension 4. This part was independently proved 

by Spiei [30,31] and these authors [14,15,17]. The converse implication was proved 
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independently by Krasinkiewicz [22] and these authors [ 141 and turned out to be shorter 

and more geometric. 

An interesting history is connected with an earlier idea of the proof of the (2) + (1) 

part of Theorem 1.1, proposed earlier in [ 171, which was based on a classical theorem 

of cogosvili [3] from the late 1930s. Since the logarithmic law holds for the dimension 

of the intersection of a compactum with a polyhedron, the intersections of compacta and 

polyhedra obey the polyhedral intersection formula. Already in 1928 Aleksandrov proved 

the following theorem: 

Theorem 1.2 (P.S. Aleksandrov). A compacturn X c IV” has dimension dimX < k if 
only if it removable,from 

n), presented Section 4 based on a of 

this corrected i’ogo’svili 

of Ancel’s problem, provided Theorem 1.1, 

to proving that to the following is 

affirmative (recall that f, are said be intersecting unstably they have 

arbitrary 

of maps f : R” g Iw” of compacta X 

and Y x Y) < rz, have an unstable intersection? 
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A positive solution of this problem for the case of compacta of complementary di- 

mension (i.e., dimX + dimY = n) was given independently in [14] and [32]. Next, 

the metastable case, i.e., when 2dimX + dimY 6 2n - 2, was solved. The proof of 

this case, given by Spiei, Segal and Torunczyk [29,33], relies on Weber’s paper [36] 

on isotopy of polyhedra and is very geometric. In particular, a theorem on disjoining of 

compacta was proved in [33] via ambient isotopies, which did not overlap by the sub- 

sequent developments. Another proof was obtained by these authors at about the same 

time [15]. 

An independent, different solution of the metastable case of Problem 1.4 was presented 

by Dranishnikov [6,7,9]. We refer the reader to our earlier paper [15] where the state of 

affairs after the solution of the metastable case is presented in greater detail. 

The third part of history of Problem 1.4 begins with the Negligibility criterion proved in 

[6-S]. A subset Y c IL?” is said to be negligible with respect to a compactum X if every 

mapping of X into IR” is removable from Y (i.e., has arbitrary close approximations 

whose images miss Y). Afterwards, the first solution of the easier part of Problem 1.4 

appeared in [7,8]. The most difficult ingredient of this solution can be summarized as 

follows: 

Theorem 1.5 (A.N. Dranishnikov). Every tame codimension three compactum Y C IWn, 

is negligible with respect to every compactum X such that dim(X x Y) < n. 

The next important step was made in [16], where the mapping intersection problem 

was reduced to the problem of realization of dimension types. The mapping intersection 

problem was split into two parts: the approximation problem and the subsets intersection 

problem. The second one, which differs from general mapping intersection problem only 

by one extra assumption (namely, that X and Y are assumed to lie in R?), was completely 

solved in [16]. 

Moreover, this paper introduced the notions of the dimension type and the dimension 

complement, and formulated approximation and embedding problems for cohomologi- 

cal dimension. Finally, the mapping intersection problem was solved in [lo] via the 

realization of dimension types. 

The hard part of transversal intersection formula, the inequality dim(X n Y) 6 

dim(X x Y) - n, was proved soon thereafter in [ll]. To formulate it let us general- 

ize the concepts of removability and negligibility. 

Definition 1.6. We say that a mapping f : X + R” of a compactum is k-removable 

from a subset Y c IF?, k < n, if it has an arbitrary close approximation f’ : X --f IR” 

which satisfies the inequality: 

dim (f’(X) n Y) < k. 

A subset X c IP is said to be k-removable from another subset Y c RF if the inclusion 

X c Bn is k-removable from Y. A subset Y c Rn is said to be k-negligible with respect 

to a compactum X if every mapping of X into IRn is k-removable from Y. 
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Clearly, for k < 0, these notions coincide with removability and negligibility as defined 

before. 

Theorem 1.7 (A.N. Dranishnikov). Eveq tame compact subset Y C IP of dimension 

dim Y < n, - 2 is k-negligible with respect to any compactum X such that 

dim(X x Y) < n + k. 

In the present paper we prove the following converse to this theorem: 

Theorem 1.8. If a compact subset Y c II%” is k-negligible with respect to a compactum 

X then 

dim(XxY)<n+k. 

Both results are then combined to yield the transversal intersection formula: 

dim(X n Y) = dim(X x Y) - n 

for the dimension of the intersection of compacta in general position. 

Let us define more precisely the meaning of a transversal intersection of compacta. 

To speak of general position one has to deal with classes of mappings. Let 3 and G be 

two classes of mappings of compacta X and Y to the Euclidean space R”, respectively. 

In this paper, for almost all means that the complement is of the first Baire category. 

Definition 1.9. Mappings f E 3 and g E G are said to be intersecting transversally 

with respect to the classes 3 and G if 

dim (f’(X) n g’(Y)) = dim (f(X) n g(Y)) 3 0, 

for almost all mappings f’ E 3 and g’ E 6, which are sufficiently close to f and g, 

respectively. 

So according to this definition only stably intersecting mappings can intersect transver- 

sally. The default classes are 3 = C(X, RF) and 6 = C(Y, EP), i.e., the classes of all 

continuous mappings of X and Y into IF. So transversal@ with no mention of the 

classes means transversality with respect to these two classes. 

We call subsets X, Y c IR” transversally intersecting, and denote this by X m Y, if 

their inclusions into R” are transversally intersecting mappings. The dimension of the 

intersection of two polyhedra is the same for every transversal intersections due to their 

dimensional homogeneity (i.e., all nonempty open sets are of the same dimension). 

We are now ready to present the transversal intersection formula: 

Theorem 1.10. Let X and Y be compacta in E-V’ with dimensionally homogeneousprod- 

uct X x Y and such that X m Y and dimY < n - 2. Then 

dim(X n Y) = dim(X x Y) - n. 
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In the case dim(X x Y) < n, Theorem 1.10 implies the nonexistence of transversal 

intersections. Since transversal pairs of mappings are dense (see Section 4) we obtain 

in this case unstability of intersections for every pair of mappings. So, in particular, 

the transversal intersection formula of Theorem 1.10 yields the solution of the mapping 

intersection problem for subsets. 

Another result concerns the notion of relative transversality. 

Definition 1.11. A compactum X c Iw” is said to be relatively transversal to a com- 

pactum Y c IP, and this is denoted by X m Y rel Y, if the inclusions X, Y c IR" 

intersect F, G-transversally, for F = C(X, EP) and 6 = {Y c II??}. 

The following result is the corresponding relative transversal intersection formula: 

Theorem 1.12. Let X and Y be compacta in E%” with dimensionally homogeneousprod- 

uct X x Y, such that X fk Y rely, Y is tame in R”, and dimY < n - 2. Then 

dim(X n Y) = dim(X x Y) - n. 

The main unresolved problem in this area is to prove the Negligibility criterion for 

codimension 2. This would yield the transversal intersection formula without any di- 

mensional restrictions. Another interesting problem is to prove the isotopical transversal 

intersection formula, where by isotopical transversal@ we mean transversality with re- 

spect to the class of all autohomeomorphisms of IR”. In this case even the codimension 3 

case is unsolved. However, the metastable case follows by Spiei and Toruriczyk [33]. 

We conclude this introduction with some comments on the organization of the pa- 

per. Section 2 represents a short exposition of the extensional dimension theory. The 

main results are formulated without proofs and some simple consequences are derived 

which are needed in the sequel. Section 3 represents an updated version of [16]. In 

particular, it contains a geometric proof of the realization problem for dimension types 

in codimension 2. The main result of this section is Approximation Theorem 3.14. It 

is proved only in codimension 3 and with additional restriction of the so-called simply 

connected dimensional type. Finally, Section 4 contains a correct version of cogosvili’s 

theorem and the proof of our main results, i.e., the transversal intersection formula of 

Theorem 1. IO. 

We use this opportunity to point out an error in the proof of the Reduction theorem 

in [ 161 which, in particular, claims the equivalence of the realization and approximation 

problems for all compacta of codimension 3, without any restrictions such as, e.g., the 

simple connectedness of dimension type. This additional restriction arises in connection 

with the current status of the Negligibility criterion, which remains unproved in codimen- 

sion 2. Moreover, in the proof of Reduction theorem in [ 161 it is applied not only to the 

compactum itself but also to its dimensional complement. So the dimensional comple- 

ment must also be of codimension 3, implying the simple connectedness of dimensional 

type of X. 
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2. Extensional dimension theory 

By C we shall denote the class of all finite-dimensional compact metric spaces and by 

S the class of all countable CW-complexes. We recall that a CW-complex L is said to 

be simple if the action of the fundamental group 7ri (L) on higher-dimensional homotopy 

groups of L is trivial. In particular, it implies that ~1 (L) is abelian. Mostly we are going 

to work with simple or even simply connected L. 

Kuratowski notation XTL means that for every partial continuous map Q: A + L 

given on a closed subset A c X there is an extension 9: X + L. By the Aleksandrov- 

Hurewicz theorem, the property XrS” is equivalent to the property dimX 6 11. 

We define a partial ordering on S by the following rule: L < K if XrL implies 

XrK, for every space X E C. Thus, S’” < S”“, for every 71 < nl. This partial order 

defines an equivalence relation on S : L A K. L is extensionally equivalent to K if they 

have the same sets of subordinate complexes. The homotopy extension theorem implies 

that a homotopy equivalence L !: K implies the extensional equivalence L A K. The 

converse is not true, take, for example, S” z S” V S”+’ We call a class of extensionally 

equivalent complexes by extension type and we denote by [L] the class of L E S. Let E 

be the set of all extension types. Then E inherits the partial order from S. 

Definition 2.1. We say that X is at most L-dimensional (or just L-dimensional) if the 

property XrL holds. 

Definition 2.2. The extensional dimension of X E C, DimX, is the minimal element 

[L] E I such that X is L-dimensional. 

Theorem 2.3. 

(1) For every X E C, the cluss Dim X E & is well-defined. 

(2) For every [L] E E, there exists a countably dimensionul (i.e., a countable union 

of jinite-dimensional compacta) compactum X with Dim X = [L]. 

To distinguish Dim X from the covering dimension dim X, we call it the extensional 

dimension of X. We recall that the cohomological dimension dime X of a compacturn 

X over a group G is defined for an arbitrary abelian group G as follows: dimG X < 71 

if and only if XTK(G,~), where K(G,n) is the Eilenberg-MacLane complex. The 

Aleksandrov cohomological dimension theorem can now be written as the extensional 

equivalence: 

S” : K(Zn). 

The following is the generalized Aleksandrov theorem: 

Theorem 2.4 [ 131. For every abelian group G, eveq integer n > I we have 

M(G. 7~) z K(G, n) 

whereasfor 71, = 1 we have K(G, 1) < JJ(G. 1). 
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Here M(G, n) is the Moore space. Note that S” = M(Z, n). 

Problem 2.5. Does the inequality M(G, 1) < K(G, 1) also hold? 

Next, we state the fundamental theorem of extension theory: 

Theorem 2.6 

the 1950s Bockstein solved a long-standing open problem in cohomological dimen- 

sion theory-he found a countable basis of abelian groups: 

0 = {a, Z(,) 7 z,, z,- )pplime 

which enables one to compute the cohomological dimension of a space with respect to 

every other (abelian) group. This theory can be summarized in the following generalized 

Bockstein theorem: 

Theorem 2.9 [ 131. For every simple complex L, there exist numbers nL(G), G E 0, 

such that 

L E V K(G,m(G)) 2 fi K(G,m.(G)). 
GEU GEU 
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Remark 2.10. Observe that the complex fl;,, K(G, AL) is simple. We may assume 

that rl~ (G) satisfies the Bockstein inequalities: 

llL(Q) 6 m(qg). m,(Z,) < nL@(,)), etc. 

Proof of Theorem 2.3. (1) Let V, L, be the wedge of all L, E S such that XTL,. 

It is clear that Xr (V, L,). By Theorem 2.9, we have a countable simple complex 

L A (V, La). It then follows that DimX = [L] E 1. 

(2) Note that the condition Xr (V, K(G, RL(G))) is equivalent to the system of 

inequalities dimG X < AL, for every group G E 0. Since {AL} satisfies the 

Bockstein inequalities [5] there exists a compacturn X with dime X = RL (G), for every 

group G E 0. Hence 

DimX = [ v~(G,n~(G))l. 0 
0 

Lemma 2.11. For every compacturn X of positive dimension, Dim(X x I) is simply 

connected. 

Proof. Since every nonzerodimensional compacturn contains a nondegenerate continuum 

it suffices to prove the simple connectedness of Dim(X x I) in the case when X is 

connected. Consider the following subset S of the product X x Y, presented by the 

union (X x So) U ({ 20, ~1) x I), where (1~0, ~1) is a pair of different points of X and 

So = (0: l} is the boundary of I. Let f be the mapping of S onto 5” = C So, defined 

so that f(z>i) = i for i = 0: 1 and f(~:i,t) = (i,t) for 0 < t < 1 and i = 0,l (where 0 

and 1 are the vertices of the suspension). 

Suppose that a complex L is such that (X x 1) TL. Let g : S’ -+ L be any loop. To 

prove its contractibility let us consider the composition gf. It is extendable over X x I. 

So fix such an extension F. Without loss of generality one can assume X lying in the 

Hilbert cube Q and F is defined over the product U x I of some open neighborhood U 

in Q, where f is defined over U x So by the same formula f(~,i) = i. Let us choose 

an arc A in U, joining 20 and ~1, so that the internal boundary of the 2-cell a(A x I) 

coincides with (A x So) U ({ XO,X~ } x I). In this case one obtains a degree one map 

f:a(AxI)-S’.A d n since g f (being extendable over a 2-cell) is null-homotopic, the 

same must be true for g. So the simple connectedness of L (and hence of Dim(X x I)) 

is thus proved. 0 

Lemma 2.12. If a complex L is simply connected, then it is extensionally equivalent to 

the suspension L A C N for N E S. 

Proof. By Theorem 2.8, 

iLjI:M(n,(L).1)-V(Clir(-i(L).i-l)) 
i>l 

q (v M(7ri(L),i - 1)). 0 
i>l 
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Theorem 2.13 [13]. For every pair of compacta X and Y, the following inequality 

holds: 

Dim(X x Y) < Dim X A Dim Y. 

We will apply Theorem 2.13 for Y = [0, l] and conclude that: 

Dim (X x [O, 11) 6 x(DimX). 

For this case the proof of Theorem 2.13 is easy and it can be found in [7]. The operation 

of smash product on extension types is well-defined [13] and the proof of this fact is 

based on the union and the decomposition theorems stated below: 

Theorem 2.14 [19]. Suppose that the compactum X can be written as X = Z U Y, 

where 2 is K-dimensional and Y is M-dimensional. Then X is (K * M)-dimensional. 

Theorem 2.15 [lo]. Let L = K * M and let X be L-dimensional. Then X = Z U Y, 

where Z is K-dimensional and Y is M-dimensional, and either Z or Y can be assumed 

to be F,. 

The last one is applied to prove the following lemma. 

Lemma 2.16. Suppose that X is a compactum with simply connected DimX. Then 

x = (UZ, Z%) u X’, where Dim(X’ x I) < DimX and Dim Zi = 0, for every i E N. 

Proof. Let L E Dim X. By Lemma 2.12 we have 

L~~N~S”*N. 

By Theorem 2.15, we have a decomposition X = (U Zi) U X’, with dim Zi = 0, and 

DimX’ < n. From Theorem 2.13 it then follows 

Dim(X’xI)<DimX’AS’<NAS’=~N=L=DimX. 0 

The two other important theorems of extension theory are the completion and the 

countable union theorems: 

Theorem 2.17 [27]. For every countable complex L and every L-dimensional separable 

metric space X, there exists an L-dimensional completion x. 

Theorem 2.18 [8]. Let X = U,“=, Xi be a countable union of L-dimensional compacta. 

Then X is also L-dimensional. 

Corollary 2.19. Let U c X be an open subset of X and let both lJ and X \ U be 

L-dimensional. Then X is also L-dimensional. 

The family of compacta in C having the extensional dimension Dim X, will be denoted 

by DIM X. We note that Dim X = Dim Y if and only if DIM X = DIM Y. 
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In the sequel we shall need the following theorem on test spaces: 

Theorem 2.20. For every integer m and every abeliun group G, there exists a compactum 

Tz of dim Tz = m such that for all compactu X of dimX < m we have 

dim(X x ?‘z) = m + dimG X. 

Lemma 2.21. Iffor every compactum 2, dim(X x Z) < dim(Y x Z), then DimX < 

Dim Y. 

Proof. Assume the contrary. Then by Theorem 2.9 there exists G E (T such that 

dimG X > dime Y. Then 

dim(X x Tz) = dimG X + m < dimG Y + m = dim(Y x Tz), 

for a test space Tg of sufficiently large dimension. Contradiction. 0 

Theorem 2.22 [16]. For every pair of compacta X and Y, the following assertions are 

equivalent: 

(1) DimX = DimY; 

(2) DIMX = DIMY; and 

(3) dim(X x 2) = dim(Y x Z), for every compactum 2. 

Let Dim X = [L]. By [L] + n, n E Z, we denote the extensional type n&, K(G. 

rig + n), whenever this makes sense (i.e., when AL + n > 0, for all G). For 

n > 0, 

[L] + n = [L A S”]. 

Lemma 2.23. For every compactum X of dimension dim X > 1, the following assertions 

are equivalent: 

(1) Dim X is simply connected; 

(2) DimX = Dim(X V 12); 

(3) dimG X > 1, for every abelian group G; and 

(4) there exists a compacturn X’ such that DimX = Dim(X’ x I). 

Proof. (1) + (2) First note that Dim(X V I’) > Dim X. Since DimX is simply con- 

nected, it follows that I2 T Dim X and hence Dim(X V 12) < Dim X. 

(2) + (3) Since I2 is 2-dimensional for all coefficients. 

(3) + (4) DimX = n&, K(G,n(G)) with n(G) > 1. Consider 

L = n K(G,n(G) - 1). 
GEU 

By Theorem 2.3, there exists X’ with DimX’ = L. Therefore, Dim(X’ x I) = DimX. 

(4) + (1) It follows that dim X’ > 0, hence by Lemma 2.11, Dim(X’ x 1) is simply 

connected. 0 
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Every family {L,} C & has the supremum L E E. 

Proof. Consider M = (A4 E & 1 L, < M, for every a}. First observe that A4 # 0 

since [pt] E M. Consider L = nzEM M. Since 

x7- fi @XTM, for every M E M + XrL,, for every o, 

MEM 

it follows that L, < L, for every Q. Assume that L, < L’, for every u. Then 

L: v M<L’ 

MEM 

sinceL’EM. 0 

We conclude by the generalized Hurewicz formula: 

Theorem 2.25. Let f : X + Y be a map between jinite-dimensional compacta X and 

Y. Then DimX < supytV Dim(Y x f-‘(y)). In particulal; dimX < SUP,~~ dim(Y x 

f--I(y)). 

Proof. (Since we are going to apply this theorem in the case of dimensionally full-valued 

compacta Y, we prove here only this particular case.) Let y be such that DimF = 

supVEy{Dim(Y x f-‘(y))}. Such L exists because of Lemma 2.24 and Theorems 2.3 

and 2.4. Consider a composition f: X x 2 -+ Y of the projection X x 2 + X and the 

map f. Note that f-‘(y) = f-‘(y) x 2. By the classical Hurewicz theorem, 

dim( X x 2) < dim Y + sup dim( f - ’ (y) x Z) = dim y x Z. 
YEY 

Since the choice of compacturn Z was arbitrary, Lemma 2.21 implies that DimX < 

DimY. 0 

3. Approximation theorem 

Definition 3.1. A compacturn X c R” is said to be negligible with respect to a com- 

pactum X or shortly X-negligible if the subspace {f E C(X, EP) ) f(X) n Y = S} is 

dense in C(X, II??). 

We begin by proving the Negligibility criterion [6]. 

Theorem 3.2 [6]. Let a compactum Y c IR” be tame, dim Y < n - 3. Then Y is 

X-negligible if and only if dim(X x Y) < n. 

Proof. A compacturn Y is negligible with respect to X * Xr (U \ Y), for every open 

ball U c IP % (by Theorem 2.6) dirnHb(U\y) X < k, for every k and every U @ 

dim,:-k-1 (ynU) X < k, for every k and every U % Ht+’ (V; IzP-~-’ (Y n U)) = 0, 
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for every Ic and for every open subset V H C H,k+’ (V; HF-k-’ (Y n U)) = H,“( V x 

(U nY);Z) = 0, f or every Ic, every U, and every open V c X M dimz(X x Y) < 

n H dim(X x Y) < n. 0 

Remark. The easy part of this criterion, namely (a), has an elementary proof which 

can be found in Section 4. Also, conditions of tameness of Y and dimY < n, - 3 can 

be removed. 

Next, we shall prove three useful lemmas: on density of nonlowering Dim mappings 

[16], on X-nets [18], and on isotopies of O-dim compacta. 

Lemma 3.3. There exists a dense Ga subset of C(X, IP), consisting of maps f : X + IF?? 

which do not lower DimX. 

Lemma 3.4. For every compactum X c R" there exists a countable union X” = 

lJz”=, Xi of compactu Xi c IP such that: 

(1) for every i, Dim X = Dim Xi; and 

(2) every compactum Y c IR" \ X” is X-negligible. 

Lemma 3.5. Suppose that {zZi}iEN is a countable family of O-dimensional tame com- 

pacta in IR”. Then for every E > 0, there exists a homeomorphism h, : IR” 4 IR” such 

that 

i=l 

is one-to-one, where pr : RF 4 II% is the orthogonal projection. 

Proof. A subset of IR” is called horizontal if it is projected to a point by the orthogonal 

projection. Without losing generality we can assume that 2,‘s are nested-just let 2: = 

Ujc, 2,. Consider the space of all homeomorphisms ti(IP, IP). First consider one 2,. 

Call it 2. We must establish control. So we cover Z by cells without intersecting interiors, 

Z = fiIntCi, diamC, < E, CznCj =0 (i#j) 
PI 

(here we need the tameness hypothesis). Take one of Ci, say Ct , and the horizontal 

Cantor set inside it. Get a homeomorphism which is the identity on &2’t and maps 

2 n Cl onto the Cantor set. Extend over IF?“. Now do this for all other C’s in such 

a way that corresponding horizontal sets are chosen on the different levels, i.e., have 

different (hence disjoint) images under pr. Denote the constructed homeomorphism of 

IR” by h:. This homeomorphism does not belong to the subspace 3-1:, which is defined 

below. 

Let Z,l = lJJGi 2,. Look at 7f(IP, IP). Look at the subspace ‘FIZ, the space of all h 

such that there exists a point t such that pr o (hlzf (t)) has diam hh’ > E. 



106 A.N. Dranishnikov et al. / Topology and its Applications 85 (1998) 93-117 

Claim. tik is closed. 

Proof. Follows immediately since Z,! is compact by construction. To see this just take a 

converging sequence and find the limit. q 

Claim. ‘Ii: is nowhere dense. 

Proof. Let h be any homeomorphism of R”. Apply the above construction of h: to 

h(Z,!) instead of 2. Then the composition h: o h is E-close to h and does not belong 

to ‘Fl;. 

It now follows by the Baire category theorem that U %>I ‘Hi,, is nowhere dense. Thus 
n>, 

take any E-close to identity homeomorphism from 7f \ U :?I, ?ff ,,. This is then the 
/ 

desired h,. q 

Next, we shall prove the lemmas on transversal hyperplane sections and the embedding 

of supremum. 

Lemma 3.6. Suppose that X c R” is a tame compact subset such that DimX is simply 

connected. Then for every E > 0, every orthogonal projection pr: Ii%” + IL% there exists 

a homeomorphism h, : Ii%” + JR” such that h, is E-close to the identity and such that 

Dim((h,(X) n pr-‘(t)) x I) < DimX, for every t E IR. 

Proof. Write X = X’ U (U Zi) using Lemma 2.16, so that Dim(X’ x I) < DimX and 

dim& = 0. Next, since X is tame it follows that also .Z’i are tame, so by Lemma 3.5 

there exists h, such that the cardinality 1 h, ((J Zi) n pr- t (t) / 6 1. Finally, we must show 

that this h, is the desired one. By Corollary 2.19, 

Dim (h,(X) n pr-‘(t)) and Dim (h,(X’) x I) 6 DimX and 

k(X) n pr-‘(t) = (k(X’) n pr-‘(t)) u ((U Z;) n pr-‘(t)), 

since (lJ Zi) n pr-’ (t) is either empty or a point. Thus, 

Dim (h,(X) npr-l(t)) = Dim (h,(X’) npr-l(t)) < Dimh,(X’) 6 DimX - I 

and hence 

Dim (h,(X) npr-‘(t)) < DimX - 1. 0 

Lemma 3.7. Let {X t } tee be a family of compacta in RF. Then there exists a compactum 

x c R” such that DimX = suptET Dim Xt. 

Proof. By Proposition 2.4 from [16], there exists a countable subset S c T such that 

suptGT Dim Xt = suptEs Dim X,. Consider a sequence of balls { Bk} c R” converging 

to a point 20 E KY. Let ‘p : N + S be a one-to-one mapping of integers. In every BI, fix 
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a compacturn Xk, homeomorphic to X9(k). Then x = iJkEM Xk U {zg} is a compact 

space of the type 

Dim x = sup Dim Xk = sup Dim Xt = sup Dim Xt 0 
kEN tts tET 

Definition 3.8. For every compacturn X of dimension n and every integer k > R, denote 

k - Dim X = sup { Dim Y ) dim(Y x X) = k} 

Compacturn Y such that DimY = k - Dim X is said to be dimensionally k-comple- 

mentary to X. The following proposition summarizes those properties of k-complements 

which we shall use in the sequel. 

Proposition 3.9. If X is a compactum such that Dim XG = n, - Dim X then the following 

holds: 

(1) dimXz < n ifdimX > 0; 

(2) dim(X;E x X) = 7~; 

(3) dim(Y x X) 6 71 implies DimY < DimX;; 

(4) Dim Xi,, = Dim(Xi x I”); and 

(5) n-(n-DimX)=DimX. 

For a proof of (5) see [16], (1) follows from Section 2 while (2)-(4) trivially follow 

from the definition. We now prove a lemma on embedding of complements: 

Lemma 3.10. If a compactum X c Rn has dimension dimX 6 ‘n - 3 then there exists 

a compact space X* c KY such that DimX* = (n - 1) - DimX. 

Proof. Fix a tame embedding X c R”. Consider an X-net generated by X (as in 

Lemma 3.4). Denote it by X”. Then X” is a countable union of tame compacta 

and DimX” = Dim X. By negligibility criterion X” is XiTL_ ,)-negligible (where 

DimX,“_, = (12- 1) - DimX). H ence in the space of mappings C(X:_, , EP) there is 

a Ga-dense subset of mappings missing X” and therefore not raising Dim (all subsets 

in the complement of X” being X-negligible have Dim less or equal to Dim X:_, by 

negligibility criterion). 

On the other hand there is a G&-dense subset of light mappings in C(X* ~ Rn) which 

do not lower Dim as follows from the generalized Hurewicz formula. Hence there is a 

mapping in the intersection and its image has the required Dim. 0 

Lemma 3.11. Let X c R” be a compactum such that Dim X is simply connected and 

dim X < n - 3. Then there is a compactum X’ c IF!?-’ such that Dim X’ = Dim X - 1. 

Proof. By Lemma 3.6 one may consider X as having the following property with respect 

to the linear projection 7r : IP + R: 

Dim (K’(t) n X) < DimX - 1. for every t E R. 
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By the generalized Hurewicz formula, 

DimX 6 supDim(r-r(t) n X) + Dimr(X). 
tEP 

Since Dim r(X) < 1, one obtains that 

supDim(n-‘(t) n X) = DimX - 1. 

But all sections ~-l(t) n X are (topologically) contained in I%‘“-’ as r-‘(t) ?Z Iw”-‘. 

Hence by Lemma 3.7 one concludes there is a subspace X’ c IF-’ such that 

DimX’ = supDim(r-‘(t) fl X) = DimX - 1. 0 

We are now ready for the theorem on embeddings of Dim-types. 

Theorem 3.12 [lo]. For every compactum X of dimension n there is a compactum 

X’ c IFP+* such that Dim X’ = Dim X. 

Proof. Embed X into W2n+‘. Then by Lemma 3.10, the 2n-complement of X is rep- 

resented by a compact space X.& c IR2n+‘. Since DimX;, = Dim(XG+, x In-‘) 

one obtains, by applying Lemma 3.11 (n - 1)-times by induction, that X:+, can be 

realized up to Dim in Iw n+2. Moreover, in this case X:,, is realized in iRnt3. Since 

dimX* n+, 6 n one can apply Lemma 3.10 and conclude that the (n + 2)-complement of 

Xi,, is contained in lF! n+3. But such a complement has dimension equal to Dim(X x I). 

By applying Lemma 3.11 to this complement one then realizes X in II??+*. 0 

For the proof of the main result of Section 3, we shall need the following approximation 

lemma. 

Lemma 3.13. Suppose that XG_, c IRn. Then the space C(X, IP) contains a dense Gg 

set of maps f : X + IR” such that Dim f(X) = Dim X. 

Proof. We begin by (XA_,)” (cf. Lemma 3.4). Since DimX is simply connected, we 

have dim XG _ , < n - 3. Embed XG_, into IP as a tame set. Take (X:_,)“. This will 

again be tame. Apply Theorem 1 .lO and conclude that X is removable from this set. 

So every map can be pushed into the complement. By Lemma 3.4, the complement has 

dimension < Dim X. Note this is true for a dense Gg set. By Lemma 3.3, there is another 

Ga dense subset, for which we have dimension 2 DimX. Taking the intersection, get 

the assertion. 0 

Finally, here is the approximation theorem. 

Theorem 3.14 [lo]. Let X be a compactum of dimension dimX < n - 3 and suppose 

that DimX is simply connected. Then every mapping f : X + IR” can be approximated 

by a mapping f’ : X --+ lP such that Dim f’(X) = Dim X. 

Proof. The hypothesis that Dim X simply connected implies that the (n - 1 )-complement 
of X is of codimension 3. By the Realization theorem [16] such complement, denoted 
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by X”, can be tamely embedded into R”. Consider the X*-net generated by X* and 

denoted by X;. This net being X-negligible has the property, by Negligibility criterion, 

that all subsets in R” \ Xz have Dim less than or equal to DimX. So in the space of 

mappings C(X,lR?) there is a dense Gs-set consisting of mappings missing Xz which 

do not rise the dimensional type. 

On the other hand, there is a Gs-dense subset of light mappings in C(X, RF) which 

do not lower Dim. The intersection of these two sets is G6-dense and so it has both 

properties. 0 

4. Intersection formula 

Transversal intersection formula of Theorem 1.10 and its relative version of The- 

orem 1.12 have similar proofs. To unify them we shall prove a general theorem on 

3, &transversality. Throughout this chapter we shall denote by 3 and 6 two complete 

(i.e., complete as metric spaces with respect to the metric generated by the sup-norm) 

classes of mappings of compacta X and Y into the Euclidean space IF?“, respectively. 

Lemma 4.1. The subset VDI, of F x 4, consisting of the pairs f, g such that dim(f(X) n 

g(Y)) < k, is a Gs-set, for every k. 

Proof. The subspace Vi of 3 x G, consisting of the mappings f with the property 

M(X) MY)) < E, where ak denotes the Aleksandrov k-dimensional width (which is 

defined as the minimum of E such that the set admits an E-translation to a k-dimensional 

polyhedron), is an open subset. This is easy to see and is well known. The intersection 

n, D:‘,, of the sequence of such subspaces with & = l/n gives us exactly Dk. 0 

This lemma has an important corollary: 

Corollary 4.2. If two mappings f E F and g E G stably intersect (with respect to 

.F, Q, then for every E > 0, there are mappings j” E F and g’ E 6 which intersect 

transversally (with respect to 3, G) and are E-close to f and g, respectively. 

Proof. Denote by 131, the boundary of the closure of Dk. In this case, it follows by 

Lemma 4.1 that the set of transversal pairs coincides with the complement of Uk B,+. 0 

Definition 4.3. A mapping class ‘FI : 2 -+ Iw” is said to k-stably intersect a subset 

Y c IR” at a mapping h E ti, if dim/$(Z) n Y 3 k, for all mappings h’ which are 

sufficiently close to h. 

Hence, k-unstability coincides with k-removability. We shall say that 3-1 is stably k- 

removable from Y at h, if every mapping of 7-1, sufficiently close to h, is k-removable. 

Remark 4.4. By Lemma 4.1, one can define transversal@ as a combination of k-stability 

and stable (k + 1)-removability, for some k. 
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Lemma 4.5. .F is stably k-removable from Y if and only if3 k-unstably intersects Y 

at every f’ which is sufjiciently close to f. 

Proof. The last condition implies local density at f of mappings which satisfy the con- 

dition dim(f’(X) n Y) < k. However, by Lemma 4.1 such a set is Gg. This shows that 

3 is stably k-removable. In the opposite direction the proof is trivial. 0 

Lemma 4.6. Zf a mapping f : X + il% n is stably removable from every k-plane with 

respect to the class 3 then for almost all mappings from 3, which are su$ficiently close 

to j’, itfollows that dim f’(X) < n - k. 

Proof. Let us fix a S so small that every f’ from the S-neighborhood 0~ (f) of f in 

3, unstably intersects every k-plane. For every E > 0 one can choose a locally finite 

sequence of k-planes L1 , L2, . . . , with Aleksandrov (n - k-)-width of the complement of 

its union to be less than E (just take the set of all points with at least k rational coordinates 

with denominator < n/c). Then for almost all elements of O&(f), the image lies in the 

complement of the union of the sequence, hence has the (n - k)-width less than E. Since 

06(f) is complete and the width inequality defines an open set, one concludes that the 

image of almost all mappings of 06(f) has the Aleksandrov (n. - k)-width zero. q 

The following is a correct version of the CogoSvili theorem: 

Corollary 4.7. A compacturn X c R” is stably removable from every k-plane if and 

only ifdimX < n - k. 

Proof. Since the inclusion X c IF?” cannot be approximated by mappings with the 

dimension of image less than dimX, one obtains from Lemma 4.6 the proof in the if 

direction. To prove the opposite direction, one has to consider polyhedral approximations 

and use standard general position arguments. 0 

The following result can be considered as the generalized CogoSvili theorem. 

Theorem 4.8. Zf a mapping f : X + FP is stably k-removable from every n-plane with 

respect to a complete class 3: X + IF? then dim f’(X) < m - n + k, for almost all 

f’ E 3, which are st@ciently close to f. 

Proof. According to Lemma 4.6 above it is enough to prove the stable removability of 

f from every (n - k)-plane L. Let us consider any n-plane containing L c L”. 

Let E be so small that every mapping from 3, E-close to f, is k-removable from Ln. 

Then we can approximate such an f’ arbitrary closely by f” so that dim(f”(X) II L) < 

k. But every less than k-dimensional compacturn unstably intersects every (n - k)- 

dimensional plane. Consequently, f” unstably intersects L. 0 

Definition 4.9. A compact subset X c Rn is called stably k-removable from another 

subset Y C IK” if the class C(X, IP) is stably k-removable from Y at the inclusion 

x c JR?. 
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The default value of k in this terminology is 0. One says unstably intersects instead 

of O-unstably intersects and stably removable instead of stably O-removable. 

Definition 4.10. Mapping classes 3 and G are called k-stably intersecting at a pair 

,f E 3, g E 4 if dim(f’(X) n g’(Y)) 3 k, for all pairs f’, g’, sufficiently close to f, y. 

Definition 4.11. An affine plane ~5% c lRn x Rn is called skew if it satisfies the following 

condition: pr (Ln) = pz(Ln) = RF, where by pi : IR” xR” + EP we denote the projection 

on the ith factor. 

Let us denote by Auth(iR”, IF) the space of all affine automorphisms of IF??. Then skew 

planes are in one-to-one correspondence with the graphs of elements from Auth(R”, IF?). 

In particular, the diagonal of the product corresponds to the identity isomorphism. If we 

denote the graph of such an automorphism H by GH one has the following natural 

homeomorphism: 

Characteristics of the intersection of classes 3 and G, such as stability and its relative 

versions (removability and transversality), correspond to the analogous characteristics to 

the intersection of the product 3 x G with the diagonal. In particular, one obtains: 

Lemma 4.12. For every H E Auth(IP, IF), the following assertions are equivalent: 

(1) the product 3 x G k-stably intersects intersects the graph GM at f x g; and 

(2) H 0 3 k-stably intersects G at H o f, g. 

Lemma 4.13. If 3 x 6 is stably k-removable from every skew n-plane at f, g, then 

dim(f’(X) x g’(Y)) < n + k, for almost all pairs f’, g’ from 3, G which are sufficiently 

close to the pair f, g. 

Proof. Since every n-plane can be approximated by a skew plane the stable removability 

from skew planes implies the same property for all n-planes. Now the proof can be 

accomplished by applying Lemma 4.8. 0 

A mapping class 3 is called almost light if almost all of its elements are light mappings. 

Moreover, it is called ufJinely invariant if h o 3 = 3, for every h E Auth(IP, RF). 

Lemma 4.14. Ifdim(X x Y) 3 n+ k, the classes 3 : X -+ JR”, G : Y --) R” are almost 

light, and 3 is afinely invariant, then 3 and g k-stably intersect at some f, g, 

Proof. Since 3 and Q contain a dense G6 subset of light mappings, the same is true for 

3x G. Since light mapping do not lower dimension, we have dim(S(X) x g(X)) 3 nfk, 

for almost all f, g. By Lemma 4.13, there is a skew n-plane GH from which 3 x &7 is not 

stably k-removable at some f9 g. Since 3 is affinely invariant, one has that H o 3 = 3. 

Therefore, 3 x G is not stably removable from the diagonal at H o f, g. Hence, there 
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exist f’ E 3, close to H of and g’ E G, close to g, such that F x G k-stably intersects 

the diagonal at f’, g’. Now the proof is accomplished by invoking Lemma 4.12. q 

Definition 4.15. Let Y’, Y be a compact pair (Y’ c Y) of subsets of R”. By a Y’- 

relative mapping we shall mean any continuous mapping of Y into IR”, which is identical 

over Y’. The class of Y’-relative mappings will be denoted as C(YrelY’, EP). The 

stability, removability and transversality with respect to this class will be called the 

relative stability, relative transversality, etc. 

Applying Lemma 4.14 above to the case F = C(X, IF) and G = C(Y rel Y’, RF), 

one deduces (since h o .F = .F) the following theorem on k-stable intersections. 

Theorem 4.16. If dim(X x Y) 3 n + k, for a compactum X and a compact subset 

Y c IF, then for every closed subset Y’ c Y, there exist a mapping f : X + IR” and 

a Y’-relative mapping g : Y -+ B” which k-stably intersect relatively to Y’. 

When Y’ = Y, Theorem 4.16 implies Theorem 1.8. In the case when F = C(X, lFP) 

and 6 = C(Y, RF), one obtains from Lemma 4.14 the following theorem: 

Theorem 4.17. If dim(X x Y) 3 n + k, for compacta X and Y, then there exists 

mappings f : X -+ II%” and g : Y + IP which k-stably intersect. 

The following theorem represents the hard part of the transversal intersection formula 

of Theorem 1.7. 

Theorem 4.18 [ 1 I]. Suppose that a compactum Y c Iw” is tame, and of codimension 

> 2 and that X is compactum such that dim(X x Y) < k + n. Then for every mapping 

f : X -+ IF, the intersection off and Y is k-unstable. 

We begin by the following lemma: 

Lemma 4.19. If dim(X x Y) < n+ k, for a tame compactum Y c Et” and a compactum 

X of dimension < n + 2, then for every linear plane LnPk, one has dimX x (h(Y) fl 

LnPk) < n, for almost all homeomorphisms h E ‘H(JR”, IF). 

Proof. Let us denote by ‘H’ the set of all homeomorphisms satisfying the condition above. 

Lemma 4.13 implies that ‘H’ is of type Gb. So it is enough to prove the density of ‘H’. 

Since ‘FI is a topological group it suffices to prove that ‘Ft’ intersects every neighbourhood 

of the identity. 

Let us chose an increasing sequence of linear subspaces {Ln-‘}a<&k starting with 

the chosen plane and finishing with the whole space Ln = R” (indices of these planes 

correspond to their dimensions). 

Let us fix a (k + I)-dimensional simplex T, intersecting transversally all planes of the 

sequence. Therefore, dim(T n Lnei) = (k + 1) - i and dim(h(T) n LnPi) 3 (k + 1) - i, 

for all h E ‘H sufficiently close to the identity. Let us consider Y’ = Y U T. The choice 
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of T implies simple connectedness 

h close to the identity. Since dimX < n - 2, one has 

dim(X x 7’) < n + k, hence dim(X x Y’) < n + k. 

Now we apply, step by step, Lemma 3.6 to Y’ and construct a sequence of homeo- 

morphisms hi : Lnei 4 Lnpi, close to the identity, such that 

Dim (hihi- ho(Y’)) n Lnei = DimY’ - i, for all i < k. 

The local contractibility of the homeomorphisms group of IR” allows us to extend ev- 

ery hi to a homeomorphism Hi E ‘FI, so that H,, as well as their superposition, be- 

long to any prechosen neighbourhood of the unity in 31. Denote by h the composition 

Hk_, Hk-2.. . Ho. Then Dim(h(Y’) n Lnek) = Dim Y’ - k, hence 

dim (X x (Y n Lnek)) Q (X x (Y’ n LIL--k)) < 12. 0 

By the Niibeling net of dimension k in IF? we mean any countable union of k- 

dimensional planes such that its complement has dimension n-k- 1. The main example is 

the rational Nobeling net which consists of all points with at least k rational coordinates. 

Lemma 4.20. Zf N is a k-dimensional Niibeling net in EP, then dim X < dim(X n N) + 

n - k, for every compuctum X c RF. 

Proof. The proof immediately follows from the classical Urysohn-Menger formula for 

the dimension of the union. 0 

Proof of Theorem 4.18. Let us consider the Nijbeling net N of all (n - k)-dimensional 

planes. By Lemma 4.19, one applies the Baire theorem to the space IH of all autohome- 

omorphisms to get the existence of a homeomorphism h of IF, close to the identity 

and such that dim((h(Y) n N) x X) < n. In this case, X being removable from the 

intersection of h(Y) with any plane of N, is removable from the whole intersection 

h(Y) f! N, by virtue of the same Baire theorem. Hence for every mapping f : X -+ IFP, 

there exist arbitrary close mapping f’, whose images miss N n h(Y) and therefore the 

dimension of the intersection f’(X) n h(Y) 1s not greater than dim(lR” \ N) = k - 1. 

However, the set h-If’(X) nY, being homeomorphic to f’(X) n h(Y), has dimension 

6 k - 1, and the composition h-’ f’ is also close to f, since h is close to the identity. 

So the required k-unstability of intersections of arbitrary f with Y is established. q 

Transversality with respect to C(Y rel Y’, lP) will be called rel Y’-trunsversuEity. Now 

both transversality formulas of the introduction, Theorems 1.10 and 1.12, follow from 

the following uni$ed intersection formula for subsets. 

Theorem 4.21. If compact subsets X, Y c JFP with dimensionally homogeneous product 

X x Y, intersect rel Y’-transversally (where Y’ c Y is a tame compuctum) and dim Y < 

n - 2, then: 

dim(X n Y) = dim(X x Y) - n. 
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Proof. Let us denote k = dim(X x Y) - n. The hard part of the intersection formula of 

Theorem 4.18 implies (k + 1)-unstability of the intersection. So one has the inequality 

dim(X n Y) < k. 

Suppose that dim(X n Y) < k. The transversality condition implies the existence of an 

E > 0 such that the inequality dim(f(X)fIg(Y)) < k holds for almost all &-translations f 

of X and Y/-relative &-translations g of Y. Pick a point IC in the intersection XnY. Denote 

by X,, YE the intersections of X and Y, respectively, with the closed e/2-neighbourhood 

of I%. By the dimensional homogeneity of X x Y, one has that dim(X, x YE) = k + n. 

Now apply Theorem 4.16, for the case F = C(X,, O,(z)) and 6 = C(YE rely’, 0,X) 

(where O,(z)) is the open &-neighbourhood of z which is homeomorphic to IR?), to 

obtain a mapping fE :X, -+ O,(x) which k-stably (rely’) intersects YE. Use fE to get 

f$X --) W, extending f: to all X such that it is E-close to the identity. Thus we 

get a contradiction to our hypothesis since f: k-stably intersects Y rel Y’, being an E- 

translation. Cl 

Finally let us prove the mapping transversal intersection formula. 

Theorem 4.22. Let f : X 4 I%” and g : Y + IP be transversally intersecting mappings 

of compacta of dimensions < n - 2. Then 

dim (f(X) n g(Y)) = dim(X x Y) - n. 

Lemma 4.23. Theorem 4.22 is true if Dim X and Dim Y are simply connected. 

Proof. Let k = dim(X x Y) - 72. Let us now prove that there is no pair f,g from 

the given mapping classes with (k + 1)-stable intersection. Since DimY’ and DimX’ 

are simply connected, one can apply Approximation Theorem 3.14 to conclude that 

for almost all mapping pairs F, G from X’, Y’ to IV, one has Dim G(Y’) = DimY’ 

and Dim F(X’) = DimX’. Let us fix such a pair F, G, E-close to our f, g. Applying 

Theorem 4.18 to the images F(X), G(Y), one finds two e-translations f’, g’ such that 

dim (f’(F(X)) f? g’(G(Y))) 6 dim (F(X) x G(Y)) - n 

=dim(XxY)-n=k. 

So we find another pair, 2&-close to the pair f,g (namely f’ o F, g’ o G), with the 

dimension of the intersection less than k + 1. This proves the nonexistence of (k + l)- 

stable intersections. 

To prove the rest of the lemma it is enough to demonstrate the density of mapping 

pairs with k-stable intersections among all stably intersecting mappings. Let us consider 

an arbitrary stably intersecting mapping pair f, g and a positive E. Fix a pair of points 

(z, y) E (X x Y) with coinciding images f(x) = g(y). Choose compact neighborhoods 

0, and 0, so small that their images lie in an open E-ball B c IP. The dimension 

homogeneity of X x Y implies dim(0, x 0,) = n + k hence Lemma 4.14 applied in 

the case F = C(O,, B), G = C(O,, B) yields a pair f’, g’ with a k-stable intersection. 
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Extend f’ and g’ over X and Y so that their images remain in B. Choose a pair of 

continuous real functions cp: X 4 [0, 11 and $ : Y -+ [0, l] such that P(Z) = 1 = $(y), 

if z E 0, and y E 0, and cp(z) = 0 = $(y), if f(x) $ B and g(y) $! B. In this case 

the linear combinations f( 1 - p) + f ‘ip and g( 1 - T/J) + .9’$ are &-close to f. g and they 

k-stably intersect. 0 

Proof of Theorem 4.22. Suppose that dim X < dim Y. Let us consider the compacta 

X’ = X U D and Y’ = Y U D, homeomorphic to the disjoint union of X and Y, 

respectively with the two-dimensional disk D. Then the condition on codimension implies 

unstability of the intersections of X as well as Y with D. Hence the dimension of the 

transversal intersection of X’ and Y’ is the same as for X and Y. Let us now compare 

the dimensions of the products X x Y and X’ x Y’. If they coincide then all ingredients of 

the intersection formulas for both pairs are the same and it suffices to prove the formula 

for X’: Y’ which are of simply connected dimension. If dim(X x Y) < dim(X’ x Y’), 

then 

dim(X’ x Y’) = dim(Y’ x 0) = dimY + 2 < n. 

So in this case there are no transversal intersections of X’ and Y’ and consequently none 

of X and Y. 0 

Corollary 4.24 [ 101. Every pair of mappings of compacta X and Y into IR” such that 

dim(X x Y) < n, dim X < n - 2, and dimY < n - 2 unstabZy intersects. 

Proof. The existence of a stably intersecting pair f, g leads to the existence of a trans- 

versely intersecting pair, according to Corollary 4.2. But the dimension of transversal 

intersection calculated by Theorem 4.22 is negative. Contradiction. 0 
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