
Primitives for the Manipulation
of Three-Dimensional Subdivisions

David P. Dobkin
Michael J. Laszlo

Department of Comptrlor Science

Princeton University

Princeton, New Jersey 08540

1. Introduction

A major impediment to the implementation of algorithms that
manipulate 3-dimensional cell complexes and subdivisions is the
lack of a suitable data structure. What is needed is a data struc-
ture powerful enough to model such objects yet simple enough to
allow their manipulation in well defined ways. We focus attention
here on the development of such a data structure. Our structure
is analogous (though one dimension higher) to the winged-edge
[Ba], [BBS], [EW] and quad-edge [GS] data structures which are
widely accepted for modehing 2-manifolds. Just as these struc-
tures can be used to represent both planar polygonal cell com-
plexes in R* and surfaces of polyhedra, our data structure can
model polyhedral complexes in R3 and surfaces of 4-polyhedra.

Our results can be viewed as similar to the work done by
Guibas and Stolfi in deriving tile quad-edge structure. Lifting
tlrc results one dimension higher increases the complexity of our
da1~astructure. They consider an edge as their atom, and consider
t,lic* edge rings to which it bclougs. We consider a polygon-edge
pair as :LII atom, and cousitlrr the two polygoc rings and two
edge rings to which it bc1011gs. The quad-cdgc atom could be
considered to connect two vcrticcs and two polygons. Similarly,
our atom connects two polyhedra and two vertices. We simplify
our structure by treating only complexes that are orientable, and
whose cells do not puncture the interior of other cells.

There are numerous applications we envision for such a data
structure. One application we consider is that of decomposing a
polyhedron into tetrahedra [Ch, Wii]. We rederive and model one
of the applications [WS] in our system. A second application we
consider is the implementation of an algorithm for incrementally
computing the Delaunay triangulation of a J-dimensional point
set [AB], [Bh]. Further applications are also possible. For one,
our data structure provides an approach to an efficient divide-
and-conquer algorithm for building 3-dimensional Voronoi dia-
grams. A second possibility is for modelling the motion of a
3dimcnsional polyhedron through time, which can be viewed

I’crmi\sion to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.

@ 1987 ACM 0-89791-231-4/87/0006006/0086 750

as a 4-dimensional polyhedron (in I, y,a,l space) where hidden
surface removal is done by projecting into x, y, t space and taking
t cross-sections to determine individual scenes.

What we attempt to achieve in this paper is a blend between
a derivation of the data structure and a small set of primitive
operators for its manipulation, the development of macro oper-
ations from these primitives, and the use of these macros in the
first two applications mentioned above. The results of this pa-
per are implementable and an effort to build them is currently
underway.

2. Definitions and Prerequisites

In this section we define the class of objects to be manipulated
by our data. structure. It is assumed the reader is familiar with
some basic concrpls of point-set t,opology.

2.1 Basic Definitions

Whcrc 1’ is a topological space, a k-cell is a closed subspace of
‘1’ whose interior is homeomorphic to Rk, and whose boundary
is non-null. In this paper, we assume that T = R3, though our
results hold for more general 7’. We call a O-cell a vertex, a l-cell
an edge, a 2-cell a polygon or a facet, and a 3-cell a polyhedron.
Note that a cell may be unbounded; for instance, an edge can be
a closed segment (bounded by two vertices) or a ray (bounded
by one vertex). We also assume that each k-cell c lies in a Ic-
dimensional affine subspace, denoted afl c.

A (closed) cell complex of T is a finite collection C of cells
of T such that

(i) the relative interiors of cells of C are pairwise disjoint,
and

(ii) for each ceU c E C, the boundary bd e of cell c is the
union of elements of C, and

(iii) if c,d E C and c O d # 0, then c n d is the union of
elements of C.

Wc let IA(C) be the union of the cells of C, aucl consider C a
subdivision of//((‘). An rr-tlirucnsioual complc~s for which c’very
every I;-roll is rontaiued in (the boundary of) SOIIIC! rr-cell is rallctl
an n-complex. Informally, an n-complex is a complex possessing
no struts, superfluous cells that do not help to define polyhedra.

The combinatorial boundary of cell c of C, denoted ac, is
d&red to be t,he set of cells of C contained in hd c. Note that
U(&) = bd c. The combinatorial boundary 8C of complex C is
dctined as the set of cells of C coutainad in bdU(C). An op~w
cell d c c is said to be a face of c; if in addition c # d, then d is a
proper face of c. If one of c or d is a proper face of the other, c and
d are said to be incident. For instance, a polyhedron is incident
with each vertex, edge and facet that lies in its boundary. The
star of a cell c, denoted star-c, is the subset of C consisting of
the cells of which c is a face.

111 lliis Iupc’r’ wv c:orbsitlcr two types of :I-complexes. One
ly ln:, called bid/ cornploxcs, arc subdivisions of space homeomor-
lrhic to tbc closed ball n3 = {I E R3 1 1~1 <_ 1). We regard a ball
COUI~ICX as a subspace of R3. T!ke other type of 3-complexes we
consider are the subdivisions of R3. Observe that in such com-
plcxes, the star of each edge contains a facet-polyhedron cycle,
each cell of which occurs in the cycle exactly once, Similarly,
cacb facet is bounded by a simple vertex-edge cycle.

Given n-complex C, by convention there exists one (null)
n+ I-cell of which every n-cell of C is a face; likewise there exists
one (null) -l-cell which is a face of every vertex. Distinct &cel.h
c and d (for 0 < t I: n) are then said to be adjacent if(i) there
exists some k - l-cell of C that is a face of both c and d, and
(ii) there exists some Ic + l-cell of C of which each of c and d
is a face. For instance, two vertices connected by an edge are
adjacent; in addition, two facets incident to the same polyhedron
and the same edge are adjacent.

A closed disk 0% = {z E R2 1 121 5 1) can be oriented
in either of two ways. One orientation turns counter-clockwise
about the disk, while the other turns clockwise about the disk, as
the disk is viewed from one of its snles. We henceforth refer to the
orientation of a disk as clocking, and a polygon with orientation
a.6 a clocked polygon.

A closed ball D3 can be (space)-oriented in either of two
ways. lf we imagine a diameter d of the ball directed from point
p on the sphere bd D3 to antipodal point p’ on bd D3, a right-
handed orientation (RH orientation) turns counter-clockwise
about d, while a left-handed-orientation (LH orientation) turns
clockwise about d, as d is viewed from p’ to p. A directed edge
with orientation is called an orient-ed edge.

2.2 Space-Duality
The space-dual of a complex C of space T is a second complex
C’ of T for which there exists a one-to-one mapping %’ from C
onto C’ such that

(i) the image of a k-cell under P is an n - k-cell, and
(ii) cells c and d are adjacent in C iff cells g(c) and q(d)

are adjacent in C’.
In particular, with respect to 3-complexes C and C’, each

vertex (edge) of one corresponds to a polyhedron (facet) of the
other, and adjacency relations between cells are preserved. The
space-dual of crll c, denoted c*, is that cell which corresponds to
c under 3: c* = q(c) for c E C, and c* = e-‘(c) for c E C’.

The complex C’ space-dual to C is by no means unique.
Ilowevcr, up to the topological property which we intend our
data structure to represent - adjacency relations between cells
- the numerous complexes that serve as space-dual to C in T
are identical. For our purposes, C’ is well-defined. Furthermore,
(C’)’ = c.

Given ball complex C, we denote by p” that unbounded
“polyhedron” whose boundary coincides with that of C. The
space-dual of C is a subdivision C’ of R3, one of whose vertices
is a point at infinity whose space-dual is po3.

3. Traversal Functions

In this section we present the five traversal functions Fnext,
Enext, Rev, Clock and Sdual. We call these traversal functions
because they provide the means of traversing or moving about
the cells of a complex. The first two traversal functions are used
to move from cell to adjacent cell of a complex. Rev and Clock
are used to change a local sense of direction, so Fnext and Enext
know the direction in which each is to traverse. The function
Sdual is used to move between a complex and its space-dual.
Since edges and facets interchange in the space-dual, the roles of
1;5zex1 and Encr~ are interchanged in going between C and C*.

Also presented are the vcrlcx functions Org, Desl, Pl10s and
Pneg, with which one can determine the two vertices incident to
an edge (its endpoints), and the two polyhedra incident to a facet.
They are called uertez functions since the polyhedra incident to
some facet in a complex correspond to the vertices incident to
some edge in the complex’s space-dual.

3.1 Basic Traversal Functions

Let f be a facet of complex C. The combinatorial boundary
of f contains a ring of edges e” . . . en-’ where edges ei and e’+’
are adjacent in C (addition module n). We call this ring, de-
noted Cf, the edge-ring of facet f. &I can be assigned either
of two directions whereby we can distinguish between the two
edges belonging to the ring that are adjacent to edge ei. We
write Cf = (e” . . . en-‘) to indicate the edge-ring with direction
such that, of the two edges e’-’ and ei+l of &J adjacent to ei,
ei-’ precedes and eitl follows, edge ei.

Similarly we define the facet-ring of edge e, denoted Fe;,
to be the ring of facets 3. = (/“. . . f”-‘) incident to e in C.
Facets /i-1 and f’+* of 7. are adjacent to facet /‘, and f’-’
prcccdcs, while f’+’ follows, facet /‘.

The atomic unit on which queries are formulated is called
a fact-edge pair. This is a pair consisting of a facet f and an
edge e, such that f and e are incident. The edge component e
of Q IS denoted e,, and the facet component f of a is denoted
fa. The facet-edge pair a determines two rings in C, these being
edge-ring El0 and facet-ring Fe.. There are four versions of a
which derive from the two directions that each of its two rings
can assume. Henceforth by facet-edge pair we mean one such
version - each of the two rings determined by the facet-edge
pair has direction. &. denotes the edge-ring E/. with direction
determined by a; facet-ring T,, is similarly defined.

Given facet-edge pair a, it is useful to distinguish between
the two vertices incident to e, (its endpoints), and between the
two polyhedra incident to fo. To distinguish between the end-
points, observe that the direction of E, directs edge e, in a natural
way. We call that vertex which serves as endpoint both to e, and
to the edge that precedes e4 in &, the origrir of e,, denoted aOrg.
Similarly, the destination aDest of e, is that vertex incident both
to e, and to the edge that follows e, in &.

To distinguish between the polyhedra incident to fa, we as-
sume e, to possess an orientation. Where its orientation is RH
(LII), we define Hz to be that open half-space determined by
the plane afl fa from which the direction of &, appears counter-
clockwise (clockwise). We then define the positive polyhedron
of a, denoted a&as, to be that polyhedron p of C incident to
fa for which points of the interior of p arbitrarily close to the
relative interior of f. lie in Hi. The negative polyhedron aPneg
of a is the other polyhedron of C incident to f.. If facet f. lies
on the boundary of a ball complex so the positive (or negative)
polyhedron of a does not exist, aPpos (or aPneg) has value pm.
Figure 1 illustrates some of the notions presented N far in this
section.

We are now able to define the traversal functions Fnezt,
Enezl, Reu and ClocS. Each is applied to some facet-edge pair
and returns a new facet-edge pair.

Fnext is defined by a’ = aFnext where e,,~ = e, and facet
f., follows f. in the facet-ring Fah- The rings of a are directed so
that rOl = Fa and a’Org = aOrg.

Enext is defined by a’ = aEnezt where fat = f. and edge e,l
follows edge e. in the edge-ring &a. The rings of a’ are directed so
that &,t = E, and a’Ppos = aPpas. Observe that a and aEnext
necessarily have the same orientation.

Rev is defined by a’ = aRev where a’ and a are different

87

e3

Fig. 1. We call this a handcuff diagram. It pictures s region of

some complex. The “handcuff” represents facet-edge pair a. The

placement and direction of its circular loop indicates the clocked

facet component f,, and its elliptical loop the space-oriented edge

component co. In this example, Fa = (f0...j3) and 8, =

(2.. .2), where f, = f” and e, = e”. Polyhedron cPpoa lies

above the page and contains facets f” and fl, while aPneg liea

behind the page and contains f” and f3.

versions of the same facet-edge pair - that is, e,r = e, and
fa, = fa - for which the direction of 3b, is opposite that of 3,,
and the directions of &,I and C, are the same.

Clock is defined by a’ = aClock where a’ and a are different
versions of the same facet-edge pair, for which the directions of
&I and ;C,, are opposite those of &a and 3@, respectively.

Figure 2 illustrates these various traversal functions Traver-
sal functions Rev and Clock can be viewed as follows. Given a,
assume ftL to possess a clocking and e, a (space)-orientation -
call tbcsc the clocking and orientation of a. We insist upon the
invariants that the direction of &. agree with a’s clocking, and
that the direction of 3= move from aPneg towards aI+. The

Fig. 2. This handcuff diagram illustrates the four traversal
functions Clock, Rev, Fnezl and Enezt. The region pictured is a

winged-edge, consisting of five edges and (part of) two facets (to

the left and right of the vertically drawn line). We assume these

two facet5 to belong to a common polyhedron that liea behind the

plane of the page, this being aPpo8 in this figure.

rffect of Revis to reverse orientation but leave clocking the same;
sinrc (L’S positive polybc~lron is elleu’s negative polyhedron (and
vice versa), the direction of 3 a,iev is opposite that of 3a. The
elfect of Clock is to flip clocking but leave orientation the same;
u’s clocking is opposite aclock’s clocking, and a and aClock’s
positive and negative polyhedra are swapped, so the directions
d &Clock ald 3 ooiOcl; arc opposite those of E, and 3*, respec-
tively. Each of the four versions of a facet-edge pair has a unique
clocking and orientation. The clocking and orientation of a facet-
edge pair are used as handles to manipulate the direction of its
two rings.

The following relations hold among the traversal functions.

(Al) aRev’ = a
(A2) a Clock’ = a

(A3) aRevClock = aClockRev
(A4) aFnext-’ = aClockFneztClock
(A5) aFnext-* = aReuFnertReu
(A6) aEnezt-’ = aClockEnezt Clock
(A7) aRevEnezt = uEnert Rev
(A8) aClockFnext’ # a for any i
(A9) aReuEnext’ # a for any i

(MO) aClockEnezti # a for any i
(All) n/h~Fnfzt’ # n for any i
(A12) a E C ilf uI+‘lrcrl. E C
(A13) a~CiffaC’~ock~C
(A14) a E C ifl’aReu E C

3.2 Space-Duality
The traversal function Sdual is applied to a facet-edge pair a

of complex C, and returns a second facet-edge pair &dual be-
longing to C*. The edge component of aSdual is e&d,& = f.‘,
and its facet component is fagdual = e,‘. In order to define the
particular version of &dual - that is, the direction of its two
rings - we first extend the notion of space-duality to facet- and
edge-rings.

Given edge-ring E, = (et,. .ez-‘) of C, its space-dual is
the facet-ring (&a)* = (ez’ . . . e:-‘*) of C’. The space-dual of
a facet-ring is similarly defined. The rings of aSdual are then
directed such that

c &dual = (3h)*, and

3 &dual = (&)*.

The relation between a and aSdual can be grasped by imagin-
ing the two facet-edge pairs superimposed, edge P, piercing facet
/&&,I orthogonally, and facet fn pierced by edge e,Sdunl or-
thogonally. Edge c&dUOl is directed from aPneg towards aPpos.

Fig. 3. This diagram depicts the relation between facet-edge

pairs a and aSdual. Facet f. is a square protruding from the

page, and so appears foreshortened.

Facet-ring 3&&,r moves from a&g towards aDest, so aDest is
the space-dual of aSdualPpos. Facet-edge pairs a and as&al
necessarily have the same orientation. This is depicted in Fig-
ure 3.

The following relations hold between Sdual and the other
traversal functions.

(A16) aClock.Sdual = aSduaIClock
(A17) aRevSdual = aSdualClockRev
(A18) aFnezt = aSdualEnextSdual
(A19) aEnext = aSdualFnextSdua1
(A20) a E C iff aSdual E C

Relation (A17) indicates that a change in the direction of 3,
in C corresponds to a change in the direction of Eosduor in C’.
Relation (AM) indicates that the rings 3, and &S,&l move in
the same direction. Relation (A19) defines Enezt in terms of
Fnezt and Sdual, so maintaining the facet-rings in both C and
C*, as well as the correspondence between each cell and its space-

88

dd, is sullicient to maintain the edge-rings in both complexes.
The facet-edge data structure uses this fact.

3.3 The Vertex Functions

It is worthwhile to characterize every vertex of C and C’ in
terms of the class of facet-edge pairs for which the vertex serves
as origin. Where facet-edge pair a belongs to C, the origin and
destination of a can be represented by two such classes. Also,
the positive and negative polyhedra of a can be represented by
two such classes corresponding to vertices of C’.

We define a.n origin partition to be a partition of the set
of facet-edge pairs comprising C and C*. The equivalence class
aOrg is the class of facet-edge pairs b whose origin is identical to
the origin of a. Class aOrg may be known by numerous names,
since bOrg = aOrg if b E aOrg. Each vertex of C and C’ is
represented by a unique class of the partition.

Dest, Ppos and Pneg are intended to provide even more
names for the classes of the origin partition. Formally, these ad-
ditional names are superfluous; however, they coincide with our
notions of destination vertex, and positive and negative poly-
hedra, and so are useful. For instance, aDest corresponds to
the destination vertex of the directed edge ed, and is in some
contexts more suggestive than aCIockOrg (another name for the
same class).

The classes of the origin partition are related as follows.

(Bl) aOrg, aDest, @es and aPneg are all distinct

(B2) aReuOrg = aOrg
(B3) aClockOrg = aDest
(B4) aRevClockOrg = aRest
(B5) afnezt’O)rg = aOrg for all integer i

(BG) aReuPpos = aPneg

(B7) nClorkPpos = aPneg
(IB) aReuCIockPpos = aPpos
(B9) aEnezl’Pp0.s = aPpos for a.ll integer i

(B 10) aSdual Org = aPneg
(Bll) aSdualDest = aPpos

4. The Facet-Edge Data Structure

Facet-edge pairs are partitioned into groups of eight. Each group
consists of the four clocked and oriented versions of a facet-edge
pair, plus the four versions of the facet-edge pair’s space-dual.
Where ii is the canonical facet-edge pair of the group, the group
is then of the form iiS’dualdCLockcRev’ where d, c, T E {O,l}.

A group is represented by a facet-edge node n, which is a
2 X 2 matrix of structures. Element n[d,c], called a quarter-
node, corresponds to the two facet-edge pairs SiSduald Clock”Reu’
where r E {O,l}. A facet-edge pair is represented by a tu-
pie (n,d;c, r,z), called a facet-edge reference. Components n, d
and c address quarter-node n[d,c], one of whose two correspond-
ing facet-edge pairs is being referenced. Component r has value 0
if the facet-edge pair being referenced has the same orientation as
the canonical facet-edge ii (that is, iX5duoldCfockc), and value 1
if it.s orientation is reverse that of ?i (that is, ~SdualdClockcRev).
Component z has value 0 if the facet-edge pair being referenced
has IlIt orientation, and value 1 if it has LB orientation. Note
that components T and z have different significance: component
r describes the orientation of the facet-edge pair being referenced
with respect to the orientation of the canonical facet-edge pair
of the group to which it belongs, whereas component z describes
its orientation in absolute terms.

The quarter-node n[d, c] has two fields: data and nezt. Field
dutn holds non-topological information which depends upon the

applrcation, and does not concern us. Field nezt contains the
facet-edge reference to facet-edge pair ~Sdual~CIock~Fnezt. In-
formally, the first row of matrix n contains a reference to each
of the two facets of .?r adjacent to facet fz - a circular-list rep-
resenting facet-ring F= is effectively threaded through the node.
The second row of n contains a reference to each of the two facets
of &j&d adjacent to facet fnsdunt. This facet-ring corresponds
(under duality) to the edge-ring &, so a circular-list representing
this edge-ring is effectively threaded through the node.

The traversal primitives are defined in terms of this data
structure as follows (where all addition in this section is computed
modulo 2):

(n, d, c, r, z)Fnezt = (n{d, c + r].nezt)Clock’Rev’
(n,d,c,r,z)Sdual = (n,dt l,c+z,r,z)
(n,d,c,r,z)Clock =(n,d,c+l,r,z)
(n, d, c, r, s)Reu = (n,d,c,r + 1,z t 1)

Two remarks concern these definitions. First, observe that

(n, d, c, 0, z)Fnezt = (n[d, c].nczt)

and

(VI, d, c, 1, +)Fnezt = (n[d, c + l].nert)CJockRev

= (n. d, C+ l,O, 2-b ~)F~~&I~c~Rw
= (n, d, c, 0. o + 1)CJockFneztCJockRev

= (n, d, C, 0, I + ~)FM~-‘Rw.

The latter relation indicates that moving around 3, is
the same as moving backwards around 3a~ev. Second,
the use of component z accommodates relation (A17):
aRevSdua1 = aSdualClockRev, which is equivalent to
aRevSdualRevClockSdual = a by (Al, A2, A15). Thus

(n,d,c, r,s)RevSdu.lRevClockSdu.l

= (n. d, c, f + 1, I + 1)SduaJRevCJockSduaJ

= (n, d + 1, c + o + 1. r + 1, I + 1)RcvClockSduoJ

= (n. d + 1, c + o + 1, r, z)CJockSduoJ

‘= (n, d + 1, c + B, r, s)Sdu.J

= (n. d, c, 7.2)

The reader can confirm that the remaining relations (AI-20) are
satisfied by this implementation, assuming the next field of each
quarter-node is correct.

The vertex functions are implemented by any data struc-
ture for representing and maintaining a partition - in this case,
the origin partition. A vertex function call, say aPpos, is first
translated to the call a’Org according to one of the relations

aDest = aClockOrg,
aPpos = aSdualClockOrg,
aPneg = aSdual Org.

The class of the origin partition that contains facet-4ge pair a’ is
then sought. Associated with this class is information pertaining
to vertex a’Org, such as its location in R3 or properties of the
polyhedron aPpos that is its space-dual.

5. Primitive Construction Operators
In this section we present the primitive construction operators

makefucet-edge, splicefacets, splice-edges and transjer. The first
operator obtains and initializes a new facet-edge node, and re-
turns a facet-edge reference to one of the eight facet-edge pairs
represented by the node. Operators splicefacets and splice-edges

89

are used to modify the facet- and edge-rings of a complex. Op-
erator transfer is used to change incidence relations involving
vertices and polyhedra, by modifiying the origin partition.

Two caveats accompany these operators. First, no class
of complexes is closed with respect to these operators: their
use does not guarantee that complexes are produced. Opera-
tor make-facet-edge does not, in fact, create a complex at all -
edge e, of the facet-edge pair a it returns is incident to facet fa
and to no other facet, and so does not belong to the boundary of
a polyhedron. Furthermore, little imagination is needed in using
splice-facets or splice-edges to create the most exquisite garbage.
Second, these primitives are not easy to use in constructing com-
plexes of complexity. The reader need not be vexed. In section
6, we define higher-level operators in terms of these primitives
which make the task of construction quite feasible (if not also
C=+Y).

To help describe these primitives, we introduce some no-
tation for manipulating rings. The notation allows us to de-
scribe the manipulation of complexes in terms of the essentially
one dimensional manipulation of rings. Let P = (al . . . a,)
and 0’ = (a,+~. . . a,,) be two rings with all ai distinct. Then
con&(@, a’) represents the ring

concat(Q,W) = (al. ..a,).
The operation split(@,a,) represents the pair of rings

spIit(@,as) = ((al.. .ap-r),(as. ..a,))
where 0 < p 5 m + 1. Operations first and second are used
to access the first and second rings of the pair split(@,a,), re-
spectively. Furthermore, rings @ and ip’ are equivalent, denoted
ip z @‘, if they represent the same cycle of elements - that is,
where \@I = I@‘\ = n, there exists au integer j such that, for
each 1 < i < n, the ith element of @ is identical to the (i +j)*h - -
element of a’, module n. By convention, & denotes the ring

Fa = (aFnext’ aFnezt’ . . .aFnezt”-‘) where l&l = n. &a is
similarly defined.

5.1 Make-facet-edge

Constrection primitive make-fawt-edge rcterns a facet-edge ref-
erence to a new (canonical) facet-edge 7i. The relations (A)
and (I)
iSdual h

of section 3 hold among the right Facet-edge pairs
ClockcRew’, where d,e,r E (0, I}.

Primitive make-facet-edge is implemented as follows.
Operation make-facet-edge(orientation) obtains a free node
n. Quarter-node n[d,c] is assigned the facet-edge reference
(n, d, c, 0, z) where z has value 0 if argument otientation is RH
and value 1 if orientation is LH, for d, c E (0, 1).

5.2 Splicefacets

The operation splicefacets(a,b) takes as arguments two facet-
edge pairs, and returns no value. The operation affects the facet-
rings 3. and J$ as follows:

(a) if the two rings are distinct, it combines them into one
ring;

(b) if the rings are identical, it breaks the ring into two
distinct rings.

The arguments determine where the facet-rings are to be cut
and joined. In rings Fa and Fb, the cuts occur immediately after
facets fn and /b, respectively. If the two rings are distinct, the
distinct eclg~~s ,a,, and cs are roalcscc~l into one edge, and the two
riup cor~~biwtl at the cuts. If the two rings are idcntiral, the
edge c. (= rb) is clcavctl lengthwise into two new edges, and
each serves as pivot to one of the two new facet-rings resulting
from the cuts. The operator is illustrated in Figure 4.

The operation can be viewed as a way of replacing certain
facet-rings with others.

4. This diagram illustrates the effect operator

splice-facets(a, b)
{
if (3@ fi 3b)

replace FG by the two rings split(~~hp,,,t,~Fnezt);
else

1

replace 3O and 36 by concd(3a,pnezf, ~bFnezt);

Operation splice-facets(a, b) is accomplished by interchang-
ing the value of aFnezt with 6Fnezt. The operation affects the
Fnezt relation in complexes C, and Cb (where by C, we mean
the complex to which cells fa and e. belong). Let Fnezt denote
the Inert relation immediately after the operation is performed.
Where a = aFnezt Clock and p = bFnext Clock, relations Fnext
(immediately before the operation) and Fnezt are related as fol-

lows.

(Cl) aFnext = bFnext
(C2) bc = aFnext
(C3) aizz = pf’nrxt
(Cd) pxz = aI”YtC21
(C5) aClockRev%i!? = /3Rev
(CG) bClockRevFnext = aRev
(C7) aClockRevG= bRev
(‘3) /3ClockRev~ = aRev
(C9) ym = -yFnezt for all other facet-edge pairs -y.

The implementation for splice-facets is quite simple. In the
following, a is represented by facet-edge reference (n,d, c,r, x)
and b by (n’, d’, c’, r’, 2’). We assume the (last four) quarter-node
assignments are performed simultaneously; in practice, some
temporary variables would be used as is customary when swap
ping values.

spIicefacets((n,d,c,r,x), (n’,d’,c’,r’,z’))

:;.S>K,P,X) +- aFnext Clock;
(v’, 6’, K’, p’, ,y’) + bFnezt Clock;
n(d, c + r].nex t + bFnext Clock’Rev’;
n’[d’, c’ + r’].next +- aFncxt Clock” Rw”‘;
u[b’, K $ p].nczt + bClockP+ lie+‘;

v’[tY, K’ + p’].nez 1 +- aClockP’+’ RevP’;

1

Correctness of implementation is shown by proving that re-
lations (C) hold. Below we show that the assignments above
result in (Cl), (C3), (C5) and (C7). The remaining relations

90

ol..,lcrl = (n, d. c, 7, z)

= n 1 d, c + r].nczt

= bFncxtClofk’Rcv’ClockrReu’

= bFnert.

(cl)

rrPnezl = (v.6, Is, p, x)

= u(6,r + p].nertClockPRevP

= bClockl-P RevPC/ockPRevP

= ~3Fnert.

(c3)

aClockRevFnezt = ns d, c, r, z 1
=~n.d..+1..,z+l)zz
= (n[d, c + r].ncrt)Clock’Reup

= bFneriClockReu

= PRev.

(c5)

aClockReuFnezt = (v, 6, I(, p, x) (c7)
= (v, 6,s, p, X)ClockRcvFnczt

=(~,s.*+p+q,p+l,X+P+l)Fnert

= (~(6,s + p].nezt)Clock P+l RC”P+l

= bRev.

5.3 Splice-edges

The operation splice-edges(a,b) takes as arguments two facet-
edge pairs, and returns no value. The operation modifies the
edge-rings &, and Eb as follows:

Fig. 5. This diagram illustrates the effect operator
splire~sdgcslms npon edge-rings.

(a) if the two rings are distinct, it combines them into one
ring;

(b) if the rings are equivalent, it breaks the ring into two
rings;

As with splice-facets, the arguments to splice-edges determine
where edge-rings are to be cut and joined. In rings &. and &b, cuts
occur immediately after edges e, and eb, respectively. Figure 5
illustrates the effect of splice-edges.

The operator can be seen as replacing certain edge-rings with
others.

splice-edges(a, b)

1

replace C, by the two rings spfit(CoEnezl. bEnext);
else

replace & and &b by Cmmt(&Enezt, EbEne.t);

1

Operation splice-edges(a,b) affects the Enezt relation in
complexes C, and Cb (or equivalently, the Fnezt relation in Cl
and Cl). Let z denote the Enezt relation immediately after
the operation. Where a = aEnext Clock and ,!I = bEnext Clock,
Enezt (before the operation) and Enett are related as follows.

(“1) aEnext = bEnext

(“2) b&next = oEnext

(D3) a= = PEnext

(D4) PEnezt = aEnext

W) aRev= = bRevEnest

P) bRev= = aReuEnext

OW a Rev= = DReuEnezt

w PRevz = aRevEnert

W 7m = yEnezt for all other facet-edge pairs 7.

As we might expect, an edge-ring of one complex can be
modified by operating on the corresponding facet-ring of the
dual complex. Indeed, splice-edges is implemented in terms of
splice-facets,

splice-edges(a, b)

(
splicefacets(aDua1, bDua1);

1

To show correctness of this implementation, it suf-
fices to show that the (D) relations are satisfied by
splice-facets(aDual,bDuol). Below we show this for (D2), (D4),
(D6) and (DS); the remaining relations (except for (D9)) are
shown similarly, whereas (D9) holds since splicefacets affects no
more than four quarter-nodes.

Operation splice-facets(a Dual, bDuo1) establishes the foliow-
ing relations, where Fnezt denotes the Fnezt relation immedi-
ately after the operation.

(C2’) bDual= = aDualFnext
(C4’) bDualFnextClock= = aDualClock
(C6’) bDuolRevClock~= aRevDualFnext
(C8’) bDualFnextRevG= aDualRev

Relation (Ci’), which derives from relation (Ci) of section 5.2, is
then used in showing (Di) below.

w - bEnext = bDualFneItDua1

= aDuaIFne+tDuoI

= aEnezt

(D4) - - PEned = bEneztClockEnert

= bDuofFnectDu.lClockDu.lFneltDuol

= bDuolFneatClockFnc2tOuol

= oDutrlClockDu.1

= .¶Clock

= aFnert

91

(05) - bRevEnext = bRevDuolFncztDua1

= bDualReuC1ock~Du.I

= ~RevDualFneztDual

= oRevEnc~t

(08) PRevEnezt = bEneztClockRevE,,ezt

= bDualFncctDualCloekRevDualFnertDuo1

= bDuolFneziRcvFneztDua1

= oDuolRcvDual

= aRevCIock

= aEnertRev

5.4 Modifying the Origin Partition

By each operator’s definition, neither splice-facets nor
splice-edges affects incidence relations involving vertices and
polyhedra. For instance, when splice-facets is used to split a
single facet-ring 7,, thereby cleaving edge e length-wise, the two
resulting edges share a common origin and destination vertex.
Bigher-level construction operators generally need to modify in-
cidence relations involving vertices and polyhedra. To permit
this, we introduce the operator tmnqfer.

Let P be a partition of some universe U, let A be an equiv-
alence class of P, and let B C U. The operation transjer(A, B)
modifies partition P by transfering each element b E I? from its
respective equivalence class class(b) into A.

transjer(A, B)

{
for each b E B {

class(b) + class(b) - b;
A+-Aub

If A = 0, then B becomes an equivalence class in the new parti-
tion. If B is an equivalence class of P, then transjer(A, E) simply
forms the union of the two classes.

The usefulness of transfer becomes evident if we recall that
each vertex and polyhedron is represented by an equivalence class
of the origin partition (over the facet-edge pairs that comprise a
complex and its space-dual). Incidence relations are implied by
the partition. For instance, vertex u is an endpoint of edge e
iff for some facet-edge pair a, we have aOrg = u where e, = e.
If this is the case, it follows that aReuOrg = u also, and that
none of the six remaining versions of a have origin u. Edge e
can then be given a new endpoint u’ = bOrg by the operation
transjer(bOrg, {a, aRev)).

6. Manipulating Individual Polyhedra

It is worthwhile to be able to manipulate the individual polyhe-
dra of a complex that is represented by the facet-edge structure.
First, we would permit the traversal of the combinatorial bound-
ary of an arbitrary polyhedron, while ignoring the rest of the
complex that contains the polyhedron. Such traversal should
be accomplished using functions appropriate for moving around
a ‘L-dimensional subdivision the facet-edge functions are too
fi,otwr:A to bc appropriate. In this section, we reduce each of

a small set of such functions to the facet-edge functions. The
set of functions we choose to work with are the edge (traversal)
functions of the quad-edge structure.

Second, we would permit the construction of the facet-edge
representation of a single (connected) polyhedron. The construc-
tion should be accomplished using operators appropriate to the
task - the use of the facet-edge operators would be overkill.
In this section, we reduce the edge (construction) operators of
the quad-edge structure to the facet-edge operators. Using these
edge operators implemented in terms of the facet-edge operators,
polyhedra can be built that are represented by the facet-edge
structure. Each such polyhedron can be regarded as a primitive
ball complex.

Third, we would permit two polyhedra to be glued together
along a polygon of each. The complexes to which each belongs
would thus be combined, or modified if they are one and the same.
With the meld operator primitive ball complexes built with the
edge operators can be combined to form non-trivial complexes.
6.1 Traversing the Boundary of a Polyhedron
In this subsection we concern ourselves with traversal in the com-
binatorial boundary ap of an arbitrary polyhedron p belonging to
complex C or to C”. We first briefly present as background the
elements of the quad-edge structure that we will need. The pre-
sentation is intended as a reminder to the reader, and at places
applies only to traversal of orientable surfaces; the reader is en-
couraged to read [GS] if not already familiar with this seminal
work. We then present an edge representation scheme whereby
an edge e E ap, viewed as a cell of the 2-dimensional complex
&J, can be represented in terms of the facet-edge structure that
models C and C’. The edge representation scheme is then used
as a basis for describing each edge function in terms of its affect
upon the facet-edge structure.

6.1.1 The edge functions

Where p is a polyhedron of complex C, the 2-complex Q = 8p
is a subdivision of the sphere. Given edge e E Q, the surface-
orientation (with respect to Q) and direction of e can be chosen
independently, so there are four surface-oriented, directed ver-
sions of e. We write &r to denote any such version, or simply t
when polyhedron p is known by context. Edge e E C is said to
underlie edge & in C.

The direction of 0 E Q determines the edge’s vertex of origin
(+Org) and vertex of destination (iDest), in the natural way. In
addition, the surface-orientation - what we have been calling
clocking - and direction of & together determine the edge’s left
polygon (.&?Lejr) and right polygon (PRiglit). Specifically, where Q
is coherently oriented under the clocking of 6, CLejr is that poly-
gon of Q incident to d whose clocking agrees with 2’s direction;
akight is the other polygon of Q incident to 6. The clocking of
the cells COrg, 2Dest, Zejl and &Right are taken by definition to
agree with that of i. Note that iOrg # <Best and ar;ef # &Right
since p is a polyhedron.

There are three primitive edge functions - Flip, Sym and
Onezt - in terms of which the remaining edge functions of the
quad-edge structure (except for Dua[) are defined. The flipped
version S’lip of edge d has clocking opposite that of 6, but the
two edges have the same direction. The symmetric version ;SYrn
of C has direction opposite that of e, but the edges have the same
clocking. Furthermore, considering the cycle of edges (in Q) in&
dent to &ORJ, we define COnert to be that edge that immediately
follows i in that cycle, where the direction of the cycle is induced
by the clocking of i.

The dual of Q = &J is defined to be a 2-complex Q’ obtained
from Q by iutorchnnging vertices and polygons, and which I”(~-
serves incitleurc~ relations. ‘l’hc dual of edge ? E Q is an clocked

92

(LJ) tDunll~‘lip = ~I~~lipSymDual
(E4) EDualOrwxt = EOnextSym Dual

(This definition of dual is equivalent to that of [GS] where
CLnext, the edge following i in &?&fi, is defined by 2Lnezt =
&S$mOnex1-I). Dual is extended to vertices and polygons by
defining (2OrrJ)Dual = 6DualLeft and (dLeft)Dual = ZDualOrg.
Duul establishes a correspondence between the vertices (edges,
polygons) of Q, and the polygons (edges, vertices) of Q’.

Since i and 2Dual have opposite clockings, it is convenient
to define a rotated version CRot of P, given by

Zot = PFlipDual = EDualFlipSym.

Edge ERot is the dual of 6, directed from &Right to Ueft, and
clocked so that moving around PRight corresponds to moving
around t Rot Org.

To later dcscribc how a subdivision may be modified, it is
convenient to define ZOrg to be the ring of edges in Q incident
to Z’s vertex of origin. More formally, &Org is the cycle under
One& of e. Polygon &ft is defined in terms of the ring of edges
in Q* incident to the vertex dual to 2’s left polygon - Zeft is
defined to be the ring dOnert Rot Org.

6.1.2 The edge representation scheme
Let p be a polyhedron of complex C or C’, where C and C’

are represented by the facet-edge structure. Where primal edge
t, E ap and d E {O,l}, edge d&old is represented by the pair
(a, d), called an edge reference. The first component is a reference
to the facet-edge pair a, determined by the following:

(i) edge e. underlies d, in C
(ii) f = t,Left
(iii) the clocking of a coincides with the clocking of i&eft
(iv) aPyos = p

The second component d, called a duality bit, has value 0 (1) iff
the edge being represented is primal (dual), and is identical to
the csponent d of ipDuald. The scheme is depicted in Figure 6.

0.1.3 Implementation of the edge functions
One purpose of the edge representation scheme is to enable the

traversal of the boundary of polyhedron p using the undertying
facet-edge structure. Ewh edge function can be described in
terms of how it affects an edge reference. More precisely, for
edge function Op, there exists a sequence of facet-edge functions
Op’ for which

(a,d)Op = (aOp’, d’).

The following characterizes each edge operator in this fashion.

(Fl) (a,O)Flip = (aFneztRev,O)

)FFi)) IIZz ~~2Z!$EZ2X!xt Clock, 0)
(F4) (a, d)Dual = (a, 1 - d)
(F5) (a, 1)Flip = (aReuClock, 1)
(F6) (a, 1)Sym = (aFneztClock, 1)
(F7) (a, 1)Onert = (aEnezt-‘,l)

The correctness of this scheme can be verified by showing
that the edge operators so characterized possess the properties
stated in [GS, section 2.31. For instance, where i is represented
by (a,O), we have

;Flip* = (a,O)FlipFlip

= (.Fnert~eu~nert~ev.O)

= (0.0)
I = I?.

The derivation of (Fl)-(F7) is straightforward. Figure 7
pictorially motivates equations (Fl)-(F3). Equation (F4) follows
from the edge representation scheme. Equations (F+O7) follow

from the relations developed so far in this section. For instance,
(F5) is derived as follows:

(a, 1)Flip = (a. O)~uaf~lip (F4)
= (a.O)FlipSymDuaf (E3)
= (aFn~zt~ev.O)~ym~u.~ (Fl)
= (oFnerrReu~nczf~~ock,O)~~~f (F2)
= (=fl~chk,O)~~~~
= (oReuCloct,l). (F4)

Fig. 6. This diagram illustrates the edge-reference scheme.
The winged-edge corresponds to a region of Q = ap, wuhere p lies
behind the page. The facet-edge pair a depicted by the handcuff
is such that edge ; is given by (a, 0), and ;Duol by (a, 1).

Each edge PpDuald, as p ranges over the polyhedra of CUP

and d E (0, l}, is uniquely and unambiguously represented by
an edge reference. Given edge ipDuald, conditions (i) and (ii)
uniquely determine the components of (I, then (iii) determines
the clocking of a, then (iv) the clocking of a. On the other hand,
given (a,d), consider first the edge that (a,O) represents. Con-
dilious (i) and (iv) together determine O,, then (iii) determines
the clocking of i,, then (ii) the direction of P,. Finally, since
L, is unambiguously represented by (a,O) and edge $,Dual is
wall-defined, (a, d) unambiguously represents edge BpDuald.

Fig. 7. This diagram iUuatrates the use of facet-edge pairs to
represent directed, clocked edger in the boundary Q of .a poly-
hedron. Each handcuR stands for I.&-edge p.ir a where (,,, 0)
represents the directed, clocked edge ;Op with which the handcuff
is Isbelled.

93

6.2 Constructing a Polyhedron

A polyhedron can be characterized by its combinatorial bound-
ary, this being a 2-dimensional subdivision of the sphere. A facet-
edge structure representing a single polyhedron is most easily
created and modified by manipulating the polyhedron’s bound-
ary. We choose the edge operators of the quad-edge structure as
the means of performing these manipulations. These edge oper-
ators handle (in particular) the class of open subdivisions of the
sphere, of which the (closed) subdivisions may be regarded as a
special case. The construction of a polyhedron involves using the
edge (construction) operators to incrementally build open subdi-
visions until one is produced which coincides with the boundary
of the target polyhedron. In this section, we describe the effect
each edge operator has upon the facet-edge structure by giving
an implementation of each operator in terms of the facet-edge
operators.

During the construction of polyhedron p, open subdivision
Q is maintained under the edge-representation scheme. It is des-
ignated the primal subdivision, and its cells, and only its cells,
may eventually belong to the target ap.

6.2.1 Open subdivisions

An open k-cell (for our purposes) is an open subspace of the
sphere S* homeomorphic to Rk. An open complex S of S2 is a
finite collection of open cells of S such that

(i) tire ceils of S illX! pairwise disjoinl,
(ii) for c41 cell c E S, 6dc is the union of &mt!rlts of S,

Cd

(iii) ifc,d E S and clcncld # 0, then clcncld is the union
of elements of S.

Here cl c denotes the closure of ceII c. An open complex whose
union is Sz is an open subdivision (of the sphere).

Let S be an open subdivision such that for each cell c 6 S,
the closure cl c is a (closed) cell. S corresponds to a (closed)
subdivision of the sphere, obtained by replacing each cell c E S
by its closure cl c. To build a polyhedron, the edge operators
are applied successively to construct new elementary open sub-
divisions, and to combine and modify existing open subdivisions.
The process proceeds until an open subdivision is produced that
corresponds to (the subdivision identical to) the boundary of the
target polyhedron.

6.2.2 Elementary open subdivisions of a sphere

There are two elementary subdivisions of the sphere. The first
consists of a single edge t! that is not a loop, and is denoted S,
(subscript e stands for ‘edge’). Where E E S, is some arbitrary
(but lixcd) clocked a.nd directed ctlge, we have ZOrg # CD& and
i,IflJt = t/li!/hl. ‘I’ll0 following propcrlirs Iioltl iu S,:

(Gl) COnexl= e
(G2) eSymOrlext = ksym
((33) iFlipOnext = CFlip
(G4) &FlipSymOnest = ZlipSym

The other elementary open subdivision of the sphere consists
of a single edge 6’ that is a loop, and is denotes St (subscript !
stands for ‘loop’). St is dual to open subdivision S,; there exists
a vcrsiou of I?’ for which edges &’ and CSdual represent identical
open subdivisions. Since 0’ is a loop, we have C’Org = C’Dest and
i’LeJt # elIlight. Writing i?Dual for i’, the following properties
hold in St:

(C5) iDualOnext = tDualSym
(G6) E DualSymOnext = iDual
(Gi) r? DualFlipOnext = eDualFlipSym
((23) C Dual FlipSym Onexl = tDua1 Flip

The operator make-edge builds a data structure representing
both S, and St, and returns an edge reference to one version of
Se’s (non-loop) edge. Open subdivision S, is primal. Its imple-
mentation is given as follows.

make-edge0

t
a + make-facet-edge(LIl0);
b + make-facet-edge(LH0);
splice-Jacets(a, b);
splice-edges(a, bclock);
return((a,O));

1

The operation 2 + make-edge0 obtains two new facet-edge
nodes. In one of the nodes, it designates a facet-edge pair a for
which (a,O) represents .C, while in the other node it designates
facet-edge pair b for which (bReu, 0) represents &Flip. Operation
splice-Jacets(a, b) results in

(i) aFnext = b
(ii) bFnext = a,

while operation splice-edges(a, bClock) results in

(iii) aEnext = bClock
(iv) nl:!ncxt-’ = bCYrn+

Edge i: uudrr the ctlgc-rc,l)rcsclltation scheme is depicted in Fig-
ure 8.

The relations (i)-(iv) ensure that 6 + make-edge0 does in-
deed build a facet-edge structure representing both S, and Se,
and that edge P is represented by (a, 0). This is verified by show-
ing that relations (Gl)-(G8) are satisfied. For instance, (El) is

Fig. 8. This diagram depicts the open subdivisions under the
edge-reference scheme. The left figure depicts edges i f S. and

2’ E 5’1, superimposed on the same sphere to suggest how they are

related. The center figure depicts the facet-edge representation

for 2 where S, is primal (constructed by make-edge), while the

right figure depicts the facet-edge representation for loop 2’ where

St is primal (constructed by make-loop).

shown as follows:

ionezt = (a,O)Onezt
= (&Lerf-lFncrtCfock. 0)
= (bClockFnertClock, 0)

= (bFnert-‘, 0)

= (%O)

= e.

(iv)

(i)

The operator make-loop also builds a facet-edge structure
representing both S, and SC, but it returns an edge-reference to
that version of St’s loop that corresponds to &Dual (where 6 +
make-edge()). Open subdivision St is primal. Its implementation
is given as follows.

sylicc(&,i), given primal edges h and h reprcscnted by (n,O) awl
(6, 0). Operation splice-edges(aClockReu,bClockReu) establishes

(i) ai%%-’ = bl?next-’
-1

(ii) bEnext = aEnext-’

(iii) aEnezt-‘ ClockReuEncxt -’ = bClockReu

(iv) bEnext-’ ClockRea%$?-’ = a Clock Rev

‘l’hc op~~ri~tio~~ fDuaI + make&~p() obtains two new facet-
cdgc nodes. Itr one node it designates facet-edge pair a for
which (n,o) represents edge 2Dua1, and in the other node a facet-
edge pair b for which (bR eu, 0) represents eDualFlip. Operation
sphQacets(a, 6) results in

(i) aFnezt = b
(ii) bFnext = a

while the absence of a calI to splice-edges results in

(iii) aEne+t = a
(iv) bEnezt = b.

Edge &Dual under the edge-representation scheme is depicted in
Figure 8.

6.2.3 Modifying open subdivisions

The operator splice is used to modify open subdivisions The
operation splice(h,b) takes as arguments two edges ic and a, and
feturns no value. The operation affects the two rings &Org and
bOrg and, independently, the two rings irZeft and bZefl. In each
case, if the two rings are distinct, splice combines them into one
ring; and if the two rings are identical, splice breaks it into two
distinct rings. The arguments B and ~.determine where the rings
will be cut and joined. For rings Borg and bOrg,-the cuts occur
immediately after a and 6; for rings tiZt$ and bZeft, the cuts
occur immediately after icOne+tRot and gone&Rot.

Operation spfice(ir, &) is performed by interchanging the val-
ues of tiOnext with gOnext,- and BOnezt with bOnezt, where
6 = &OneztRot and ,L? = bOneztRot. More formally, where
Onezt denotes the Onezt relation immediately after the opera-
tion, splice(&,b) establishes the followingrelations between Onezt
and Onext:

(Hl) b= = 6Onezt
(HZ) iZFiZ3 = 2Onext

(Ii3) &Onest = dOnext

(114) @ZZ = 6Onext
(H5) +G= 9Onett for all other edges + E Q U Q'.

Operation splice(ti,b) is implemented in terms of the facet-
edge operator splice-edges as follows.

if(d=O)
splice-rdgcs(aCiock Rev, bClockReu);

else

1

splice-edgcs(aEnezt-‘, bEnext-‘);

The duality bit d of the two arguments to splice are assumed
to be identical - splice(&,&)
primal, or both dual.

is defined only if 6 and 8 are both

To show the correctness of the implementation, let Onert
(Enezt) denote the On& (Enezt) relation immediately after

Relations (i), (ii), (iii) and (iv), which follow from the (D) rc-
lations of section 5.3, are used to show that values have been
correctly swapped. To show (Ill), we have

aOnert = (a, 0)Onezt

= (oEneztlFncztClock, 0)

= (bh~~t-~~~~~t~hk, 0)
= (b, 0)Onert

= ionrrt.

!i)

Similarly (ii) is used to show relation (H2). To show relation
(H3), we have

iiOnezi = (a. O)OneztRotOne+t

= (a~nerf-lFne=t~l~~kFnezl~ev, I)oReZ:

= (ahed%Xo~kReu, l)Onezt

= (oEnert-lCloekRev~,-!, 1)

= (bChckRcv, 1)

= (bEncz:-‘ClockRevEner(-l, 1)

= (bEnez(-lClockRev,O)DuolOncz(

(iii)

= (bEned FneztClockFneztRev. O)DudOnezt

= (b,0)0neztFlipDuo10nczt

= iOnertRotOnezt

= BOnczt.

Similarly (iv) is used to show relation (H4). Notice that
splice-edges(aCZockRev, bClockReu) only modifies facet-rings of
the complex dual to the complex to which B and 6 belong. Since
each occurence of Fnezt in the derivations above apply only to
facet-rings of the complex to which ti and 6 bdong, we have
been free to assume (in the derivations) that Fnext has not been
changed by splice-edges; no m is necessary in the derivations.

We have shown correctness of an implementation for splice
when its arguments are primal edges. Assume now that splice
is passed two dual edges ti and 6. To show correctness of im-
plemenation in this case, we note that operations splice(ir,h) 1
and spIice(6,b) are equivalent, where 6 = BOneztRot and
p = bone&Rot. Since edges 8 and fi are primal, it is sufficient to
show that splice-edges(&CIockReu, pClockReu) - which impie-
ments spBce(B,& - and splice-edges(hEnext-‘, bEnext-‘) are
equivalent, an easy exercise.

0.3 Meld

The operator meld is used to glue a ball complex C, to a second
complex Cb. With its use one melds an n-sided polygon f,, E &&
to an n-sided polygon fb E Cb, thereby locating ball complex C,
in the polyhedron bPneg of Cb. More formally, it establishes the
topological relations for

U(Ca) C bPneg, and
U(Co) nU(abPneg) = fb.

95

melO.6)

Fig. 9. This figure depicts a Z-dimensional analogue of the

effect of meld. Edges of the figure correspond ‘o facets, and poly-

gons to polyhedra. Note that C, # C, in the figure, but this

need not be the cme.

A two-dimensional analoguc of the situation is depicted in Fig-
ure 9.

Let a and b be facet-edge pairs, and assume that

6) Ifal = lfbl = n, ad

(ii) aPpos = p*.

Condition (ii) ensures that C, is r~ ball complex, and that fa E
8C,. Where ei = aEnett’ and bi = bEnext’, meld(a, b) identifies
polygon fa with fb, and edge e,, with ebi for 0 5 i < n - 1. The
operation first coalesces distinct edge rings 8, and &b, forming a
“pillow” consisting of the edges of C, (= Eb) and the polygons f0
and fb, and then removes polygon f. from the complex. The two
polyhedra that end up incident to fb are bPpos and p (which is
essentially aPneg).

The boundary of polyhedron aPneg is slightly changed to
produce polyhedron p - facet fa is replaced by fb. In addition,
polyhedra aPpos (= p”) and bPneg are combined to form a new
polyhedron q, the effect of locating C. inside bPneg. We have

fUCCts_of(p) = faC&-Of(aPneg) - fa -l- fs, and

facets-of(q) = facets-of(bPneg)Ufacets-of(aPpos)-f,-fb.

Also, additional edges are made incident to each vertex ui =
biOrg offs. To the edges already incident to Vi are added those
edges of C, incident to ui Org, less the edges of E,. We have

edges-of(vi) = edges-of(biOrg) U edges-of(aiUrg) - eai -
e,,Ene=t-‘,forO~i~n-l.

To build the facet-rings of the “pillow” formed by coalescing
&, and Es, facet-rings of C, and Cb are combined as follows.

for i = O,...,n- 1
’ if 3,; f 3b;

K!~‘lilCe 30,. and 3s. by COnCClt(3a,F,,,t, 3b,F,,ez,);

Facet fa is removed as follows.

for i = 0,. . .) n - 1
replace 3,. by first(split(3,,~,,,t, bifnext));

Operator meld, given in E’igure 10, is implemented by a sin-
gle loop in which the construction of the “pillow” and removal
offa are interleaved. The facets incident to polyhedra p and q,
and edges incident to vertices Vi, are specified by transfer op-
erations. The necessary facet-ring manipulations are done with
splice-facets. Note that the facet-edge pairs aiSdualdClockCRev’
(where 0 5 i _< n - l,and e, d, + E (0, 1)) are effectively deleted
from the data structure; then facet-edge nodes representing these
could be garbage-collected, or used again elsewhere.

7. Decomposing a Polyhedron

‘L’hc process of partitioning a polyhedron intosimpler constituent
polyhctlra is called decomposition. One reason for decomposing a

meld(a, b)

{
firsta c a;
transfer(bPneg,aPpos);

do 1
if(Fa f 3b)

spZice&cets(a, bhezt-‘);
splice-facets(a,aFnezt-‘);
tmnsjer(bOrg, aOrg);
tmnsfer(oPneg, {bSdual, bSduolRev});
tmnsfer(0, {aSduaZdClockcReur~d,c,r E (0, I}});
a c aEnext
b +-- bEnext
} until a = firsta;

1

Fig. 10. Procedure m c/d.

polyhedron F is that p may possess properties that preclude cer-
tain algorithms from being applied to it - for instance, it may
be non-convex, or possess cavities or handles. Sometimes the dif-
ficulty may be overcome by decomposing F into more amenable
pieces, and then applying the algorithm to these[CD]. Alterna-
tively, fT may be well behaved but its volume might be too large
to allow efficient solution of equations via finite element methods,
and further decomposition may be desired [JB].

There are various strategies for performing decomposition.
We will concern ourselves with an incremental strategy in which
polyhedra are iteratively detached from the original polyhedron
until nothing of the original remains. Each simpler piece split off
from the original is not subject to further decomposition, and sat-

isfies whatever “simplicity” criteria is required of the algorithm.
Such an algorithm maintains a current polyhedron S (initially
p), and a current collection of constituent polyhedra C (initially
0). The algorithm iteratively detaches a polyhedron pi (in itera-
tion i) from S and transfers it to C. The process stops when S
represents a null polyhedron - collection C then represents the
decomposition of p. In the present section, we show how collec-
tion C assembled during the course of decomposition can be rep-
resented by the facet-edge structure. Each polyhedron detached
from S is attached to C by meld operations. For simplicity, we
assume that Ir is polyhedral in the sense WC have been using the
word (that is, having genus zero and no cavities), and that C
always consists of zero or more ba.11 complexes.

Wijrdenwcbcr uses this incremeutal strategy in [Wb] to de-
compose a polyhedron into tctrahedra. He makes no attempt
to assemble the pieces, but allows the sequence of operations by
which they were detached to represent the resulting decomposi-
tion. Chazelle uses a more general divide-and-conquer strategy
in [Ch] to decompose a polyhedron into convex parts - each time
a polyhedron is split into two, both pieces are subject to further
decomposition. He represents each complex created during the
decomposition with collections of edge-to-facets, facet-toedges,
and vertex-adjacency pointers. Facet-edge operations that ac-
commodate the divide-and-conquer strategy will be presented in

bl.
We brielly describe Wordenweber’s algorithm to make these

notions more concrete, and to introduce new notions. We refer
the reader to [Wij] for a description of how the algorithm selects
a tetrahedron to be detached from the current polyhedron S in
each iteration. The actual removal of the tetrahedron from S is
accomplished by one of the four operators op0, opf, opd or op9.
Each opk modifies the polyl~cdro~~ S to rcllcct Llw rwmval of tlw

no

telrahcdron. ‘L’hc index k ol opk indicates how the tetrahedron t
that. opk is tlwi~rwtl to detach is connected to thr rest of S: k is
this number of triat\gular facets Ihat, connect 1 to the r& of S,

while 4 - k is the number of l’s exposed facets (that is, belonging
to the boundary ol S). In modifying S, opk removes each of the
4 - k exposed facets of t, a consequence of detaching t from S. In
general, some of these facets correspond t_o facets of C (in fact,
to facets of BC); where f is such a facet, f denotes that facet of
C to which / corresponds. Facet f will have been created when
S was rnotliGcd in some earlier iteration (say iteration j where
j < i); the polyhedron pj transfered to C at that time contains
f which was then cleaved from f. The rest of the 4 - k exposed
facets of t belong to the boundary of the original polyhedron F,
and so correspond to no facets of C. Let S’ denote S immedi-
ately after being modified by opk. S’ contains k new facets, the
“connecting” facets of 1; these facets are created by opk - again
the consequence of deleting t from S - and replace the 4 - k
exposed facets removed by opk. Each of the k facets revealed by
opk corresponds to an exposed facet of the tetrahedron that has
been added to C. Figure 11 illustrates the effect each opk has

upon S.

A decomp&tion algorithm employing the incremental
strategy requires the use of an operator op, analogous to
Wiirdenweber’s opk operators, for transfering a polyhedron pi
from S to C. The operator must build a facet-edge representa-
tion for pi, attach pi to C (using calls to meld), and modify S
(to reflect it’s loss of pi). The operator’s most formidable task
is in determining exactly how pi is to be attached to C - that
is, in determining the arguments to each of its calls to meld. To
guide op in attaching pi to C, each facet f E S possesses a link
pointer &PA(~) which references that facet i E aC to which f

corrcsponds. The facets of 5’ that belong to the boundary of the

Fig. 11. This figure demonstrates how each opk iocally modi-

fies S to produce S’. Each drawing depicts a patch on the bound-

ary of s or s’.

original polyhedron pdo not correspond to any facet of C, and so
have null link pointers. To elaborate, in iteration i, op performs
the following steps in succession:

(i) const.ruci.s a facet-edge rcprclsrntatioa for polyhedron
pi, to br (.rans&rrd Iron1 S to (:,

(ii) attachrs 1); to C, thereby forming (:’ (to serve as C in
thr next iteration),

(iii) modifies S to reflect its loss of pi, thereby forming S’
(to serve as S in the next iteration), and

(iv) updates the link pointers of S’.

We do not elaborate on step (i); it is performed using the quad-
edge operators, whose implementation in terms of the facet-edge
operators was given in section 6. Assuming S is suitably repre-
sented - for concreteness we assume by the quad-edge structure
-- step (iii) also need not be treated. Presumably the description
ofpi handed to op is adequate for op to perform steps (i) and (iii).

Steps (ii) and (iv) do require elaboration. Henceforth denoting

by p the polyhedron pi constructrd in step (i), we discuss in turn
how we ascertain which facets of p arc to be melded to C, how
the link poiuter is used to guide each meld operation, and how
the link pointers are updated in S’ to serve later iterations.

Consider the relation between p and S. That patch
of p to be glued to C coincides with subcomplex S, =
U{star flf E S is removed by op}. (Recall that star f is the
complex consisting of the faces of cell f; in this case since /
is a facet, it consists off and the vertices and edges that bound
f.) Subcomplex S, is generally a patch of S, homeomorphic
to a closed disk. (In the final iteration however, S itself is
transfered to C, in which case S,, = S.) We denote by d(c)
that cell of p that coincides with cell c E S,. The mapping
4 : S, -+ p is an isomorphism, not generally onto. Consider
next the relation between p and S’. That patch of p that lies
in aC (after op has attached p to C) coincides with subcomplex
S6 = U{starflf E S’ is created by op}. (At the last iteration
however, S’ = SL = 0). We denote by 4’(c) that cell of p that
coincides with ceU c E 56; the isomorphism 4’ : Si ---) p is not
onto. The patches flS,) and #(SC) cover polyhedron p. Their
intersection $I(&,) n #(SL) is a vertex-edge cycle in p, called the
silohette of p. These notions are depicted in Figure 12.

To attach p to C, for each facet f f S,, facet 4(f) E p is
melded to facet f E C. Each facet of S, is obtained by treat-
ing the dual %-complex S,,* as a graph, and performing a search
in S,‘. Each vertex visited corresponds to a facet of S,,. The
silohette of p is used to restrict the search to S,*, prohibiting it
from passing into the rest of S’. Specifically, the search alge
rithm considers two vertices adjacent iff the edge that connects
them is not dual to a silohette edge of p. Pointer link(f) consists
of two fields edge and pair. whose contzts are as follows.

Fig. 12. This figure depict* a Z-dimensional analogue of the

effect of op. Each edge of the figure corresponds to a facet, and

each polygon to a polyhedron.

link(f).edge : a pointer to directed, oriented edge e E S such
that eLefl = f.

link(f).pair : facet-edge pair b such that, where edge e’ E i3C
is given by (b,O), we have
(a) e’left = i,
(b) e’Lnezf’ = ILnezt’ for all i, and
(c) bPneg = pm.

When facet f E S, is visited, facets N(f) and f are melded by
the following operation.

if link(f) # 0 {
e + link(f).edge;
a + that facet-edge pair o for which (a,O) is d(e);
b + link(f)+&;
meld(a, b);

1

Edge 4(e) E p, required in the above block of code, is obtained
by performing an identical graph search in p’, coincident with

97

the search in S,‘.
Having attached p to C and modified S to produce S’, the

link pointer8 of S’ must be updated. This involve8 setting the
link pointer of each facet created by op (that is the facets of Sk);
the link field8 of the other facets of S’ are still correct. Much a.8
before, we perform a graph search in SL* and a coinciding search
in p*, using the silohette of p to limit both searches When we
visit a vertex of SL’, dual say to facet f E Sk, [ink(f) i8 set by
the following.

let e be an edge for which eLefl = f;
Zint(f).edge t e;
link(f).pair c a where 4(e) is represented by (a,O);

The isomorphisms 4 and q5’ are each computed on the fly by
performing identical searches in two distinct graphs. Each pair of
searches must start at coinciding cells for each isomorphism to be
correctly computed. To do this, we select Some silohette edge e -
since e belongs to both S, and SL, it can be used to compute the
starting point for both pairs of searches. Let e E S be oriented
and directed so the eLeft E S,, and let 4(e) E p be oriented and
directed so that $(e)Org = @(eOrg) and d(e)left = d(eleft).
The searches in S,’ and p* then begin at vertices eLeftDua1 and
+(e)LeftDuaI, respectively. To compute &‘, we note that coin-
ciding cell8 of .SL and p have orientations that disagree: facets f
and q5(f) appear to have the same orientation when viewed for
instance from a point beyond f but beneath d(f), say from the
interior of a convex p. To determine the starting points for the
searches in SL’ and p*, let edge e be oriented and directed .as
above. Facet eLefl E S is replaced by eLeft E S’. The edge of
S’ coinciding with e is then 4(e)Flip, so the searches of Sk* and
p* begin at the vertices eLeflDua1 and 4(e)FlipLeft Dual, respec-

Fig. 1s. This diagram depicts a tetrahedron t transfered by
W&rdenweber’s op.% The tetrahedron is attached to C slang the

two facets behind the page, while the two faceta in front of the

page occur in K.

tively. This is illustrated for Wordenweber’s op2 in Figure 13.

8. Incremental Construction of a &Dimensional De-
launay Triangulation

We describe how to build the Delaunay triangulation DT(S)
of a set S of n 2 4 points (called sites) of R3, in general posi-
tion. Since the facet-edge structure represents both a complex
and its dual, the algorithm also serve8 to construct the Voronoi
diagram of S. The strategy is to first construct some tetrahedron
of DT(S) - called a D-tetrahedron - to serve as an initial current
complex C. C is then grown by iteratively discovering, construct-
ing and melding a new D-tetrahedron to one or more triangular
facets on the boundary of C, until it is known that C = DT(S).
The algorithm is described in [AB], and under geometric inver-
sion that map8 S to a set of points S’ on a I-dimensional hyper-
sphere in R4 [Br], correspond8 to the gift-wrapping method of
[Cl<] for building the convex hull of S’. The process of finding an
idlid iLlId s11bscqucw1 I)-tc!tral~dra is described in [AB], so we
describe this only briefly iu the next paragraph, before presenting
lhe culirc algorithm.

Assume triangle f of DT(S) is on the boundary of complex
C, and that the D-tetrahedron t incident to f is known. Opera-
tion find-tetmhedron(f, t) constructs the other D-tetrahedron 1’
adjacent to f (if it exists). Let Hf,* denote that open half-space
determined by aJ f which doe8 not contain t. The vertices that
define 1’ are then the vertices of f together with site Q, where
q E Hf,t is that site for which the sphere determined by q and
the vertices of f is of minimal radius. It is shown in [Bh] that
the interior of this sphere contains no sites, hence t’ is indeed a
D-tetrahedron. If S n Hf,p is empty, then f lies on the convex
hull of S and t’ does not exist.

An initial D-tetrahedron is found by first finding some tri-
angular facet / on the convex hull of S by the method of [CK].
The D-tetrahedron adjacent to f is discovered using the strategy
given above, where candidate site8 q range over all sites (except
for the three that determine f).

The algorithm de&nay of Figure 14 constructs the Delau-
nay triangulation DT(S) of a finite set of sites S of R3, in general
position. The algorithm initialize8 the current complex C to con-
tam a D-tetrahedron, then iteratively melds D-tetrahedra to C
until, for every facet of C, a D-tetrahedron ha8 been sought on
both sides of the facet.

Let F denote the set of facets for which a D-tetrahedron ha8
been sought on exactly one side of the facet. F consists of those
facets belonging to the boundary of the current complex C, less
those facets that have been determined to lie on the convex hull
of S. Dictionary 3 contains the triangle8 of F; more precisely, it
contains one facet-edge reference to a for each triangle f,, of F,
where aPneg = poo. 3(a) performs a look-up in dictionary 3,
returning that element of 3 whose determining vertices are aOrg,
aEnezt Org and aEnezt2 Org if it exists, or 0 if the dictionary
contains no such element. A scheme for addressing the elements

de/away(S)

{
t + an initial D-tetrahedron of S;
3 t+ facet-edges-of(t);
while (3 # 0) {

a +- Borne element of T;
t + find-tetmhedron(f,aPpos);
if (t does not exist)

3-3-a;
else (

for each i 6 facet-edges-of(t) {
a +- 3(h);
if(aZ@){

3-3-a;
a + align(8, aClock);
meld(a, &);

1
else

3+-T+-&
1

1

Fig. 14. Procedure dclornay.

of 3 using (the indices of) the three vertices that determine it8
elements is easily concocted.

A tetrahedron 1 is rcprcscuted by souw f;~,(+edge pair e 8uch
that al’PS = t. ThC Bet Jr&-edges-of(l) contains one facet-
edge pair c for each of the four triangular facets of at, wllcrc

98

irl’71os = 1; tbc srt is easily derived by traversal from that facet-
ctlgc pair (1 that represents 1. Finally, align(a,b) denotes that
fasct-ctlgc L~rrczl’ for which aOrg = bEnect’Org; the algorithm
CIISUI’CS that some such i exists for each use of align.

After we had submitted this paper, we learned that Dr. V.
Rajan [Ra] at IBM had derived the 3-dimensional Voronoi dia-
gram by a similar technique.

9. Conclusion
‘l?re applications presented here but scratch the surface of the

data strurturc’s potential uses. Future research includes the de-
vclopmcnt and rederivation of applications that would markedly
benefit from use of the structure. Two examples of these were
mentioned in the introduction: a divide-and-conquer algorithm
for constructing 3-dimensional Voronoi diagrams, and a scheme
for modelling the motion of 3-dimensional polyhedra. Future
research also includes completely characterizing the class of com-
plexes the data structure can model, and developing sets of con-
struction operators with respect to which various classes of com-
plexes are closed.

References

[AD] D. Avis and B. Ii. Bhattacharya, “Algorithms for com-
puting d-dimensional Voronoi diagrams and their du-
als”, in Advances in Computing Research. Edited by F.
P. Prcparata, 1, JAI Press, 1983, pp. 159-180.

[Ba] B. G. l?aumgart, “A polyhedron representation for com-
puter vision”, in 1975 Notional Computer Conference,

AFIPS Conference Proceedings, vol. 44, AFIPS Press,
1975, pp. 589-596.

(Bh] B. K. Bhattacharya, “Application of computational.ge-
ometry to pattern recognition problems”, Simon Fraser
Univ. CS, Tech. Rep. 82-3 (1982).

[Br] I<. Q. Brown, “Voronoi diagrams from convex hulls”,
Info. Proc. Lett. 9, 1979, pp. 223-228.

(BHS] I. C. Braid, R. C. Hillyard, and I. A. Stroud, “Step-
wise construction of polyhedra in geometric modelling”,
in Mathematical Methods in Computer Graphics ond
Design, K. W. Brodlie, Ed., Academic Press, London,
1980, pp. 123-141.

[Ch] B. Chazelle, “Convex Partitions of Polyhedra”, SIAM
Journal of Computing, Vol. 13, No. 3, pp. 488-507.

[CD] B. Chaselle and D. P. Dobkin, “Detection is easier than
computation”, Proc. 12th ACM SIGACT Symposium,
Los Angeles, May 1980, pp. 146-153.

[CK] D. R. Chand and S. S. Kapur, “An algorithm for convex
polytopes”, JACM 17(l), Jan. 1970, pp. 77-86.

using the Euler operators”, Inst. of Physical Planning,
Carnegie-Mellon Univ., Research Rep. 78 (Feb. 1979)

[GS] L. Guibas and J. Stolfi, “Primitives for the manipulation
of general subdivisions and the computation of Voronoi
diagrams”, ACM Trans. on Graphics, Vol. 4, No. 2, Apr.
1985, pp. 75-123.

[JB] A. Jameson and T. Baker, “Improvements to the air-
craft Euler method”, AIAA 25th Aerospace sciences
meeting, paper AIAA-87-0452, 1987.

[La] M. J. Laazlo, “Manipulating Three-Dimensional Sub-
divisions”, dissertation, Dept. of Computer Science,
Princeton University, to appear.

[Ra] V. T. Rajan, private communication.

[w;i] B. Wijrdenweber, “Volume-triangulation”, C. A. D.
Group, University of Cambridge (1980).

[EW] C. M. Eastman and K. Weiler, “Geometric modeling

99

