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1. INTRODUCTION

Content-based description plays a prominent role in index-
ing and retrieval [1–4]. It is therefore important to develop
invariant representations for 3D objects. An excellent review
about indexing and retrieval of 3D objects can be found in
[1–3]. As can be seen from this review, most of the proposed
techniques are invariant under a very limited class of trans-
formations, for example, translations, scaling, and rotations.
Relatively less attention has been devoted to the development
of representations that are invariant under general coordinate
transformations. In addition, most approaches are limited to
3D objects understood in the sense of 2-D surfaces embed-
ded in 3D space (e.g., a VRML object) and cannot be applied
to volumetric objects, like those generated by tomography.
Such multidimensional objects are characterised by the fact
that each point in 3D space (volumetric space) is associated
with a set of attributes. For instance, in the case of tomog-
raphy, the set is generally limited to one attribute, the den-
sity, and the map is called a 4D object. This paper presents a
new approach for invariant description of multidimensional
objects under general coordinate transformations leading to
a new type of representation based on the Ricci tensor and
scalar. This novel approach transposes certain results of gen-
eral relativity [5–7] and Riemannian geometry [5] into the
framework of computer vision.

The paper is organised as follows. After some considera-
tions on content-based indexing and retrieval, we review the
most important results of tensor analysis which are necessary
to understand our approach. Then, a tensor is associated to
each object and the fundamental equations are derived from
a variational principle. This tensor describes the attributes of
the object and becomes the source for an associated curved
space. The geometry of this associated curved space is de-
scribed by a quadric form or a metric, a Ricci tensor and a
Ricci scalar from which invariant quantities are derived. Fi-
nally, two representations are adopted for the invariants. The
first one is a statistical representation based on a novel his-
togram and the second representation is a topological one
based on an abstract graph. These representations are invari-
ant under general coordinate transformations.

2. CONTENT-BASED DESCRIPTION OF 3D
AND 4D OBJECTS

An important challenge in content-based description is to
find a representation which is invariant under arbitrary
coordinate transformations. Furthermore, such a descrip-
tion should not be limited to 3D objects, but should be
easily extendable to multidimensional object (such as 4D
tomography, as illustrated in Figure 1). The extension to
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Figure 1: Four views of a tomographic image of the brain. The in-
tensity is related to the density. Each slice corresponds to a certain
elevation in the brain.

multidimensional content is problematic due to the high
number of dimensions involved, their heterogeneity (space,
time, speed, density, field intensity, etc.), and the fact that
the standard mathematical framework has proven itself to be
not suitable to derive form invariant equations under arbi-
trary coordinate transformations [5–7]. Form invariance is
important in order to construct a description that is invari-
ant under arbitrary coordinate transformations. This means
that, no matter how the initial object is transformed (as de-
fined in Section 3), the associated description is always the
same. A new approach is presented to this paper, based on
tensor analysis, in which a Riemannian space or curved space
(as opposed to standard flat Euclidian space) is associated
to an object. This space is described by tensorial equations
which are form invariant under arbitrary coordinate trans-
formations. A set of invariant quantities are extracted from
this space and a representation is constructed from the set of
invariants. Two types of representation are considered: Rie-
mannian histograms and abstract graphs.

3. AN OVERVIEW OF TENSOR ANALYSIS

In this section, an overview of tensor algebra is presented.
Derivations and more details can be found in [5–8]. This
section is a prerequisite for what follows. Unless stated oth-
erwise, all Greek indices and all summations are to be taken
from 1 to N . Furthermore, if an index is not involved in a
summation, it is immaterial and can be replaced by any other
index.

The use of tensorial analysis is justified by the fact that
tensorial equations do not change their form under arbitrary

coordinate transformations. We assume that the space has an
arbitrary number of dimensions, which means that the equa-
tions that we will derive could be applied to both 3D and 4D
objects. A point in space is given by

x = {xμ}. (1)

For instance, in 3D

x =
⎛

⎜
⎝
x1

x2
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⎞

⎟
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⎛

⎜
⎝
x
y
z

⎞

⎟
⎠ . (2)

We assume that it is possible to associate to the space a metric
gμν(x), which is defined by the quadratic form

ds2 ≡
∑

μν

gμν(x)dxμdxν. (3)

In other words, we assume that we can define an invari-
ant distance locally. This is an important distinction in be-
tween standard Euclidian geometry and Riemannian geom-
etry: distance is a global invariant (for orthogonal transfor-
mations) for the former and a local invariant for the lat-
ter (under general coordinate transformations). Indeed, be-
cause of the space curvature, it is not possible to define a
global metric. It should be noticed that ds, the infinitesimal
length of arc, is an invariant and has the same value irre-
spectively of the coordinate system. Note that this metric de-
fines the inner product between two tensors for the curved
space.

The covariant and a contravariant vector are defined, re-
spectively, as

A′μ(x′) =
∑

ν

∂xν(x′)
∂x′μ

Aν(x), B′μ(x′) =
∑

ν

∂x′μ(x)
∂xν

Bν(x),

(4)

where

x′μ = x′μ(x), xν = xν(x′) (5)

are 1 the general coordinate transformations or GCT. One
should notice that such a transformation is local and com-
pletely general, except for the fact that it has to be con-
tinuously differentiable. That means that the GCT must be
continuous and should not present any discontinuity at any
order of derivation. The GCT can fluctuate rapidly but all
derivatives must necessarily remain continuous. That means,
for instance, that discrete coordinate transformations (reflec-
tions) are not allowed. As we know, the covariant and con-
travariant components associated with a vector in an orthog-
onal Euclidian reference frame are identical. If the Euclidian
reference frame is not orthogonal, the contravariant and the
covariant components are defined as the projections of the
vector normal and parallel to the reference axes, respectively.
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Of course, if the axes of the reference frame are normal, the
parallel and the normal projections are identical.

In general, p contravariant and q covariant tensors are
defined as

T′
μ′1···μ′ p
ν′1···ν′q (x′)

=
∑

μ1···μp ,ν1···νq

∂x′μ1 (x)
∂xμ1

· · ·

×∂x′μp(x)
∂xμp

∂xν1 (x′)
∂x′ν′1

· · · ∂x
νq(x′)
∂x′ν

′
q

T′μ1···μp
ν1···νq (x).

(6)

At this point we should make a few remarks about the gen-
eral coordinate transformations. It can be shown [5–8] that
tensorial calculus is valid if and only if the general coordi-
nate transformations are continuously differentiable which
means that the transformations are continuous and smooth
at any order. Furthermore, the mapping between the origi-
nal coordinates and the transformed coordinates should be
biunivoque which means that to each point corresponds one
and only one transformed point, and vice versa. These con-
straints ensure that not only the tensorial equations are valid,
but that an object cannot be transformed arbitrarily into an-
other object. This is a fundamental requirement for searching
and retrieval. Any transformation that satisfied the above-
mentioned requirements is compatible with our approach.

We will admit the following results without demonstra-
tion [5–8]. The metric is a symmetric tensor gμν(x) = gνμ(x).
If a tensor is identically zero in a coordinate system, it is equal
to zero in any other coordinate system. The product of a ten-
sor by a tensor is a tensor and so is the sum. The symmetry
and antisymmetry properties of a tensor are conserved under
general coordinate transformations and so are the symmetry
properties of the corresponding object. In addition, the most
important property can be stated as follow: a tensorial equa-
tion does not change form under general coordinate trans-
formations. Such a feature is highly desirable if one seeks to
define quantities that are coordinate transformations invari-
ant, that is, quantities that can describe an object irrespec-
tively of its state of transformation. Furthermore, the follow-
ing relations will be of use:

∑

ρ

∂x′μ(x)
∂xρ

∂xρ(x′)
∂x′ν

= δ
μ
ν , (7)

gμν(x) =
∑

ρ

∂x′ρ(x)
∂xμ

∂x′ρ(x)
∂xν

, (8)

∑

ρ

gμρ(x)gνρ(x) = δ
μ
ν . (9)

The metric has an additional important property; it can
transform covariant indices into contravariant indices and
vice versa as illustrated by the following equation:

Aμν(x) =
∑

αβ

gμα(x)gνβ(x)Aαβ(x). (10)

The derivative of a tensor is not a tensor. Indeed, if one cal-
culates the derivative of a covariant vector, one obtains

∂A′μ(x′)

∂x′ν
=
∑

ρσ

∂xρ(x′)
∂x′μ

∂xσ(x′)
∂x′ν

∂Aρ(x′)
∂x′σ

+
∑

ρ

Aρ(x′)
∂2xρ(x′)
∂x′μ∂x′ν

.

(11)

The first term of the right member has the correct form as
defined by (4), that is, it is transformed as a tensor, but the
second term is incompatible with the definition of a tensor
(the transformation involves the second-order derivative of
xρ(x′)). Nevertheless, one can define a covariant derivative,
which is form invariant under general coordinate transfor-
mations

∇νAμ(x) ≡ ∂Aμ(x)

∂xν
−
∑

σ

Γσμν(x)Aσ(x), (12)

where Γσμν is named the affine connection and is related to the
metric by the following relation:

Γσμν(x)=
∑

ρ

1
2
gσρ(x)

(
∂gμρ(x)

∂xν
+
∂gρν(x)

∂xμ
− ∂gμν(x)

∂xρ

)

. (13)

It should be noticed that the affine connection is not a ten-
sor. Irrespectively on the mathematics involved, the covari-
ant derivative is a simple concept. The derivative in Euclid-
ian space is related to the concept of slope or in other words
the difference in between two points at two distinct posi-
tions. Such an operation is not problematical in standard Eu-
clidian geometry since the space is flat, homogeneous, and
isotropic. In our case, the space is not flat but curved and
one cannot compare two points at two different locations be-
cause they live so to say in two different spaces. What can
be done though is to transport one of the vector “parallel”
to itself to the other location and then to compare them
on the same location. This is what is expressed by (12) and
the affine connection is responsible for such a parallel trans-
portation.

Riemannian spaces are not conservative: if a vector is
moved along a close path, the resulting vector does not co-
incide in general with the original vector. That means again
that it is not possible to compare two tensors at two distinct
positions. One can easily convince oneself of that. For exam-
ple, it suffices to move a vector from the North Pole to the
equator along a meridian, then once more along the equa-
tor, and finally back to the North Pole along a meridian: the
initial and the final directions of the vector are different al-
though the norm remains the same. Such a phenomenon
happens because the Earth surface is a 2D curved surface: a
sphere.

It becomes interesting then to characterise such be-
haviour by analysing the variation to which a vector is sub-
mitted if it is transported along an infinitesimal loop. For
an infinitesimal closed path C, one can demonstrate that the
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variation is proportional to the curvature tensor

ΔAμ(x) = −
∮

C

∑

νσ

Γσμν(x)Aσ(x)dxν

= 1
2

∑

νστ

Rν
μστ(x)Aν(x)dxσ ∧ dxτ ,

(14)

where ∧ represents the external product and where the Rie-
mannian curvature tensor Rν

μστ(x) is defined as

Rν
μστ(x) ≡ ∂Γν

μτ(x)

∂xσ
− ∂Γν

μσ(x)

∂xτ

+
∑

ρ

Γν
ρσ(x)Γ

ρ
μτ(x)− Γν

ρτ(x)Γ
ρ
μσ(x).

(15)

From the inner product between the metric and the Rieman-
nian curvature tensor, one can define the Ricci tensor Rνσ(x)
and the Ricci scalar R(x) which are, respectively, given by

Rνσ(x) =
∑

μτρ

gμρ(x)gμτ(x)Rτ
νρσ(x), (16)

R(x) =
∑

νσ

gνσ(x)Rνσ(x). (17)

The Ricci tensor is symmetric. The Ricci tensor and scalar
satisfy many identities among which are the Bianchi identi-
ties which are more or less a conservation identity:

∑

α

∇α

(

Rσα(x)− 1
2
gσαR(x)

)

= 0. (18)

The Riemann tensor and the Ricci tensor and scalar charac-
terise the curvature of the space at a given point. The Rie-
mann and the Ricci tensor are not invariant under general
coordinate transformations: they transform as tensors. How-
ever, the Ricci scalar is an invariant: its value is the same
irrespectively of the general coordinate transformation ap-
plied. Such a feature is common to all scalars in a Riemannian
space. At this stage, it is important to realise that the curva-
ture is not bonded to a particular coordinate system but to
the physical point itself. For instance, even if the Ricci scalar
is an invariant, the coordinates of the point to which it is at-
tached change under a GCT. In Section 5, we will see how
we can represent invariant quantities independently of their
coordinates.

There is a relation in between the Ricci scalar and the
standard intrinsic Gaussian curvatures. One can demon-
strate that in 2-D, the Ricci scalar and the intrinsic Gaussian
curvatures are related by the relation

(2)R(x) ∝ κ1(x) κ2(x), (19)

where κ1(x) and κ2(x) are the intrinsic Gaussian curvatures.
Such a relation does not exist in 3D or in higher dimensions.
From that point of view, the Ricci scalar can be considered to
a generalisation of the intrinsic curvatures to three dimen-
sions and more.

4. ASSOCIATION OF A CURVED SPACE
WITH AN OBJECT

In this section, a Riemannian curved space is associated with
an object. A set of equations that are form invariant un-
der general coordinate transformations are derived. In or-
der to construct those equations, a tensor is associated with
the object. Such an association can be realised, for instance,
through the density of a tomographic image. This tensor acts
as a source term in a field equation from which the geometry
of the associated curved space is calculated.

The formulation of form invariant equations under gen-
eral coordinate transformations is a complex task. It would
be much easier if one could associate and define an invariant
scalar functional from which the equations could be derived.
Such an approach has been developed: the scalar functional
is the Lagrangian and the equations are derived from a vari-
ational principle or least action principle. For our purpose,
the Lagrangian is a scalar functional related to the “energy
of the system.” The energy could be related to the density
of a tomographic image, the 3D shape deformation (like a
deformable mesh), or some topological characteristics (like
the number of holes in a certain neighbourhood). The reader
who is not familiar with Lagrangians and variational princi-
ples is referred to [5, 8] for more details. Once the Lagrangian
is defined, one can derive the corresponding equations by
finding the extremum for the action associated with the La-
grangian. We formulate the Lagrangian in such a way that it
incorporates all our requirements about the curved space we
want to associate with the object as well as all our knowledge
(from an indexing and retrieval point of view) about the ob-
ject itself.

In a Riemannian space, the action S [5–7] is defined as

S ≡
∫

dNx
√
−det

(
gμν(x)

)
L
[
gμν(x)

]
, (20)

where L is the Lagrangian (strictly speaking the Lagrangian
density) and det(gμν(x)) the determinant of the metric (the
metric is a matrix). One should notice that the action is also
a scalar and consequently invariant under a GCT. The extra

factor
√
−det(gμν(x)) is related to the Jacobian of the trans-

formation and ensures that the result of the integration does
not depend on a particular choice of the coordinate system;
in other words, the infinitesimal volume element (or hyper-
volume) does not depend on the reference frame employed.

The principle of least action [5–8] states that if the action
is extremal, the Lagrangian necessarily satisfies the Euler-
Lagrange equations, which can be written in our specific case
as

∑

ρ

∂

∂xρ

δ
(√
−det

(
gμν(x)

)
L
[
gμν(x)

])

δ
(
∂gμν(x)

/
∂xρ

)

−
δ
(√
−det

(
gμν(x)

)
L
[
gμν(x)

])

δgμν(x)
= 0,

(21)
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where δh[ f (x)]/δ f (x) stands for the functional derivative
(the derivative is calculated with respect to a function).

We are now in position to set our hypothesis and de-
rive the corresponding equations. Let us assume that our
Lagrangian can be split into two Lagrangians. The first La-
grangian L̂[gμν(x)] depends solely on the metric and char-
acterises the Riemannian space per se (the space we want
to associate with our object) while the second Lagrangian
L̆[gμν(x),Φ(x)] depends on the metric and some other ten-
sors Φ that characterise the object under consideration (e.g.,
the density in a volumetric image). It is very important to
understand this point, the space associated with an object is
not static but dynamics and its configuration depends on the
energy content of the associated object. An analogy, although
imperfect, is the association of a magnetic field to a current.
As the current is the source of the magnetic field, the object
is the source of the associated curved Riemannian space.

With these hypotheses in mind, the action can be written
as

S =
∫

dNx
√
−det

(
gμν(x)

)(
L̂
[
gμν(x)

]
+ L̆

[
gμν(x),Φ(x)

])
.

(22)

Let us write the Lagrangian for the associated curved space.
We have seen earlier that a curved space can be characterised
by a set of curvatures: the simplest one being the Ricci scalar.
Consequently, one of the simplest Lagrangian that can be
constructed from the Riemannian curvatures is the one con-
structed from the Ricci scalar:

L̂
[
gμν(x)

] = κ−1R(x) = κ−1
∑

μν

gμν(x)Rμν(x), (23)

where κ is an arbitrary constant. Of course this is not the
only possibility. One could take, for instance, the tensorial
product of a covariant and contravariant Ricci tensor but that
would lead to unnecessarily complicated equations. For our
purpose, we will be satisfied with the simplest form possi-
ble. If one substitutes (23) into (22) and optimised the action
with (21), one obtains

δ S = 0 =⇒ Rμν(x)− 1
2
gμν(x)R(x)− κT̆μν(x) = 0, (24)

where T̆μν, the source tensor, is associated with the object and
is defined as

T̆μν(x) ≡
δ
(√
−det

(
gμν(x)

)
L̆
[
gμν(x),Φ(x)

])

δgμν(x)
. (25)

Because of (18) and (24), the source tensor satisfies the
Bianchi identities and is symmetric. In other words, only
those source tensors for which the covariant divergence is
zero are acceptable. Consequently, when defining the source
tensor, one has to be very careful in order to verify that the
covariant divergence of (25) is effectively zero.

Next, one can demonstrate that the source tensor is re-
lated to the density, the momentum, and the flux of momen-
tum. For instance, for a static volumetric image one can de-

fine the source tensor as

T̆00(x) = ρ(x) (26)

and zero otherwise, that is, the tensor is simply related to the
density. In the general case, the source tensor is more com-
plicated. More details can be found in [5–8] but the general
approach is well known. One defines a Lagrangian that char-
acterised the energy content of the object under considera-
tion. Such a characterisation might be either physical (e.g.,
real physical density), topological, or formal. Then the source
tensor is calculated from (25).

Finally, if one substitutes the value of the source tensor in
(24), one obtains

Rμν(x)− 1
2
gμν(x)R(x) = κT̆μν(x) (27)

which is a set of ten (because of the symmetry properties of
the tensors) form invariant nonlinear equations describing
the relations in between the source tensor associated with the
object and the curvatures of the corresponding Riemannian
space. That is the relations we were looking for; we have as-
sociated a curved space to the object.

In addition, it can be demonstrated [5–8] that the map-
ping in between the source tensor (i.e., the object) and the
Riemannian space is unique and consequently not ambigu-
ous. This result is valid as long as the general coordinate
transformations and the source tensor are continuously dif-
ferentiable. That does not mean that transformations cannot
vary rapidly, it only means that there should be no disconti-
nuities (in the mathematical senses) in the transformations.

The solution of (27) is a highly nontrivial task. Never-
theless, a numerical solution can be obtained by foliating the
space; see, for instance, [9].

5. DEFINITION OF INVARIANT REPRESENTATIONS
FROM A STATISTICAL REPRESENTATION
AND FROM AN ABSTRACT GRAPH

Up to this point, we have associated a Riemann space to an
object and we have characterised the curvature of this space
by calculating the Ricci tensor and scalar distributions. Now,
in order to obtain an invariant description, we must con-
struct some invariant quantities from the Ricci curvatures.
If one applies a coordinate transformation to the Ricci scalar,
one obtains with the help of (7) and (17)

R′ =
∑

μν

g′μνR′μν =R. (28)

Equation (28) shows that the Ricci scalar is invariant under
arbitrary coordinate transformations and as a result we de-
fine our first ensemble of invariant quantities �1(x) as the
ensemble

{�1(x) | �1(x) ≡ R2(x)
}
. (29)
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If one computes the tensorial product of a covariant and a
contravariant Ricci tensor, one obtains

∑

μν

R′μνR
′μν =

∑

μνρσ

(
∂xμ

∂x′ρ
∂xν

∂x′σ

)
Rμν

(
∂x′ρ

∂xμ
∂x′σ

∂xν

)
Rμν

=
∑

μν

RμνR
μν

(30)

which is again invariant under arbitrary coordinate transfor-
mations. Consequently, we define our second ensemble of in-
variant quantities�2(x) as

{
�2(x) | �2(x) ≡

∑

μν

Rμν(x)Rμν(x)
}
. (31)

As a result, an invariant statistical representation of the object
can be constructed. The ensembles defined by (29) and (31)
are described by two histograms. The first histogram charac-
terises the distribution of the Ricci scalars while the second
histogram characterised the distribution of the inner prod-
ucts of the Ricci tensors. More precisely, the histograms are
defined as

hk(i) ≡
∑

{x|[(iΔk−Δk/2)≤�k(x)<(iΔk+Δk/2)]}
�k(x), (32)

where Δk is the width of each bin for histogram k. In other
words, the histograms provide a statistical distribution for
the invariants: they do not depend on the location of the in-
variants on the object but only on their statistical distribu-
tion. Such a distribution is invariant under a CGT and char-
acterises the object.

For retrieval purpose, these histograms can be consid-
ered as feature vectors and compared with standard tech-
niques such as those described in [1, 2]. For instance, com-
parison can be performed with a metric (distance), a corre-
lation technique, a neural network, or with a Bayesian ap-
proach. Besides, whatever the method employed is, it is im-
portant that a certain degree of cross-correlation (bins with
different indexes) be present in the comparison algorithm
because the invariants, as defined by (29) and (32), may pos-
sibly present a certain bin index tolerance due to noise and
inadequate sampling which means that bins could be shifted
and the corresponding histograms distorted. For the metric
approach, such a requirement can be implemented with a
quadratic form.

An abstract graph representation is also possible. For
such a graph, each point for which invariants are calculated
is mapped to a node. Each node is related to the pair of in-
variants calculated at the corresponding point and not to the
coordinates of the points, which are in any case arbitrary. The
only relations that are invariant, irrespectively of the GCT ap-
plied to the object, are the adjacency relations in between the
points. Such topological relations remain always the same,
because the general coordinate transformations are contin-
uously differentiable by hypothesis. The graph is then con-
structed in such a way that adjacent nodes (i.e., points) are
connected by lines or links. The link indicates only a con-
nection in between two nodes; the length of the link has no

meaning per se, since the representation has to be invariant
under a GCT. Such a graph is invariant under a GCT. The
abstract graph obtained can be compared to another graph
using standard techniques [1, 2].

The histogram representation is much more compact
and is adapted to very large databases. The compactness is
obtained at the price of loosing the adjacency relations. The
abstract graph approach preserves those relations, but the
size of the graph limits its applicability to small subset of data
for which a detailed representation might be needed.

6. PRACTICAL CONSIDERATIONS

The proposed method may be applied to a wide class of 3D
objects. Nevertheless, there are some restrictions that should
be taken into account; for instance, the objects under consid-
eration should be Riemannian manifolds. In essence, a man-
ifold is a surface (or a volume) that can be defined by a set
of overlapping patches. The surface, included in the overlap-
ping regions, should be continuously differentiable. Such a
case is approximated, for instance, by the NURBS or nonuni-
form rational β-splines which are widely utilise in computer
graphics. The approximation comes from the fact that, in the
NURBS representation, the overlapping regions are differen-
tiable only up to a certain order. In addition to be a manifold,
the surface should be Riemannian. That means that the sur-
face should not present any torsion or, in other words, should
not be twisted. For instance, if one cuts a circular band, twists
the two extremities, and assembles them back together, one
obtains a surface with torsion which cannot be described by
the present approach. Otherwise, there are no restrictions
and the considered surface can present holes, missing poly-
gons, or other types of degeneracy.

For the vast majority of cases of interest, (27) must be
solved numerically. As pointed out in [9], this is a difficult
task in the sense that (27) is a set of 10 nonlinear differential
equations. It has been shown [9] that such a set of equations
can be numerically unstable if the numerical algorithm is
not carefully designed: for instance, some constrains, like the
Bianchi identities, that is, (18), must be enforced through-
out the calculation. That means that for any practical appli-
cation the calculation of the invariant representation must
be performed offline. On the other hand, the retrieval op-
eration can be performed in real time since the later involves
only the comparison of histograms or graphs for which many
real-time comparison approaches exist [1].

At this point, we would like to provide an illustrative ex-
ample in order to better understand the proposed approach.
Let us assume that we have a 3D object for which we have cal-
culated the invariants as defined by (28) to (32). We would
like to understand better the meaning of a GCT and how
it generalises the traditional approaches. For instance, most
invariant representations for 3D objects are rotation invari-
ant. That means that a unique invariant description can be
obtained independently of the orientation of the object in
space. Such invariance is global since the object is rotated as
a rigid solid. With our approach, it is possible to generalise
this invariance to local rotations. By a local rotation we mean
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that the associated rotation matrix is a function of the coor-
dinates on the object. Let us consider a GCT as defined by
(4). Such an equation may be expressed in a matrix form as
follows:

⎡

⎢
⎣
A′0(x′)
A′2(x′)
A′3(x′)

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂x0(x′)
∂x′0

∂x1(x′)
∂x′0

∂x2(x′)
∂x′0

∂x0(x′)
∂x′1

∂x1(x′)
∂x′1

∂x2(x′)
∂x′1

∂x0(x′)
∂x′2

∂x1(x′)
∂x′2

∂x2(x′)
∂x′2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣
A0(x)
A1(x)
A2(x)

⎤

⎥
⎦ . (33)

The transformation matrix, which in fact is a matrix func-
tional, is invertible by construction since the matrix elements
are continuously differentiable. This transformation is ex-
tremely general in the sense that the invariant representation
does not depend on the form of this matrix. As a matter of
fact, this matrix belongs to the group (in the mathematical
sense) GL(3) of invertible matrices. We can consider a sub-
group of GL(3): for instance, all the matrices for which the
inverse is equal to the transpose of the transformation ma-
trix. Such a matrix is the rotation matrix, that is, the group
O(3) of orthogonal matrices. Consequently, we have demon-
strated that our approach is not only invariant for local rota-
tions but also for much more general transformations. Con-
sequently, our approach is a generalisation of global rotation
invariance to local rotation invariance; in other words to lo-
cal deformations.

7. EXPERIMENTAL RESULTS

In this section, we present experimental results. Our objec-
tive is to better understand invariants (29) and (31). Firstly,
we prove that they are invariant under a general coordinate
transformation by explicitly applying such a transformation.
Then, we evaluate invariant (29) for particular symmetries
of the source tensor. We do not present any evaluation of in-
variants (31) because they are too cumbersome. These calcu-
lations are performed for both 3D and 4D objects, in order
to better understand the differences in between the two. All
the results that follow have been obtained symbolically with
the Wolfram Research Mathematica software. All the calcu-
lations were performed without any approximation. Conse-
quently, the obtained results are exact. They can be utilised
either as analytical expressions or as formulas in numerical
evaluations. The results are presented with the Mathematica
notation [10].

Firstly, we want to prove that our invariants are indeed
invariant under a general coordinate transformation or GCT.
For this purpose, we apply a GCT to invariant (29) and (31).
The calculation is completely general and is performed for
both 3D and 4D objects.

First, let us consider the case of three-dimensional ob-
jects. If we make the summation explicit, invariant (29) could
be written as

(
R11

)(
R11) + 2

(
R21

)(
R12) +

(
R22

)(
R22). (34)

If we apply a GCT (x′ = f 1[x, y], y′ = f 2[x, y]) to this

invariant, we obtain

(((
R22) f 1(0,1)[x, y]2 + 2

(
R12) f 1(0,1)[x, y] f 1(1,0)[x, y]

+
(
R11) f 1(1,0)[x, y]2)((R11

)
f 2(0,1)[x, y]2

− 2
(
R21

)
f 2(0,1)[x, y] f 2(1,0)[x, y] +

(
R22

)
f 2(1,0)[x, y]2)

)

/(
f 2(0,1)[x, y] f 1(1,0)[x, y]− f 1(0,1)[x, y] f 2(1,0)[x, y]

)2

+
(((

R11
)
f 1(0,1)[x, y]2 − 2

(
R21

)
f 1(0,1)[x, y] f 1(1,0)[x, y]

+
(
R22

)
f 1(1,0)[x, y]2)((R22) f 2(0,1)[x, y]2

+ 2
(
R12) f 2(0,1)[x, y] f 2(1,0)[x, y] +

(
R11) f 2(1,0)[x, y]2)

)

/(
f 2(0,1)[x, y] f 1(1,0)[x, y]− f 1(0,1)[x, y] f 2(1,0)[x, y]

)2

+
(

2
(
f 1(1,0)[x, y]

((
R21

)
f 2(0,1)[x, y]− (R22

)
f 2(1,0)[x, y]

)

+ f 1(0,1)[x, y]
(−(R11

)
f 2(0,1)[x, y]+

(
R21

)
f 2(1,0)[x, y]

))

×
(
f 1(1,0)[x, y]

((
R12) f 2(0,1)[x, y] +

(
R11) f 2(1,0)[x, y]

)

+ f 1(0,1)[x, y]
((
R22) f 2(0,1)[x, y] +

(
R12) f 2(1,0)[x, y]

)))

/(
f 2(0,1)[x, y] f 1(1,0)[x, y]− f 1(0,1)[x, y] f 2(1,0)[x, y]

)2
,
(35)

where (1, 0) indicates a partial derivative with respect to y
and x. A similar notation applies to other derivatives. Ex-
pression (35) reduces, after simplification, to expression (34)
which proves the invariance of (29). One should notice that
we need only two coordinates for a three-dimensional object
since the later is a surface in three dimensions that can be
parameterised with two and only two parameters.

Let us consider the case of 4D objects. If we make the
summation explicit, invariant (29) can be written as

(
R11

)(
R11) + 2

(
R21

)(
R12) + 2

(
R31

)(
R13)

+
(
R22

)(
R22) + 2

(
R32

)(
R23) +

(
R33

)(
R33).

(36)

If we apply a GCT (x′ = f 1[x, y, z], y′ = f 2[x, y, z], z′ =
f 3[x, y, z]) to this invariant, we obtain a lengthy expression
(10 pages), which simplifies to (36) after a tedious calcula-
tion. Once more, we need three coordinates because a 4D
object is a volume that can be parameterised with three and
only three coordinates.

We now calculate invariant (29) for some particular
cases. It is possible to perform an exact calculation for the in-
variant if some kind of symmetry is assumed for the source
tensor and consequently for the metric. We consider both 3D
and 4D objects.

We first address the case of 3D objects. In the particu-
lar case of a three-dimensional object, invariant (29) can be
calculated for a general metric. In that case, only two coor-
dinates are needed since a 3D object is a surface that can
be parameterised with two coordinates. If we perform the
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calculations, we obtain

(
g11[x, y]

(
g11(0,1)[x, y]g22(0,1)[x, y]− 2g22(0,1)[x, y]

× g21(1,0)[x, y] + g22(1,0)[x, y]2) + g21[x, y]

× (g22(0,1)[x, y]g11(1,0)[x, y] + 2g21(1,0)[x, y]

× (2g21(0,1)[x, y]− g22(1,0)[x, y]
)− g11(0,1)[x, y]

× (2g21(0,1)[x, y] + g22(1,0)[x, y]
))

+ 2g21[x, y]2

× (g11(0,2)[x, y]− 2g21(1,1)[x, y] + g22(2,0)[x, y]
)

+ g22[x, y]
(
g11(0,1)[x, y]2 + g11(1,0)[x, y]

× (−2g21(0,1)[x, y] + g22(1,0)[x, y]
)− 2g11[x, y]

× (g11(0,2)[x, y]− 2g21(1,1)[x, y] + g22(2,0)[x, y]
)))2

/(
4
(
g21[x, y]2 − g11[x, y]g22[x, y]

)4
)
.

(37)

Equation (37) reduces to

(
g11[x, y]

(
g11(0,1)[x, y]g22(0,1)[x, y] + g22(1,0)[x, y]2)

+ g22[x, y]
(
g11(0,1)[x, y]2 + g11(1,0)[x, y]g22(1,0)[x, y]

− 2g11[x, y]
(
g11(0,2)[x, y] + g22(2,0)[x, y]

)))2

/(
4g11[x, y]4g22[x, y]4)

(38)

for the simpler case of a diagonal metric.
We now consider the case of 4D objects. Let us assume

that the metric is diagonal and that the first two elements
are equal, that is, the metric is of the form diag(g11[x, y, z],
g11[x, y, z], g33[x, y, z]).

With this assumption, invariant (29) can be written as

(
2g33[x, y, z]2(g11(0,1,0)[x, y, z]2 + g11(1,0,0)[x, y, z]2)

− g11[x, y, z]g33[x, y, z]
(− g11(0,0,1)[x, y, z]2

+ 2g33[x, y, z]
(
g11(0,2,0)[x, y, z] + g11(2,0,0)[x, y, z]

))

+ g11[x, y, z]2(2g11(0,0,1)[x, y, z]g33(0,0,1)[x, y, z]

+ g33(0,1,0)[x, y, z]2 + g33(1,0,0)[x, y, z]2

− 2g33[x, y, z]
(
2g11(0,0,2)[x, y, z] + g33(0,2,0)[x, y, z]

+ g33(2,0,0)[x, y, z]
)))2

/(
4g11[x, y, z]6g33[x, y, z]4).

(39)

We need three coordinates to describe a 4D object, since
the latter is a volumetric image. If all the diagonal ele-
ments are equal, that is to say, if the metric is of the form

diag(g11[x, y, z], g11[x, y, z], g11[x, y, z]), one obtains
(

3g11(0,0,1)[x, y, z]2 − 4g11[x, y, z]g11(0,0,2)[x, y, z]

+ 3g11(0,1,0)[x, y, z]2 − 4g11[x, y, z]g11(0,2,0)[x, y, z]

+ 3g11(1,0,0)[x, y, z]2 − 4g11[x, y, z]g11(2,0,0)[x, y, z]
)2

/(
4g11[x, y, z]6)

(40)

which is of course a much simpler expression. The level
of complexity of the expression is not only related to the
components of the metric tensor (and consequently the
source tensor) but also to the level of symmetry of the later.

Finally, let us assume a traceless metric (i.e., all the diago-
nal elements are equal to zero) without any other restriction
on the other elements. Then, invariant (29) is given by the
following complex expression:
(

2g31[x, y, z]g32[x, y, z]
(
g32[x, y, z]g21(1,0,0)[x, y, z]

× (g21(0,0,1)[x, y, z] + g31(0,1,0)[x, y, z]

− g32(1,0,0)[x, y, z]
)

+ g31[x, y, z]g21(0,1,0)[x, y, z]

×(g21(0,0,1)[x, y, z]−g31(0,1,0)[x, y, z]+g32(1,0,0)[x, y, z]
))

+ 2g21[x, y, z]2(g31[x, y, z]g32(0,0,1)[x, y, z]

× (− g21(0,0,1)[x, y, z] + g31(0,1,0)[x, y, z]

+ g32(1,0,0)[x, y, z]) + g32[x, y, z]
(− g21(0,0,1)[x, y, z]

× g31(0,0,1)[x, y, z] + g31(0,0,1)[x, y, z]
(
g31(0,1,0)[x, y, z]

+ g32(1,0,0)[x, y, z]
)

+ 2g31[x, y, z]
(
g21(0,0,2)[x, y, z]

− g31(0,1,1)[x, y, z]− g32(1,0,1)[x, y, z]
)))

+ g21[x, y, z]

× (2g32[x, y, z]2g31(1,0,0)[x, y, z]
(
g21(0,0,1)[x, y, z]

+ g31(0,1,0)[x, y, z]− g32(1,0,0)[x, y, z]
)
2g31[x, y, z]2

+
(
g21(0,0,1)[x, y, z]g32(0,1,0)[x, y, z]− g31(0,1,0)[x, y, z]

× g32(0,1,0)[x, y, z]− 2g32[x, y, z]g21(0,1,1)[x, y, z]

+ 2g32[x, y, z]g31(0,2,0)[x, y, z] + g32(0,1,0)[x, y, z]

× g32(1,0,0)[x, y, z]− 2g32[x, y, z]× g32(1,1,0)[x, y, z]
)

+ g31[x, y, z]g32[x, y, z](g21(0,0,1)[x, y, z]2

+ g31(0,1,0)[x, y, z]2 − 2g31(0,1,0)[x, y, z]g32(1,0,0)[x, y, z]

+ g32(1,0,0)[x, y, z]2 − 2g21(0,0,1)[x, y, z]

× (g31(0,1,0)[x, y, z] + g32(1,0,0)[x, y, z]
)− 4g32[x, y, z]

× g21(1,0,1)[x, y, z]− 4g32[x, y, z]g31(1,1,0)[x, y, z]

+ 4g32[x, y, z]g32(2,0,0)[x, y, z]
)))2

/(
16g21[x, y, z]4g31[x, y, z]4g32[x, y, z]4),

(41)

where (2, 1, 0) is a partial with respect to z, y, and x. A similar
notation applies to the other derivatives.
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Consequently, we have obtained exact expressions for in-
variant (29) for 3D objects for a general and a diagonal met-
ric. Moreover, for 4D objects, we obtained exact expressions
for invariant (29), for a diagonal metric for which all the el-
ements are equal, for a diagonal metric for which two ele-
ments are equal as well as for a traceless metric.

To conclude this section, we would like to present some
numerical experimental results for 3D objects. In the follow-
ing, all the objects are described with invariant (29) and with
representation (32), that is, the index or descriptor is a his-
togram of the square of the Ricci tensor. All our calculations
were performed with the Viewpoint Datalab libraries and
collections. This repository consists, in our edition, of 12.150
(twelve thousand) objects of a variety of objects such as cars,
planes, human bodies, heads, trees, just to mention a few.

With these examples, we illustrate that our method can
retrieve an object that has been submitted to a general coor-
dinate transformation or GCT and that such invariance does
not deteriorate the discrimination level. That is one of the
reasons why we consider such a large database. In addition,
we show that the proposed method can be utilised to retrieve
similar objects, that is, the method is not limited to identical
objects submitted to GCT.

The numerical implementation of the calculation will be
the subject of another publication. In essence, we employ
stochastic or Monte Carlo methods [11] in order to dras-
tically reduce the amount of calculation. The Monte Carlo
sampling does not provide an exact result, but an approxima-
tion, which, as far as the experimental results are involved, is
sufficient for the size (12.150 items) and composition of our
database. As a first example, let us consider Figure 2.

Figure 2 represents a character which was animated with
various facial expressions. Such a variation of the facial ex-
pression is equivalent to a GCT. We applied our method to
this character and retrieved all his facial expression without
any inlayer (precision: 100%; recall: 100%). Such a result in-
dicates the efficiency of the method both in terms of invari-
ance under a GCT as well as in terms of discrimination. In
our second example, we consider Figure 3, which illustrates
a query for a car.

We managed to retrieve approximately 90% of the cars
present in the database without any inlayer (precision: 100%;
recall: 90%). This example shows that the proposed method
can be applied, not only to identical objects submitted to a
GCT, but also to similar or related objects. Comparable re-
sults were obtained for planes and are illustrated in Figure 4.
Most of the planes were retrieved without any inlayer, despite
the fact that the resolution of the reference model was very
low (precision: 100%; recall: 80%).

In our final example, we consider Figure 5 which illus-
trates a query for an animated body. Here, the woman’s
arms are in two different positions. Such an animation cor-
responds to a GCT.

Again, we managed to retrieve both postures without any
inlayer. The next retrieved items (up to rank 250) were all
human bodies without any inlayer (precision: 100%; recall:
100%). That shows, once more, that the method is invari-
ant under general coordinate transformation and suitable to

Figure 2: Retrieval of an animated 3D character: the reference ob-
ject appears on the left side while the outcome of the query appears
on the right side. Each result is characterised by a different facial
expression, that is, a GCT. In the present query, all the facial ex-
pressions of the character were retrieved without any inlayer from a
database containing 12.150 objects.

Figure 3: Retrieval of cars. Most of the cars (approximately 90%)
were retrieved without inlayers from the 12.150 objects database.
Only the first results are displayed.

Figure 4: Retrieval of planes. We retrieved most of the planes (ap-
proximately 80%) without inlayer despite the fact that the reference
model had a very low resolution. Only the first results are shown.
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Figure 5: Retrieval of an animated 3D character. We retrieved all
(i.e., 2) the postures associated with the mannequin and most of
the human bodies from the 12.150 objects database. Only the first
results are shown.

retrieve similar object while maintaining an adequate dis-
crimination level.

The above-mentioned examples, as many others that are
not shown in the present paper, indicate that the proposed
method is efficient to retrieve 3D objects submitted to a GCT
as well as similar objects from a large database. The fact that
the database is large (12.150 objects) shows, at least from a
statistical point of view, that the invariance under GCT does
not compromise the level of discrimination of the algorithm.

8. CONCLUSIONS

In this paper, we have associated a curved space to an ar-
bitrary object and have described this space with quantities
that are invariant under general coordinate transformations.
From those quantities we have built two representations: one
based on the statistical distribution of the invariants and the
other based on their topological distribution. Both represen-
tations are invariant under GCT. Promising experimental re-
sults were provided both analytically and numerically for a
database of 12.150 3D objects.

To the best of our knowledge, there are no approaches
that propose such a general and formal framework for GCT
invariant representations of object. The next step will be to
implement the proposed method, meaning solving exactly
(27). This will be achieved through a foliation algorithm
which will be implemented on a grid computer. In addition, I
propose to study various approximations to (27) that would
be precise enough for indexing and retrieval and that would
facilitate and speed up the calculations.
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