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Abstract. We define and study branched shadows of 4-manifolds as a combination of
branched spines of 3-manifolds and of Turaev’s shadows. We use these objects to combi-
natorially represent 4-manifolds equipped with Spinc-structures and homotopy classes of
almost complex structures. We then use branched shadows to study complex 4-manifolds
and prove that each almost complex structure on a 4-dimensional handlebody is homo-
topic to a complex one.
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1. Introduction

Shadows were defined by V. Turaev at the beginning of the nineties in [28] as a method for
representing knots alternative to the standard one based on knot diagrams and Reidemeister
moves. The theory was developed in the preprint “Topology of shadows”, later included as
a revised version in [26]; a short account of the theory was also published in [27]. Since
then, only few applications of shadows were studied. Among these we recall the use of
shadows made by U. Burri in [10] and A. Shumakovitch in [24] to study Jones-Vassiliev
invariants of knots and the study of “Interdependent modifications of links and invariants
of finite degree” developed by M.N. Goussarov in [18]. More recently, in [16] and [17] D.P.
Thurston and the author used shadows to study 3-manifolds and their geometry and to
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prove a quadratic upper bound on the minimal complexity of a 4-manifold whose boundary
is a given 3-manifold.

On the other side, branched polyhedra (and in particular branched spines of 3-manifolds)
were studied in depth by Benedetti and Petronio since 1997 in [7]. They showed how
branched spines encode 3-manifolds equipped with additional topological structures as Spinc-
structures, vector fields and a more refined structure they called concave traversing fields.
In [8], they provided a calculus for these objects, i.e. a finite set of local modifications
connecting any two branched spines of the same manifold respecting the extra-structure.
Later, in [9], using these objects they extended the definition of the Reidemeister-Turaev
refined torsion to 3-manifolds with arbitrary boundary. Branched spines were also used by
Benedetti and Baseilhac to define quantum hyperbolic invariants ([3], [4] and [5]) .

The present paper is devoted to combine the notions of shadow of a 4-manifold and
branched polyhedron: the resulting theory is a generalization to dimension 4 of a set of
results which hold for branched spines of 3-manifolds. The main interest of the new theory
is that a series of these results can be further developed and studied in new directions which
are not visible in dimension 3. In particular, here we study the study of the relations between
branched shadows and complex structures.

After an introductory section in which we recall the notion of shadow and how to thicken
it to a 4-manifold, we show how a branching encodes a Spinc-structure on that manifold.
Then we prove in Theorem 4.12 a result that we summarize as follows:

Theorem 1.1. Let M be a 4-dimensional handlebody (i.e. a 4-manifold admitting a handle
decomposition without 3 and 4-handles). Each Spinc-structure and each homotopy class of
almost complex structures on M can be encoded by a branched shadow of M .

Hence branched shadows are a key tool for a combinatorial approach to a series of 4-
dimensional problems related with Spinc-structures and almost complex structures. We
further develop the theory in the last section by studying complex structures and branched
shadows. It turns out that a branched shadow embedded in a complex manifold behaves like
an embedded oriented real surface. We translate to the world of shadows a series of classical
definitions and results due to Chern, Spanier, Bishop and Lai on indices of embedded real
surfaces. We prove a shadow version of the well known result of Harlamov and Eliashberg
which allows, under suitable conditions, to annihilate pairs of complex points in embedded
real surfaces. In the end, as an application, we prove the following:

Theorem 1.2. Let M be a 4-dimensional handlebody. Each homotopy class of almost
complex structures on M can be represented by an integrable complex structure.

Our proof is based on the machinery of shadows and one the ideas used in [21]. We also
point out that the above statement is a special case of a result P. Landweber in [22] (proved
through different techniques) and also by M.L. Gromov [19]. In [15], we study sufficient
combinatorial conditions assuring that a branched shadow determines a Stein domain.

Acknowledgements. The author wishes to warmly thank Stephane Baseilhac, Ric-
cardo Benedetti, Paolo Lisca, Dylan Thurston and Vladimir Turaev for their criticism and
encouraging comments. He also thanks the Referee for his accurate reading and comments.
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Figure 1. The three local models of a simple polyhedron.

2. Shadows of 4-manifolds

In this section we recall the notion of shadow of a 4-manifold. We refer to [14] for an
introduction to this topic and to [26] for a complete account of it. From now on, all the
manifolds and homeomorphisms will be smooth unless explicitly stated.

Definition 2.1. A simple polyhedron P is a 2-dimensional CW complex whose local models
are those depicted in Figure 1; the set of points whose neighborhoods have models of the
two rightmost types is a 4-valent graph, called singular set of the polyhedron and denoted
by Sing(P ). The connected components of P − Sing(P ) are the regions of P . A simple
polyhedron whose singular set is connected and whose regions are all discs is called standard.

Definition 2.2 (Shadow of a 4-manifold). Let M be a smooth, compact and oriented 4-
manifold. P ⊂ N is a shadow for M if:

(1) P is a closed polyhedron embedded in M so that M − P is diffeomorphic to ∂M ×
(0, 1];

(2) P is flat in M , that is for each point p ∈ P there exists a local chart (U, φ) of M
around p such that φ(P ∩ U) is contained in R3 ⊂ R4 and in this chart the pair
(R3 ∩φ(U),R3 ∩φ(U ∩P )) is diffeomorphic to one of the models depicted in Figure
1.

Remark 2.3. Note that the original definition of shadows was given in the PL setting by
Turaev in [26] . But in four dimensions the smooth and the PL setting are equivalent, that is
for each PL-structure on a compact manifold there exists a unique compatible (in a suitable
sense) smooth structure. Definition 2.2 is the natural translation of the notion of shadow to
the smooth setting.

A necessary and sufficient condition (see [13]) for a 4-manifold M to admit a shadow is
thatM is a 4-handlebody, that isM admits a handle decomposition without 3 and 4-handles.
In particular, ∂M is a non empty connected 3-manifold. From now on, all the manifolds
will be 4-handlebodies and all the polyhedra will be standard and flat unless explicitly stated.

Can we reconstruct the neighborhoods of a polyhedron P in a manifold M from its
combinatorics? Let us first understand the easier 3-dimensional case, where the polyhedron
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Figure 2. The three type of blocks used to thicken a spine of a 3-manifold.

is embedded in an oriented 3-manifold N and its combinatorics allows one to reconstruct its
regular neighborhoods in the following way. Any decomposition of P into the local patterns
of Figure 1, induces a decomposition of any of its regular neighborhoods into blocks as
those of Figure 2. These can be reglued to each other according to the combinatorics of P .
That way, a polyhedron embedded in a 3-manifold, determines its regular neighborhoods
in the 3-manifold. It is known [11] that any 3-manifold with non-empty boundary can be
reconstructed that way, as a neighborhood of some embedded standard polyhedra, called
spine.

Let us now pass to the 4-dimensional case. Suppose that P is a surface embedded in a
oriented 4-manifold M . In general we cannot reconstruct the tubular neighborhoods of P
by using only its topology, since their structure depends on the self-intersection number of
P in M . To state it differently, the tubular neighborhood of a surface in a 4-manifold is
homeomorphic to the total space of a disc bundle over the surface (its normal bundle), and
the Euler number of this bundle is a necessary datum to reconstruct its topology.

Hence, we see that to encode the topology of a neighborhood of P in M we need to
“decorate” P with some additional information; when P is an oriented surface, the Euler
number of its normal bundle is a sufficient datum.

We describe now the basic decorations we need for a general standard polyhedron P , for
a more detailed account see [26]. Let us denote Z[1

2
] the group of integer multiples of 1

2
.

There are two canonical colorings on the regions of P , i.e. assignments of elements of Z2 or
Z[ 1

2
], the second depending on a flat embedding of P in an oriented 4-manifold. They are:

The Z2-gleam of P , defined as follows. Let D be the (open) 2-cell associated to a
given region of P and D be the natural compactification D = D ∪ S1 of the (open) surface
represented by D. The embedding of D in P extends to a map i : D → P which is injective
in int(D), locally injective on ∂D and which sends ∂D into Sing(P ). Using the map i we can
“pull back” a small open neighborhood of D in P and construct a simple polyhedron N(D)
collapsing on D and such that the map i extends as a local homeomorphism i′ : N(D) → P

whose image is contained in a small neighborhood of the closure of D in P . When i is an
embedding of D in P , then N(D) turns out to be homeomorphic to a neighborhood of D
in P and i′ is its inclusion in P . In general, N(D) collapses over a polyhedron which is
obtained by gluing D to the core of an annulus or of a Möbius strip: we define the Z2-gleam
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Figure 3. The picture sketches the position of the polyhedron in a 3-
dimensional slice of the ambient 4-manifold. The direction indicated by the
vertical double arrow is the one along which the two regions touching the
horizontal one get separated.

of D in P as 0 in the former case and 1 in the latter. This coloring only depends on the
combinatorial structure of P .

The gleam of P , defined as follows. Let us now suppose that P is flat in an oriented
4-manifold M , with D, D and i : D → P as above. Pulling back through i a small
neighborhood of i(N(D)) in M , we obtain a 4-dimensional neighborhood of N(D). This is
an oriented ball B on which we fix an auxiliary riemannian metric. Since N(D) is locally
flat in B, N(D) −D well defines a line normal to D in B along ∂D and hence a section of
the projectivized normal bundle of D (see Figure 3). Let then gl(D) be equal to 1

2
times

the obstruction to extend this section to the whole D; such an obstruction is an element of
H2(D, ∂D;π1(S

1)), which is canonically identified with Z since B is oriented. Note that the
gleam of a region is an integer if and only if its Z2-gleam is zero.

Using the fact that the Z2-gleam is always defined, Turaev generalized [26] the notion of
gleam to non-embedded polyhedra as follows:

Definition 2.4. A gleam on a simple polyhedron P is a coloring on the regions of P with
values in Z[ 1

2
] such that the color of a region is an integer if and only if its Z2-gleam is zero.

Theorem 2.5 (Reconstruction Theorem [26]). Let P be a polyhedron with gleams gl; there
exists a canonical reconstruction map associating to (P, gl) a pair (MP , P ) where MP is a
smooth, compact and oriented 4-manifold, and P ⊂ M is a shadow of M (see Definition
2.2). If P is a standard polyhedron flat in a smooth and oriented 4-manifold and gl is the
gleam of P induced by its embedding, then MP is diffeomorphic to a compact neighborhood
of P in M .

The proof is based on a block by block reconstruction procedure similar to the one used
to describe 3-manifolds by means of their spines. Namely, for each of the three local patterns
of Figure 1, we consider the 4-dimensional thickening given by the product of an interval
with the corresponding 3-dimensional block shown in Figure 2. All these thickenings are
glued to each other according to the combinatorics of P and its gleam.
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By Theorem 2.5, to study 4-manifolds one can either use abstract polyhedra equipped with
gleams or embedded polyhedra. The latter approach is more abstract, while the former is
purely combinatorial; we will use both approaches in the following sections. The translation
in the combinatorial setting of the definition of shadow of a 4-manifold is the following:

Definition 2.6 (Combinatorial shadow). A polyhedron equipped with gleams (P, gl) is
said to be a shadow of the 4-manifold M if M is diffeomorphic to the manifold associated
to (P, gl) by means of the reconstruction map of Theorem 2.5.

Given a shadow (P, gl) of a 4-manifold M , it is possible to modify it by a series of
local modifications called “moves”. The three most important are shown in Figure 4. To

(1−>2)
1/2

−1/2
+1/2−1/2

−1/2

−1/2

+1/2

0−>2
0

(2−>3)

0

Figure 4. The three shadow equivalences.

visualize these moves, imagine that a region of P slides over some other regions, producing
a polyhedron which differs from the initial one only in a collapsible subpolyhedron (drawn
in the left part of the figure). These moves are called respectively 1 → 2, 0 → 2 (or lune or
finger-move) and 2 → 3-moves (or Matveev-Piergallini move), because of their effect on the
number of vertices of the polyhedra.
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Let us analyze first the 0 → 2-move. This move acts in a 4-ball contained in M and
containing the part of P shown in the left part of the picture. After the move, we replace
this part of P with that drawn in the right and obtain a shadow P ′ of M . The whole move
can be performed in a 3-dimensional slice of the 4-ball in M . The same comments apply to
the case of the 2 → 3-move.

The case of the 1 → 2-move is slightly different. This move applies to a neighborhood of
a vertex and slides a region (the vertical lower one in the left part of the figure) over the
vertex thus creating a new one. It is a good exercise to visualize this sliding: it cannot be
performed in R3.

The above comments apply also to the inverses of the moves. We now clarify the meaning
of the numbers written on the regions of the polyhedra in the figure. Each move represents
a modification of the embedded polyhedron, and produces a new polyhedron whose gleam
is induced by the embedding in the ambient manifold as explained in the definition of the
gleam. Each region of this polyhedron corresponds to one of the initial polyhedron except
the disc created by the positive moves and contained in the right part of the pictures. The
numbers in the figure represent the changes in the gleams of the regions; the gleam of the
new disc is explicited in the pictures. The gleam of the regions which do not appear in the
figure do not change since their embedding in M does not.

All these comments can be summarized in the following proposition:

Proposition 2.7. Let (P, gl) be a shadow of a 4-manifold M and let (P ′, gl′) be obtained
from (P, gl) through the application of any sequence of 1 → 2, 0 → 2 and 2 → 3 moves and
their inverses. Then (P ′, gl′) is a shadow of M .

3. Branched shadows

Given a simple polyhedron P we define the notion of branching on it as follows:

Definition 3.1 (Branching condition). A branching b on P is a choice of an orientation for
each region of P such that for each edge of P , the orientations induced on the edge by the
regions containing it do not coincide.

Remark 3.2. This definition corresponds to the definition of “orientable branching” of [7].

We say that a polyhedron is branchable if it admits a branching and we call branched
polyhedron a pair (P, b) where b is a branching on P .

Definition 3.3. Let (P, gl) be a shadow of a 4-manifold M . We call branched shadow of M
the triple (P, gl, b) where (P, gl) is a shadow and b is a branching on P . When this will not
cause any confusion, we will not specify the branching b and we will simply write (P, gl).

Proposition 3.4. Any 4-manifold admitting a shadow admits also a branched shadow.

Proof of 3.4. We sketch the idea of the proof which is an adaptation of Theorem 3.4.9 of
[7]. We note that a branched shadow P ′ is obtained from a shadow P via an algorithmic
procedure. Orient arbitrarily all the regions of P ; if for each edge of Sing(P ) the three
orientations induced on it by the regions containing it do not coincide, then we have already
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found a branching on P . Let us suppose then that on an edge e is induced three times
the same orientation, and that the endpoints of e lie on two different vertices of P (we
can always find a shadow for which all the edges have this property by applying a suitable
sequence of the moves of Figure 4 on (P, gl)). The basic idea of the proof is to apply a
2 → 3-move along the edge e to “blow up” it and create a new region whose orientation we
can choose arbitrarily: indeed a 2 → 3-move makes an edge disappear and creates a new
region whose boundary is formed by three edges (see Figure 4). Choosing appropriately
the orientation of the new region and keeping unchanged the orientations of the other ones,
we can assure that no edge is induced three times the same orientation from the regions
containing it. In some particular cases, one of the edges touched by the new region does not
satisfy the branching condition, hence we apply again a 2 → 3-move on it. In [7] an accurate
analysis of the possible cases is performed showing that this process eventually ends with a
branched polyhedron. It is important to stress that the above proof can be adapted to our
case because it does not use any assumption on the Z2-gleam and all the moves used can be

performed in the ambient 4-manifold. 3.4

A branching on a shadow allows us to smooth its singularities and equip it with a smooth
structure as shown in Figure 5. This smoothing can be performed also inside the ambient
manifold obtained by thickening the shadow; the shadow locally appears as in Figure 5,
where the two regions orienting the edge in the same direction approach each other so that,
for any auxiliary riemannian metric on the ambient manifold, all the derivatives of their
distance go to zero while approaching the edge.

Figure 5. How a branching allows a smoothing of the polyhedron: the
regions are oriented so that their projection on the “horizontal” (orthogonal
to the drawn vertical direction) plane is orientation preserving.

If (P, gl) is a branched shadow of a 4-manifold, and we apply to it one of the moves of
Figure 4, we get another shadow P ′ of the same manifold containing one region more than
P . Each region of P naturally corresponds to a region of P ′ and the region of P ′ which does
not correspond to one of P is the small disc created by the move (see Figure 4). Hence the
branching on P induces a choice of an orientation on each region of P ′ except on that disc
and these orientations satisfy the branching condition on all the edges of P ′ not touched
by that disc. Analogously, if P ′ is obtained from P through the inverse of a basic move,
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then each region of P ′ corresponds to a region of P and the branching on P induces an
orientation on each region of P ′.

Definition 3.5. A basic move P → P ′ applied on a branched polyhedron P is called
branchable if it is possible to choose an orientation on the disc created by the move which,
together with the orientations on the regions of P ′ induced by the branching of P , defines a
branching on P ′. Analogously, the inverse of a basic move applied to P is branchable if the
orientations induced by the branching of P on the regions of P ′ define a branching.

A branching is a kind of loss of symmetry on a polyhedron and this is reflected by the
fact that each move has many different branched versions. To enumerate all the possible
branched versions of the moves, one has to fix any possible orientation on the regions of the
left part of Figure 4 and complete these orientations in the right part of the figure by fixing
one orientation on the region created by the move; by Definition 3.5, one obtains a branched
version of a basic move when the branching condition is satisfied both in the left and in the
right part of the figure. Fortunately, many of the possible combinations are equivalent up to
symmetries of the pictures; we show in Figure 6 all the branched versions of the 0 → 2-move
and in Figure 7 those of the 2 → 3-move. In these figures we split these branched versions
in two types namely the sliding-moves and the bumping-moves; this differentiation will be
used later.

We will also use often the following terminology:

Definition 3.6. Let e be an edge of a branched polyhedron P and let Ri,Rj and Rk be the
regions of P containing it in their boundary. Then Ri is said to be the preferred region of e
if it induces the opposite orientation on e with respect to those induced by Rj and Rk.

Figure 6. In the upper part of this figure we show the three branched
versions of the lune-move called “sliding”-moves. In the bottom part we
show the version called “bumping”-move.

It has been proved in [7][Chapter 3] that any lune and 2 → 3-move is branchable, but
some of their inverses are not. Regarding the 1 → 2-move and its inverse, the following
holds:



10 COSTANTINO

R

R4

R2R1

R3

Figure 7. In the upper part of the figure we show the 5 branched versions
of the 2 → 3-move called “sliding”-moves. The bottom part of the figure
represents the “bumping”-move.

Lemma 3.7. Each 1 → 2-move or its reverse is branchable.

r
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r3r
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r
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Figure 8. In this picture we fix the notation we use in the proof of Lemma 3.7.

Proof of 3.7. Let P be a branched polyhedron on which a 1 → 2-move acts. To fix the
notation, we use the right-hand rule in Figure 8 and give a sign to the each region of the
polyhedron involved in the 1 → 2-move: + if the region is positively oriented with respect
to the upward direction and − otherwise. That way, we identify a branching near the vertex
with a six-uple of signs. There are 24 possibilities but since the opposite of a branching is
a branching we reduce to study the 12 branchings where the sign of the region r1 is +. A
branching induces an orientation on the edges ei, 1 = 1, 2, 3, 4 touching the vertex; in the
case represented in the left part of the figure all the signs are +.

We need to show that, for each branching (and then for each six-uple of signs) near the
vertex in the left part of Figure 8, there is a choice of an orientation (and so a sign) for the
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region r7 in the right part of the figure so that no edge ei, i = 1, 2, 3, 4, 5, 6 is induced three
times the same orientation from the regions containing it. This is proved in the following
table where, in the left column, we list the possible branchings before the move, and in the
right column we write the signs corresponding to the compatible orientations of r7. Note
that there are cases where both the orientations of r7 give a branching to P .

(r1, r2, r3, r4, r5, r6) r7
(+,+,+,+,+,+) +
(+,+,+,+,+,−) ±
(+,+,+,+,−,+) ±
(+,+,+,+,−,−) −
(+,+,+,−,+,+) +
(+,+,−,−,+,+) +

(r1, r2, r3, r4, r5, r6) r7
(+,+,−,+,−,+) ±
(+,−,+,+,−,−) −
(+,+,−,−,−,+) +
(+,−,−,+,−,−) −
(+,−,−,+,−,+) −
(+,−,−,−,−,+) ±

The case of the (1 → 2)−1-move is simpler: if the polyhedron is branched before the
inverse move, then it is after, since no new edge is created during the move and no regions

merge. 3.7

The following proposition is a consequence of the fact that a 4-handlebody retracts onto
its shadows.

Proposition 3.8. Let P be a branched shadow of a 4-manifold M , and let Ri, i = 1, . . . , n
and ej , j = 1, . . . ,m be respectively the regions and the edges of P oriented according
to the branching of P . Then H2(M ; Z) is the kernel of the boundary application ∂ :
Z[R1, . . . , Rn] → Z[e1, . . . , em]. Moreover H2(M ; Z) is the abelian group generated by the

cochains R̂i, i = 1, . . . , n dual to the regions of P subject to the relations generated by the
coboundaries of the edges having the form δ(êj) = −R̂i + R̂j + R̂k where Ri is the preferred
region of ej.

Given a shadow (P, gl) of a 4-manifold M , there are three cochains representing classes
in H2(M ; Z) naturally associated to (P, gl). The first one is the Euler cochain of P , denoted
Eul(P ) and constructed as follows. Let m be the vector field tangent to P (using the
smooth structure given by the branching) which near the center of the edges points inside
the preferred regions; we extend m in a neighborhood of the vertices as shown in Figure 9.

The field constructed above is the maw of P . For each region Ri of P , the maw gives a
vector field defined near ∂Ri, so it is possible to extend this field to a tangent field on the
whole Ri having isolated singularities of indices ±1; let ni be the algebraic sum of these
indices over the region Ri. The Euler cochain is defined as Eul(P ) =

∑
i niR̂i; its meaning

will be analyzed in the next section.

4. Branched shadows and almost complex structures

As before, let M be an oriented 4-handlebody and let g be a fixed auxiliary riemannian
metric on M . In this section we show that a branched shadow determines a pair (M, [J ])
where [J ] is a homotopy class of almost complex structures on M suitably compatible with
g, and that for each such class, there exists a branched shadow of M encoding it.
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Figure 9. In this figure we show how the maw behaves near a vertex of a
branched polyhedron.

Definition 4.1. An almost complex structure J on an oriented 4-manifold M is a smooth
morphism J : TM → TM such that for each point p ∈ M it holds J2 = −Id. We say that
J is positive if at each point p ∈ M there exists a positive (with respect to the orientation
of M) basis of TpM of the form (x, J(x), y, J(y)). We say that J is orthogonal with respect
to g if for each p ∈M the map J : TpM → TpM is g-orthogonal.

Let P be a branched shadow of M . In each of the local blocks used to reconstruct M from
P as in Theorem 2.5 (these blocks are the products of an interval with the 3-dimensional
blocks of Figure 2), P is smoothly embedded in a non symmetrical way (see Figure 5). As
in Figure 5, we choose an horizontal 2-plane and orient it according to the branching of P ,
so that each of the basic building blocks of M is equipped with a distribution of oriented
2-planes, denoted as T (P ).

Let V (P ) be the field of oriented vertical 2-planes of TM which are pointwise positively
g-orthogonal to the planes of T (P ).

We define an almost complex structure JP by requiring that its restriction to the two
fields T (P ) and V (P ) acts pointwise as a π

2
positive rotation and we extend this action

linearly to the whole TM . By construction JP is positive and g-orthogonal. Note that the
choice of g was arbitrary. The following lemma assures us that our constructions are well
defined up to homotopy.

Lemma 4.2. Let M be an oriented 4-handlebody and g a riemannian metric on M . If P
is a branched shadow of M and g′ is another riemannian metric on M , the almost complex
structures on JP and J ′

P constructed as above using respectively g and g′ are homotopic.
Moreover, each homotopy class of almost complex structures on M contains a g-orthogonal
representative.

Proof of 4.2. Let J0 be an arbitrary almost complex structure on M . We first prove the
second statement and split its proof in two steps:

(1) there exists a riemannian metric g0 on M such that J0 is g0 orthogonal;
(2) J0 is homotopic to a g-orthogonal almost complex structure J1.



BRANCHED SHADOWS AND COMPLEX STRUCTURES ON 4-MANIFOLDS 13

Step 1. The space of the scalar metrics on R4 with respect to which a fixed complex
structure J on R4 is orthogonal is a non-empty convex set: indeed in a fixed basis the
orthogonality condition can be written as J tgJ = g where J is the complex structure and
g is the symmetric matrix representing the scalar product. In particular, the fiber bundle
over M of pointwise scalar products with respect to which J0 is pointwise orthogonal has
collapsible fiber, and hence admits a section g0.

Step 2. The homotopy of metrics on M given by gt = (1− t)g0 + tg connects g0 to g: we
show how to lift it to a homotopy Jt of gt-orthogonal almost complex structures connecting
J0 to a g-orthogonal almost complex structure.

Consider the bundle of J0 complex 2-planes on M ; its fiber is CP
1 = S2 and so, since

M retracts onto a 2-dimensional polyhedron, we can find a section and choose a field F of
J0-complex tangent 2-planes on M . For each point p ∈M we define Jt to be the π

2
rotation

with respect to the metric gt both on Fp and on its gt-orthogonal 2-plane. This gives us a
gt-orthogonal almost complex structure Jt connecting J0 to a g-orthogonal almost complex
structure concluding the proof of the second statement. To prove the first statement, use

Step 2 with F = T (P ) and g0 = g′. 4.2

Corollary 4.3. Let M be a smooth 4-manifold admitting a shadow. The restriction to the
branched shadows of M of the reconstruction map of Theorem 2.5 can be refined to a map
whose image is contained in the set of pairs (M, [J ]) where [J ] is a homotopy class of positive
almost complex structures on M .

From now on, we will only use positive and g-orthogonal almost complex structures. Our
construction splits the tangent bundle of M as the sum of two linear complex bundles V (P )
and T (P ), hence the first Chern class of TM , viewed as a complex bundle using the almost
complex structure JP , is equal to c1(T (P )) + c1(V (P )). The following proposition (whose
proof is identical to that of Proposition 7.1.1 of [7]) is a recipe to calculate c1(T (P )):

Proposition 4.4. The class in H2(P ; Z) represented by the Euler cochain Eul(P ) coincides
with the first Chern class of the horizontal plane field T (P ) of P in M .

We define the gleam cochain gl(P ) as gl(P ) =
∑

i gl(Ri)R̂i, where R̂i is the cochain dual
to Ri, the coefficient gl(Ri) is the gleam of the region Ri and the sum ranges over all the
regions Ri of P . Note that since the gleams can be half-integers, it is not a priori obvious
that the gleam cochain represents an integer class in H2(M ; Z) ∼= H2(P ; Z).

Lemma 4.5. The gleam cochain gl(P ) represents in H2(M ; Z) the first Chern class of the
field of oriented 2-planes V (P ).

Proof of 4.5. The normal bundle of each region of P is given by V (P ). Call PV (P ) the
projectivisation of V (P ) and let v be a generic section of V (P ) on P . The number of zeros
of the projection of v in PV (P ) on a 2-cycle is twice the number of zeros of v on the same
cycle; indeed, the index of each zero of the projection of v in PV (P ) is the double of the
index of the corresponding zero of v. By the construction of the gleam of a region, 2-times
the gleam cochain represents the first Chern class of PV (P ). In particular, the number of
zeros of the projection of v in PV (P ) on a 2-cycle is 2 times the evaluation of the gleam
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cochain on the cycle. Hence the number of zeros of v on the same cycle equals the evaluation

of the gleam cochain on the cycle. 4.5

Corollary 4.6. The first Chern class of the almost complex structure on M associated with
P is represented by the cochain c1(P ) = Eul(P ) + gl(P ).

4.1. Comparing different almost complex structures. Corollary 4.3 does not tell us
which homotopy classes [J ] of almost complex structures can be reconstructed by means of
suitable branched shadows of M : we prove in the subsequent subsections that the recon-
struction map is surjective on the pairs (M, [J ]). To do this, we need to “compare” different
homotopy classes of almost complex structures on M . This can be performed through a
shortcut based on the theory of Spinc-structures.

Theorem 4.7 ([21]). Let M be a smooth, compact and oriented 4-manifold admitting a
shadow and equipped with an auxiliary orthogonal riemannian metric g.

(1) There exists a canonical bijection b between the set J of homotopy classes of orthog-
onal, positive, almost complex structures on M and the set S of Spinc-structures on
M .

(2) Fixed an arbitrary Spinc-structure s on M , any other such structure s′ is isomorphic
to s⊗l where l is a complex line bundle over M ; this equips the set of Spinc-structures
(and hence of homotopy classes of almost complex structures) on M with a structure
of affine space over H2(M ; Z) where s′ − s = c1(l).

(3) To each Spinc-structure s one can associate an element of H2(M ; Z) called its Chern
class and denoted by c1(s) such that if s and s′ are as above then c1(s

′) − c1(s) =
2c1(l) and such that c1(b(J)) = c1(J) for each almost complex structure J .

Corollary 4.8. If H2(M ; Z) has no 2-torsion, then two almost complex structures are
homotopic if and only if their Chern classes coincide.

Proof of 4.7. All the results on Spinc-structures are standard, see [21]. In that paper a
construction is exhibited which associates to each pair (s, ψ) where s is a Spinc-structure
on M and ψ a positive spinor on it, an almost complex structure defined out of the zeros of
ψ. If ψ is generic the almost complex structure is defined out of a finite set.

If M collapses onto a 2-dimensional polyhedron, the spinor can be choosen to be non-
zero and each two such spinors can be connected through a path of non-zero spinors. This
gives the map b−1 from Spinc-structures into the set of almost complex structures; it is
a standard fact that it is surjective since each almost complex structure J allows one to
explicitly construct the Spinc-structure b(J); also the last statement comes directly from

the construction of b(J) from J . 4.7

In particular, a branched shadow P can be used to reconstruct a Spinc-structure on M

instead of the homotopy class [JP ]. A direct consequence of Theorem 4.7 is that the set J of
homotopy classes of almost complex structures onM is equipped with a structure of an affine
space over H2(M ; Z) or, by Poincaré duality, on H2(M,∂M ; Z) and one can calculate the
“difference” α(J2, J1) between two classes [J1] and [J2] by considering the difference between
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the corresponding Spinc-structures. More explicitly, we define α(J2, J1) = PD(b(J2) −
b(J1)), where PD stands for “Poincaré dual”. The following holds:

Proposition 4.9. Let J1 and J2 be in general position with respect to each other. The class
α(J2, J1) ∈ H2(M,∂M ; Z) is represented by the properly embedded surface S = {x ∈M |J1 =
−J2 in x} suitably oriented. The properties of α are:

(1) α(J2, J1) = −α(J1, J2);
(2) α(·, J1) : J → H2(M,∂M ; Z) is bijective for any J1;
(3) α(J3, J2) + α(J2, J1) = α(J3, J1).

Proof of 4.9. Let us associate to each Ji a self dual 2-form ω(Ji) on M as follows. At
each point p ∈ M consider a basis of TpM of the form (x1, Ji(x1), x2, Ji(x2)) and stipulate
that the 2-form ω(Ji) in p is represented by x1 ∧ Ji(x1) + x2 ∧ Ji(x2). The so obtained

2-form is self dual and has everywhere norm
√

2. The forms ωi = ω(Ji), i = 1, 2 are (up to
normalization) sections of the (2-dimensional) unit bundle of Λ+M (the bundle of self dual
two forms) which we will denote by UΛ+M . Hence they define embeddings Mi of M into
the total space of a 6-dimensional bundle. Since Ji are in general position with respect to
each other, the set of points of M where ω2 = −ω1 is an orientable surface (S, ∂S) properly
embedded in (M,∂M). Since M is oriented, also Mi can be oriented by pulling back the
orientation of M through the projection of the fiber bundle UΛ+M on M . Also the total
space of the bundle UΛ+M can be oriented using the “horizontal” orientation of TM and
the orientation on the fiber fixed by stipulating that, if e1, e2, e3, e4 is a positive orthonormal
basis of T ∗

pM , the basis of Λ+M given by e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 − e2 ∧ e4, e1 ∧ e4 + e2 ∧ e3
is positive.

Now that all our starting objects are oriented, we equip S with an orientation depending
only on the ordered pair (J1, J2) as follows. Note that S is the projection of the surface
−M1 ∩ M2, where −M1 is the embedding of M in Λ+M given by −ω1. Let us orient
−M1 ∩M2 locally around a point q as follows. Let x1, x2, x3, x4, x5, x6 be a local system of
coordinates of UΛ+M ′ around q such that:

(1) the basis ∂
∂x1

, ∂
∂x2

, ∂
∂x3

, ∂
∂x4

, ∂
∂x5

, ∂
∂x6

is an oriented basis of the tangent space at q of

the total space of UΛ+M ;
(2) the vectors ∂

∂x1

, ∂
∂x2

, ∂
∂x3

, ∂
∂x4

form a positive basis of TqM2;

(3) the vectors ∂
∂x3

, ∂
∂x4

, ∂
∂x5

, ∂
∂x6

form a positive basis of Tq(−M1).

We stipulate that a positive basis of Tq(−M1∩M2) is given by ∂
∂x3

, ∂
∂x4

. This construction
yields a well defined orientation on −M1 ∩M2 and hence on S.

To each component of S, we now assign an integer index equal to ±1. Let S1 be one
component of S and consider a small disc D transverse to S1 and intersecting it in a single
point p; we orient D so to complete the orientation of S1 to the orientation of M . By
construction J2 = −J1 on p and not on D− {p}. Locally, on D, we can identify the section
of UΛ+M given by J1 with the “north pole” of the sphere bundle. Then the image of D
through the other section, given by −J2, is a small disc surrounding the north pole. The
index of S1 is defined to be 1 if this small disc is oriented as the spherical fiber and −1
otherwise.
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The so obtained class [S] ∈ H2(M,∂M), which we will also call the comparison class
between [J2] and [J1], represents the obstruction to the homotopy between J2 and J1 and so
[S] = α(J2, J1). The properties of α(J2, J1) descend from the definition and the properties
of Spinc-structures recalled in Theorem 4.7. They could also be deduced by independent
arguments, as, for instance, the definition of the analogue of the Pontrjagin-move for almost
complex structures and surfaces in M (see [7], Chapter VI).

4.9

4.2. Surjectivity of the reconstruction map. Next we prove that all the homotopy
classes of almost complex structures can be obtained via the reconstruction map of Corollary
4.3.

We first calculate the difference α(JP ′ , JP ) when P ′ and P are two branched shadows
of M connected by a branched move. Let us note that we can combinatorially calculate
2α(JP ′ , JP ): indeed, by Theorem 4.7 and the last statement of Proposition 4.9, we have
2α(JP ′ , JP ) = PD(c1(JP ′) − c1(JP )) and using Corollary 4.6 both c1(JP ′) and c1(JP ) are
represented by the sum of the Euler and gleam cochains of P ′ and P respectively. When
there is no 2-torsion in H2(M ; Z) ∼= H2(M,∂M ; Z) we are done since we can divide by two
the above equality. In the following lemma, we calculate the values of [∆Eul] := [Eul(P ′)]−
[Eul(P )], [∆gl] := [gl(P ′)] − [gl(P )] ∈ H2(M ; Z), and 2α(JP ′ , JP ) ∈ H2(M,∂M ; Z) when
P ′ is obtained from P by the application of a 0 → 2-move or a 2 → 3-move.

Lemma 4.10. If P ′ is obtained from P through the application of a sliding 0 → 2-move or
2 → 3-move (i.e. one of those drawn in the upper parts of Figures 6 and 7) then [∆Eul] =
[∆gl] = 2PD(α(JP ′ , JP )) = 0; if the 0 → 2 or 2 → 3-move is a bumping one (shown in the

bottom parts of Figures 6 and 7) then [∆Eul] = −2R̂4, [∆gl] = 0 and hence 2α(JP ′ , JP ) =

−2PD(R̂4) where R4 is the upper-right region in our figures of the bumping moves, its

orientation is given by the branching and PD(R̂4) is the Poincaré dual of the element of
H2(M ; Z) which is represented by the cochain dual to R4 (this element can be represented
by a properly embedded disc intersecting R4 transversely once).

Proof of 4.10. The proof is a straightforward computation based on Proposition 3.8 and
Corollary 4.6. As an example, we consider the calculation for the bumping 2 → 3-move,
shown in the lower part of Figure 7. Since P and P ′ describe the same manifold, the
presentations of H2(M ; Z) they provide through Proposition 3.8 are equivalent, and so, in
what follows, we use the presentation provided by P ′.

Since the maw is fixed on the boundary of the polyhedron shown in the figure, its behavior
on the boundary of the regions does not change after the move except for R1, R2 and R3. For
instance, before the move R1 is the preferred region of the central edge while after the move
it is the preferred region of no edge in the figure. A similar phenomenon can be observed
on ∂R2 and ∂R3. It can be checked that in all these cases the result is the addition of a full
positive or negative twist to the maw on the boundaries of the regions, so the coefficients of
R̂1, R̂2 and R̂3 in the Euler cochain change respectively of 1, −1 and −1.

Finally, the maw on the boundary of the new region R points always outwards and hence
the index of the singularity on the interior of R is 1. So the difference between the cochains
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Eul(P ′) and Eul(P ) is R̂ + R̂1 − R̂2 − R̂3; but since the relations in the presentation
of H2(M ; Z) induced by the edges between R1 and R2 and R and R3 are respectively

R̂2 − R̂1 − R̂4 and R̂3 − R̂ − R̂4, the total change of the Euler cohomology class is −2R̂4.
To finish, note that the cohomology class represented by the gleam cochain is not changed
by the move because the gleams of the regions involved in the move do not change and the

region R has zero gleam. 4.10

To perform the calculations in the case of 1 → 2-moves we first set up the notation. By
Lemma 3.7, each 1 → 2-move is branchable and has 32 branched versions, one for each of
the 24 initial branching of the vertex where the move acts, with some cases which split since
any orientation of the region created by the move (R7 in Figure 8) gives a branching. Up to
diffeomorphisms of the ball where the move acts, we reduce to the 16 cases examined in the
proof of Lemma 3.7. Using the same convention, we summarize in the following table how
do the classes given in H2(M ; Z) by the Euler cochain, the gleam cochain and the Chern
class, change after a branched 1 → 2-move P → P ′ in each of the 16 cases. We use the
presentation of H2(M ; Z) given by P ′.

Case (R1, R2, R3, R4, R5, R6) R7 [∆Eul] [∆gl] [∆c1]
1 (+,+,+,+,+,+) + 0 0 0

2a (+,+,+,+,+,−) + −R̂6 −R̂6 −2R̂6

2b (+,+,+,+,+,−) − −R̂5 −R̂5 −2R̂5

3a (+,+,+,+,−,+) + −R̂5 −R̂5 −2R̂5

3b (+,+,+,+,−,+) − −R̂6 −R̂6 −2R̂6

4 (+,+,+,+,−,−) − 0 0 0

5 (+,+,+,−,+,+) + R̂4 −R̂4 0

6 (+,+,−,−,+,+) + R̂5 −R̂5 0

7a (+,+,−,+,−,+) + −R̂4 −R̂4 −2R̂4

7b (+,+,−,+,−,+) − −R̂2 −R̂2 −2R̂2

8 (+,−,+,+,−,−) − R̂2 −R̂2 0
9 (+,+,−,−,−,+) + 0 0 0

10 (+,−,−,+,−,−) − R̂6 −R̂6 0
11 (+,−,−,+,−,+) − 0 0 0

12a (+,−,−,−,−,+) + −R̂2 −R̂2 −2R̂2

12b (+,−,−,−,−,+) − −R̂4 −R̂4 −2R̂4

The above computations give the value of 2α(JP ′ , JP ) = PD([∆c1]) where [∆c1] =

c1(JP ′)− c1(JP ). Note that this value has always the form 2PD(R̂) for a suitable region R

and so PD(R̂) is a natural candidate for α(JP ′ , JP ).

Theorem 4.11. Let P and P ′ be two branched shadows of the same manifold connected
by a 0 → 2, 2 → 3 or 1 → 2 branched move, and let c1(JP ′) − c1(JP ) = 2R̂ for a suitable
region R be the difference of the Chern classes of the associated almost complex structures,
calculated as explained above. Then α(JP ′ , JP ) = PD(R̂); similarly, if c1(JP ′)− c1(JP ) = 0
then α(JP ′ , JP ) = 0.
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Proof of 4.11. Let T and T ′ be the collapsible subpolyhedra respectively of P and P ′ on
which the branched move acts. Let also π : M → P be a collapse of M onto P and
B = π−1(T ) be the regular neighborhood in M of T . Since P \T = P ′ \T ′ in M , B is also a
regular neighborhood of T ′. Moreover since T is collapsibleB is a 4-ball; let us decompose ∂B
into the “vertical part” ∂vB = π−1(∂T ) and the “horizontal” part ∂hB = π−1(int(T ))∩∂B;
clearly ∂B = ∂hB ∪ ∂vB and ∂T = ∂T ′ ⊂ ∂vB.

Since the branched move acts only near T and T ′, the structures JP and JP ′ are modified
only in B and the class α(JP ′ , JP ) ∈ H2(M,∂M ; Z) is represented by a properly embedded
(possibly empty) oriented surface S ⊂ B (see Proposition 4.9) with ∂S ⊂ ∂hB. In particular,
S represents a cycle in H2(B, ∂hB; Z) and, through the inclusion i : (B, ∂hB) →֒ (M,∂M),
the element α(JP ′ , JP ) ∈ H2(M,∂M ; Z). Hence, to compute α(JP ′ , JP ) we will com-
pute [S] ∈ H2(B, ∂hB; Z) (which depends only on B), and then consider its image in
H2(M,∂M ; Z) through i∗.

We can choose a set of generators for H2(B, ∂hB; Z) by considering the classes Ri of the
“vertical discs”, i.e. the discs of the form π−1(pt) where pt is a point inside the region Ri of
T and orienting them in order to complete the orientations of Ri to that of M ; in particular,

it holds PD([R̂i]) = i∗(Ri) (where R̂i ∈ H2(M ; Z) is the cochain dual to Ri). The relations
between these generators have the form Ri = Rj + Rk where Ri, Rj and Rk share an edge
in T for which Ri is the preferred region.

Now, to compute [S] ∈ H2(B, ∂hB; Z), let us study the case when M is the manifold
obtained by doubling B along ∂vB, whose shadow is obtained by doubling T along T ∩∂Bv.
In this case the theorem is true: indeed by Lemma 4.10, we need to find the class X ∈
H2(M,∂M ; Z) such that 2X = 2PD(R̂) but it is easy to check that i∗ : H2(B, ∂hB; Z) →
H2(M,∂M ; Z) is an isomorphism and that H2(M,∂M ; Z) has no 2-torsion so that we can

divide by two and get X = PD(R̂). But clearly it holds PD(R̂) = i∗(R) and so [S] = R ∈
H2(B, ∂hB; Z). Similarly if c1(JP ′) − c1(JP ) = 0 then X = [S] = 0.

Now that we found [S], if we consider a generic manifold M containing B, letting again
i : B →֒ M be the inclusion, we have that α(JP ′ , JP ) is the class represented by i∗([S]) =

i∗(R) ∈ H2(M,∂M ; Z), and this class equals PD(R̂) since, by construction, it is represented
by a properly embedded vertical disc intersecting geometrically R.

4.11

Theorem 4.12. The refined reconstruction map from branched shadows of M to pairs
(M, [J ]) with [J ] homotopy class of positive almost complex structures on M , is surjective.

Proof of 4.12. Fix an auxiliary riemannian metric g on M . We limit ourselves to give an
idea of the proof since it is an adaptation of that of Theorem 4.6.4 of [7]. Let [J ] be as
in the statement, P be a branched shadow of M (which exists by Proposition 3.4) and let
[JP ] the homotopy class associated to P by Corollary 4.3. We want to show that there
exists a branched shadow P ′ such that [JP ′ ] = [J ]. If [J ] = [JP ] we are done. Otherwise,

let us write the Poincaré dual of α(J, JP ) as
∑

i kiR̂i where R̂i is the cochain dual to the
region Ri of P (using the presentation of H2(M ; Z) given by P ). The idea of the proof is
to apply a suitable sequence of 0 → 2 and 2 → 3-moves to P to modify it and get a new
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branched shadow of M carrying the homotopy class [J ]. For that, it is sufficient to exhibit
a sequence that “decreases” the difference α between J and JP by a chain whose Poincaré
dual is cohomologous to one of the form ±R̂i for any region Ri of P . For instance, suppose
that we want to get a shadow carrying a homotopy class which differs from JP by −R̂i, and
that the boundary of the region Ri contains an edge ej whose preferred region is not Ri;
then, by Theorem 4.11 a self 0 → 2-move is a bumping move producing a branched shadow
P ′ such that PD(α(JP ′ , JP )) = −R̂i. If for all the edges in ∂Ri the preferred region is Ri,

let ej be an edge of ∂Ri and Rk and Rl be other regions containing it. Since R̂i = R̂k + R̂l

it is sufficient to apply the above moves both to Rk and Rl to get the wanted shadow. The
sequence of moves producing a difference of the form +R̂i is more complicated: we refer to
[7] for a complete account and give here a sketch of the construction. The idea is to first

create a region R′
i such that R̂′

i = −R̂i and then to apply the preceding arguments to R′
i.

One can suppose that there is an edge in ∂Ri along which Ri is not the preferred region.
Then, to create R′

i, one first applies a local 0 → 2-move on that edge to slide Ri over a

small disc D ⊂ Ri; it is not hard to check that D̂ = 0. Then, letting Ri slide over a disc
D′ ⊂ D through another 0 → 2-move, one sees that D̂′ = −R̂i and so one can put R′

i = D′.

4.12

5. Branched shadows and complex structures

Definition 5.1. An almost complex structure J on a smooth 4-manifold M is said to be
integrable or complex if for each point p of M there is a local chart of M with values in C2

transforming J into the complex structure of C2.

5.1. Branched shadows in complex manifolds. In this subsection, supposing that M
is equipped with an integrable structure J , we adapt to the case of branched shadows a
series of classical definitions and results of Bishop ([2]), Chern and Spanier ([12]), Lai ([23])
and Harlamov and Eliashberg ([20]) concerning invariants of embeddings of real surfaces in
complex manifolds.

Let P be a branched shadow embedded in M . Up to perturbing the embedding of P
through a small isotopy we can suppose that there is only a finite number of points p1, . . . , pn

and q1, . . . , qm, contained in the regions of P where Tpi
P (resp. Tqj

P ) is a complex plane
such that the orientations induced by the branching of P and by the complex structure
coincide (resp. do not coincide).

Definition 5.2. The points p1, . . . , pn are called positive complex points of P or simply
positive points. Analogously, the points q1, . . . , qm are called negative complex points of P
or negative points. All the other points of P are called totally real.

To each complex point p of a region Ri of P we can assign an integer number called its
index, denoted i(p), as follows. Fix a small disc D in Ri containing p and no other complex
point and let N be the radial vector field around p. The field J(N) on ∂D is a vector field
transverse to P since no point on D − p is complex. Let π(J(N)) be the projection of this
field onto the normal bundle of D in M . Since D is collapsible, this bundle is trivial and
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we can count the number ν(p) of twists performed by π(J(N)) while following ∂D (D and
M are oriented). The index of p is: i(p) = ν(p) + 1. Moreover, we define ν(Ri) as the sum
over all the complex points p of Ri of ν(p).

Up to a small perturbation by an isotopy of the embedding of P in M we can assume
that all the indices of the complex points of P are equal to ±1.

Definition 5.3. A complex point p of P whose index is equal to 1 is elliptic, if its index is
−1 it is hyperbolic.

We define the “Chern index” c1(p) of a complex point p of a region Ri of P as follows. Let
D and N be as above and complete N on ∂D to a basis of TD by using the field T = T∂D

tangent to the boundary of D. The pair of fields (N,T ) gives a basis of TD in each point
q of ∂D, and, since no such point is complex, they can be completed to a positive complex
basis of TqM given by (N, J(N), T, J(T )). Let now ∂

∂z
and ∂

∂w
be two vector fields defined

on a neighborhood of D in M such that ( ∂
∂z
, ∂

∂w
) is pointwise a complex basis of TM . Then,

on each point q of ∂D we can compare the two complex bases given by (N+J(N), T +J(T ))
and ( ∂

∂z
, ∂

∂w
) by considering the determinant detq of the change of basis from the latter to

the former basis. The value of the index of detq around 0 in C while q runs across ∂D
according to the orientation of D, is defined to be c1(p). We define c1(Ri) as the sum of
c1(p) over all the complex points p of Ri.

The following result was proved for the case of surfaces in C2 by Chern and Spanier ([12])
and in a general framework by Lai [23] (see also [1]); its proof in the case of surfaces with
boundary is a straightforward adaptation of their techniques so we omit it.

Theorem 5.4. Let Ri be a surface with boundary contained in a complex manifold M such
that ∂Ri does not contain complex points and let I+(Ri) =

∑
i=1,...,n i(pi) and I−(Ri) =

∑
j=1,...,m i(qj), where pi (resp. qj) are the positive (resp. negative) complex points of Ri.

Then the following holds:

I+(Ri) =
1

2
(χ(Ri) + ν(Ri) + c1(Ri))

I−(Ri) =
1

2
(χ(Ri) + ν(Ri) − c1(Ri))

We will need the following, due to Harlamov and Eliashberg [20]:

Theorem 5.5 (Annihilation theorem). Let S be an oriented real surface embedded in a
complex manifold M and let p1 and p2 be two complex points of S of the same sign (i.e.
both positive or negative) and belonging to the same connected component of S. Let α be an
arc in S connecting p1 and p2 and containing no other complex point of S and suppose that
i(p1) = 1 = −i(p2). There exists on S a small isotopy φt, t ∈ [0, 1] which is the identity out
of a small neighborhood U(α) of α and such that φ1(U(α)) contains no complex points.

The following is the analogous in the world of shadows of Theorem 5.5:

Lemma 5.6. Let Ri, Rj and Rk be three regions of P adjacent along a common edge e ∈
Sing(P ) so that Ri is the preferred region of e. There exists an isotopy φt : P →M, t ∈ [0, 1]
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whose support is contained in a small ball B around the center of e such that φ1(B ∩ P )
contains three more complex points pi, pj and pk all of the same sign, respectively in Ri, Rj

and Rk such that i(pi) = ±1, i(pj) = ∓1 and i(pk) = ∓1.

Proof of 5.6. By modifying with a C0-small isotopy the position of Ri in a neighborhood
of an interior point and applying Theorem 5.5, we can assume that near the edge e there
is a pair of complex points pi and p′i in Ri of opposite indices. Roughly speaking, we now
“slide Rj over” p′i and show that both on Rk and Rj two complex points are created by this
sliding.

Consider an arc γ embedded in Ri whose endpoints are p′i and a point q on e. Let Dj and
Dk be small disc neighborhoods of q respectively in Rj and Rk and let D′ a neighborhood of
Dj ∪γ in Ri ∪Rj (since P is branched, D′ is a smooth disc). Consider the isotopy that fixes
every point of P \ (D′ ∪Dk) and moves Dj by letting it slide over γ and pass over p′i. This
isotopy acts in a 4-ball and changes only the regions Ri and Rk along their borderlines. The
point p′i passes from one side to the other one, becoming a complex point pk in Rk; we are
left to prove that a J-complex point has been created on Rj having the same index as pk.
This is proved by using Theorem 5.4. Consider the image D′′ of the bigger disc D′ after the
isotopy: it is a disc whose boundary is made only of totally real points and i(D′′) = i(D′)
since ∂D′′ = ∂D′ by construction. Then we finish by observing that i(D′) = i(p′i) since D′

by construction contains only p′i. 5.6

The above lemma suggests the following:

Definition 5.7. The positive index and negative index cochains of P , denoted respectively
I+(P ) and I−(P ) are the 2-cochains given by ΣiI

±(Ri)R̂i, where i ranges over all the regions
of P .

Theorem 5.8. The cohomology classes [I±(P )] ∈ H2(M ; Z) are invariants of the embedding
of P in M up to isotopy.

Proof of 5.8. Let φt, t ∈ [0, 1] be an isotopy of P in M so that φ0 = id and φ1(P ) = P ′. Up
to slightly perturbing φ, we can suppose that the following holds:

(1) the number of creation/annihilations of complex points with opposite indices during
the isotopy is finite;

(2) no creation/annihilation of complex points at time t happens on φt(Sing(P )), t ∈
[0, 1];

(3) the complex points of φt(P ) cross φt(Sing(P )) only a finite number of times and
transversally in the interior of the edges of φt(Sing(P )).

Then we have to check the invariance of the classes I±(P ) under two kinds of catastrophes:
when a pair of complex points is created or annihilated in the interior of a region of P and
when a complex point crosses φt(Sing(P )). The invariance is trivial in the first case, by the
very definition of I±(P ), while it follows immediately from Lemma 5.6 in the second case.

5.8

We now compare the almost complex structure carried by a branched shadow P with the
ambient complex structure J .



22 COSTANTINO

Proposition 5.9. The following holds: α(J, JP ) = PD([I−(P )]) where PD denotes the
Poincaré dual and [I−(P )] is the cohomology class represented by the negative index cochain
of P . Moreover, if α(J, JP ) = 0 there exists an isotopy φt, t ∈ [0, 1] of P in M such that
φ0 is the identity and φ1(P ) contains no negative J-complex points.

Proof of 5.9. Up to homotopy, we can suppose that JP is generic with respect to J and
represent α(J, JP ) as an oriented properly embedded surface S in (M,∂M) whose compo-

nents are equipped with indices equal to ±1. Consider the 2-cochain β =
∑
niR̂i where

i ranges over all the regions Ri of P and ni is equal to the sum of the indices of all the
intersection points between S and Ri. By the construction of S (see Proposition 4.9), P ∩S
is the set of negative J-complex points of P equipped with indices equal to those of the
corresponding components of S, hence β = I−(P ). On the other side, by Proposition 4.9,
β = PD(α(J, JP )).

If α(J, JP ) = 0, then [I−(P )] = 0 in H2(M ; Z) and its expression as a cochain can be
reduced to 0 by means of the relations given by the edges of P (see Proposition 3.8). To
conclude it is sufficient to prove that, given an arbitrary edge e of Sing(P ) inducing a

relation of the form R̂i = R̂j + R̂k on the three regions containing it, it is possible to find an
isotopy φe of P in M which has the effect of eliminating a point p′i of index ±1 on Ri and
creating a pair of points of the same index pk and pj , respectively on Rk and on Rj . This

is the statement of Lemma 5.6. 5.9

5.2. Integrable representatives of almost complex structures. This subsection is
devoted to prove Theorem 1.2:

Proof of 1.2. Let [J ] be a homotopy class of almost complex structures onM . By Theorem
4.12 there exists a branched shadow P of M such that the homotopy class of the almost
complex structure JP associated to P is [J ]. To construct an integrable representative of
[J ] we now immerse M in a suitable complex manifold and pull back its complex structure
to M through the immersion (the pull-back through a local diffeomorphism of a complex
structure is a complex structure). We then prove that the so obtained complex structure
belongs to [J ]. The branched shadow P is crucial both in the construction of the immersion
of M and in the control of the homotopy class of the complex structure.

First, since Sing(P ) is a graph, a regular neighborhood N of it in P can be embedded
in C2 equipped with coordinates (z, w). Moreover, we can suppose that the projection over
the plane w = 0 has surjective and positive differential (i.e. the image of the orientation
of TP coincides with that of the plane w = 0) in every point of N . This implies that the
image of N in C2 contains no negative complex points. Let us now extend arbitrarily the so
constructed immersion of N in C2 to an immersion of the whole P : this can be done since
each boundary component of N coincides with a boundary component of a region of P and
each loop in C2 bounds an immersed disc.

That way we construct an immersion of P in C2 but we have to solve two problems:

(1) modify the immersion to delete all the negative complex points of the image;
(2) extend the new immersion to the whole M .
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We solve both problems with the same technique, but to use it we first fix the notation.
Up to isotopy of the immersion we can suppose that for each region Ri of P , the image of
Ri contains two small discs D+

i and D−

i parallel to the w = 0 plane and oriented by Ri

respectively in the positive and in the negative way with respect to the complex orientation
of the plane. Let p+

i and p−i points in D+
i and D−

i respectively and let C′ be the complex
4-manifold obtained by deleting small neighborhoods of p±i of the form p±i + {(z, w)|||z|| ≤
ǫi, ||w|| ≤ ǫi} from C2. If we glue back to C′ along ∂D−

i a 2-handle equipped with a complex
structure of the form {(z, w)| ||z|| ≤ ǫi, ||w|| ≤ ǫi

2
} though the map (z, w) → p−i + (z, zniw)

and acting analogously for D+
i (using an exponent mi), we obtain an immersion of P in a

new complex manifold by sending D±

i to the cores of the 2-handles. If we slightly perturb
this new immersion we see that the points p±i are isolated complex points (respectively of
positive and negative type) whose indices are mi and ni. The above recipe allows us to
modify the immersion in small neighborhood of points of each region (changing also the
codomain of the immersion) and change arbitrarily the total indices I± of the image of each
region. Then, we can fix I−(Ri) to be zero on each region, and, after applying a suitable
number of times Theorem 5.5, we can suppose that each Ri contains no negative points.

Let us now solve the second problem; the pull back of a neighborhood of the image of P
through the so obtained immersion gives a thickening of P but a priori it is not true that
such a thickening coincides with M . It is so if the gleams induced on the regions of P by
this thickening (recall the definition of the gleam) are the same as those induced by M on P .
Changing suitably the coefficients mi in the above construction we can change arbitrarily
the gleams induced on each region Ri without adding negative complex points; indeed the
gleam is a relative version of the self-intersection number of each region and adding a twist
to the attaching map of the 2-handle around p+

i changes by one this self intersection number.
Then, up to suitably reattaching to C′ all the 2-handles corresponding to the points p±i ,

the immersion of P can be extended to an immersion of M in C′′ and the pull back of the
complex structure of C′′ to M is a complex structure such that P contains no negative point.
By Proposition 5.9 we conclude that the so obtained complex structure on M belongs to

the homotopy class carried by P and we are done. 1.2
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