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Abstract: We discuss the following problem: given n points in the plane (the "sites"), and an 
arbitrary query point q, find the site that is closest to q. This problem can be solved by constructing 
the Voronoi diagram of the given sites, and then locating the query point in one of its regions. We 
give two algorithms, one that constructs the Voronoi diagram in O(n lg n) time, and another that 
inserts a new site in O(n) time. Both are based on the use of the Voronoi dual, the Delaunay 
triangulation, and are simple enough to be of practical value. The simplicity of both algorithms can 
be attributed to the separation of the geometrical and topological aspects of the problem, and to the 
use of two simple but powerful primitives, a geometric predicate and an operator for manipulating 
the tgpology of the diagram. The topology is represented by a new data structure for generalized 
diagrams, that is embeddings of graphs in two-dimensional manifolds. This structure represents 
simultaneously an embedding, its dual, and its mirror-image. Furthermore, just two operators are 
sufficient for building and modifying arbitrary diagrams. 

O. Introduction 

One of the ft,ndamental data structures of  computational geometry 
is the Voronoi diagram. This diagram arises from consideration of 
the following natural problem. Let n points in the plane be given, 
called sites. We wish to preprocess them into a data structure, so 
that given a new query point q, we can efficiently locate the nearest 
neighbor of q among the sites. The n sites in fact partition the 
plane into a collection of n regions, each associated with one of  the 
sites. If region P is associated with site p, then P is the locus of  all 
points in the plane closer to p than to any of the other n - -  1 sites. 
This partition is known as the Voronoi diagram (or the Dirichlet, or 
Thiessen, tesselation) determined by the given sites. 

The closest site problem is can therefore be solved by constructing the 
Voronoi diagram, and then locating the query point in it. Using the 
currently best available algorithms, the Voronoi diagram of  n points 
can be computed in O(nlgn) time and stored in O(n) space; these 
bounds have been shown to be optimal in the worst case [Sh]. Once 
we have the Voronoi diagram, we can construct in linear further time 
a structure with which we can do point location in a planar subdivision 
in O(lg n) time [Kil]. 
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Shamos [Sh] first pointed out that the Voronoi diagram can be used as 
a powerful tool to give efficient algorithms for a wide variety of  other 
geometric problems. Given the Voronoi, we can compute in linear 
time the closest pair of sites, or the closest neighbor of each site, or 
the Euclidean minimum spanning tree of the n sites, or the largest 
point-flee circle with center inside their convex hull, etc. Several of  
these problems are known to require fl(n lg n) time in the worst case, 
so these Vorunoi-based algorithms are asymptotically optimal. 

The complexity of  the O(nlgn) Voronoi algorithms that can be found 
in the literature is a serious barrier to their widespread utilization, To 
the authors' knowledge, they so far have never been used in any of  the 
significant practical applications of closest-point problems in statistics, 
operations research, geography, and other areas. In every case the 
authors of those programs chose to use asymptotically slower O(n 2) 
algorithms, which were much simpler to code and almost certainly 
faster for the ranges of interest in n. Furthermore, the presentation 
of Voronoi algorithms in the literature has often been insufficiently 
precise. Authors typically confine themselves only to a very high-level 
description of their algorithms. As with many geometric problems, 
difficulties can arise in the implementation when degeneracies occur, 
as for example when three of the given points happen to be cocircular. 

In this paper we present a novel way of looking at the standard 
Voronol computation techniques, such as the divide and conquer [SH] 
and incremental [GS] methods, that results in Voronoi algorithms 
that are very concise and substantially easier to read, implement 
and verify. One of the main reasons for this simplicity is that we 
work with the duals of the Voronoi diagrams, which are known as 
Delaunay tria,gulalions, rather than with the diagrams themselves. 
The other major reason is the clean separation that we are able to 
make between topological and geometrical aspects of  the problem. In 
sections 6 through 10 we show that the hardest part of constructing a 
Voronoi diagram or Delaunay triangulation is the determination of its 
topological structure, that is, the incidence relations between vertices, 
edges, and faces. Once the topological properties of the diagram are 
known, the geometrical ones (coordinates, angles, lengths, etc.) can be 
computed in time linear in the size of the diagram. 
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Our algorithms are built using essentially two primitives: a geometric 
predicate, and a topological operator for manipulating the structure 
of the diagrams. The geometrical primitive, that we call the lnCircle 
test, encal~sulates the essential geometric information that determines 
the topological structure of the Voronoi diagram, and is a powerful 
tool not only in the coding of the algorithms but also in proving 
their correctness. As evidcnce for its importance, we show that it 
possesses many interesting properties, and can be defined in a number 
of equivalent ways. 

The topological structure of a Voronoi or Delaunay diagram is equiv- 
alent to that of a particular embedding of some undirected graph in 
the Euclidean plane. We have found it convenient to consider such 
diagrams as being drawn on the sphere rather than on the plane; 
topologically that is equivalent to augmenting the Euclidean plane by 
a dummy point al infinio,. This allows us to represent such things as 
infinite edges and faces in the same way as their finite counterparts. 
lu sections 1 through 5 we will establish the mathematical properties 
of such embeddings, define a notation for talking about them, and 
describe a data structure for their representation. 

It turns out that the data structure we propose is general enough to 
allow the representation of undirected graphs embedded in arbitrary 
two-dimensional manifolds. In fact, it may be seen as a variant of 
the "winged edge" representation for polyhedral surfaces [Ba]. We 
show that a single topological operator, which we call Splice, together 
with a single primitive for the creation of isolated edges, is sufficient 
for the construction and modification of arbitrary diagrams. Our data 
structure has the ability to represent simultaneously and uniformly 
both the primal, the dual, and the mirror-image diagrams, and to 
switch arbitrarily from one of these domains to another, in constant 
time. Finally, the design of the data structure enables us to manipulate 
its geometrical and topological parameters independently of  each other. 
As it will become clear in the sequel, these properties have the effect 
of producing programs that are at once simple, elegant, efficient from a 
practical point of view, and asymptotically optimal in time and space. 

Since this paper is quite long, some guidance to the forthcoming 
sections may be advisable. Section 1 introduces the concept of a 
simple subdivision of a manifold and discusses some of the conventions 
we adopt as compared to tile extant literature. Section 2 presents 
the very important ideas of the dual of a subdivision, and the 
edge algebra associated with a subdivision. The edge algebra is 
a combinatorial structure on the edges of the subdivision that we 
claim captures all the topological information associated with the 
subdivision. Section 3 is more technical and may be omitted on 
a first reading. It fonnalizes and then proves the above claim 
about edge algebras by showing that isomorphism of edge algebras is 
equivalcnt to topo!ogical homcomorphism between the corresponding 
subdivisions. In section 4 we present a computer representation for 
an edge algebra, which is our quad edge data structure. Section 5 
introduces the topological primitives that we use to manipulate this 
structure and discusses their properties and implementation. Section 
6 tailnrs these primitives to the application on hand, namely the 
I)elaunay/Voronoi computation. Section 7 reviews some properties of 
the Voronoi/I)elauanay subdivision and section 8 presents our main 
geometric primitive for their computation, the InCircle test and its 
properties. Section 9 presents in detail and proves correct a divide and 
conquer algorithm for Voronoi computations, and section 10 discusses 
incre,nental techniques. 

1. Subdivisions 

In dais scction we will give a precise definition for the informal concept 
of an embedding of an undirected graph on a surface. Special instances 

of this concept are sometimes referred to as a subdivision of the 
plane, a generalized polyhedron, a two-dimensional diagram, or by 
other similar names. They have been extensively discussed in the 
solid modeling literature of computer graphics [Ba, MS]. We want a 
definition that accurately reflects the topological properties one would 
intuitively expect of such embeddings (for instance, that every edge 
is on the boundary of two faces, every face is bounded by a closed 
chain of  edges and vertices, every vertex is surrounded by a cyclical 
sequence of faces and edges, and so forth) and at the same time is as 
general as possible and leads to a clean theory and data structure. 

We assume the reader is familiar with a few basic concepts of  point- 
set topology, such as topological space, continuity, and homeomomor- 
phism [IK]. Two subsets A and B of a topological space M are said to 
be separable if some neighborhood of A is disjoint from some neigh- 
borhood of B; otherwise, they are said to be hlcident on each other. 
A line of M is a subspace of M homcomorphic to the open interval 
B l = (0 1) of the real line. A disk of M is a subspace homeomor- 
phic to the open circle of  unit radius B ~ = { z  E R 2 : Izl < 1 }. 
Recall that a two-dimensional manifoM is a topological space with the 
property that every point has an open neighborhood which is a disk 
(all manifolds in this paper will be two-dimensional). 

Definition 1.1. A subdivision of a manifold M" is a partition ,.q of  M 
into three finite collections of disjoint parts, the vertices, the edges, 
and the faces (denoted respectively by "VS, ES, and .7",5'), with the 
following properties: 

S1. Every vertex is a point of  M.  

$2. Every edge is a line of M.  

$3. Every face is a disk of M.  

$4. The boundary of every face is a closed path 
of edges and vertices. 

The vertices, edges, and faces of a subdivision are called its elements. 
Figure 1.1 shows some examples of  subdivisions. 

Figure 1.1. Examples of subdivisions. 

Condition $4 needs some explanation. We will denote by ~ the 
closed circle of unit radius, and by S t its circumference. Let us define 
a shnple palh in S 1 as a partition of S 1 into a finite sequence of 
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isolated points and open arcs. The precise meaning of  $4 is then the 
following: for every face F there is a simple path ~r in S t and a 
continuous mapping ~ from Ba onto the closure of F that (i) maps 
homeomorphically B ~ onto F ,  (ii) maps homeomorphically each arc 
of ~- into an edge of S, and (iii) maps each isolated point of  ~r to a 
vertex of  S~ 

Condition $4 has a number of  important implications. Clearly the 
points and arcs of ~r must alternate as we go around S 1; if a is the arc 
between two consecutive points a and b of ~r, then its image 4,F(a) is 
an edge incident to the points ¢F(a) and ¢,F(b). Therefore, the images 
of  the elements of ~r, taken in the order in which they occur around 
S t, constitute a closed, connected path 7rF of edges and vertices of 
S, whose union is the boundary o f F .  Notice that the bounding path 
~r~- need not be simple, since 4'~ may take two or more distinct arcs 
or points of ~r to the same element of  S. Therefore the closure of  a 
face may not be homeomorphic to a disk, as figure 1.1 shows. 

Since it is impossible to cover a disk with only a finite number of  
edges and vertices, every edge and every vertex in a subdivision of 
a manifold must be incident to some face. We conclude that every 
edge is entirely contained in the boundary of some face, and that it is 
incident to two (not necessarily distinct) vertices of S. These vertices 
are called the endpoints of the edge; if they are the same, then the 
edge is a loop, and its closure is homeomorphic to the circle S t. 

Since every .element of S is in the closure of some face, and since 
the closed disk ~2 is compact, the manifold M is the union of  a 
finite number of compact sets - -  and therefore is itself compact. In 
fact, condition $4 can be replaced by the requirement that M be 
compact, that the edges be pairwise separable, and that every vertex 
is incident to some edge. Furthermore, every compact manifold has a 
subdivision. We will not attempt to prove these statements, since they 
are too technical for the scope of this paper. 

Informally speaking, a compact two-dimensional manifold is a surface 
that closes upon itself, has no boundary, and in which every infinite 
sequence has an accumulation point. The sphere, the torus, and the 
projective plane are such manifolds; the disk, the line segment, the 
whole plane, and the M6bius strip are not. The compactness condition 
is not as restrictive as it may seem; any manifold can be made. 
compact by adding a dummy "point at infinity" that is by definition 
an accumulation point of all sequences with no other accumulation 
points. This operation transforms the Euclidean plane R 2 into the 
extended plane, which is homeomorphic to the sphere. 

1.1. Equivalence and connectivity 

Definition 1.2. Let S and S '  be two subdivisions of the manifolds M 
and M'. An isomolphism from S to S '  is a hnmcomorphism of 
M onto M '  that maps each element of S onto an element of S ' .  
When such a mapping exists, we say that S and S '  are equivalent, 
and we write S ~ S' .  

Such an isomorphism will perforce map vertices into vertices, faces into 
faces, edges into edges, and will preserve the incidence relationships 
among them. A topological property of subdivisions is a property 
that is invariant under equivalence. Our goal will be to develop a 
computer representation that fully captures all topological properties 
of  subdivisions. 

The collection of all edges and vertices of  a subdivision S constitutes 
an undirected graph, the graph of S. The graphs of two equivalent 
subdivisions S and S '  are obviously isomorphic. The converse is not 
always true: i fS  and S '  have isomorphic graphs, it doesn't follow that 
they are equivalent, or that M and M '  are homeomorphic. Figure 1.2 

shows an example. Note that the subdivisions are not equivalent even 
though there also is a one-to-one correspondence between the faces of  
S and S '  with the property that corresponding faces are incident to 
corresponding edges and vertices. This example shows that the set of  
edges and vertices oil the boundary of a face is not enough information 
to characterize its relationship to the rest of the manifold. 

Figure 1.2. Two subdivisions with isomorphic graphs 
that are not equivalent. 

This fact is ti~ main source of complexity in the theoretical treatment 
of subdivisions, notably in the proof that our data structure is a 
consistent representation of a general subdivision. It is possible to 
define subdivisions in such a way that their topological structure is 
completely determined by that of their graphs, For example, if the 
manifold is restricted to be a sphere, and the graph is triply connected 
[Har], then the subdivision is determined up to equivalence. However, 
any set of conditions strong enough to achieve this goal would probably 
outlaw "degeneracies" such as loops, multiple edges with the same 
endpoints, faces with nonsimple boundaries, and so forth. Subdivisions 
with such degeneracies are much more common than it may seem: 
they inevitably arise as intermediate objects in the transformation of  
a "well-behaved" subdivision into another. An even stronger reason 
for adopting our liberal definition is that it leads to more flexible data 
structures and simpler atomic operations with weaker preconditions. 

On the other hand, we depart from the common solid modeling 
tradition by insisting that every face be a simple disk, without "handles" 
or "holes", even though the whole manifold is allowed to have arbitrary 
connectivity. The main reason for this requirement is to enable a clean 
and unambiguous definition of the dual subdivision (see subsection 
2.2). One important consequence of this restriction is stated below: 

Theorem 1.1, The graph of a shnple subdivision is connected iff the 
manifoM is connected 

Proof: Since every face is incident to some edge, if the graph is 
connected then the whole manifold is too. Now assume the the graph 
is not connected, but the manifold is. Since the faces are pairwise 
separable, and their addition to the graph makes it connected, some 
face is incident to two distinct components of file graph. By condition 
$4 the boundary of that face is connected, a contradiction. [] 

Therefore, the connected components of  the manifold are in one-to- 
one correspondence with the connected components of the underlying 
graph. 

2., The edge a lgebra of a subdiv is ion  

In this section we will develop a convenient notation for describ- 
ing relationships among edges of a subdivision, and a mathematical 
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framework that will justify the choice of our data structure. We 
will develop first the theory and representation for arbitrary compact 
manifolds, and then we will show that certain important simplifications 
can be made in the particular case when thcmanifold is orientable. For 
many applications, including the computation of Voronoi diagrams, the 
only relevant manifold will be the extended plane. 

2..1 Basic edge functions 

On any disk D of a manifold there are exactly two ways of defining 
a local "clockwise" sense of rotation; these are called the two possible 
orientations of D. An oriented element of a subdivision P is an element 
z o f / 9  together with an orientation of a disk containing z. There are 
also exactly two consistent ways of defining a linear order among the 
points of a line l;  each of these orderings is called a direction along 
L A directed edge of a subdivision P is an edge of P together with 
a direction along it. Since directions and orientations can be chosen 
independently, for every edge of a subdivision there are four directed, 
oriented edges. Observe that this is true even if the edge is a loop, or 
is incident twice to the same face of P .  

For any oriented and directed edge e we can define unambiguously 
its vertex of  origin, e Org, its destination, e Dest, its left face, cLeft, 
and its right face, eRight. We define also the flipped version eFlip 
of an edge e as being the same unoriented edge taken with opposite 
orientation and same direction, as well as the symmetric of e, eSym, 
as being the same undirected edge with the opposite direction but the 
same orientation as e. We can picture the orientation and direction of 
an edge e as a small bug sitting on the surface over the midpoint of  
the edge and facing along it. Then the operation eSym corresponds to 
the bug making a half turn on the same spot, and eFlip corresponds 
to the bug hanging upside down from the other side of the surface, 
but still at the same point of  the edge and facing the same way. 

The elements eOrg, eLeft, eRight, and eDest are taken by definition 
with the orientation that agrees locally with that of e. More precisely, 
the orientation of eOrg agrees with that of  some initial segment of  e, 
and that of  e Dest agrees with some final segment of  e. Note that for 
some loops eOrg and eDest may have opposite orientations, in spite 
of  being the same (unoriented) vertex. Similarly, the orientation of 
cLeft agrees with e along the "left margin" of e, and that of  eRight 
agrees along its "'right margin". If e is a bridge, it may be the case that 
eLeft and eRight have different orientations, in spite of  being the same 
(unoriented) face. By extending our previous notation, wc will denote 
by V S ,  E S  and F S  the sets of directed and oriented elements of  a 
subdivision S. In the rest of  this section, unless otherwise specified, 
all subdivision elements are assumed to be oriented, and directed if 
edges. 

"A sufficiently small disk containing the vertex v = eOrg, it can be 
mapped homeomorphically onto the unit disk B ~ in such a way that 
v is mapped to the origin, and the intersection of D with every 
edge incident to v is a ray of B 2. Traversing the boundary of D 
in the counterclockwise direction (as defined by the orientation of v) 
establishes a cyclical ordering of those edges. If each edge is oriented 
so as to agree with v, and directed away from D, we obtain what is 
called the ring of edges out of v. We can define the next edge with same 
origin, eOnext, as the one immediately following e (counterclockwise) 
in this ring (see figure 2.1). Note that if e is a loop it will occur twice 
in the ring of edges out of  v. To be precise, both e and an oppositely 
directed version of it (either eSym or eSymFlip) will occur once each: 
since the manifold around v is like a disk, e will occur only once in 
each circuit, and we will never encounter eFlip, 

Similarly, given an edge e we define the next counterclockwise edge with 
same left face, denoted by eLnext, as being the first edge we encounter 

after e when moving along the boundary of the face F = e Left, in 
the counterclockwise sense as determined by the orientation of F .  
The edge e Lnext is oriented and directed so that e Lnext Left ---- F 
(including orientation). The successive images of e under Lnext give 
precisely the edges of the bounding path 7rF of condition $4 (in one of 
the two possible orders). As in the case of Onext, the edge e appears 
exactly once in this list, and either eSym or eFlip (but not eSymFlip) 
may appear once. 

:  V:org I 

Figure 2.1. The ring of edges out of  a vertex. 

2.2. Duality 

The dual of a planar graph G can be defined intuitively as a graph G* 
obtained from G by interchanging vertices and faces while preserving 
the incidence relationships. The definition below extends this intuitive 
concept to arbitrary subdivisions: 

Definition 2.1. Two subdivisions S and S* are said to be dual of  each 
other if for every directed and oriented edge e of  either subdivision 
there is another edge eDual of the other such that 

D1. (eDual)Dual = e 

D2. (eSym)Dual = (eDual)Sym 

D3. (eFlip)Dua? = (eDuat)F1ipSym 

IM. (e Lnext) Dual = (e Dual) Onext--1 

Equation I)4 states that moving counterclockwise around the left face 
of e in one subdivision is the same as moving clockwise around 
the origin of (eDual) in the other subdivision. To see why, note 
that the edges on the boundary of the face F = e L e f t ,  in coun- 
terclockwise order, are (eLnext, eLnext 2 . . . .  ,eLnext "~ = e) for 
some ra _> 1. This path maps through Dual to the sequence 
((eDual)Onext- l , (eDual)Onext-2, . . . , (eDua!)Onext  - ' '  = 
eDual) of all edges coming out of the vertex v = (eDual)Org of 
S*, in clockwise order around v. 

We can therefore extend Dual to vertices and faces of  the two sub- 
divisions, by defining (e Left)Dual = ( e Dual)Org and (e Org ) Dual = 
(eDual)Lefl. Equations 1)2 and D3 imply that any two edges that 
differ only in orientation and direction will be mapped to two versions 
of  the same undirected edge. Combining this with the preceding ar- 
gument we conclude that Dual establishes a correspondence between 
E S  and ES*,  between V S  and F S * ,  and between F,5' and VS*,  
such that incident elements of  S correspond to incident elements of  
S*, and vice-versa. It follows that two vertices of  one subdivision 
are connected by an edge whenever (and as many times as) the cor- 
responding faces of  the other are incident to a common edge. So, in 
the particular case when S and S* are subdivisions of  the sphere, the 
graphs of S and S* are duals of  each other in the sense of graph 
theory. 
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Figure 2.2 shows a subdivision of the extended plane (solid lines) 
superimposed on its dual (dotted lines). Note that the two subdivisions 
of figure 2.2 have the property that each undirected edge of one 
meets (and crosses) only the corresponding dual edge of the other, 
and that each vertex of  one is in the corresponding dual face of  the 
other. ~Vhen this happens, we say that S and S* are strict duals 
of  each other. In that case, the dual of an oriented and directed 
edge e is the edge of the dual subdivision that crosses e from left 
to right, but taken with orientation opposite to that of e. That is, 
the dual subdivision should be looked from the other side of  the 
manifold, or the manifold should be turned inside out. This reflects 
the correspondence between counterclockwise traversal of  eLef i  to 
clockwise traversal of (eDual)Org. 

. --  . . . . . . . . .  _,:,_ : :  ~ '"  . . . . . . .  

Figure 2.2. A subdivision of the extended plane (solid 
lines) and a strict dual (dashed lines). 

This implicit "flipping" of  the manifold is unavoidable if S and S* 
are superimposed as strict duals and we insist that Dual be its own 
inverse. It has the serious drawback of making the calculus of the 
edge functions much less intuitive. It is therefore preferable to relate 
the two dual subdivisions by means of  the function 

eRot  = e~l ipDual  = eDual f ' l ipSym 

which maps E S  to E S *  without this implicit "flipping". The edge 
eRo t  is called the rotated version of e; it is the undirected dual 
of  e, directed from eRight  to eLefl ,  and orientcd so that moving 
counterclockwise around the right face of e corresponds to moving 
counterclockwise around the origin of eRot .  If the two subdivisions 
are superimposed as strict duals, like in figure 2.2, then we may say 
that eRo t  is e "rotated 90 ° cotmtcrclockwise" around the crossing 
point. In fact, the only reason for not dcfining duality in terms of  
Rot (rather than Dual) is that it fails short of being its own inverse: 
(eRot)  Rot  gives e Sym instead of e. 

2.3. Properties of edge functions 

The functions Flip, Rot, and Onext satisfy the following properties: 

El. eRot  4 = e 

E2. e R o t O n e x t R o t O n e x t  = e 

E3. eRot  2 y~ e 

E4. e E E S  iff e R o t  E E S *  

E5. e G E S  iff e O n e x t G E S  

FL eFlip z = e 

F2I eFl ipOnex tF l ipOnex t  = e 

F3. eFl ipOnex t"  ~ e for any n 

F4. eFl ipRo tF l ipRo t  = e 

FS. e 6 E S  iff eFlip 6 E S  

A number of  useful properties can be deduced from these, as for 
example 

eHip  - z  = eFlip 

e S y m  = e R o t  ~ 

eRo t  - 1  ~ eRo l  a 

= eFl ipRotFl ip  

eDual  = eFl ipRot  

eOnex t  - 1  = e R o t O n e x t R o t  

= eFl ipOnextFl ip ,  

and so forth. For added convenicnce in talking about subdivisions, 
we introduce some derived functions. By analogy with eLnex t  and 
eOnext ,  for a given e we define the next edge with same right face. 
eRnext ,  and wilh same destination, eDnext ,  as the first edges that 
we encounter when moving counterclockwise from e around eRight  

and eDest, respectively. These functions satisfy also the following 
equations: 

eLnex t  ~ eRot  - 1 0 n e x t R o t  

eRnex t  = e R o t O n e x t R o t  - 1  

eDnext  = e S y m O n e x t S y m  

The orientation and direction of the returned edges is defined so that 
e L n e x t L e f i  = eLefi ,  eRnex tR igh t  = eRight,  and eDnex tDes t  = 
eDest. Note that eRnex tDes t  = eOrg, rather than vice-versa, By 
moving clockwise around a fixed endpoint or face, we get the inverse 
functions, defined by 

eOprev = eOnext  - 1  = e R o t O n e x t R o t  

eLprev = eLnex t  - 1  = e O n e x t S y m  

eRprev = eRnex t  - 1  = e S y m O n e x t  

eDprev = eDnext  - 1  = e R o t - Z  Onex tRot  - z  

It is important to notice that every function defined so far (except 
Flip) can be expressed as the composition of a constant number of 
Rot and Onext operations, independently of the size or complexity of 
the subdivision. Figure 2.3 illustrates these various functions. 

I I I  

/ 
,; [---'e O~ez~ 

' . . . . . .  4 - - , , - - 4  

One=e 

, ' / " / ~ , ,  

Figure 2.3. The edge functions. 
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The above argumcnts show tbat it is possible to insert a new site into 
the Delatmay structure in total time O(k), if k updates need to be 
made. Unfortunately we know of no O(k) algorithm for handling 
the deletion of a site that leaves an untriangulated face of k sides. 
Our best algorithm has asymptotic complexity O(k lg k), which in the 
worst case k = O(n) is as bad as rebuilding the subdivision from 
scratch. We do not know of a linear algorithm even if we assume that 
the deletion of the site leaves a convex face. We regard the handling 
of deletions as the major open problem in this area. 

1 1. Conclus ions.  

In this paper we have presented a new data structure for planar 
subdivisions which simultaneously represents the subdivision, its dual, 
and its mirror image. Our quad edge structure is both general (it 
works for subdivisions on any two-dimensional manifold) and space 
efficient. We have shown that two topological operations, both simple 
to implement, suffice to build and dismantle any such structure. 

We have also shown how, by using the quad edge structure and the 
lnCircle primitive, we can get compact and efficient Voronoi/Delaunay 
algorithms. The lnCircle test is shown to be of value both for 
implementing and reasoning about such algorithms. The code for 
these algorithms is sufficiently simple that we have practically given all 
of it in this paper. 
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